]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/kernel/alternative.c
x86/acpi: Support objtool validation in wakeup_64.S
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kernel / alternative.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 #define pr_fmt(fmt) "SMP alternatives: " fmt
3
4 #include <linux/module.h>
5 #include <linux/sched.h>
6 #include <linux/perf_event.h>
7 #include <linux/mutex.h>
8 #include <linux/list.h>
9 #include <linux/stringify.h>
10 #include <linux/highmem.h>
11 #include <linux/mm.h>
12 #include <linux/vmalloc.h>
13 #include <linux/memory.h>
14 #include <linux/stop_machine.h>
15 #include <linux/slab.h>
16 #include <linux/kdebug.h>
17 #include <linux/kprobes.h>
18 #include <linux/mmu_context.h>
19 #include <linux/bsearch.h>
20 #include <linux/sync_core.h>
21 #include <asm/text-patching.h>
22 #include <asm/alternative.h>
23 #include <asm/sections.h>
24 #include <asm/mce.h>
25 #include <asm/nmi.h>
26 #include <asm/cacheflush.h>
27 #include <asm/tlbflush.h>
28 #include <asm/insn.h>
29 #include <asm/io.h>
30 #include <asm/fixmap.h>
31
32 int __read_mostly alternatives_patched;
33
34 EXPORT_SYMBOL_GPL(alternatives_patched);
35
36 #define MAX_PATCH_LEN (255-1)
37
38 static int __initdata_or_module debug_alternative;
39
40 static int __init debug_alt(char *str)
41 {
42 debug_alternative = 1;
43 return 1;
44 }
45 __setup("debug-alternative", debug_alt);
46
47 static int noreplace_smp;
48
49 static int __init setup_noreplace_smp(char *str)
50 {
51 noreplace_smp = 1;
52 return 1;
53 }
54 __setup("noreplace-smp", setup_noreplace_smp);
55
56 #define DPRINTK(fmt, args...) \
57 do { \
58 if (debug_alternative) \
59 printk(KERN_DEBUG pr_fmt(fmt) "\n", ##args); \
60 } while (0)
61
62 #define DUMP_BYTES(buf, len, fmt, args...) \
63 do { \
64 if (unlikely(debug_alternative)) { \
65 int j; \
66 \
67 if (!(len)) \
68 break; \
69 \
70 printk(KERN_DEBUG pr_fmt(fmt), ##args); \
71 for (j = 0; j < (len) - 1; j++) \
72 printk(KERN_CONT "%02hhx ", buf[j]); \
73 printk(KERN_CONT "%02hhx\n", buf[j]); \
74 } \
75 } while (0)
76
77 /*
78 * Each GENERIC_NOPX is of X bytes, and defined as an array of bytes
79 * that correspond to that nop. Getting from one nop to the next, we
80 * add to the array the offset that is equal to the sum of all sizes of
81 * nops preceding the one we are after.
82 *
83 * Note: The GENERIC_NOP5_ATOMIC is at the end, as it breaks the
84 * nice symmetry of sizes of the previous nops.
