]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/include/asm/tlbflush.h
x86/mm: Use/Fix PCID to optimize user/kernel switches
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / include / asm / tlbflush.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_TLBFLUSH_H
3 #define _ASM_X86_TLBFLUSH_H
4
5 #include <linux/mm.h>
6 #include <linux/sched.h>
7
8 #include <asm/processor.h>
9 #include <asm/cpufeature.h>
10 #include <asm/special_insns.h>
11 #include <asm/smp.h>
12 #include <asm/invpcid.h>
13 #include <asm/pti.h>
14 #include <asm/processor-flags.h>
15
16 static inline u64 inc_mm_tlb_gen(struct mm_struct *mm)
17 {
18 /*
19 * Bump the generation count. This also serves as a full barrier
20 * that synchronizes with switch_mm(): callers are required to order
21 * their read of mm_cpumask after their writes to the paging
22 * structures.
23 */
24 return atomic64_inc_return(&mm->context.tlb_gen);
25 }
26
27 /* There are 12 bits of space for ASIDS in CR3 */
28 #define CR3_HW_ASID_BITS 12
29
30 /*
31 * When enabled, PAGE_TABLE_ISOLATION consumes a single bit for
32 * user/kernel switches
33 */
34 #ifdef CONFIG_PAGE_TABLE_ISOLATION
35 # define PTI_CONSUMED_PCID_BITS 1
36 #else
37 # define PTI_CONSUMED_PCID_BITS 0
38 #endif
39
40 #define CR3_AVAIL_PCID_BITS (X86_CR3_PCID_BITS - PTI_CONSUMED_PCID_BITS)
41
42 /*
43 * ASIDs are zero-based: 0->MAX_AVAIL_ASID are valid. -1 below to account
44 * for them being zero-based. Another -1 is because ASID 0 is reserved for
45 * use by non-PCID-aware users.
46 */
47 #define MAX_ASID_AVAILABLE ((1 << CR3_AVAIL_PCID_BITS) - 2)
48
49 /*
50 * 6 because 6 should be plenty and struct tlb_state will fit in two cache
51 * lines.
52 */
53 #define TLB_NR_DYN_ASIDS 6
54
55 static inline u16 kern_pcid(u16 asid)
56 {
57 VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
58
59 #ifdef CONFIG_PAGE_TABLE_ISOLATION
60 /*
61 * Make sure that the dynamic ASID space does not confict with the
62 * bit we are using to switch between user and kernel ASIDs.
63 */
64 BUILD_BUG_ON(TLB_NR_DYN_ASIDS >= (1 << X86_CR3_PTI_SWITCH_BIT));
65
66 /*
67 * The ASID being passed in here should have respected the
68 * MAX_ASID_AVAILABLE and thus never have the switch bit set.
69 */
70 VM_WARN_ON_ONCE(asid & (1 << X86_CR3_PTI_SWITCH_BIT));
71 #endif
72 /*
73 * The dynamically-assigned ASIDs that get passed in are small
74 * (<TLB_NR_DYN_ASIDS). They never have the high switch bit set,
75 * so do not bother to clear it.
76 *
77 * If PCID is on, ASID-aware code paths put the ASID+1 into the
78 * PCID bits. This serves two purposes. It prevents a nasty
79 * situation in which PCID-unaware code saves CR3, loads some other
80 * value (with PCID == 0), and then restores CR3, thus corrupting
81 * the TLB for ASID 0 if the saved ASID was nonzero. It also means
82 * that any bugs involving loading a PCID-enabled CR3 with
83 * CR4.PCIDE off will trigger deterministically.
84 */
85 return asid + 1;
86 }
87
88 struct pgd_t;
89 static inline unsigned long build_cr3(pgd_t *pgd, u16 asid)
90 {
91 if (static_cpu_has(X86_FEATURE_PCID)) {
92 return __sme_pa(pgd) | kern_pcid(asid);
93 } else {
94 VM_WARN_ON_ONCE(asid != 0);
95 return __sme_pa(pgd);
96 }
97 }
98
99 static inline unsigned long build_cr3_noflush(pgd_t *pgd, u16 asid)
100 {
101 VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
102 VM_WARN_ON_ONCE(!this_cpu_has(X86_FEATURE_PCID));
103 return __sme_pa(pgd) | kern_pcid(asid) | CR3_NOFLUSH;
104 }
105
106 #ifdef CONFIG_PARAVIRT
107 #include <asm/paravirt.h>
108 #else
109 #define __flush_tlb() __native_flush_tlb()
110 #define __flush_tlb_global() __native_flush_tlb_global()
111 #define __flush_tlb_single(addr) __native_flush_tlb_single(addr)
112 #endif
113
114 static inline bool tlb_defer_switch_to_init_mm(void)
115 {
116 /*
117 * If we have PCID, then switching to init_mm is reasonably
118 * fast. If we don't have PCID, then switching to init_mm is
119 * quite slow, so we try to defer it in the hopes that we can
120 * avoid it entirely. The latter approach runs the risk of
121 * receiving otherwise unnecessary IPIs.
