]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/include/asm/uv/uv_hub.h
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next
[mirror_ubuntu-artful-kernel.git] / arch / x86 / include / asm / uv / uv_hub.h
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * SGI UV architectural definitions
7 *
8 * Copyright (C) 2007-2014 Silicon Graphics, Inc. All rights reserved.
9 */
10
11 #ifndef _ASM_X86_UV_UV_HUB_H
12 #define _ASM_X86_UV_UV_HUB_H
13
14 #ifdef CONFIG_X86_64
15 #include <linux/numa.h>
16 #include <linux/percpu.h>
17 #include <linux/timer.h>
18 #include <linux/io.h>
19 #include <linux/topology.h>
20 #include <asm/types.h>
21 #include <asm/percpu.h>
22 #include <asm/uv/uv_mmrs.h>
23 #include <asm/uv/bios.h>
24 #include <asm/irq_vectors.h>
25 #include <asm/io_apic.h>
26
27
28 /*
29 * Addressing Terminology
30 *
31 * M - The low M bits of a physical address represent the offset
32 * into the blade local memory. RAM memory on a blade is physically
33 * contiguous (although various IO spaces may punch holes in
34 * it)..
35 *
36 * N - Number of bits in the node portion of a socket physical
37 * address.
38 *
39 * NASID - network ID of a router, Mbrick or Cbrick. Nasid values of
40 * routers always have low bit of 1, C/MBricks have low bit
41 * equal to 0. Most addressing macros that target UV hub chips
42 * right shift the NASID by 1 to exclude the always-zero bit.
43 * NASIDs contain up to 15 bits.
44 *
45 * GNODE - NASID right shifted by 1 bit. Most mmrs contain gnodes instead
46 * of nasids.
47 *
48 * PNODE - the low N bits of the GNODE. The PNODE is the most useful variant
49 * of the nasid for socket usage.
50 *
51 * GPA - (global physical address) a socket physical address converted
52 * so that it can be used by the GRU as a global address. Socket
53 * physical addresses 1) need additional NASID (node) bits added
54 * to the high end of the address, and 2) unaliased if the
55 * partition does not have a physical address 0. In addition, on
56 * UV2 rev 1, GPAs need the gnode left shifted to bits 39 or 40.
57 *
58 *
59 * NumaLink Global Physical Address Format:
60 * +--------------------------------+---------------------+
61 * |00..000| GNODE | NodeOffset |
62 * +--------------------------------+---------------------+
63 * |<-------53 - M bits --->|<--------M bits ----->
64 *
65 * M - number of node offset bits (35 .. 40)
66 *
67 *
68 * Memory/UV-HUB Processor Socket Address Format:
69 * +----------------+---------------+---------------------+
70 * |00..000000000000| PNODE | NodeOffset |
71 * +----------------+---------------+---------------------+
72 * <--- N bits --->|<--------M bits ----->
73 *
74 * M - number of node offset bits (35 .. 40)
75 * N - number of PNODE bits (0 .. 10)
76 *
77 * Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
78 * The actual values are configuration dependent and are set at
79 * boot time. M & N values are set by the hardware/BIOS at boot.
80 *
81 *
82 * APICID format
83 * NOTE!!!!!! This is the current format of the APICID. However, code
84 * should assume that this will change in the future. Use functions
85 * in this file for all APICID bit manipulations and conversion.
86 *
87 * 1111110000000000
88 * 5432109876543210
89 * pppppppppplc0cch Nehalem-EX (12 bits in hdw reg)
90 * ppppppppplcc0cch Westmere-EX (12 bits in hdw reg)
91 * pppppppppppcccch SandyBridge (15 bits in hdw reg)
92 * sssssssssss
93 *
94 * p = pnode bits
95 * l = socket number on board
96 * c = core
97 * h = hyperthread
98 * s = bits that are in the SOCKET_ID CSR
99 *
100 * Note: Processor may support fewer bits in the APICID register. The ACPI
101 * tables hold all 16 bits. Software needs to be aware of this.
102 *
103 * Unless otherwise specified, all references to APICID refer to
104 * the FULL value contained in ACPI tables, not the subset in the
105 * processor APICID register.
106 */
107
108 /*
109 * Maximum number of bricks in all partitions and in all coherency domains.
110 * This is the total number of bricks accessible in the numalink fabric. It
111 * includes all C & M bricks. Routers are NOT included.
112 *
113 * This value is also the value of the maximum number of non-router NASIDs
114 * in the numalink fabric.