85 */
86 #if defined(GENERIC_NOP1) && !defined(CONFIG_X86_64)
87 static const unsigned char intelnops[] =
88 {
89 GENERIC_NOP1,
90 GENERIC_NOP2,
91 GENERIC_NOP3,
92 GENERIC_NOP4,
93 GENERIC_NOP5,
94 GENERIC_NOP6,
95 GENERIC_NOP7,
96 GENERIC_NOP8,
97 GENERIC_NOP5_ATOMIC
98 };
99 static const unsigned char * const intel_nops[ASM_NOP_MAX+2] =
100 {
101 NULL,
102 intelnops,
103 intelnops + 1,
104 intelnops + 1 + 2,
105 intelnops + 1 + 2 + 3,
106 intelnops + 1 + 2 + 3 + 4,
107 intelnops + 1 + 2 + 3 + 4 + 5,
108 intelnops + 1 + 2 + 3 + 4 + 5 + 6,
109 intelnops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
110 intelnops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
111 };
112 #endif
113
114 #ifdef K8_NOP1
115 static const unsigned char k8nops[] =
116 {
117 K8_NOP1,
118 K8_NOP2,
119 K8_NOP3,
120 K8_NOP4,
121 K8_NOP5,
122 K8_NOP6,
123 K8_NOP7,
124 K8_NOP8,
125 K8_NOP5_ATOMIC
126 };
127 static const unsigned char * const k8_nops[ASM_NOP_MAX+2] =
128 {
129 NULL,
130 k8nops,
131 k8nops + 1,
132 k8nops + 1 + 2,
133 k8nops + 1 + 2 + 3,
134 k8nops + 1 + 2 + 3 + 4,
135 k8nops + 1 + 2 + 3 + 4 + 5,
136 k8nops + 1 + 2 + 3 + 4 + 5 + 6,
137 k8nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
138 k8nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
139 };
140 #endif
141
142 #if defined(K7_NOP1) && !defined(CONFIG_X86_64)
143 static const unsigned char k7nops[] =
144 {
145 K7_NOP1,
146 K7_NOP2,
147 K7_NOP3,
148 K7_NOP4,
149 K7_NOP5,
150 K7_NOP6,
151 K7_NOP7,
152 K7_NOP8,
153 K7_NOP5_ATOMIC
154 };
155 static const unsigned char * const k7_nops[ASM_NOP_MAX+2] =
156 {
157 NULL,
158 k7nops,
159 k7nops + 1,
160 k7nops + 1 + 2,
161 k7nops + 1 + 2 + 3,
162 k7nops + 1 + 2 + 3 + 4,
163 k7nops + 1 + 2 + 3 + 4 + 5,
164 k7nops + 1 + 2 + 3 + 4 + 5 + 6,
165 k7nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
166 k7nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
167 };
168 #endif
169
170 #ifdef P6_NOP1
171 static const unsigned char p6nops[] =
172 {
173 P6_NOP1,
174 P6_NOP2,
175 P6_NOP3,
176 P6_NOP4,
177 P6_NOP5,
178 P6_NOP6,
179 P6_NOP7,
180 P6_NOP8,
181 P6_NOP5_ATOMIC
182 };
183 static const unsigned char * const p6_nops[ASM_NOP_MAX+2] =
184 {
185 NULL,
186 p6nops,
187 p6nops + 1,
188 p6nops + 1 + 2,
189 p6nops + 1 + 2 + 3,
190 p6nops + 1 + 2 + 3 + 4,
191 p6nops + 1 + 2 + 3 + 4 + 5,
192 p6nops + 1 + 2 + 3 + 4 + 5 + 6,
193 p6nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
194 p6nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
195 };
196 #endif
197
198 /* Initialize these to a safe default */
199 #ifdef CONFIG_X86_64
200 const unsigned char * const *ideal_nops = p6_nops;
201 #else
202 const unsigned char * const *ideal_nops = intel_nops;
203 #endif
204
205 void __init arch_init_ideal_nops(void)
206 {
207 switch (boot_cpu_data.x86_vendor) {
208 case X86_VENDOR_INTEL:
209 /*
210 * Due to a decoder implementation quirk, some
211 * specific Intel CPUs actually perform better with
212 * the "k8_nops" than with the SDM-recommended NOPs.
