]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/include/asm/tlbflush.h
x86/mm: Create asm/invpcid.h
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / include / asm / tlbflush.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_TLBFLUSH_H
3 #define _ASM_X86_TLBFLUSH_H
4
5 #include <linux/mm.h>
6 #include <linux/sched.h>
7
8 #include <asm/processor.h>
9 #include <asm/cpufeature.h>
10 #include <asm/special_insns.h>
11 #include <asm/smp.h>
12 #include <asm/invpcid.h>
13
14 static inline u64 inc_mm_tlb_gen(struct mm_struct *mm)
15 {
16 /*
17 * Bump the generation count. This also serves as a full barrier
18 * that synchronizes with switch_mm(): callers are required to order
19 * their read of mm_cpumask after their writes to the paging
20 * structures.
21 */
22 return atomic64_inc_return(&mm->context.tlb_gen);
23 }
24
25 /* There are 12 bits of space for ASIDS in CR3 */
26 #define CR3_HW_ASID_BITS 12
27 /*
28 * When enabled, PAGE_TABLE_ISOLATION consumes a single bit for
29 * user/kernel switches
30 */
31 #define PTI_CONSUMED_ASID_BITS 0
32
33 #define CR3_AVAIL_ASID_BITS (CR3_HW_ASID_BITS - PTI_CONSUMED_ASID_BITS)
34 /*
35 * ASIDs are zero-based: 0->MAX_AVAIL_ASID are valid. -1 below to account
36 * for them being zero-based. Another -1 is because ASID 0 is reserved for
37 * use by non-PCID-aware users.
38 */
39 #define MAX_ASID_AVAILABLE ((1 << CR3_AVAIL_ASID_BITS) - 2)
40
41 static inline u16 kern_pcid(u16 asid)
42 {
43 VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
44 /*
45 * If PCID is on, ASID-aware code paths put the ASID+1 into the
46 * PCID bits. This serves two purposes. It prevents a nasty
47 * situation in which PCID-unaware code saves CR3, loads some other
48 * value (with PCID == 0), and then restores CR3, thus corrupting
49 * the TLB for ASID 0 if the saved ASID was nonzero. It also means
50 * that any bugs involving loading a PCID-enabled CR3 with
51 * CR4.PCIDE off will trigger deterministically.
52 */
53 return asid + 1;
54 }
55
56 struct pgd_t;
57 static inline unsigned long build_cr3(pgd_t *pgd, u16 asid)
58 {
59 if (static_cpu_has(X86_FEATURE_PCID)) {
60 return __sme_pa(pgd) | kern_pcid(asid);
61 } else {
62 VM_WARN_ON_ONCE(asid != 0);
63 return __sme_pa(pgd);
64 }
65 }
66
67 static inline unsigned long build_cr3_noflush(pgd_t *pgd, u16 asid)
68 {
69 VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
70 VM_WARN_ON_ONCE(!this_cpu_has(X86_FEATURE_PCID));
71 return __sme_pa(pgd) | kern_pcid(asid) | CR3_NOFLUSH;
72 }
73
74 #ifdef CONFIG_PARAVIRT
75 #include <asm/paravirt.h>
76 #else
77 #define __flush_tlb() __native_flush_tlb()
78 #define __flush_tlb_global() __native_flush_tlb_global()
79 #define __flush_tlb_single(addr) __native_flush_tlb_single(addr)
80 #endif
81
82 static inline bool tlb_defer_switch_to_init_mm(void)
83 {
84 /*
85 * If we have PCID, then switching to init_mm is reasonably
86 * fast. If we don't have PCID, then switching to init_mm is
87 * quite slow, so we try to defer it in the hopes that we can
88 * avoid it entirely. The latter approach runs the risk of
89 * receiving otherwise unnecessary IPIs.
90 *
91 * This choice is just a heuristic. The tlb code can handle this
92 * function returning true or false regardless of whether we have
93 * PCID.
94 */
95 return !static_cpu_has(X86_FEATURE_PCID);
96 }
97
98 /*
99 * 6 because 6 should be plenty and struct tlb_state will fit in
100 * two cache lines.
101 */
102 #define TLB_NR_DYN_ASIDS 6
103
104 struct tlb_context {
105 u64 ctx_id;
106 u64 tlb_gen;
107 };
108
109 struct tlb_state {
110 /*
111 * cpu_tlbstate.loaded_mm should match CR3 whenever interrupts
112 * are on. This means that it may not match current->active_mm,
113 * which will contain the previous user mm when we're in lazy TLB
114 * mode even if we've already switched back to swapper_pg_dir.