115 *
116 * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused.
117 */
118 #define UV_MAX_NUMALINK_BLADES 16384
119
120 /*
121 * Maximum number of C/Mbricks within a software SSI (hardware may support
122 * more).
123 */
124 #define UV_MAX_SSI_BLADES 256
125
126 /*
127 * The largest possible NASID of a C or M brick (+ 2)
128 */
129 #define UV_MAX_NASID_VALUE (UV_MAX_NUMALINK_BLADES * 2)
130
131 /* System Controller Interface Reg info */
132 struct uv_scir_s {
133 struct timer_list timer;
134 unsigned long offset;
135 unsigned long last;
136 unsigned long idle_on;
137 unsigned long idle_off;
138 unsigned char state;
139 unsigned char enabled;
140 };
141
142 /* GAM (globally addressed memory) range table */
143 struct uv_gam_range_s {
144 u32 limit; /* PA bits 56:26 (GAM_RANGE_SHFT) */
145 u16 nasid; /* node's global physical address */
146 s8 base; /* entry index of node's base addr */
147 u8 reserved;
148 };
149
150 /*
151 * The following defines attributes of the HUB chip. These attributes are
152 * frequently referenced and are kept in a common per hub struct.
153 * After setup, the struct is read only, so it should be readily
154 * available in the L3 cache on the cpu socket for the node.
155 */
156 struct uv_hub_info_s {
157 unsigned long global_mmr_base;
158 unsigned long global_mmr_shift;
159 unsigned long gpa_mask;
160 unsigned short *socket_to_node;
161 unsigned short *socket_to_pnode;
162 unsigned short *pnode_to_socket;
163 struct uv_gam_range_s *gr_table;
164 unsigned short min_socket;
165 unsigned short min_pnode;
166 unsigned char m_val;
167 unsigned char n_val;
168 unsigned char gr_table_len;
169 unsigned char hub_revision;
170 unsigned char apic_pnode_shift;
171 unsigned char gpa_shift;
172 unsigned char m_shift;
173 unsigned char n_lshift;
174 unsigned int gnode_extra;
175 unsigned long gnode_upper;
176 unsigned long lowmem_remap_top;
177 unsigned long lowmem_remap_base;
178 unsigned long global_gru_base;
179 unsigned long global_gru_shift;
180 unsigned short pnode;
181 unsigned short pnode_mask;
182 unsigned short coherency_domain_number;
183 unsigned short numa_blade_id;
184 unsigned short nr_possible_cpus;
185 unsigned short nr_online_cpus;
186 short memory_nid;
187 };
188
189 /* CPU specific info with a pointer to the hub common info struct */
190 struct uv_cpu_info_s {
191 void *p_uv_hub_info;
192 unsigned char blade_cpu_id;
193 struct uv_scir_s scir;
194 };
195 DECLARE_PER_CPU(struct uv_cpu_info_s, __uv_cpu_info);
196
197 #define uv_cpu_info this_cpu_ptr(&__uv_cpu_info)
198 #define uv_cpu_info_per(cpu) (&per_cpu(__uv_cpu_info, cpu))
199
200 #define uv_scir_info (&uv_cpu_info->scir)
201 #define uv_cpu_scir_info(cpu) (&uv_cpu_info_per(cpu)->scir)
202
203 /* Node specific hub common info struct */
204 extern void **__uv_hub_info_list;
205 static inline struct uv_hub_info_s *uv_hub_info_list(int node)
206 {
207 return (struct uv_hub_info_s *)__uv_hub_info_list[node];
208 }
209
210 static inline struct uv_hub_info_s *_uv_hub_info(void)
211 {
212 return (struct uv_hub_info_s *)uv_cpu_info->p_uv_hub_info;
213 }
214 #define uv_hub_info _uv_hub_info()
215
216 static inline struct uv_hub_info_s *uv_cpu_hub_info(int cpu)
217 {
218 return (struct uv_hub_info_s *)uv_cpu_info_per(cpu)->p_uv_hub_info;
219 }
220
221 #define UV_HUB_INFO_VERSION 0x7150
222 extern int uv_hub_info_version(void);
223 static inline int uv_hub_info_check(int version)
224 {
225 if (uv_hub_info_version() == version)
226 return 0;
227
228 pr_crit("UV: uv_hub_info version(%x) mismatch, expecting(%x)\n",
229 uv_hub_info_version(), version);
230
231 BUG(); /* Catastrophic - cannot continue on unknown UV system */
232 }
233 #define _uv_hub_info_check() uv_hub_info_check(UV_HUB_INFO_VERSION)
234
235 /*
236 * HUB revision ranges for each UV HUB architecture.
