]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/include/asm/tlbflush.h
x86/mm: Add comments to clarify which TLB-flush functions are supposed to flush what
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / include / asm / tlbflush.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_TLBFLUSH_H
3 #define _ASM_X86_TLBFLUSH_H
4
5 #include <linux/mm.h>
6 #include <linux/sched.h>
7
8 #include <asm/processor.h>
9 #include <asm/cpufeature.h>
10 #include <asm/special_insns.h>
11 #include <asm/smp.h>
12
13 static inline void __invpcid(unsigned long pcid, unsigned long addr,
14 unsigned long type)
15 {
16 struct { u64 d[2]; } desc = { { pcid, addr } };
17
18 /*
19 * The memory clobber is because the whole point is to invalidate
20 * stale TLB entries and, especially if we're flushing global
21 * mappings, we don't want the compiler to reorder any subsequent
22 * memory accesses before the TLB flush.
23 *
24 * The hex opcode is invpcid (%ecx), %eax in 32-bit mode and
25 * invpcid (%rcx), %rax in long mode.
26 */
27 asm volatile (".byte 0x66, 0x0f, 0x38, 0x82, 0x01"
28 : : "m" (desc), "a" (type), "c" (&desc) : "memory");
29 }
30
31 #define INVPCID_TYPE_INDIV_ADDR 0
32 #define INVPCID_TYPE_SINGLE_CTXT 1
33 #define INVPCID_TYPE_ALL_INCL_GLOBAL 2
34 #define INVPCID_TYPE_ALL_NON_GLOBAL 3
35
36 /* Flush all mappings for a given pcid and addr, not including globals. */
37 static inline void invpcid_flush_one(unsigned long pcid,
38 unsigned long addr)
39 {
40 __invpcid(pcid, addr, INVPCID_TYPE_INDIV_ADDR);
41 }
42
43 /* Flush all mappings for a given PCID, not including globals. */
44 static inline void invpcid_flush_single_context(unsigned long pcid)
45 {
46 __invpcid(pcid, 0, INVPCID_TYPE_SINGLE_CTXT);
47 }
48
49 /* Flush all mappings, including globals, for all PCIDs. */
50 static inline void invpcid_flush_all(void)
51 {
52 __invpcid(0, 0, INVPCID_TYPE_ALL_INCL_GLOBAL);
53 }
54
55 /* Flush all mappings for all PCIDs except globals. */
56 static inline void invpcid_flush_all_nonglobals(void)
57 {
58 __invpcid(0, 0, INVPCID_TYPE_ALL_NON_GLOBAL);
59 }
60
61 static inline u64 inc_mm_tlb_gen(struct mm_struct *mm)
62 {
63 /*
64 * Bump the generation count. This also serves as a full barrier
65 * that synchronizes with switch_mm(): callers are required to order
66 * their read of mm_cpumask after their writes to the paging
67 * structures.
68 */
69 return atomic64_inc_return(&mm->context.tlb_gen);
70 }
71
72 #ifdef CONFIG_PARAVIRT
73 #include <asm/paravirt.h>
74 #else
75 #define __flush_tlb() __native_flush_tlb()
76 #define __flush_tlb_global() __native_flush_tlb_global()
77 #define __flush_tlb_single(addr) __native_flush_tlb_single(addr)
78 #endif
79
80 static inline bool tlb_defer_switch_to_init_mm(void)
81 {
82 /*
83 * If we have PCID, then switching to init_mm is reasonably
84 * fast. If we don't have PCID, then switching to init_mm is
85 * quite slow, so we try to defer it in the hopes that we can
86 * avoid it entirely. The latter approach runs the risk of
87 * receiving otherwise unnecessary IPIs.
88 *
89 * This choice is just a heuristic. The tlb code can handle this
90 * function returning true or false regardless of whether we have
91 * PCID.
92 */
93 return !static_cpu_has(X86_FEATURE_PCID);
94 }
95
96 /*
97 * 6 because 6 should be plenty and struct tlb_state will fit in
98 * two cache lines.
99 */
100 #define TLB_NR_DYN_ASIDS 6
101
102 struct tlb_context {
103 u64 ctx_id;
104 u64 tlb_gen;
105 };
106
107 struct tlb_state {
108 /*
109 * cpu_tlbstate.loaded_mm should match CR3 whenever interrupts
110 * are on. This means that it may not match current->active_mm,
111 * which will contain the previous user mm when we're in lazy TLB
112 * mode even if we've already switched back to swapper_pg_dir.
113 */
114 struct mm_struct *loaded_mm;
115 u16 loaded_mm_asid;
116 u16 next_asid;
117
118 /*
119 * We can be in one of several states:
120 *
121 * - Actively using an mm. Our CPU's bit will be set in
122 * mm_cpumask(loaded_mm) and is_lazy == false;
123 *
124 * - Not using a real mm. loaded_mm == &init_mm. Our CPU's bit
125 * will not be set in mm_cpumask(&init_mm) and is_lazy == false.