213 */
214 if (boot_cpu_data.x86 == 6 &&
215 boot_cpu_data.x86_model >= 0x0f &&
216 boot_cpu_data.x86_model != 0x1c &&
217 boot_cpu_data.x86_model != 0x26 &&
218 boot_cpu_data.x86_model != 0x27 &&
219 boot_cpu_data.x86_model < 0x30) {
220 ideal_nops = k8_nops;
221 } else if (boot_cpu_has(X86_FEATURE_NOPL)) {
222 ideal_nops = p6_nops;
223 } else {
224 #ifdef CONFIG_X86_64
225 ideal_nops = k8_nops;
226 #else
227 ideal_nops = intel_nops;
228 #endif
229 }
230 break;
231
232 case X86_VENDOR_HYGON:
233 ideal_nops = p6_nops;
234 return;
235
236 case X86_VENDOR_AMD:
237 if (boot_cpu_data.x86 > 0xf) {
238 ideal_nops = p6_nops;
239 return;
240 }
241
242 fallthrough;
243
244 default:
245 #ifdef CONFIG_X86_64
246 ideal_nops = k8_nops;
247 #else
248 if (boot_cpu_has(X86_FEATURE_K8))
249 ideal_nops = k8_nops;
250 else if (boot_cpu_has(X86_FEATURE_K7))
251 ideal_nops = k7_nops;
252 else
253 ideal_nops = intel_nops;
254 #endif
255 }
256 }
257
258 /* Use this to add nops to a buffer, then text_poke the whole buffer. */
259 static void __init_or_module add_nops(void *insns, unsigned int len)
260 {
261 while (len > 0) {
262 unsigned int noplen = len;
263 if (noplen > ASM_NOP_MAX)
264 noplen = ASM_NOP_MAX;
265 memcpy(insns, ideal_nops[noplen], noplen);
266 insns += noplen;
267 len -= noplen;
268 }
269 }
270
271 extern struct alt_instr __alt_instructions[], __alt_instructions_end[];
272 extern s32 __smp_locks[], __smp_locks_end[];
273 void text_poke_early(void *addr, const void *opcode, size_t len);
274
275 /*
276 * Are we looking at a near JMP with a 1 or 4-byte displacement.
277 */
278 static inline bool is_jmp(const u8 opcode)
279 {
280 return opcode == 0xeb || opcode == 0xe9;
281 }
282
283 static void __init_or_module
284 recompute_jump(struct alt_instr *a, u8 *orig_insn, u8 *repl_insn, u8 *insn_buff)
285 {
286 u8 *next_rip, *tgt_rip;
287 s32 n_dspl, o_dspl;
288 int repl_len;
289
290 if (a->replacementlen != 5)
291 return;
292
293 o_dspl = *(s32 *)(insn_buff + 1);
294
295 /* next_rip of the replacement JMP */
296 next_rip = repl_insn + a->replacementlen;
297 /* target rip of the replacement JMP */
298 tgt_rip = next_rip + o_dspl;
299 n_dspl = tgt_rip - orig_insn;
300
301 DPRINTK("target RIP: %px, new_displ: 0x%x", tgt_rip, n_dspl);
302
303 if (tgt_rip - orig_insn >= 0) {
304 if (n_dspl - 2 <= 127)
305 goto two_byte_jmp;
306 else
307 goto five_byte_jmp;
308 /* negative offset */
309 } else {
310 if (((n_dspl - 2) & 0xff) == (n_dspl - 2))
311 goto two_byte_jmp;
312 else
313 goto five_byte_jmp;
314 }
315
316 two_byte_jmp:
317 n_dspl -= 2;
318
319 insn_buff[0] = 0xeb;
320 insn_buff[1] = (s8)n_dspl;
321 add_nops(insn_buff + 2, 3);
322
323 repl_len = 2;
324 goto done;
325
326 five_byte_jmp:
327 n_dspl -= 5;
328
329 insn_buff[0] = 0xe9;
330 *(s32 *)&insn_buff[1] = n_dspl;
331
332 repl_len = 5;
333
334 done:
335
336 DPRINTK("final displ: 0x%08x, JMP 0x%lx",
337 n_dspl, (unsigned long)orig_insn + n_dspl + repl_len);
338 }
339
340 /*
341 * "noinline" to cause control flow change and thus invalidate I$ and
342 * cause refetch after modification.
343 */
344 static void __init_or_module noinline optimize_nops(struct alt_instr *a, u8 *instr)
345 {
346 unsigned long flags;
347 int i;
348
349 for (i = 0; i < a->padlen; i++) {
350 if (instr[i] != 0x90)
351 return;
352 }
353
354 local_irq_save(flags);
355 add_nops(instr + (a->instrlen - a->padlen), a->padlen);
356 local_irq_restore(flags);
357
358 DUMP_BYTES(instr, a->instrlen, "%px: [%d:%d) optimized NOPs: ",
359 instr, a->instrlen - a->padlen, a->padlen);
360 }
361
362 /*
363 * Replace instructions with better alternatives for this CPU type. This runs
364 * before SMP is initialized to avoid SMP problems with self modifying code.