237 * This is a software convention - NOT the hardware revision numbers in
238 * the hub chip.
239 */
240 #define UV1_HUB_REVISION_BASE 1
241 #define UV2_HUB_REVISION_BASE 3
242 #define UV3_HUB_REVISION_BASE 5
243 #define UV4_HUB_REVISION_BASE 7
244
245 #ifdef UV1_HUB_IS_SUPPORTED
246 static inline int is_uv1_hub(void)
247 {
248 return uv_hub_info->hub_revision < UV2_HUB_REVISION_BASE;
249 }
250 #else
251 static inline int is_uv1_hub(void)
252 {
253 return 0;
254 }
255 #endif
256
257 #ifdef UV2_HUB_IS_SUPPORTED
258 static inline int is_uv2_hub(void)
259 {
260 return ((uv_hub_info->hub_revision >= UV2_HUB_REVISION_BASE) &&
261 (uv_hub_info->hub_revision < UV3_HUB_REVISION_BASE));
262 }
263 #else
264 static inline int is_uv2_hub(void)
265 {
266 return 0;
267 }
268 #endif
269
270 #ifdef UV3_HUB_IS_SUPPORTED
271 static inline int is_uv3_hub(void)
272 {
273 return ((uv_hub_info->hub_revision >= UV3_HUB_REVISION_BASE) &&
274 (uv_hub_info->hub_revision < UV4_HUB_REVISION_BASE));
275 }
276 #else
277 static inline int is_uv3_hub(void)
278 {
279 return 0;
280 }
281 #endif
282
283 #ifdef UV4_HUB_IS_SUPPORTED
284 static inline int is_uv4_hub(void)
285 {
286 return uv_hub_info->hub_revision >= UV4_HUB_REVISION_BASE;
287 }
288 #else
289 static inline int is_uv4_hub(void)
290 {
291 return 0;
292 }
293 #endif
294
295 static inline int is_uvx_hub(void)
296 {
297 if (uv_hub_info->hub_revision >= UV2_HUB_REVISION_BASE)
298 return uv_hub_info->hub_revision;
299
300 return 0;
301 }
302
303 static inline int is_uv_hub(void)
304 {
305 #ifdef UV1_HUB_IS_SUPPORTED
306 return uv_hub_info->hub_revision;
307 #endif
308 return is_uvx_hub();
309 }
310
311 union uvh_apicid {
312 unsigned long v;
313 struct uvh_apicid_s {
314 unsigned long local_apic_mask : 24;
315 unsigned long local_apic_shift : 5;
316 unsigned long unused1 : 3;
317 unsigned long pnode_mask : 24;
318 unsigned long pnode_shift : 5;
319 unsigned long unused2 : 3;
320 } s;
321 };
322
323 /*
324 * Local & Global MMR space macros.
325 * Note: macros are intended to be used ONLY by inline functions
326 * in this file - not by other kernel code.
327 * n - NASID (full 15-bit global nasid)
328 * g - GNODE (full 15-bit global nasid, right shifted 1)
329 * p - PNODE (local part of nsids, right shifted 1)
330 */
331 #define UV_NASID_TO_PNODE(n) (((n) >> 1) & uv_hub_info->pnode_mask)
332 #define UV_PNODE_TO_GNODE(p) ((p) |uv_hub_info->gnode_extra)
333 #define UV_PNODE_TO_NASID(p) (UV_PNODE_TO_GNODE(p) << 1)
334
335 #define UV1_LOCAL_MMR_BASE 0xf4000000UL
336 #define UV1_GLOBAL_MMR32_BASE 0xf8000000UL
337 #define UV1_LOCAL_MMR_SIZE (64UL * 1024 * 1024)
338 #define UV1_GLOBAL_MMR32_SIZE (64UL * 1024 * 1024)
339
340 #define UV2_LOCAL_MMR_BASE 0xfa000000UL
341 #define UV2_GLOBAL_MMR32_BASE 0xfc000000UL
342 #define UV2_LOCAL_MMR_SIZE (32UL * 1024 * 1024)
343 #define UV2_GLOBAL_MMR32_SIZE (32UL * 1024 * 1024)
344
345 #define UV3_LOCAL_MMR_BASE 0xfa000000UL