122 *
123 * This choice is just a heuristic. The tlb code can handle this
124 * function returning true or false regardless of whether we have
125 * PCID.
126 */
127 return !static_cpu_has(X86_FEATURE_PCID);
128 }
129
130 struct tlb_context {
131 u64 ctx_id;
132 u64 tlb_gen;
133 };
134
135 struct tlb_state {
136 /*
137 * cpu_tlbstate.loaded_mm should match CR3 whenever interrupts
138 * are on. This means that it may not match current->active_mm,
139 * which will contain the previous user mm when we're in lazy TLB
140 * mode even if we've already switched back to swapper_pg_dir.
141 */
142 struct mm_struct *loaded_mm;
143 u16 loaded_mm_asid;
144 u16 next_asid;
145
146 /*
147 * We can be in one of several states:
148 *
149 * - Actively using an mm. Our CPU's bit will be set in
150 * mm_cpumask(loaded_mm) and is_lazy == false;
151 *
152 * - Not using a real mm. loaded_mm == &init_mm. Our CPU's bit
153 * will not be set in mm_cpumask(&init_mm) and is_lazy == false.
154 *
155 * - Lazily using a real mm. loaded_mm != &init_mm, our bit
156 * is set in mm_cpumask(loaded_mm), but is_lazy == true.
157 * We're heuristically guessing that the CR3 load we
158 * skipped more than makes up for the overhead added by
159 * lazy mode.
160 */
161 bool is_lazy;
162
163 /*
164 * If set we changed the page tables in such a way that we
165 * needed an invalidation of all contexts (aka. PCIDs / ASIDs).
166 * This tells us to go invalidate all the non-loaded ctxs[]
167 * on the next context switch.
168 *
169 * The current ctx was kept up-to-date as it ran and does not
170 * need to be invalidated.
171 */
172 bool invalidate_other;
173
174 /*
175 * Mask that contains TLB_NR_DYN_ASIDS+1 bits to indicate
176 * the corresponding user PCID needs a flush next time we
177 * switch to it; see SWITCH_TO_USER_CR3.
178 */
179 unsigned short user_pcid_flush_mask;
180
181 /*
182 * Access to this CR4 shadow and to H/W CR4 is protected by
183 * disabling interrupts when modifying either one.
184 */
185 unsigned long cr4;
186
187 /*
188 * This is a list of all contexts that might exist in the TLB.
189 * There is one per ASID that we use, and the ASID (what the
190 * CPU calls PCID) is the index into ctxts.
191 *
192 * For each context, ctx_id indicates which mm the TLB's user
193 * entries came from. As an invariant, the TLB will never
194 * contain entries that are out-of-date as when that mm reached
195 * the tlb_gen in the list.
196 *
197 * To be clear, this means that it's legal for the TLB code to
198 * flush the TLB without updating tlb_gen. This can happen
199 * (for now, at least) due to paravirt remote flushes.
200 *
201 * NB: context 0 is a bit special, since it's also used by
202 * various bits of init code. This is fine -- code that
203 * isn't aware of PCID will end up harmlessly flushing
204 * context 0.
