]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/include/asm/tlbflush.h
x86/mm: Put MMU to hardware ASID translation in one place
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / include / asm / tlbflush.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_TLBFLUSH_H
3 #define _ASM_X86_TLBFLUSH_H
4
5 #include <linux/mm.h>
6 #include <linux/sched.h>
7
8 #include <asm/processor.h>
9 #include <asm/cpufeature.h>
10 #include <asm/special_insns.h>
11 #include <asm/smp.h>
12
13 static inline void __invpcid(unsigned long pcid, unsigned long addr,
14 unsigned long type)
15 {
16 struct { u64 d[2]; } desc = { { pcid, addr } };
17
18 /*
19 * The memory clobber is because the whole point is to invalidate
20 * stale TLB entries and, especially if we're flushing global
21 * mappings, we don't want the compiler to reorder any subsequent
22 * memory accesses before the TLB flush.
23 *
24 * The hex opcode is invpcid (%ecx), %eax in 32-bit mode and
25 * invpcid (%rcx), %rax in long mode.
26 */
27 asm volatile (".byte 0x66, 0x0f, 0x38, 0x82, 0x01"
28 : : "m" (desc), "a" (type), "c" (&desc) : "memory");
29 }
30
31 #define INVPCID_TYPE_INDIV_ADDR 0
32 #define INVPCID_TYPE_SINGLE_CTXT 1
33 #define INVPCID_TYPE_ALL_INCL_GLOBAL 2
34 #define INVPCID_TYPE_ALL_NON_GLOBAL 3
35
36 /* Flush all mappings for a given pcid and addr, not including globals. */
37 static inline void invpcid_flush_one(unsigned long pcid,
38 unsigned long addr)
39 {
40 __invpcid(pcid, addr, INVPCID_TYPE_INDIV_ADDR);
41 }
42
43 /* Flush all mappings for a given PCID, not including globals. */
44 static inline void invpcid_flush_single_context(unsigned long pcid)
45 {
46 __invpcid(pcid, 0, INVPCID_TYPE_SINGLE_CTXT);
47 }
48
49 /* Flush all mappings, including globals, for all PCIDs. */
50 static inline void invpcid_flush_all(void)
51 {
52 __invpcid(0, 0, INVPCID_TYPE_ALL_INCL_GLOBAL);
53 }
54
55 /* Flush all mappings for all PCIDs except globals. */
56 static inline void invpcid_flush_all_nonglobals(void)
57 {
58 __invpcid(0, 0, INVPCID_TYPE_ALL_NON_GLOBAL);
59 }
60
61 static inline u64 inc_mm_tlb_gen(struct mm_struct *mm)
62 {
63 /*
64 * Bump the generation count. This also serves as a full barrier
65 * that synchronizes with switch_mm(): callers are required to order
66 * their read of mm_cpumask after their writes to the paging
67 * structures.
68 */
69 return atomic64_inc_return(&mm->context.tlb_gen);
70 }
71
72 /* There are 12 bits of space for ASIDS in CR3 */
73 #define CR3_HW_ASID_BITS 12
74 /*
75 * When enabled, PAGE_TABLE_ISOLATION consumes a single bit for
76 * user/kernel switches
77 */
78 #define PTI_CONSUMED_ASID_BITS 0
79
80 #define CR3_AVAIL_ASID_BITS (CR3_HW_ASID_BITS - PTI_CONSUMED_ASID_BITS)
81 /*
82 * ASIDs are zero-based: 0->MAX_AVAIL_ASID are valid. -1 below to account
83 * for them being zero-based. Another -1 is because ASID 0 is reserved for
84 * use by non-PCID-aware users.
85 */
86 #define MAX_ASID_AVAILABLE ((1 << CR3_AVAIL_ASID_BITS) - 2)
87
88 static inline u16 kern_pcid(u16 asid)
89 {
90 VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
91 /*
92 * If PCID is on, ASID-aware code paths put the ASID+1 into the
93 * PCID bits. This serves two purposes. It prevents a nasty
94 * situation in which PCID-unaware code saves CR3, loads some other
95 * value (with PCID == 0), and then restores CR3, thus corrupting
96 * the TLB for ASID 0 if the saved ASID was nonzero. It also means
97 * that any bugs involving loading a PCID-enabled CR3 with
98 * CR4.PCIDE off will trigger deterministically.