346 #define UV3_GLOBAL_MMR32_BASE 0xfc000000UL
347 #define UV3_LOCAL_MMR_SIZE (32UL * 1024 * 1024)
348 #define UV3_GLOBAL_MMR32_SIZE (32UL * 1024 * 1024)
349
350 #define UV4_LOCAL_MMR_BASE 0xfa000000UL
351 #define UV4_GLOBAL_MMR32_BASE 0xfc000000UL
352 #define UV4_LOCAL_MMR_SIZE (32UL * 1024 * 1024)
353 #define UV4_GLOBAL_MMR32_SIZE (16UL * 1024 * 1024)
354
355 #define UV_LOCAL_MMR_BASE ( \
356 is_uv1_hub() ? UV1_LOCAL_MMR_BASE : \
357 is_uv2_hub() ? UV2_LOCAL_MMR_BASE : \
358 is_uv3_hub() ? UV3_LOCAL_MMR_BASE : \
359 /*is_uv4_hub*/ UV4_LOCAL_MMR_BASE)
360
361 #define UV_GLOBAL_MMR32_BASE ( \
362 is_uv1_hub() ? UV1_GLOBAL_MMR32_BASE : \
363 is_uv2_hub() ? UV2_GLOBAL_MMR32_BASE : \
364 is_uv3_hub() ? UV3_GLOBAL_MMR32_BASE : \
365 /*is_uv4_hub*/ UV4_GLOBAL_MMR32_BASE)
366
367 #define UV_LOCAL_MMR_SIZE ( \
368 is_uv1_hub() ? UV1_LOCAL_MMR_SIZE : \
369 is_uv2_hub() ? UV2_LOCAL_MMR_SIZE : \
370 is_uv3_hub() ? UV3_LOCAL_MMR_SIZE : \
371 /*is_uv4_hub*/ UV4_LOCAL_MMR_SIZE)
372
373 #define UV_GLOBAL_MMR32_SIZE ( \
374 is_uv1_hub() ? UV1_GLOBAL_MMR32_SIZE : \
375 is_uv2_hub() ? UV2_GLOBAL_MMR32_SIZE : \
376 is_uv3_hub() ? UV3_GLOBAL_MMR32_SIZE : \
377 /*is_uv4_hub*/ UV4_GLOBAL_MMR32_SIZE)
378
379 #define UV_GLOBAL_MMR64_BASE (uv_hub_info->global_mmr_base)
380
381 #define UV_GLOBAL_GRU_MMR_BASE 0x4000000
382
383 #define UV_GLOBAL_MMR32_PNODE_SHIFT 15
384 #define _UV_GLOBAL_MMR64_PNODE_SHIFT 26
385 #define UV_GLOBAL_MMR64_PNODE_SHIFT (uv_hub_info->global_mmr_shift)
386
387 #define UV_GLOBAL_MMR32_PNODE_BITS(p) ((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT))
388
389 #define UV_GLOBAL_MMR64_PNODE_BITS(p) \
390 (((unsigned long)(p)) << UV_GLOBAL_MMR64_PNODE_SHIFT)
391
392 #define UVH_APICID 0x002D0E00L
393 #define UV_APIC_PNODE_SHIFT 6
394
395 #define UV_APICID_HIBIT_MASK 0xffff0000
396
397 /* Local Bus from cpu's perspective */
398 #define LOCAL_BUS_BASE 0x1c00000
399 #define LOCAL_BUS_SIZE (4 * 1024 * 1024)
400
401 /*
402 * System Controller Interface Reg
403 *
404 * Note there are NO leds on a UV system. This register is only
405 * used by the system controller to monitor system-wide operation.
406 * There are 64 regs per node. With Nahelem cpus (2 cores per node,
407 * 8 cpus per core, 2 threads per cpu) there are 32 cpu threads on
408 * a node.
409 *
410 * The window is located at top of ACPI MMR space
411 */
412 #define SCIR_WINDOW_COUNT 64
413 #define SCIR_LOCAL_MMR_BASE (LOCAL_BUS_BASE + \
414 LOCAL_BUS_SIZE - \
415 SCIR_WINDOW_COUNT)
416
417 #define SCIR_CPU_HEARTBEAT 0x01 /* timer interrupt */
418 #define SCIR_CPU_ACTIVITY 0x02 /* not idle */
419 #define SCIR_CPU_HB_INTERVAL (HZ) /* once per second */
420
421 /* Loop through all installed blades */
422 #define for_each_possible_blade(bid) \
423 for ((bid) = 0; (bid) < uv_num_possible_blades(); (bid)++)
424
425 /*
426 * Macros for converting between kernel virtual addresses, socket local physical
427 * addresses, and UV global physical addresses.
