]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/include/asm/tlbflush.h
x86/mm: Use INVPCID for __native_flush_tlb_single()
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / include / asm / tlbflush.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_TLBFLUSH_H
3 #define _ASM_X86_TLBFLUSH_H
4
5 #include <linux/mm.h>
6 #include <linux/sched.h>
7
8 #include <asm/processor.h>
9 #include <asm/cpufeature.h>
10 #include <asm/special_insns.h>
11 #include <asm/smp.h>
12 #include <asm/invpcid.h>
13 #include <asm/pti.h>
14 #include <asm/processor-flags.h>
15
16 static inline u64 inc_mm_tlb_gen(struct mm_struct *mm)
17 {
18 /*
19 * Bump the generation count. This also serves as a full barrier
20 * that synchronizes with switch_mm(): callers are required to order
21 * their read of mm_cpumask after their writes to the paging
22 * structures.
23 */
24 return atomic64_inc_return(&mm->context.tlb_gen);
25 }
26
27 /* There are 12 bits of space for ASIDS in CR3 */
28 #define CR3_HW_ASID_BITS 12
29
30 /*
31 * When enabled, PAGE_TABLE_ISOLATION consumes a single bit for
32 * user/kernel switches
33 */
34 #ifdef CONFIG_PAGE_TABLE_ISOLATION
35 # define PTI_CONSUMED_PCID_BITS 1
36 #else
37 # define PTI_CONSUMED_PCID_BITS 0
38 #endif
39
40 #define CR3_AVAIL_PCID_BITS (X86_CR3_PCID_BITS - PTI_CONSUMED_PCID_BITS)
41
42 /*
43 * ASIDs are zero-based: 0->MAX_AVAIL_ASID are valid. -1 below to account
44 * for them being zero-based. Another -1 is because ASID 0 is reserved for
45 * use by non-PCID-aware users.
46 */
47 #define MAX_ASID_AVAILABLE ((1 << CR3_AVAIL_PCID_BITS) - 2)
48
49 /*
50 * 6 because 6 should be plenty and struct tlb_state will fit in two cache
51 * lines.
52 */
53 #define TLB_NR_DYN_ASIDS 6
54
55 static inline u16 kern_pcid(u16 asid)
56 {
57 VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
58
59 #ifdef CONFIG_PAGE_TABLE_ISOLATION
60 /*
61 * Make sure that the dynamic ASID space does not confict with the
62 * bit we are using to switch between user and kernel ASIDs.
63 */
64 BUILD_BUG_ON(TLB_NR_DYN_ASIDS >= (1 << X86_CR3_PTI_SWITCH_BIT));
65
66 /*
67 * The ASID being passed in here should have respected the
68 * MAX_ASID_AVAILABLE and thus never have the switch bit set.
69 */
70 VM_WARN_ON_ONCE(asid & (1 << X86_CR3_PTI_SWITCH_BIT));
71 #endif
72 /*
73 * The dynamically-assigned ASIDs that get passed in are small
74 * (<TLB_NR_DYN_ASIDS). They never have the high switch bit set,
75 * so do not bother to clear it.
76 *
77 * If PCID is on, ASID-aware code paths put the ASID+1 into the
78 * PCID bits. This serves two purposes. It prevents a nasty
79 * situation in which PCID-unaware code saves CR3, loads some other
80 * value (with PCID == 0), and then restores CR3, thus corrupting
81 * the TLB for ASID 0 if the saved ASID was nonzero. It also means
82 * that any bugs involving loading a PCID-enabled CR3 with
83 * CR4.PCIDE off will trigger deterministically.
84 */
85 return asid + 1;
86 }
87
88 /*
89 * The user PCID is just the kernel one, plus the "switch bit".
90 */
91 static inline u16 user_pcid(u16 asid)
92 {
93 u16 ret = kern_pcid(asid);
94 #ifdef CONFIG_PAGE_TABLE_ISOLATION
95 ret |= 1 << X86_CR3_PTI_SWITCH_BIT;
96 #endif
97 return ret;
98 }
99
100 struct pgd_t;
101 static inline unsigned long build_cr3(pgd_t *pgd, u16 asid)
102 {
103 if (static_cpu_has(X86_FEATURE_PCID)) {
104 return __sme_pa(pgd) | kern_pcid(asid);
105 } else {
106 VM_WARN_ON_ONCE(asid != 0);
107 return __sme_pa(pgd);
108 }
109 }
110
111 static inline unsigned long build_cr3_noflush(pgd_t *pgd, u16 asid)
112 {
113 VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
114 VM_WARN_ON_ONCE(!this_cpu_has(X86_FEATURE_PCID));
115 return __sme_pa(pgd) | kern_pcid(asid) | CR3_NOFLUSH;
116 }
117
118 #ifdef CONFIG_PARAVIRT
119 #include <asm/paravirt.h>
120 #else
121 #define __flush_tlb() __native_flush_tlb()
122 #define __flush_tlb_global() __native_flush_tlb_global()
123 #define __flush_tlb_single(addr) __native_flush_tlb_single(addr)
124 #endif
125
126 static inline bool tlb_defer_switch_to_init_mm(void)
127 {
128 /*
129 * If we have PCID, then switching to init_mm is reasonably
130 * fast. If we don't have PCID, then switching to init_mm is
131 * quite slow, so we try to defer it in the hopes that we can
132 * avoid it entirely. The latter approach runs the risk of
133 * receiving otherwise unnecessary IPIs.