365 * This implies that asymmetric systems where APs have less capabilities than
366 * the boot processor are not handled. Tough. Make sure you disable such
367 * features by hand.
368 *
369 * Marked "noinline" to cause control flow change and thus insn cache
370 * to refetch changed I$ lines.
371 */
372 void __init_or_module noinline apply_alternatives(struct alt_instr *start,
373 struct alt_instr *end)
374 {
375 struct alt_instr *a;
376 u8 *instr, *replacement;
377 u8 insn_buff[MAX_PATCH_LEN];
378
379 DPRINTK("alt table %px, -> %px", start, end);
380 /*
381 * The scan order should be from start to end. A later scanned
382 * alternative code can overwrite previously scanned alternative code.
383 * Some kernel functions (e.g. memcpy, memset, etc) use this order to
384 * patch code.
385 *
386 * So be careful if you want to change the scan order to any other
387 * order.
388 */
389 for (a = start; a < end; a++) {
390 int insn_buff_sz = 0;
391
392 instr = (u8 *)&a->instr_offset + a->instr_offset;
393 replacement = (u8 *)&a->repl_offset + a->repl_offset;
394 BUG_ON(a->instrlen > sizeof(insn_buff));
395 BUG_ON(a->cpuid >= (NCAPINTS + NBUGINTS) * 32);
396 if (!boot_cpu_has(a->cpuid)) {
397 if (a->padlen > 1)
398 optimize_nops(a, instr);
399
400 continue;
401 }
402
403 DPRINTK("feat: %d*32+%d, old: (%pS (%px) len: %d), repl: (%px, len: %d), pad: %d",
404 a->cpuid >> 5,
405 a->cpuid & 0x1f,
406 instr, instr, a->instrlen,
407 replacement, a->replacementlen, a->padlen);
408
409 DUMP_BYTES(instr, a->instrlen, "%px: old_insn: ", instr);
410 DUMP_BYTES(replacement, a->replacementlen, "%px: rpl_insn: ", replacement);
411
412 memcpy(insn_buff, replacement, a->replacementlen);
413 insn_buff_sz = a->replacementlen;
414
415 /*
416 * 0xe8 is a relative jump; fix the offset.
417 *
418 * Instruction length is checked before the opcode to avoid
419 * accessing uninitialized bytes for zero-length replacements.
420 */
421 if (a->replacementlen == 5 && *insn_buff == 0xe8) {
422 *(s32 *)(insn_buff + 1) += replacement - instr;
423 DPRINTK("Fix CALL offset: 0x%x, CALL 0x%lx",
424 *(s32 *)(insn_buff + 1),
425 (unsigned long)instr + *(s32 *)(insn_buff + 1) + 5);
426 }
427
428 if (a->replacementlen && is_jmp(replacement[0]))
429 recompute_jump(a, instr, replacement, insn_buff);
430
431 if (a->instrlen > a->replacementlen) {
432 add_nops(insn_buff + a->replacementlen,
433 a->instrlen - a->replacementlen);
434 insn_buff_sz += a->instrlen - a->replacementlen;
435 }
436 DUMP_BYTES(insn_buff, insn_buff_sz, "%px: final_insn: ", instr);
437
438 text_poke_early(instr, insn_buff, insn_buff_sz);
439 }
440 }
441
442 #ifdef CONFIG_SMP
443 static void alternatives_smp_lock(const s32 *start, const s32 *end,
444 u8 *text, u8 *text_end)
445 {
446 const s32 *poff;
447
448 for (poff = start; poff < end; poff++) {
449 u8 *ptr = (u8 *)poff + *poff;
450
451 if (!*poff || ptr < text || ptr >= text_end)
452 continue;
453 /* turn DS segment override prefix into lock prefix */
454 if (*ptr == 0x3e)