428 * Note: use the standard __pa() & __va() macros for converting
429 * between socket virtual and socket physical addresses.
430 */
431
432 /* global bits offset - number of local address bits in gpa for this UV arch */
433 static inline unsigned int uv_gpa_shift(void)
434 {
435 return uv_hub_info->gpa_shift;
436 }
437 #define _uv_gpa_shift
438
439 /* Find node that has the address range that contains global address */
440 static inline struct uv_gam_range_s *uv_gam_range(unsigned long pa)
441 {
442 struct uv_gam_range_s *gr = uv_hub_info->gr_table;
443 unsigned long pal = (pa & uv_hub_info->gpa_mask) >> UV_GAM_RANGE_SHFT;
444 int i, num = uv_hub_info->gr_table_len;
445
446 if (gr) {
447 for (i = 0; i < num; i++, gr++) {
448 if (pal < gr->limit)
449 return gr;
450 }
451 }
452 pr_crit("UV: GAM Range for 0x%lx not found at %p!\n", pa, gr);
453 BUG();
454 }
455
456 /* Return base address of node that contains global address */
457 static inline unsigned long uv_gam_range_base(unsigned long pa)
458 {
459 struct uv_gam_range_s *gr = uv_gam_range(pa);
460 int base = gr->base;
461
462 if (base < 0)
463 return 0UL;
464
465 return uv_hub_info->gr_table[base].limit;
466 }
467
468 /* socket phys RAM --> UV global NASID (UV4+) */
469 static inline unsigned long uv_soc_phys_ram_to_nasid(unsigned long paddr)
470 {
471 return uv_gam_range(paddr)->nasid;
472 }
473 #define _uv_soc_phys_ram_to_nasid
474
475 /* socket virtual --> UV global NASID (UV4+) */
476 static inline unsigned long uv_gpa_nasid(void *v)
477 {
478 return uv_soc_phys_ram_to_nasid(__pa(v));
479 }
480
481 /* socket phys RAM --> UV global physical address */
482 static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr)
483 {
484 unsigned int m_val = uv_hub_info->m_val;
485
486 if (paddr < uv_hub_info->lowmem_remap_top)
487 paddr |= uv_hub_info->lowmem_remap_base;
488 paddr |= uv_hub_info->gnode_upper;
489 if (m_val)
490 paddr = ((paddr << uv_hub_info->m_shift)
491 >> uv_hub_info->m_shift) |
492 ((paddr >> uv_hub_info->m_val)
493 << uv_hub_info->n_lshift);
494 else
495 paddr |= uv_soc_phys_ram_to_nasid(paddr)
496 << uv_hub_info->gpa_shift;
497 return paddr;
498 }
499
500 /* socket virtual --> UV global physical address */
501 static inline unsigned long uv_gpa(void *v)
502 {
503 return uv_soc_phys_ram_to_gpa(__pa(v));
504 }
505
506 /* Top two bits indicate the requested address is in MMR space. */
507 static inline int
508 uv_gpa_in_mmr_space(unsigned long gpa)
509 {
510 return (gpa >> 62) == 0x3UL;
511 }
512
513 /* UV global physical address --> socket phys RAM */
514 static inline unsigned long uv_gpa_to_soc_phys_ram(unsigned long gpa)
515 {
516 unsigned long paddr;
517 unsigned long remap_base = uv_hub_info->lowmem_remap_base;
518 unsigned long remap_top = uv_hub_info->lowmem_remap_top;
519 unsigned int m_val = uv_hub_info->m_val;
520
521 if (m_val)
522 gpa = ((gpa << uv_hub_info->m_shift) >> uv_hub_info->m_shift) |
523 ((gpa >> uv_hub_info->n_lshift) << uv_hub_info->m_val);
524
525 paddr = gpa & uv_hub_info->gpa_mask;
526 if (paddr >= remap_base && paddr < remap_base + remap_top)
527 paddr -= remap_base;
528 return paddr;
529 }
530
531 /* gpa -> gnode */
532 static inline unsigned long uv_gpa_to_gnode(unsigned long gpa)
533 {
534 unsigned int n_lshift = uv_hub_info->n_lshift;
535
536 if (n_lshift)
537 return gpa >> n_lshift;
538
539 return uv_gam_range(gpa)->nasid >> 1;
540 }
541
542 /* gpa -> pnode */
543 static inline int uv_gpa_to_pnode(unsigned long gpa)
544 {
545 return uv_gpa_to_gnode(gpa) & uv_hub_info->pnode_mask;
546 }
547
548 /* gpa -> node offset */
549 static inline unsigned long uv_gpa_to_offset(unsigned long gpa)