126 *
127 * - Lazily using a real mm. loaded_mm != &init_mm, our bit
128 * is set in mm_cpumask(loaded_mm), but is_lazy == true.
129 * We're heuristically guessing that the CR3 load we
130 * skipped more than makes up for the overhead added by
131 * lazy mode.
132 */
133 bool is_lazy;
134
135 /*
136 * Access to this CR4 shadow and to H/W CR4 is protected by
137 * disabling interrupts when modifying either one.
138 */
139 unsigned long cr4;
140
141 /*
142 * This is a list of all contexts that might exist in the TLB.
143 * There is one per ASID that we use, and the ASID (what the
144 * CPU calls PCID) is the index into ctxts.
145 *
146 * For each context, ctx_id indicates which mm the TLB's user
147 * entries came from. As an invariant, the TLB will never
148 * contain entries that are out-of-date as when that mm reached
149 * the tlb_gen in the list.
150 *
151 * To be clear, this means that it's legal for the TLB code to
152 * flush the TLB without updating tlb_gen. This can happen
153 * (for now, at least) due to paravirt remote flushes.
154 *
155 * NB: context 0 is a bit special, since it's also used by
156 * various bits of init code. This is fine -- code that
157 * isn't aware of PCID will end up harmlessly flushing
158 * context 0.
159 */
160 struct tlb_context ctxs[TLB_NR_DYN_ASIDS];
161 };
162 DECLARE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate);
163
164 /* Initialize cr4 shadow for this CPU. */
165 static inline void cr4_init_shadow(void)
166 {
167 this_cpu_write(cpu_tlbstate.cr4, __read_cr4());
168 }
169
170 /* Set in this cpu's CR4. */
171 static inline void cr4_set_bits(unsigned long mask)
172 {
173 unsigned long cr4;
174
175 cr4 = this_cpu_read(cpu_tlbstate.cr4);
176 if ((cr4 | mask) != cr4) {
177 cr4 |= mask;
178 this_cpu_write(cpu_tlbstate.cr4, cr4);
179 __write_cr4(cr4);
180 }
181 }
182
183 /* Clear in this cpu's CR4. */
184 static inline void cr4_clear_bits(unsigned long mask)
185 {
186 unsigned long cr4;
187
188 cr4 = this_cpu_read(cpu_tlbstate.cr4);
189 if ((cr4 & ~mask) != cr4) {
190 cr4 &= ~mask;
191 this_cpu_write(cpu_tlbstate.cr4, cr4);
192 __write_cr4(cr4);
193 }
194 }
195
196 static inline void cr4_toggle_bits(unsigned long mask)
197 {
198 unsigned long cr4;
199
200 cr4 = this_cpu_read(cpu_tlbstate.cr4);
201 cr4 ^= mask;
202 this_cpu_write(cpu_tlbstate.cr4, cr4);
203 __write_cr4(cr4);
204 }
205
206 /* Read the CR4 shadow. */
207 static inline unsigned long cr4_read_shadow(void)
208 {
209 return this_cpu_read(cpu_tlbstate.cr4);
210 }
211
212 /*
213 * Save some of cr4 feature set we're using (e.g. Pentium 4MB
214 * enable and PPro Global page enable), so that any CPU's that boot
215 * up after us can get the correct flags. This should only be used
216 * during boot on the boot cpu.
217 */
218 extern unsigned long mmu_cr4_features;
219 extern u32 *trampoline_cr4_features;
220
221 static inline void cr4_set_bits_and_update_boot(unsigned long mask)
222 {
223 mmu_cr4_features |= mask;
224 if (trampoline_cr4_features)
225 *trampoline_cr4_features = mmu_cr4_features;
226 cr4_set_bits(mask);
227 }
228
229 extern void initialize_tlbstate_and_flush(void);
230
231 /*
232 * flush the entire current user mapping
233 */
234 static inline void __native_flush_tlb(void)
235 {
236 /*
237 * If current->mm == NULL then we borrow a mm which may change during a
238 * task switch and therefore we must not be preempted while we write CR3
239 * back:
240 */
241 preempt_disable();
242 native_write_cr3(__native_read_cr3());
243 preempt_enable();
244 }
245
246 /*
247 * flush everything
248 */
249 static inline void __native_flush_tlb_global(void)
250 {
251 unsigned long cr4, flags;
252
253 if (static_cpu_has(X86_FEATURE_INVPCID)) {
254 /*
255 * Using INVPCID is considerably faster than a pair of writes
256 * to CR4 sandwiched inside an IRQ flag save/restore.