99 */
100 return asid + 1;
101 }
102
103 struct pgd_t;
104 static inline unsigned long build_cr3(pgd_t *pgd, u16 asid)
105 {
106 if (static_cpu_has(X86_FEATURE_PCID)) {
107 return __sme_pa(pgd) | kern_pcid(asid);
108 } else {
109 VM_WARN_ON_ONCE(asid != 0);
110 return __sme_pa(pgd);
111 }
112 }
113
114 static inline unsigned long build_cr3_noflush(pgd_t *pgd, u16 asid)
115 {
116 VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
117 VM_WARN_ON_ONCE(!this_cpu_has(X86_FEATURE_PCID));
118 return __sme_pa(pgd) | kern_pcid(asid) | CR3_NOFLUSH;
119 }
120
121 #ifdef CONFIG_PARAVIRT
122 #include <asm/paravirt.h>
123 #else
124 #define __flush_tlb() __native_flush_tlb()
125 #define __flush_tlb_global() __native_flush_tlb_global()
126 #define __flush_tlb_single(addr) __native_flush_tlb_single(addr)
127 #endif
128
129 static inline bool tlb_defer_switch_to_init_mm(void)
130 {
131 /*
132 * If we have PCID, then switching to init_mm is reasonably
133 * fast. If we don't have PCID, then switching to init_mm is
134 * quite slow, so we try to defer it in the hopes that we can
135 * avoid it entirely. The latter approach runs the risk of
136 * receiving otherwise unnecessary IPIs.
137 *
138 * This choice is just a heuristic. The tlb code can handle this
139 * function returning true or false regardless of whether we have
140 * PCID.
141 */
142 return !static_cpu_has(X86_FEATURE_PCID);
143 }
144
145 /*
146 * 6 because 6 should be plenty and struct tlb_state will fit in
147 * two cache lines.
148 */
149 #define TLB_NR_DYN_ASIDS 6
150
151 struct tlb_context {
152 u64 ctx_id;
153 u64 tlb_gen;
154 };
155
156 struct tlb_state {
157 /*
158 * cpu_tlbstate.loaded_mm should match CR3 whenever interrupts
159 * are on. This means that it may not match current->active_mm,
160 * which will contain the previous user mm when we're in lazy TLB
161 * mode even if we've already switched back to swapper_pg_dir.
162 */
163 struct mm_struct *loaded_mm;
164 u16 loaded_mm_asid;
165 u16 next_asid;
166
167 /*
168 * We can be in one of several states:
169 *
170 * - Actively using an mm. Our CPU's bit will be set in
171 * mm_cpumask(loaded_mm) and is_lazy == false;
172 *
173 * - Not using a real mm. loaded_mm == &init_mm. Our CPU's bit
174 * will not be set in mm_cpumask(&init_mm) and is_lazy == false.
175 *
176 * - Lazily using a real mm. loaded_mm != &init_mm, our bit
177 * is set in mm_cpumask(loaded_mm), but is_lazy == true.
178 * We're heuristically guessing that the CR3 load we
179 * skipped more than makes up for the overhead added by
180 * lazy mode.
181 */
182 bool is_lazy;
183
184 /*
185 * Access to this CR4 shadow and to H/W CR4 is protected by
186 * disabling interrupts when modifying either one.
187 */
188 unsigned long cr4;
189
190 /*
191 * This is a list of all contexts that might exist in the TLB.
192 * There is one per ASID that we use, and the ASID (what the
193 * CPU calls PCID) is the index into ctxts.
194 *
195 * For each context, ctx_id indicates which mm the TLB's user
196 * entries came from. As an invariant, the TLB will never
197 * contain entries that are out-of-date as when that mm reached
198 * the tlb_gen in the list.
199 *
200 * To be clear, this means that it's legal for the TLB code to
201 * flush the TLB without updating tlb_gen. This can happen
202 * (for now, at least) due to paravirt remote flushes.