550 {
551 unsigned int m_shift = uv_hub_info->m_shift;
552
553 if (m_shift)
554 return (gpa << m_shift) >> m_shift;
555
556 return (gpa & uv_hub_info->gpa_mask) - uv_gam_range_base(gpa);
557 }
558
559 /* Convert socket to node */
560 static inline int _uv_socket_to_node(int socket, unsigned short *s2nid)
561 {
562 return s2nid ? s2nid[socket - uv_hub_info->min_socket] : socket;
563 }
564
565 static inline int uv_socket_to_node(int socket)
566 {
567 return _uv_socket_to_node(socket, uv_hub_info->socket_to_node);
568 }
569
570 /* pnode, offset --> socket virtual */
571 static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset)
572 {
573 unsigned int m_val = uv_hub_info->m_val;
574 unsigned long base;
575 unsigned short sockid, node, *p2s;
576
577 if (m_val)
578 return __va(((unsigned long)pnode << m_val) | offset);
579
580 p2s = uv_hub_info->pnode_to_socket;
581 sockid = p2s ? p2s[pnode - uv_hub_info->min_pnode] : pnode;
582 node = uv_socket_to_node(sockid);
583
584 /* limit address of previous socket is our base, except node 0 is 0 */
585 if (!node)
586 return __va((unsigned long)offset);
587
588 base = (unsigned long)(uv_hub_info->gr_table[node - 1].limit);
589 return __va(base << UV_GAM_RANGE_SHFT | offset);
590 }
591
592 /* Extract/Convert a PNODE from an APICID (full apicid, not processor subset) */
593 static inline int uv_apicid_to_pnode(int apicid)
594 {
595 int pnode = apicid >> uv_hub_info->apic_pnode_shift;
596 unsigned short *s2pn = uv_hub_info->socket_to_pnode;
597
598 return s2pn ? s2pn[pnode - uv_hub_info->min_socket] : pnode;
599 }
600
601 /* Convert an apicid to the socket number on the blade */
602 static inline int uv_apicid_to_socket(int apicid)
603 {
604 if (is_uv1_hub())
605 return (apicid >> (uv_hub_info->apic_pnode_shift - 1)) & 1;
606 else
607 return 0;
608 }
609
610 /*
611 * Access global MMRs using the low memory MMR32 space. This region supports
612 * faster MMR access but not all MMRs are accessible in this space.
613 */
614 static inline unsigned long *uv_global_mmr32_address(int pnode, unsigned long offset)
615 {
616 return __va(UV_GLOBAL_MMR32_BASE |
617 UV_GLOBAL_MMR32_PNODE_BITS(pnode) | offset);
618 }
619
620 static inline void uv_write_global_mmr32(int pnode, unsigned long offset, unsigned long val)
621 {
622 writeq(val, uv_global_mmr32_address(pnode, offset));
623 }
624
625 static inline unsigned long uv_read_global_mmr32(int pnode, unsigned long offset)
626 {
627 return readq(uv_global_mmr32_address(pnode, offset));
628 }
629
630 /*
631 * Access Global MMR space using the MMR space located at the top of physical
632 * memory.
633 */
634 static inline volatile void __iomem *uv_global_mmr64_address(int pnode, unsigned long offset)
635 {
636 return __va(UV_GLOBAL_MMR64_BASE |
637 UV_GLOBAL_MMR64_PNODE_BITS(pnode) | offset);
638 }
639
640 static inline void uv_write_global_mmr64(int pnode, unsigned long offset, unsigned long val)
641 {
642 writeq(val, uv_global_mmr64_address(pnode, offset));
643 }
644
645 static inline unsigned long uv_read_global_mmr64(int pnode, unsigned long offset)
646 {
647 return readq(uv_global_mmr64_address(pnode, offset));
648 }
649
650 static inline void uv_write_global_mmr8(int pnode, unsigned long offset, unsigned char val)
651 {
652 writeb(val, uv_global_mmr64_address(pnode, offset));
653 }
654
655 static inline unsigned char uv_read_global_mmr8(int pnode, unsigned long offset)
656 {
657 return readb(uv_global_mmr64_address(pnode, offset));
658 }
659
660 /*
661 * Access hub local MMRs. Faster than using global space but only local MMRs
662 * are accessible.