134 *
135 * This choice is just a heuristic. The tlb code can handle this
136 * function returning true or false regardless of whether we have
137 * PCID.
138 */
139 return !static_cpu_has(X86_FEATURE_PCID);
140 }
141
142 struct tlb_context {
143 u64 ctx_id;
144 u64 tlb_gen;
145 };
146
147 struct tlb_state {
148 /*
149 * cpu_tlbstate.loaded_mm should match CR3 whenever interrupts
150 * are on. This means that it may not match current->active_mm,
151 * which will contain the previous user mm when we're in lazy TLB
152 * mode even if we've already switched back to swapper_pg_dir.
153 */
154 struct mm_struct *loaded_mm;
155 u16 loaded_mm_asid;
156 u16 next_asid;
157
158 /*
159 * We can be in one of several states:
160 *
161 * - Actively using an mm. Our CPU's bit will be set in
162 * mm_cpumask(loaded_mm) and is_lazy == false;
163 *
164 * - Not using a real mm. loaded_mm == &init_mm. Our CPU's bit
165 * will not be set in mm_cpumask(&init_mm) and is_lazy == false.
166 *
167 * - Lazily using a real mm. loaded_mm != &init_mm, our bit
168 * is set in mm_cpumask(loaded_mm), but is_lazy == true.
169 * We're heuristically guessing that the CR3 load we
170 * skipped more than makes up for the overhead added by
171 * lazy mode.
172 */
173 bool is_lazy;
174
175 /*
176 * If set we changed the page tables in such a way that we
177 * needed an invalidation of all contexts (aka. PCIDs / ASIDs).
178 * This tells us to go invalidate all the non-loaded ctxs[]
179 * on the next context switch.
180 *
181 * The current ctx was kept up-to-date as it ran and does not
182 * need to be invalidated.
183 */
184 bool invalidate_other;
185
186 /*
187 * Mask that contains TLB_NR_DYN_ASIDS+1 bits to indicate
188 * the corresponding user PCID needs a flush next time we
189 * switch to it; see SWITCH_TO_USER_CR3.
190 */
191 unsigned short user_pcid_flush_mask;
192
193 /*
194 * Access to this CR4 shadow and to H/W CR4 is protected by
195 * disabling interrupts when modifying either one.
196 */
197 unsigned long cr4;
198
199 /*
200 * This is a list of all contexts that might exist in the TLB.
201 * There is one per ASID that we use, and the ASID (what the
202 * CPU calls PCID) is the index into ctxts.
203 *
204 * For each context, ctx_id indicates which mm the TLB's user
205 * entries came from. As an invariant, the TLB will never
206 * contain entries that are out-of-date as when that mm reached
207 * the tlb_gen in the list.
208 *
209 * To be clear, this means that it's legal for the TLB code to
210 * flush the TLB without updating tlb_gen. This can happen
211 * (for now, at least) due to paravirt remote flushes.
212 *
213 * NB: context 0 is a bit special, since it's also used by
214 * various bits of init code. This is fine -- code that
215 * isn't aware of PCID will end up harmlessly flushing
216 * context 0.