205 */
206 struct tlb_context ctxs[TLB_NR_DYN_ASIDS];
207 };
208 DECLARE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate);
209
210 /* Initialize cr4 shadow for this CPU. */
211 static inline void cr4_init_shadow(void)
212 {
213 this_cpu_write(cpu_tlbstate.cr4, __read_cr4());
214 }
215
216 /* Set in this cpu's CR4. */
217 static inline void cr4_set_bits(unsigned long mask)
218 {
219 unsigned long cr4;
220
221 cr4 = this_cpu_read(cpu_tlbstate.cr4);
222 if ((cr4 | mask) != cr4) {
223 cr4 |= mask;
224 this_cpu_write(cpu_tlbstate.cr4, cr4);
225 __write_cr4(cr4);
226 }
227 }
228
229 /* Clear in this cpu's CR4. */
230 static inline void cr4_clear_bits(unsigned long mask)
231 {
232 unsigned long cr4;
233
234 cr4 = this_cpu_read(cpu_tlbstate.cr4);
235 if ((cr4 & ~mask) != cr4) {
236 cr4 &= ~mask;
237 this_cpu_write(cpu_tlbstate.cr4, cr4);
238 __write_cr4(cr4);
239 }
240 }
241
242 static inline void cr4_toggle_bits(unsigned long mask)
243 {
244 unsigned long cr4;
245
246 cr4 = this_cpu_read(cpu_tlbstate.cr4);
247 cr4 ^= mask;
248 this_cpu_write(cpu_tlbstate.cr4, cr4);
249 __write_cr4(cr4);
250 }
251
252 /* Read the CR4 shadow. */
253 static inline unsigned long cr4_read_shadow(void)
254 {
255 return this_cpu_read(cpu_tlbstate.cr4);
256 }
257
258 /*
259 * Mark all other ASIDs as invalid, preserves the current.
260 */
261 static inline void invalidate_other_asid(void)
262 {
263 this_cpu_write(cpu_tlbstate.invalidate_other, true);
264 }
265
266 /*
267 * Save some of cr4 feature set we're using (e.g. Pentium 4MB
268 * enable and PPro Global page enable), so that any CPU's that boot
269 * up after us can get the correct flags. This should only be used
270 * during boot on the boot cpu.
271 */
272 extern unsigned long mmu_cr4_features;
273 extern u32 *trampoline_cr4_features;
274
275 static inline void cr4_set_bits_and_update_boot(unsigned long mask)
276 {
277 mmu_cr4_features |= mask;
278 if (trampoline_cr4_features)
279 *trampoline_cr4_features = mmu_cr4_features;
280 cr4_set_bits(mask);
281 }
282
283 extern void initialize_tlbstate_and_flush(void);
284
285 /*
286 * Given an ASID, flush the corresponding user ASID. We can delay this
287 * until the next time we switch to it.
288 *
289 * See SWITCH_TO_USER_CR3.
290 */
291 static inline void invalidate_user_asid(u16 asid)
292 {
293 /* There is no user ASID if address space separation is off */
294 if (!IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION))
295 return;
296
297 /*
298 * We only have a single ASID if PCID is off and the CR3
299 * write will have flushed it.
300 */
301 if (!cpu_feature_enabled(X86_FEATURE_PCID))
302 return;
303
304 if (!static_cpu_has(X86_FEATURE_PTI))
305 return;
306
307 __set_bit(kern_pcid(asid),
308 (unsigned long *)this_cpu_ptr(&cpu_tlbstate.user_pcid_flush_mask));
309 }
310
311 /*
312 * flush the entire current user mapping
313 */
314 static inline void __native_flush_tlb(void)
315 {
316 invalidate_user_asid(this_cpu_read(cpu_tlbstate.loaded_mm_asid));
317 /*
318 * If current->mm == NULL then we borrow a mm which may change
319 * during a task switch and therefore we must not be preempted
320 * while we write CR3 back:
321 */
322 preempt_disable();
323 native_write_cr3(__native_read_cr3());
324 preempt_enable();
325 }
326
327 /*
328 * flush everything
329 */
330 static inline void __native_flush_tlb_global(void)
331 {
332 unsigned long cr4, flags;
333
334 if (static_cpu_has(X86_FEATURE_INVPCID)) {
335 /*
336 * Using INVPCID is considerably faster than a pair of writes
337 * to CR4 sandwiched inside an IRQ flag save/restore.
338 */
339 invpcid_flush_all();
340 return;
341 }
342
343 /*
344 * Read-modify-write to CR4 - protect it from preemption and
345 * from interrupts. (Use the raw variant because this code can
346 * be called from deep inside debugging code.)