115 */
116 struct mm_struct *loaded_mm;
117 u16 loaded_mm_asid;
118 u16 next_asid;
119
120 /*
121 * We can be in one of several states:
122 *
123 * - Actively using an mm. Our CPU's bit will be set in
124 * mm_cpumask(loaded_mm) and is_lazy == false;
125 *
126 * - Not using a real mm. loaded_mm == &init_mm. Our CPU's bit
127 * will not be set in mm_cpumask(&init_mm) and is_lazy == false.
128 *
129 * - Lazily using a real mm. loaded_mm != &init_mm, our bit
130 * is set in mm_cpumask(loaded_mm), but is_lazy == true.
131 * We're heuristically guessing that the CR3 load we
132 * skipped more than makes up for the overhead added by
133 * lazy mode.
134 */
135 bool is_lazy;
136
137 /*
138 * Access to this CR4 shadow and to H/W CR4 is protected by
139 * disabling interrupts when modifying either one.
140 */
141 unsigned long cr4;
142
143 /*
144 * This is a list of all contexts that might exist in the TLB.
145 * There is one per ASID that we use, and the ASID (what the
146 * CPU calls PCID) is the index into ctxts.
147 *
148 * For each context, ctx_id indicates which mm the TLB's user
149 * entries came from. As an invariant, the TLB will never
150 * contain entries that are out-of-date as when that mm reached
151 * the tlb_gen in the list.
152 *
153 * To be clear, this means that it's legal for the TLB code to
154 * flush the TLB without updating tlb_gen. This can happen
155 * (for now, at least) due to paravirt remote flushes.
156 *
157 * NB: context 0 is a bit special, since it's also used by
158 * various bits of init code. This is fine -- code that
159 * isn't aware of PCID will end up harmlessly flushing
160 * context 0.
161 */
162 struct tlb_context ctxs[TLB_NR_DYN_ASIDS];
163 };
164 DECLARE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate);
165
166 /* Initialize cr4 shadow for this CPU. */
167 static inline void cr4_init_shadow(void)
168 {
169 this_cpu_write(cpu_tlbstate.cr4, __read_cr4());
170 }
171
172 /* Set in this cpu's CR4. */
173 static inline void cr4_set_bits(unsigned long mask)
174 {
175 unsigned long cr4;
176
177 cr4 = this_cpu_read(cpu_tlbstate.cr4);
178 if ((cr4 | mask) != cr4) {
179 cr4 |= mask;
180 this_cpu_write(cpu_tlbstate.cr4, cr4);
181 __write_cr4(cr4);
182 }
183 }
184
185 /* Clear in this cpu's CR4. */
186 static inline void cr4_clear_bits(unsigned long mask)
187 {
188 unsigned long cr4;
189
190 cr4 = this_cpu_read(cpu_tlbstate.cr4);
191 if ((cr4 & ~mask) != cr4) {
192 cr4 &= ~mask;
193 this_cpu_write(cpu_tlbstate.cr4, cr4);
194 __write_cr4(cr4);
195 }
196 }
197
198 static inline void cr4_toggle_bits(unsigned long mask)
199 {
200 unsigned long cr4;
201
202 cr4 = this_cpu_read(cpu_tlbstate.cr4);
203 cr4 ^= mask;
204 this_cpu_write(cpu_tlbstate.cr4, cr4);
205 __write_cr4(cr4);
206 }
207
208 /* Read the CR4 shadow. */
209 static inline unsigned long cr4_read_shadow(void)
210 {
211 return this_cpu_read(cpu_tlbstate.cr4);
212 }
213
214 /*
215 * Save some of cr4 feature set we're using (e.g. Pentium 4MB
216 * enable and PPro Global page enable), so that any CPU's that boot
217 * up after us can get the correct flags. This should only be used
218 * during boot on the boot cpu.
219 */
220 extern unsigned long mmu_cr4_features;
221 extern u32 *trampoline_cr4_features;
222
223 static inline void cr4_set_bits_and_update_boot(unsigned long mask)
224 {
225 mmu_cr4_features |= mask;
226 if (trampoline_cr4_features)
227 *trampoline_cr4_features = mmu_cr4_features;
228 cr4_set_bits(mask);
229 }
230
231 extern void initialize_tlbstate_and_flush(void);
232
233 /*
234 * flush the entire current user mapping
235 */
236 static inline void __native_flush_tlb(void)
237 {
238 /*
239 * If current->mm == NULL then we borrow a mm which may change during a
240 * task switch and therefore we must not be preempted while we write CR3
241 * back:
242 */
243 preempt_disable();
244 native_write_cr3(__native_read_cr3());
245 preempt_enable();
246 }
247
248 /*
249 * flush everything
250 */
251 static inline void __native_flush_tlb_global(void)
252 {
253 unsigned long cr4, flags;
254
255 if (static_cpu_has(X86_FEATURE_INVPCID)) {
256 /*
257 * Using INVPCID is considerably faster than a pair of writes
258 * to CR4 sandwiched inside an IRQ flag save/restore.