217 */
218 struct tlb_context ctxs[TLB_NR_DYN_ASIDS];
219 };
220 DECLARE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate);
221
222 /* Initialize cr4 shadow for this CPU. */
223 static inline void cr4_init_shadow(void)
224 {
225 this_cpu_write(cpu_tlbstate.cr4, __read_cr4());
226 }
227
228 /* Set in this cpu's CR4. */
229 static inline void cr4_set_bits(unsigned long mask)
230 {
231 unsigned long cr4;
232
233 cr4 = this_cpu_read(cpu_tlbstate.cr4);
234 if ((cr4 | mask) != cr4) {
235 cr4 |= mask;
236 this_cpu_write(cpu_tlbstate.cr4, cr4);
237 __write_cr4(cr4);
238 }
239 }
240
241 /* Clear in this cpu's CR4. */
242 static inline void cr4_clear_bits(unsigned long mask)
243 {
244 unsigned long cr4;
245
246 cr4 = this_cpu_read(cpu_tlbstate.cr4);
247 if ((cr4 & ~mask) != cr4) {
248 cr4 &= ~mask;
249 this_cpu_write(cpu_tlbstate.cr4, cr4);
250 __write_cr4(cr4);
251 }
252 }
253
254 static inline void cr4_toggle_bits(unsigned long mask)
255 {
256 unsigned long cr4;
257
258 cr4 = this_cpu_read(cpu_tlbstate.cr4);
259 cr4 ^= mask;
260 this_cpu_write(cpu_tlbstate.cr4, cr4);
261 __write_cr4(cr4);
262 }
263
264 /* Read the CR4 shadow. */
265 static inline unsigned long cr4_read_shadow(void)
266 {
267 return this_cpu_read(cpu_tlbstate.cr4);
268 }
269
270 /*
271 * Mark all other ASIDs as invalid, preserves the current.
272 */
273 static inline void invalidate_other_asid(void)
274 {
275 this_cpu_write(cpu_tlbstate.invalidate_other, true);
276 }
277
278 /*
279 * Save some of cr4 feature set we're using (e.g. Pentium 4MB
280 * enable and PPro Global page enable), so that any CPU's that boot
281 * up after us can get the correct flags. This should only be used
282 * during boot on the boot cpu.
283 */
284 extern unsigned long mmu_cr4_features;
285 extern u32 *trampoline_cr4_features;
286
287 static inline void cr4_set_bits_and_update_boot(unsigned long mask)
288 {
289 mmu_cr4_features |= mask;
290 if (trampoline_cr4_features)
291 *trampoline_cr4_features = mmu_cr4_features;
292 cr4_set_bits(mask);
293 }
294
295 extern void initialize_tlbstate_and_flush(void);
296
297 /*
298 * Given an ASID, flush the corresponding user ASID. We can delay this
299 * until the next time we switch to it.
300 *
301 * See SWITCH_TO_USER_CR3.
302 */
303 static inline void invalidate_user_asid(u16 asid)
304 {
305 /* There is no user ASID if address space separation is off */
306 if (!IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION))
307 return;
308
309 /*
310 * We only have a single ASID if PCID is off and the CR3
311 * write will have flushed it.
312 */
313 if (!cpu_feature_enabled(X86_FEATURE_PCID))
314 return;
315
316 if (!static_cpu_has(X86_FEATURE_PTI))
317 return;
318
319 __set_bit(kern_pcid(asid),
320 (unsigned long *)this_cpu_ptr(&cpu_tlbstate.user_pcid_flush_mask));
321 }
322
323 /*
324 * flush the entire current user mapping
325 */
326 static inline void __native_flush_tlb(void)
327 {
328 invalidate_user_asid(this_cpu_read(cpu_tlbstate.loaded_mm_asid));
329 /*
330 * If current->mm == NULL then we borrow a mm which may change
331 * during a task switch and therefore we must not be preempted
332 * while we write CR3 back:
333 */
334 preempt_disable();
335 native_write_cr3(__native_read_cr3());
336 preempt_enable();
337 }
338
339 /*
340 * flush everything
341 */
342 static inline void __native_flush_tlb_global(void)
343 {
344 unsigned long cr4, flags;
345
346 if (static_cpu_has(X86_FEATURE_INVPCID)) {
347 /*
348 * Using INVPCID is considerably faster than a pair of writes
349 * to CR4 sandwiched inside an IRQ flag save/restore.
350 *
351 * Note, this works with CR4.PCIDE=0 or 1.
352 */
353 invpcid_flush_all();
354 return;
355 }
356
357 /*
358 * Read-modify-write to CR4 - protect it from preemption and
359 * from interrupts. (Use the raw variant because this code can
360 * be called from deep inside debugging code.)
361 */
362 raw_local_irq_save(flags);
363
364 cr4 = this_cpu_read(cpu_tlbstate.cr4);
365 /* toggle PGE */
366 native_write_cr4(cr4 ^ X86_CR4_PGE);
367 /* write old PGE again and flush TLBs */
368 native_write_cr4(cr4);
369
370 raw_local_irq_restore(flags);
371 }
372
373 /*
374 * flush one page in the user mapping
375 */
376 static inline void __native_flush_tlb_single(unsigned long addr)
377 {
378 u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
379
380 asm volatile("invlpg (%0)" ::"r" (addr) : "memory");
381
382 if (!static_cpu_has(X86_FEATURE_PTI))
383 return;
384
385 /*
386 * Some platforms #GP if we call invpcid(type=1/2) before CR4.PCIDE=1.