455 text_poke(ptr, ((unsigned char []){0xf0}), 1);
456 }
457 }
458
459 static void alternatives_smp_unlock(const s32 *start, const s32 *end,
460 u8 *text, u8 *text_end)
461 {
462 const s32 *poff;
463
464 for (poff = start; poff < end; poff++) {
465 u8 *ptr = (u8 *)poff + *poff;
466
467 if (!*poff || ptr < text || ptr >= text_end)
468 continue;
469 /* turn lock prefix into DS segment override prefix */
470 if (*ptr == 0xf0)
471 text_poke(ptr, ((unsigned char []){0x3E}), 1);
472 }
473 }
474
475 struct smp_alt_module {
476 /* what is this ??? */
477 struct module *mod;
478 char *name;
479
480 /* ptrs to lock prefixes */
481 const s32 *locks;
482 const s32 *locks_end;
483
484 /* .text segment, needed to avoid patching init code ;) */
485 u8 *text;
486 u8 *text_end;
487
488 struct list_head next;
489 };
490 static LIST_HEAD(smp_alt_modules);
491 static bool uniproc_patched = false; /* protected by text_mutex */
492
493 void __init_or_module alternatives_smp_module_add(struct module *mod,
494 char *name,
495 void *locks, void *locks_end,
496 void *text, void *text_end)
497 {
498 struct smp_alt_module *smp;
499
500 mutex_lock(&text_mutex);
501 if (!uniproc_patched)
502 goto unlock;
503
504 if (num_possible_cpus() == 1)
505 /* Don't bother remembering, we'll never have to undo it. */
506 goto smp_unlock;
507
508 smp = kzalloc(sizeof(*smp), GFP_KERNEL);
509 if (NULL == smp)
510 /* we'll run the (safe but slow) SMP code then ... */
511 goto unlock;
512
513 smp->mod = mod;
514 smp->name = name;
515 smp->locks = locks;
516 smp->locks_end = locks_end;
517 smp->text = text;
518 smp->text_end = text_end;
519 DPRINTK("locks %p -> %p, text %p -> %p, name %s\n",
520 smp->locks, smp->locks_end,
521 smp->text, smp->text_end, smp->name);
522
523 list_add_tail(&smp->next, &smp_alt_modules);
524 smp_unlock:
525 alternatives_smp_unlock(locks, locks_end, text, text_end);
526 unlock:
527 mutex_unlock(&text_mutex);
528 }
529
530 void __init_or_module alternatives_smp_module_del(struct module *mod)
531 {
532 struct smp_alt_module *item;
533
534 mutex_lock(&text_mutex);
535 list_for_each_entry(item, &smp_alt_modules, next) {
536 if (mod != item->mod)
537 continue;
538 list_del(&item->next);
539 kfree(item);
540 break;
541 }
542 mutex_unlock(&text_mutex);
543 }
544
545 void alternatives_enable_smp(void)
546 {
547 struct smp_alt_module *mod;
548
549 /* Why bother if there are no other CPUs? */
550 BUG_ON(num_possible_cpus() == 1);
551
552 mutex_lock(&text_mutex);
553
554 if (uniproc_patched) {
555 pr_info("switching to SMP code\n");
556 BUG_ON(num_online_cpus() != 1);
557 clear_cpu_cap(&boot_cpu_data, X86_FEATURE_UP);
558 clear_cpu_cap(&cpu_data(0), X86_FEATURE_UP);
559 list_for_each_entry(mod, &smp_alt_modules, next)
560 alternatives_smp_lock(mod->locks, mod->locks_end,
561 mod->text, mod->text_end);
562 uniproc_patched = false;
563 }
564 mutex_unlock(&text_mutex);
565 }
566
567 /*
568 * Return 1 if the address range is reserved for SMP-alternatives.
569 * Must hold text_mutex.