347 */
348 raw_local_irq_save(flags);
349
350 cr4 = this_cpu_read(cpu_tlbstate.cr4);
351 /* toggle PGE */
352 native_write_cr4(cr4 ^ X86_CR4_PGE);
353 /* write old PGE again and flush TLBs */
354 native_write_cr4(cr4);
355
356 raw_local_irq_restore(flags);
357 }
358
359 /*
360 * flush one page in the user mapping
361 */
362 static inline void __native_flush_tlb_single(unsigned long addr)
363 {
364 u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
365
366 asm volatile("invlpg (%0)" ::"r" (addr) : "memory");
367
368 if (!static_cpu_has(X86_FEATURE_PTI))
369 return;
370
371 invalidate_user_asid(loaded_mm_asid);
372 }
373
374 /*
375 * flush everything
376 */
377 static inline void __flush_tlb_all(void)
378 {
379 if (boot_cpu_has(X86_FEATURE_PGE)) {
380 __flush_tlb_global();
381 } else {
382 /*
383 * !PGE -> !PCID (setup_pcid()), thus every flush is total.
384 */
385 __flush_tlb();
386 }
387 }
388
389 /*
390 * flush one page in the kernel mapping
391 */
392 static inline void __flush_tlb_one(unsigned long addr)
393 {
394 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
395 __flush_tlb_single(addr);
396
397 if (!static_cpu_has(X86_FEATURE_PTI))
398 return;
399
400 /*
401 * __flush_tlb_single() will have cleared the TLB entry for this ASID,
402 * but since kernel space is replicated across all, we must also
403 * invalidate all others.
404 */
405 invalidate_other_asid();
406 }
407
408 #define TLB_FLUSH_ALL -1UL
409
410 /*
411 * TLB flushing:
412 *
413 * - flush_tlb_all() flushes all processes TLBs
414 * - flush_tlb_mm(mm) flushes the specified mm context TLB's
415 * - flush_tlb_page(vma, vmaddr) flushes one page
416 * - flush_tlb_range(vma, start, end) flushes a range of pages
417 * - flush_tlb_kernel_range(start, end) flushes a range of kernel pages
418 * - flush_tlb_others(cpumask, info) flushes TLBs on other cpus
419 *
420 * ..but the i386 has somewhat limited tlb flushing capabilities,
421 * and page-granular flushes are available only on i486 and up.
422 */
423 struct flush_tlb_info {
424 /*
425 * We support several kinds of flushes.
426 *
427 * - Fully flush a single mm. .mm will be set, .end will be
428 * TLB_FLUSH_ALL, and .new_tlb_gen will be the tlb_gen to
429 * which the IPI sender is trying to catch us up.
430 *
431 * - Partially flush a single mm. .mm will be set, .start and
432 * .end will indicate the range, and .new_tlb_gen will be set
433 * such that the changes between generation .new_tlb_gen-1 and
434 * .new_tlb_gen are entirely contained in the indicated range.
435 *
436 * - Fully flush all mms whose tlb_gens have been updated. .mm
437 * will be NULL, .end will be TLB_FLUSH_ALL, and .new_tlb_gen
438 * will be zero.
439 */
440 struct mm_struct *mm;
441 unsigned long start;
442 unsigned long end;
443 u64 new_tlb_gen;
444 };
445
446 #define local_flush_tlb() __flush_tlb()
447
448 #define flush_tlb_mm(mm) flush_tlb_mm_range(mm, 0UL, TLB_FLUSH_ALL, 0UL)
449
450 #define flush_tlb_range(vma, start, end) \
451 flush_tlb_mm_range(vma->vm_mm, start, end, vma->vm_flags)
452
453 extern void flush_tlb_all(void);
454 extern void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
455 unsigned long end, unsigned long vmflag);
456 extern void flush_tlb_kernel_range(unsigned long start, unsigned long end);
457
458 static inline void flush_tlb_page(struct vm_area_struct *vma, unsigned long a)
459 {
460 flush_tlb_mm_range(vma->vm_mm, a, a + PAGE_SIZE, VM_NONE);
461 }
462
463 void native_flush_tlb_others(const struct cpumask *cpumask,
464 const struct flush_tlb_info *info);
465
466 static inline void arch_tlbbatch_add_mm(struct arch_tlbflush_unmap_batch *batch,
467 struct mm_struct *mm)
468 {
469 inc_mm_tlb_gen(mm);
470 cpumask_or(&batch->cpumask, &batch->cpumask, mm_cpumask(mm));
471 }
472
473 extern void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch);
474
475 #ifndef CONFIG_PARAVIRT
476 #define flush_tlb_others(mask, info) \
477 native_flush_tlb_others(mask, info)
478 #endif
479
480 #endif /* _ASM_X86_TLBFLUSH_H */