663 */
664 static inline unsigned long *uv_local_mmr_address(unsigned long offset)
665 {
666 return __va(UV_LOCAL_MMR_BASE | offset);
667 }
668
669 static inline unsigned long uv_read_local_mmr(unsigned long offset)
670 {
671 return readq(uv_local_mmr_address(offset));
672 }
673
674 static inline void uv_write_local_mmr(unsigned long offset, unsigned long val)
675 {
676 writeq(val, uv_local_mmr_address(offset));
677 }
678
679 static inline unsigned char uv_read_local_mmr8(unsigned long offset)
680 {
681 return readb(uv_local_mmr_address(offset));
682 }
683
684 static inline void uv_write_local_mmr8(unsigned long offset, unsigned char val)
685 {
686 writeb(val, uv_local_mmr_address(offset));
687 }
688
689 /* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
690 static inline int uv_blade_processor_id(void)
691 {
692 return uv_cpu_info->blade_cpu_id;
693 }
694
695 /* Blade-local cpu number of cpu N. Numbered 0 .. <# cpus on the blade> */
696 static inline int uv_cpu_blade_processor_id(int cpu)
697 {
698 return uv_cpu_info_per(cpu)->blade_cpu_id;
699 }
700 #define _uv_cpu_blade_processor_id 1 /* indicate function available */
701
702 /* Blade number to Node number (UV1..UV4 is 1:1) */
703 static inline int uv_blade_to_node(int blade)
704 {
705 return blade;
706 }
707
708 /* Blade number of current cpu. Numnbered 0 .. <#blades -1> */
709 static inline int uv_numa_blade_id(void)
710 {
711 return uv_hub_info->numa_blade_id;
712 }
713
714 /*
715 * Convert linux node number to the UV blade number.
716 * .. Currently for UV1 thru UV4 the node and the blade are identical.
717 * .. If this changes then you MUST check references to this function!
718 */
719 static inline int uv_node_to_blade_id(int nid)
720 {
721 return nid;
722 }
723
724 /* Convert a cpu number to the the UV blade number */
725 static inline int uv_cpu_to_blade_id(int cpu)
726 {
727 return uv_node_to_blade_id(cpu_to_node(cpu));
728 }
729
730 /* Convert a blade id to the PNODE of the blade */
731 static inline int uv_blade_to_pnode(int bid)
732 {
733 return uv_hub_info_list(uv_blade_to_node(bid))->pnode;
734 }
735
736 /* Nid of memory node on blade. -1 if no blade-local memory */
737 static inline int uv_blade_to_memory_nid(int bid)
738 {
739 return uv_hub_info_list(uv_blade_to_node(bid))->memory_nid;
740 }
741
742 /* Determine the number of possible cpus on a blade */
743 static inline int uv_blade_nr_possible_cpus(int bid)
744 {
745 return uv_hub_info_list(uv_blade_to_node(bid))->nr_possible_cpus;
746 }
747
748 /* Determine the number of online cpus on a blade */
749 static inline int uv_blade_nr_online_cpus(int bid)
750 {
751 return uv_hub_info_list(uv_blade_to_node(bid))->nr_online_cpus;
752 }
753
754 /* Convert a cpu id to the PNODE of the blade containing the cpu */
755 static inline int uv_cpu_to_pnode(int cpu)
756 {
757 return uv_cpu_hub_info(cpu)->pnode;
758 }
759
760 /* Convert a linux node number to the PNODE of the blade */
761 static inline int uv_node_to_pnode(int nid)
762 {
763 return uv_hub_info_list(nid)->pnode;
764 }
765
766 /* Maximum possible number of blades */
767 extern short uv_possible_blades;
768 static inline int uv_num_possible_blades(void)
769 {
770 return uv_possible_blades;
771 }
772
773 /* Per Hub NMI support */
774 extern void uv_nmi_setup(void);
775