570 */
571 int alternatives_text_reserved(void *start, void *end)
572 {
573 struct smp_alt_module *mod;
574 const s32 *poff;
575 u8 *text_start = start;
576 u8 *text_end = end;
577
578 lockdep_assert_held(&text_mutex);
579
580 list_for_each_entry(mod, &smp_alt_modules, next) {
581 if (mod->text > text_end || mod->text_end < text_start)
582 continue;
583 for (poff = mod->locks; poff < mod->locks_end; poff++) {
584 const u8 *ptr = (const u8 *)poff + *poff;
585
586 if (text_start <= ptr && text_end > ptr)
587 return 1;
588 }
589 }
590
591 return 0;
592 }
593 #endif /* CONFIG_SMP */
594
595 #ifdef CONFIG_PARAVIRT
596 void __init_or_module apply_paravirt(struct paravirt_patch_site *start,
597 struct paravirt_patch_site *end)
598 {
599 struct paravirt_patch_site *p;
600 char insn_buff[MAX_PATCH_LEN];
601
602 for (p = start; p < end; p++) {
603 unsigned int used;
604
605 BUG_ON(p->len > MAX_PATCH_LEN);
606 /* prep the buffer with the original instructions */
607 memcpy(insn_buff, p->instr, p->len);
608 used = pv_ops.init.patch(p->type, insn_buff, (unsigned long)p->instr, p->len);
609
610 BUG_ON(used > p->len);
611
612 /* Pad the rest with nops */
613 add_nops(insn_buff + used, p->len - used);
614 text_poke_early(p->instr, insn_buff, p->len);
615 }
616 }
617 extern struct paravirt_patch_site __start_parainstructions[],
618 __stop_parainstructions[];
619 #endif /* CONFIG_PARAVIRT */
620
621 /*
622 * Self-test for the INT3 based CALL emulation code.
623 *
624 * This exercises int3_emulate_call() to make sure INT3 pt_regs are set up
625 * properly and that there is a stack gap between the INT3 frame and the
626 * previous context. Without this gap doing a virtual PUSH on the interrupted
627 * stack would corrupt the INT3 IRET frame.
628 *
629 * See entry_{32,64}.S for more details.
630 */
631
632 /*
633 * We define the int3_magic() function in assembly to control the calling
634 * convention such that we can 'call' it from assembly.
635 */
636
637 extern void int3_magic(unsigned int *ptr); /* defined in asm */
638
639 asm (
640 " .pushsection .init.text, \"ax\", @progbits\n"
641 " .type int3_magic, @function\n"
642 "int3_magic:\n"
643 " movl $1, (%" _ASM_ARG1 ")\n"
644 " ret\n"
645 " .size int3_magic, .-int3_magic\n"
646 " .popsection\n"
647 );
648
649 extern __initdata unsigned long int3_selftest_ip; /* defined in asm below */
650
651 static int __init
652 int3_exception_notify(struct notifier_block *self, unsigned long val, void *data)
653 {
654 struct die_args *args = data;
655 struct pt_regs *regs = args->regs;
656
657 if (!regs || user_mode(regs))
658 return NOTIFY_DONE;
659
660 if (val != DIE_INT3)
661 return NOTIFY_DONE;
662
663 if (regs->ip - INT3_INSN_SIZE != int3_selftest_ip)
664 return NOTIFY_DONE;
665
666 int3_emulate_call(regs, (unsigned long)&int3_magic);
667 return NOTIFY_STOP;
668 }
669
670 static void __init int3_selftest(void)
671 {
672 static __initdata struct notifier_block int3_exception_nb = {
673 .notifier_call = int3_exception_notify,
674 .priority = INT_MAX-1, /* last */
675 };
676 unsigned int val = 0;
677
678 BUG_ON(register_die_notifier(&int3_exception_nb));
679
680 /*
681 * Basically: int3_magic(&val); but really complicated :-)
682 *
683 * Stick the address of the INT3 instruction into int3_selftest_ip,
684 * then trigger the INT3, padded with NOPs to match a CALL instruction
685 * length.