203 *
204 * NB: context 0 is a bit special, since it's also used by
205 * various bits of init code. This is fine -- code that
206 * isn't aware of PCID will end up harmlessly flushing
207 * context 0.
208 */
209 struct tlb_context ctxs[TLB_NR_DYN_ASIDS];
210 };
211 DECLARE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate);
212
213 /* Initialize cr4 shadow for this CPU. */
214 static inline void cr4_init_shadow(void)
215 {
216 this_cpu_write(cpu_tlbstate.cr4, __read_cr4());
217 }
218
219 /* Set in this cpu's CR4. */
220 static inline void cr4_set_bits(unsigned long mask)
221 {
222 unsigned long cr4;
223
224 cr4 = this_cpu_read(cpu_tlbstate.cr4);
225 if ((cr4 | mask) != cr4) {
226 cr4 |= mask;
227 this_cpu_write(cpu_tlbstate.cr4, cr4);
228 __write_cr4(cr4);
229 }
230 }
231
232 /* Clear in this cpu's CR4. */
233 static inline void cr4_clear_bits(unsigned long mask)
234 {
235 unsigned long cr4;
236
237 cr4 = this_cpu_read(cpu_tlbstate.cr4);
238 if ((cr4 & ~mask) != cr4) {
239 cr4 &= ~mask;
240 this_cpu_write(cpu_tlbstate.cr4, cr4);
241 __write_cr4(cr4);
242 }
243 }
244
245 static inline void cr4_toggle_bits(unsigned long mask)
246 {
247 unsigned long cr4;
248
249 cr4 = this_cpu_read(cpu_tlbstate.cr4);
250 cr4 ^= mask;
251 this_cpu_write(cpu_tlbstate.cr4, cr4);
252 __write_cr4(cr4);
253 }
254
255 /* Read the CR4 shadow. */
256 static inline unsigned long cr4_read_shadow(void)
257 {
258 return this_cpu_read(cpu_tlbstate.cr4);
259 }
260
261 /*
262 * Save some of cr4 feature set we're using (e.g. Pentium 4MB
263 * enable and PPro Global page enable), so that any CPU's that boot
264 * up after us can get the correct flags. This should only be used
265 * during boot on the boot cpu.
266 */
267 extern unsigned long mmu_cr4_features;
268 extern u32 *trampoline_cr4_features;
269
270 static inline void cr4_set_bits_and_update_boot(unsigned long mask)
271 {
272 mmu_cr4_features |= mask;
273 if (trampoline_cr4_features)
274 *trampoline_cr4_features = mmu_cr4_features;
275 cr4_set_bits(mask);
276 }
277
278 extern void initialize_tlbstate_and_flush(void);
279
280 /*
281 * flush the entire current user mapping
282 */
283 static inline void __native_flush_tlb(void)
284 {
285 /*
286 * If current->mm == NULL then we borrow a mm which may change during a
287 * task switch and therefore we must not be preempted while we write CR3
288 * back:
289 */
290 preempt_disable();
291 native_write_cr3(__native_read_cr3());
292 preempt_enable();
293 }
294
295 /*
296 * flush everything
297 */
298 static inline void __native_flush_tlb_global(void)
299 {
300 unsigned long cr4, flags;
301
302 if (static_cpu_has(X86_FEATURE_INVPCID)) {
303 /*
304 * Using INVPCID is considerably faster than a pair of writes
305 * to CR4 sandwiched inside an IRQ flag save/restore.
306 */
307 invpcid_flush_all();
308 return;
309 }
310
311 /*
312 * Read-modify-write to CR4 - protect it from preemption and
313 * from interrupts. (Use the raw variant because this code can
314 * be called from deep inside debugging code.)
315 */
316 raw_local_irq_save(flags);
317
318 cr4 = this_cpu_read(cpu_tlbstate.cr4);
319 /* toggle PGE */
320 native_write_cr4(cr4 ^ X86_CR4_PGE);
321 /* write old PGE again and flush TLBs */
322 native_write_cr4(cr4);
323
324 raw_local_irq_restore(flags);
325 }
326
327 /*
328 * flush one page in the user mapping
329 */
330 static inline void __native_flush_tlb_single(unsigned long addr)
331 {
332 asm volatile("invlpg (%0)" ::"r" (addr) : "memory");
333 }
334
335 /*
336 * flush everything
337 */
338 static inline void __flush_tlb_all(void)
339 {
340 if (boot_cpu_has(X86_FEATURE_PGE)) {
341 __flush_tlb_global();
342 } else {
343 /*
344 * !PGE -> !PCID (setup_pcid()), thus every flush is total.