776 /* BMC sets a bit this MMR non-zero before sending an NMI */
777 #define UVH_NMI_MMR UVH_SCRATCH5
778 #define UVH_NMI_MMR_CLEAR UVH_SCRATCH5_ALIAS
779 #define UVH_NMI_MMR_SHIFT 63
780 #define UVH_NMI_MMR_TYPE "SCRATCH5"
781
782 /* Newer SMM NMI handler, not present in all systems */
783 #define UVH_NMI_MMRX UVH_EVENT_OCCURRED0
784 #define UVH_NMI_MMRX_CLEAR UVH_EVENT_OCCURRED0_ALIAS
785 #define UVH_NMI_MMRX_SHIFT UVH_EVENT_OCCURRED0_EXTIO_INT0_SHFT
786 #define UVH_NMI_MMRX_TYPE "EXTIO_INT0"
787
788 /* Non-zero indicates newer SMM NMI handler present */
789 #define UVH_NMI_MMRX_SUPPORTED UVH_EXTIO_INT0_BROADCAST
790
791 /* Indicates to BIOS that we want to use the newer SMM NMI handler */
792 #define UVH_NMI_MMRX_REQ UVH_SCRATCH5_ALIAS_2
793 #define UVH_NMI_MMRX_REQ_SHIFT 62
794
795 struct uv_hub_nmi_s {
796 raw_spinlock_t nmi_lock;
797 atomic_t in_nmi; /* flag this node in UV NMI IRQ */
798 atomic_t cpu_owner; /* last locker of this struct */
799 atomic_t read_mmr_count; /* count of MMR reads */
800 atomic_t nmi_count; /* count of true UV NMIs */
801 unsigned long nmi_value; /* last value read from NMI MMR */
802 };
803
804 struct uv_cpu_nmi_s {
805 struct uv_hub_nmi_s *hub;
806 int state;
807 int pinging;
808 int queries;
809 int pings;
810 };
811
812 DECLARE_PER_CPU(struct uv_cpu_nmi_s, uv_cpu_nmi);
813
814 #define uv_hub_nmi this_cpu_read(uv_cpu_nmi.hub)
815 #define uv_cpu_nmi_per(cpu) (per_cpu(uv_cpu_nmi, cpu))
816 #define uv_hub_nmi_per(cpu) (uv_cpu_nmi_per(cpu).hub)
817
818 /* uv_cpu_nmi_states */
819 #define UV_NMI_STATE_OUT 0
820 #define UV_NMI_STATE_IN 1
821 #define UV_NMI_STATE_DUMP 2
822 #define UV_NMI_STATE_DUMP_DONE 3
823
824 /* Update SCIR state */
825 static inline void uv_set_scir_bits(unsigned char value)
826 {
827 if (uv_scir_info->state != value) {
828 uv_scir_info->state = value;
829 uv_write_local_mmr8(uv_scir_info->offset, value);
830 }
831 }
832
833 static inline unsigned long uv_scir_offset(int apicid)
834 {
835 return SCIR_LOCAL_MMR_BASE | (apicid & 0x3f);
836 }
837
838 static inline void uv_set_cpu_scir_bits(int cpu, unsigned char value)
839 {
840 if (uv_cpu_scir_info(cpu)->state != value) {
841 uv_write_global_mmr8(uv_cpu_to_pnode(cpu),
842 uv_cpu_scir_info(cpu)->offset, value);
843 uv_cpu_scir_info(cpu)->state = value;
844 }
845 }
846
847 extern unsigned int uv_apicid_hibits;
848 static unsigned long uv_hub_ipi_value(int apicid, int vector, int mode)
849 {
850 apicid |= uv_apicid_hibits;
851 return (1UL << UVH_IPI_INT_SEND_SHFT) |
852 ((apicid) << UVH_IPI_INT_APIC_ID_SHFT) |
853 (mode << UVH_IPI_INT_DELIVERY_MODE_SHFT) |
854 (vector << UVH_IPI_INT_VECTOR_SHFT);
855 }
856
857 static inline void uv_hub_send_ipi(int pnode, int apicid, int vector)
858 {
859 unsigned long val;
860 unsigned long dmode = dest_Fixed;
861
862 if (vector == NMI_VECTOR)
863 dmode = dest_NMI;
864
865 val = uv_hub_ipi_value(apicid, vector, dmode);
866 uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
867 }
868
869 /*
870 * Get the minimum revision number of the hub chips within the partition.
871 * (See UVx_HUB_REVISION_BASE above for specific values.)
872 */
873 static inline int uv_get_min_hub_revision_id(void)
874 {
875 return uv_hub_info->hub_revision;
876 }
877
878 #endif /* CONFIG_X86_64 */
879 #endif /* _ASM_X86_UV_UV_HUB_H */