686 */
687 asm volatile ("1: int3; nop; nop; nop; nop\n\t"
688 ".pushsection .init.data,\"aw\"\n\t"
689 ".align " __ASM_SEL(4, 8) "\n\t"
690 ".type int3_selftest_ip, @object\n\t"
691 ".size int3_selftest_ip, " __ASM_SEL(4, 8) "\n\t"
692 "int3_selftest_ip:\n\t"
693 __ASM_SEL(.long, .quad) " 1b\n\t"
694 ".popsection\n\t"
695 : ASM_CALL_CONSTRAINT
696 : __ASM_SEL_RAW(a, D) (&val)
697 : "memory");
698
699 BUG_ON(val != 1);
700
701 unregister_die_notifier(&int3_exception_nb);
702 }
703
704 void __init alternative_instructions(void)
705 {
706 int3_selftest();
707
708 /*
709 * The patching is not fully atomic, so try to avoid local
710 * interruptions that might execute the to be patched code.
711 * Other CPUs are not running.
712 */
713 stop_nmi();
714
715 /*
716 * Don't stop machine check exceptions while patching.
717 * MCEs only happen when something got corrupted and in this
718 * case we must do something about the corruption.
719 * Ignoring it is worse than an unlikely patching race.
720 * Also machine checks tend to be broadcast and if one CPU
721 * goes into machine check the others follow quickly, so we don't
722 * expect a machine check to cause undue problems during to code
723 * patching.
724 */
725
726 apply_alternatives(__alt_instructions, __alt_instructions_end);
727
728 #ifdef CONFIG_SMP
729 /* Patch to UP if other cpus not imminent. */
730 if (!noreplace_smp && (num_present_cpus() == 1 || setup_max_cpus <= 1)) {
731 uniproc_patched = true;
732 alternatives_smp_module_add(NULL, "core kernel",
733 __smp_locks, __smp_locks_end,
734 _text, _etext);
735 }
736
737 if (!uniproc_patched || num_possible_cpus() == 1) {
738 free_init_pages("SMP alternatives",
739 (unsigned long)__smp_locks,
740 (unsigned long)__smp_locks_end);
741 }
742 #endif
743
744 apply_paravirt(__parainstructions, __parainstructions_end);
745
746 restart_nmi();
747 alternatives_patched = 1;
748 }
749
750 /**
751 * text_poke_early - Update instructions on a live kernel at boot time
752 * @addr: address to modify
753 * @opcode: source of the copy
754 * @len: length to copy
755 *
756 * When you use this code to patch more than one byte of an instruction
757 * you need to make sure that other CPUs cannot execute this code in parallel.
758 * Also no thread must be currently preempted in the middle of these
759 * instructions. And on the local CPU you need to be protected against NMI or
760 * MCE handlers seeing an inconsistent instruction while you patch.
761 */
762 void __init_or_module text_poke_early(void *addr, const void *opcode,
763 size_t len)
764 {
765 unsigned long flags;
766
767 if (boot_cpu_has(X86_FEATURE_NX) &&
768 is_module_text_address((unsigned long)addr)) {
769 /*
770 * Modules text is marked initially as non-executable, so the
771 * code cannot be running and speculative code-fetches are
772 * prevented. Just change the code.
773 */
774 memcpy(addr, opcode, len);
775 } else {
776 local_irq_save(flags);
777 memcpy(addr, opcode, len);
778 local_irq_restore(flags);
779 sync_core();
780
781 /*
782 * Could also do a CLFLUSH here to speed up CPU recovery; but
783 * that causes hangs on some VIA CPUs.
784 */
785 }
786 }
787
788 typedef struct {
789 struct mm_struct *mm;
790 } temp_mm_state_t;
791
792 /*
793 * Using a temporary mm allows to set temporary mappings that are not accessible
794 * by other CPUs. Such mappings are needed to perform sensitive memory writes
795 * that override the kernel memory protections (e.g., W^X), without exposing the
796 * temporary page-table mappings that are required for these write operations to
797 * other CPUs. Using a temporary mm also allows to avoid TLB shootdowns when the
798 * mapping is torn down.