257 */
258 invpcid_flush_all();
259 return;
260 }
261
262 /*
263 * Read-modify-write to CR4 - protect it from preemption and
264 * from interrupts. (Use the raw variant because this code can
265 * be called from deep inside debugging code.)
266 */
267 raw_local_irq_save(flags);
268
269 cr4 = this_cpu_read(cpu_tlbstate.cr4);
270 /* toggle PGE */
271 native_write_cr4(cr4 ^ X86_CR4_PGE);
272 /* write old PGE again and flush TLBs */
273 native_write_cr4(cr4);
274
275 raw_local_irq_restore(flags);
276 }
277
278 /*
279 * flush one page in the user mapping
280 */
281 static inline void __native_flush_tlb_single(unsigned long addr)
282 {
283 asm volatile("invlpg (%0)" ::"r" (addr) : "memory");
284 }
285
286 /*
287 * flush everything
288 */
289 static inline void __flush_tlb_all(void)
290 {
291 if (boot_cpu_has(X86_FEATURE_PGE)) {
292 __flush_tlb_global();
293 } else {
294 /*
295 * !PGE -> !PCID (setup_pcid()), thus every flush is total.
296 */
297 __flush_tlb();
298 }
299
300 /*
301 * Note: if we somehow had PCID but not PGE, then this wouldn't work --
302 * we'd end up flushing kernel translations for the current ASID but
303 * we might fail to flush kernel translations for other cached ASIDs.
304 *
305 * To avoid this issue, we force PCID off if PGE is off.
306 */
307 }
308
309 /*
310 * flush one page in the kernel mapping
311 */
312 static inline void __flush_tlb_one(unsigned long addr)
313 {
314 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
315 __flush_tlb_single(addr);
316 }
317
318 #define TLB_FLUSH_ALL -1UL
319
320 /*
321 * TLB flushing:
322 *
323 * - flush_tlb_all() flushes all processes TLBs
324 * - flush_tlb_mm(mm) flushes the specified mm context TLB's
325 * - flush_tlb_page(vma, vmaddr) flushes one page
326 * - flush_tlb_range(vma, start, end) flushes a range of pages
327 * - flush_tlb_kernel_range(start, end) flushes a range of kernel pages
328 * - flush_tlb_others(cpumask, info) flushes TLBs on other cpus
329 *
330 * ..but the i386 has somewhat limited tlb flushing capabilities,
331 * and page-granular flushes are available only on i486 and up.
332 */
333 struct flush_tlb_info {
334 /*
335 * We support several kinds of flushes.
336 *
337 * - Fully flush a single mm. .mm will be set, .end will be
338 * TLB_FLUSH_ALL, and .new_tlb_gen will be the tlb_gen to
339 * which the IPI sender is trying to catch us up.
340 *
341 * - Partially flush a single mm. .mm will be set, .start and
342 * .end will indicate the range, and .new_tlb_gen will be set
343 * such that the changes between generation .new_tlb_gen-1 and
344 * .new_tlb_gen are entirely contained in the indicated range.
345 *
346 * - Fully flush all mms whose tlb_gens have been updated. .mm
347 * will be NULL, .end will be TLB_FLUSH_ALL, and .new_tlb_gen
348 * will be zero.
349 */
350 struct mm_struct *mm;
351 unsigned long start;
352 unsigned long end;
353 u64 new_tlb_gen;
354 };
355
356 #define local_flush_tlb() __flush_tlb()
357
358 #define flush_tlb_mm(mm) flush_tlb_mm_range(mm, 0UL, TLB_FLUSH_ALL, 0UL)
359
360 #define flush_tlb_range(vma, start, end) \
361 flush_tlb_mm_range(vma->vm_mm, start, end, vma->vm_flags)
362
363 extern void flush_tlb_all(void);
364 extern void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
365 unsigned long end, unsigned long vmflag);
366 extern void flush_tlb_kernel_range(unsigned long start, unsigned long end);
367
368 static inline void flush_tlb_page(struct vm_area_struct *vma, unsigned long a)
369 {
370 flush_tlb_mm_range(vma->vm_mm, a, a + PAGE_SIZE, VM_NONE);
371 }
372
373 void native_flush_tlb_others(const struct cpumask *cpumask,
374 const struct flush_tlb_info *info);
375
376 static inline void arch_tlbbatch_add_mm(struct arch_tlbflush_unmap_batch *batch,
377 struct mm_struct *mm)
378 {
379 inc_mm_tlb_gen(mm);
380 cpumask_or(&batch->cpumask, &batch->cpumask, mm_cpumask(mm));
381 }
382
383 extern void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch);
384
385 #ifndef CONFIG_PARAVIRT
386 #define flush_tlb_others(mask, info) \
387 native_flush_tlb_others(mask, info)
388 #endif
389
390 #endif /* _ASM_X86_TLBFLUSH_H */