345 */
346 __flush_tlb();
347 }
348
349 /*
350 * Note: if we somehow had PCID but not PGE, then this wouldn't work --
351 * we'd end up flushing kernel translations for the current ASID but
352 * we might fail to flush kernel translations for other cached ASIDs.
353 *
354 * To avoid this issue, we force PCID off if PGE is off.
355 */
356 }
357
358 /*
359 * flush one page in the kernel mapping
360 */
361 static inline void __flush_tlb_one(unsigned long addr)
362 {
363 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
364 __flush_tlb_single(addr);
365 }
366
367 #define TLB_FLUSH_ALL -1UL
368
369 /*
370 * TLB flushing:
371 *
372 * - flush_tlb_all() flushes all processes TLBs
373 * - flush_tlb_mm(mm) flushes the specified mm context TLB's
374 * - flush_tlb_page(vma, vmaddr) flushes one page
375 * - flush_tlb_range(vma, start, end) flushes a range of pages
376 * - flush_tlb_kernel_range(start, end) flushes a range of kernel pages
377 * - flush_tlb_others(cpumask, info) flushes TLBs on other cpus
378 *
379 * ..but the i386 has somewhat limited tlb flushing capabilities,
380 * and page-granular flushes are available only on i486 and up.
381 */
382 struct flush_tlb_info {
383 /*
384 * We support several kinds of flushes.
385 *
386 * - Fully flush a single mm. .mm will be set, .end will be
387 * TLB_FLUSH_ALL, and .new_tlb_gen will be the tlb_gen to
388 * which the IPI sender is trying to catch us up.
389 *
390 * - Partially flush a single mm. .mm will be set, .start and
391 * .end will indicate the range, and .new_tlb_gen will be set
392 * such that the changes between generation .new_tlb_gen-1 and
393 * .new_tlb_gen are entirely contained in the indicated range.
394 *
395 * - Fully flush all mms whose tlb_gens have been updated. .mm
396 * will be NULL, .end will be TLB_FLUSH_ALL, and .new_tlb_gen
397 * will be zero.
398 */
399 struct mm_struct *mm;
400 unsigned long start;
401 unsigned long end;
402 u64 new_tlb_gen;
403 };
404
405 #define local_flush_tlb() __flush_tlb()
406
407 #define flush_tlb_mm(mm) flush_tlb_mm_range(mm, 0UL, TLB_FLUSH_ALL, 0UL)
408
409 #define flush_tlb_range(vma, start, end) \
410 flush_tlb_mm_range(vma->vm_mm, start, end, vma->vm_flags)
411
412 extern void flush_tlb_all(void);
413 extern void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
414 unsigned long end, unsigned long vmflag);
415 extern void flush_tlb_kernel_range(unsigned long start, unsigned long end);
416
417 static inline void flush_tlb_page(struct vm_area_struct *vma, unsigned long a)
418 {
419 flush_tlb_mm_range(vma->vm_mm, a, a + PAGE_SIZE, VM_NONE);
420 }
421
422 void native_flush_tlb_others(const struct cpumask *cpumask,
423 const struct flush_tlb_info *info);
424
425 static inline void arch_tlbbatch_add_mm(struct arch_tlbflush_unmap_batch *batch,
426 struct mm_struct *mm)
427 {
428 inc_mm_tlb_gen(mm);
429 cpumask_or(&batch->cpumask, &batch->cpumask, mm_cpumask(mm));
430 }
431
432 extern void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch);
433
434 #ifndef CONFIG_PARAVIRT
435 #define flush_tlb_others(mask, info) \
436 native_flush_tlb_others(mask, info)
437 #endif
438
439 #endif /* _ASM_X86_TLBFLUSH_H */