387 * Just use invalidate_user_asid() in case we are called early.
388 */
389 if (!this_cpu_has(X86_FEATURE_INVPCID_SINGLE))
390 invalidate_user_asid(loaded_mm_asid);
391 else
392 invpcid_flush_one(user_pcid(loaded_mm_asid), addr);
393 }
394
395 /*
396 * flush everything
397 */
398 static inline void __flush_tlb_all(void)
399 {
400 if (boot_cpu_has(X86_FEATURE_PGE)) {
401 __flush_tlb_global();
402 } else {
403 /*
404 * !PGE -> !PCID (setup_pcid()), thus every flush is total.
405 */
406 __flush_tlb();
407 }
408 }
409
410 /*
411 * flush one page in the kernel mapping
412 */
413 static inline void __flush_tlb_one(unsigned long addr)
414 {
415 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
416 __flush_tlb_single(addr);
417
418 if (!static_cpu_has(X86_FEATURE_PTI))
419 return;
420
421 /*
422 * __flush_tlb_single() will have cleared the TLB entry for this ASID,
423 * but since kernel space is replicated across all, we must also
424 * invalidate all others.
425 */
426 invalidate_other_asid();
427 }
428
429 #define TLB_FLUSH_ALL -1UL
430
431 /*
432 * TLB flushing:
433 *
434 * - flush_tlb_all() flushes all processes TLBs
435 * - flush_tlb_mm(mm) flushes the specified mm context TLB's
436 * - flush_tlb_page(vma, vmaddr) flushes one page
437 * - flush_tlb_range(vma, start, end) flushes a range of pages
438 * - flush_tlb_kernel_range(start, end) flushes a range of kernel pages
439 * - flush_tlb_others(cpumask, info) flushes TLBs on other cpus
440 *
441 * ..but the i386 has somewhat limited tlb flushing capabilities,
442 * and page-granular flushes are available only on i486 and up.
443 */
444 struct flush_tlb_info {
445 /*
446 * We support several kinds of flushes.
447 *
448 * - Fully flush a single mm. .mm will be set, .end will be
449 * TLB_FLUSH_ALL, and .new_tlb_gen will be the tlb_gen to
450 * which the IPI sender is trying to catch us up.
451 *
452 * - Partially flush a single mm. .mm will be set, .start and
453 * .end will indicate the range, and .new_tlb_gen will be set
454 * such that the changes between generation .new_tlb_gen-1 and
455 * .new_tlb_gen are entirely contained in the indicated range.
456 *
457 * - Fully flush all mms whose tlb_gens have been updated. .mm
458 * will be NULL, .end will be TLB_FLUSH_ALL, and .new_tlb_gen
459 * will be zero.
460 */
461 struct mm_struct *mm;
462 unsigned long start;
463 unsigned long end;
464 u64 new_tlb_gen;
465 };
466
467 #define local_flush_tlb() __flush_tlb()
468
469 #define flush_tlb_mm(mm) flush_tlb_mm_range(mm, 0UL, TLB_FLUSH_ALL, 0UL)
470
471 #define flush_tlb_range(vma, start, end) \
472 flush_tlb_mm_range(vma->vm_mm, start, end, vma->vm_flags)
473
474 extern void flush_tlb_all(void);
475 extern void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
476 unsigned long end, unsigned long vmflag);
477 extern void flush_tlb_kernel_range(unsigned long start, unsigned long end);
478
479 static inline void flush_tlb_page(struct vm_area_struct *vma, unsigned long a)
480 {
481 flush_tlb_mm_range(vma->vm_mm, a, a + PAGE_SIZE, VM_NONE);
482 }
483
484 void native_flush_tlb_others(const struct cpumask *cpumask,
485 const struct flush_tlb_info *info);
486
487 static inline void arch_tlbbatch_add_mm(struct arch_tlbflush_unmap_batch *batch,
488 struct mm_struct *mm)
489 {
490 inc_mm_tlb_gen(mm);
491 cpumask_or(&batch->cpumask, &batch->cpumask, mm_cpumask(mm));
492 }
493
494 extern void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch);
495
496 #ifndef CONFIG_PARAVIRT
497 #define flush_tlb_others(mask, info) \
498 native_flush_tlb_others(mask, info)
499 #endif
500
501 #endif /* _ASM_X86_TLBFLUSH_H */