259 */
260 invpcid_flush_all();
261 return;
262 }
263
264 /*
265 * Read-modify-write to CR4 - protect it from preemption and
266 * from interrupts. (Use the raw variant because this code can
267 * be called from deep inside debugging code.)
268 */
269 raw_local_irq_save(flags);
270
271 cr4 = this_cpu_read(cpu_tlbstate.cr4);
272 /* toggle PGE */
273 native_write_cr4(cr4 ^ X86_CR4_PGE);
274 /* write old PGE again and flush TLBs */
275 native_write_cr4(cr4);
276
277 raw_local_irq_restore(flags);
278 }
279
280 /*
281 * flush one page in the user mapping
282 */
283 static inline void __native_flush_tlb_single(unsigned long addr)
284 {
285 asm volatile("invlpg (%0)" ::"r" (addr) : "memory");
286 }
287
288 /*
289 * flush everything
290 */
291 static inline void __flush_tlb_all(void)
292 {
293 if (boot_cpu_has(X86_FEATURE_PGE)) {
294 __flush_tlb_global();
295 } else {
296 /*
297 * !PGE -> !PCID (setup_pcid()), thus every flush is total.
298 */
299 __flush_tlb();
300 }
301
302 /*
303 * Note: if we somehow had PCID but not PGE, then this wouldn't work --
304 * we'd end up flushing kernel translations for the current ASID but
305 * we might fail to flush kernel translations for other cached ASIDs.
306 *
307 * To avoid this issue, we force PCID off if PGE is off.
308 */
309 }
310
311 /*
312 * flush one page in the kernel mapping
313 */
314 static inline void __flush_tlb_one(unsigned long addr)
315 {
316 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
317 __flush_tlb_single(addr);
318 }
319
320 #define TLB_FLUSH_ALL -1UL
321
322 /*
323 * TLB flushing:
324 *
325 * - flush_tlb_all() flushes all processes TLBs
326 * - flush_tlb_mm(mm) flushes the specified mm context TLB's
327 * - flush_tlb_page(vma, vmaddr) flushes one page
328 * - flush_tlb_range(vma, start, end) flushes a range of pages
329 * - flush_tlb_kernel_range(start, end) flushes a range of kernel pages
330 * - flush_tlb_others(cpumask, info) flushes TLBs on other cpus
331 *
332 * ..but the i386 has somewhat limited tlb flushing capabilities,
333 * and page-granular flushes are available only on i486 and up.
334 */
335 struct flush_tlb_info {
336 /*
337 * We support several kinds of flushes.
338 *
339 * - Fully flush a single mm. .mm will be set, .end will be
340 * TLB_FLUSH_ALL, and .new_tlb_gen will be the tlb_gen to
341 * which the IPI sender is trying to catch us up.
342 *
343 * - Partially flush a single mm. .mm will be set, .start and
344 * .end will indicate the range, and .new_tlb_gen will be set
345 * such that the changes between generation .new_tlb_gen-1 and
346 * .new_tlb_gen are entirely contained in the indicated range.
347 *
348 * - Fully flush all mms whose tlb_gens have been updated. .mm
349 * will be NULL, .end will be TLB_FLUSH_ALL, and .new_tlb_gen
350 * will be zero.
351 */
352 struct mm_struct *mm;
353 unsigned long start;
354 unsigned long end;
355 u64 new_tlb_gen;
356 };
357
358 #define local_flush_tlb() __flush_tlb()
359
360 #define flush_tlb_mm(mm) flush_tlb_mm_range(mm, 0UL, TLB_FLUSH_ALL, 0UL)
361
362 #define flush_tlb_range(vma, start, end) \
363 flush_tlb_mm_range(vma->vm_mm, start, end, vma->vm_flags)
364
365 extern void flush_tlb_all(void);
366 extern void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
367 unsigned long end, unsigned long vmflag);
368 extern void flush_tlb_kernel_range(unsigned long start, unsigned long end);
369
370 static inline void flush_tlb_page(struct vm_area_struct *vma, unsigned long a)
371 {
372 flush_tlb_mm_range(vma->vm_mm, a, a + PAGE_SIZE, VM_NONE);
373 }
374
375 void native_flush_tlb_others(const struct cpumask *cpumask,
376 const struct flush_tlb_info *info);
377
378 static inline void arch_tlbbatch_add_mm(struct arch_tlbflush_unmap_batch *batch,
379 struct mm_struct *mm)
380 {
381 inc_mm_tlb_gen(mm);
382 cpumask_or(&batch->cpumask, &batch->cpumask, mm_cpumask(mm));
383 }
384
385 extern void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch);
386
387 #ifndef CONFIG_PARAVIRT
388 #define flush_tlb_others(mask, info) \
389 native_flush_tlb_others(mask, info)
390 #endif
391
392 #endif /* _ASM_X86_TLBFLUSH_H */