799 *
800 * Context: The temporary mm needs to be used exclusively by a single core. To
801 * harden security IRQs must be disabled while the temporary mm is
802 * loaded, thereby preventing interrupt handler bugs from overriding
803 * the kernel memory protection.
804 */
805 static inline temp_mm_state_t use_temporary_mm(struct mm_struct *mm)
806 {
807 temp_mm_state_t temp_state;
808
809 lockdep_assert_irqs_disabled();
810
811 /*
812 * Make sure not to be in TLB lazy mode, as otherwise we'll end up
813 * with a stale address space WITHOUT being in lazy mode after
814 * restoring the previous mm.
815 */
816 if (this_cpu_read(cpu_tlbstate.is_lazy))
817 leave_mm(smp_processor_id());
818
819 temp_state.mm = this_cpu_read(cpu_tlbstate.loaded_mm);
820 switch_mm_irqs_off(NULL, mm, current);
821
822 /*
823 * If breakpoints are enabled, disable them while the temporary mm is
824 * used. Userspace might set up watchpoints on addresses that are used
825 * in the temporary mm, which would lead to wrong signals being sent or
826 * crashes.
827 *
828 * Note that breakpoints are not disabled selectively, which also causes
829 * kernel breakpoints (e.g., perf's) to be disabled. This might be
830 * undesirable, but still seems reasonable as the code that runs in the
831 * temporary mm should be short.
832 */
833 if (hw_breakpoint_active())
834 hw_breakpoint_disable();
835
836 return temp_state;
837 }
838
839 static inline void unuse_temporary_mm(temp_mm_state_t prev_state)
840 {
841 lockdep_assert_irqs_disabled();
842 switch_mm_irqs_off(NULL, prev_state.mm, current);
843
844 /*
845 * Restore the breakpoints if they were disabled before the temporary mm
846 * was loaded.
847 */
848 if (hw_breakpoint_active())
849 hw_breakpoint_restore();
850 }
851
852 __ro_after_init struct mm_struct *poking_mm;
853 __ro_after_init unsigned long poking_addr;
854
855 static void *__text_poke(void *addr, const void *opcode, size_t len)
856 {
857 bool cross_page_boundary = offset_in_page(addr) + len > PAGE_SIZE;
858 struct page *pages[2] = {NULL};
859 temp_mm_state_t prev;
860 unsigned long flags;
861 pte_t pte, *ptep;
862 spinlock_t *ptl;
863 pgprot_t pgprot;
864
865 /*
866 * While boot memory allocator is running we cannot use struct pages as
867 * they are not yet initialized. There is no way to recover.
868 */
869 BUG_ON(!after_bootmem);
870
871 if (!core_kernel_text((unsigned long)addr)) {
872 pages[0] = vmalloc_to_page(addr);
873 if (cross_page_boundary)
874 pages[1] = vmalloc_to_page(addr + PAGE_SIZE);
875 } else {
876 pages[0] = virt_to_page(addr);
877 WARN_ON(!PageReserved(pages[0]));
878 if (cross_page_boundary)
879 pages[1] = virt_to_page(addr + PAGE_SIZE);
880 }
881 /*
882 * If something went wrong, crash and burn since recovery paths are not
883 * implemented.
884 */
885 BUG_ON(!pages[0] || (cross_page_boundary && !pages[1]));
886
887 /*
888 * Map the page without the global bit, as TLB flushing is done with
889 * flush_tlb_mm_range(), which is intended for non-global PTEs.
890 */
891 pgprot = __pgprot(pgprot_val(PAGE_KERNEL) & ~_PAGE_GLOBAL);
892
893 /*
894 * The lock is not really needed, but this allows to avoid open-coding.
895 */
896 ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
897
898 /*
899 * This must not fail; preallocated in poking_init().
900 */
901 VM_BUG_ON(!ptep);
902
903 local_irq_save(flags);
904
905 pte = mk_pte(pages[0], pgprot);
906 set_pte_at(poking_mm, poking_addr, ptep, pte);
907
908 if (cross_page_boundary) {
909 pte = mk_pte(pages[1], pgprot);
910 set_pte_at(poking_mm, poking_addr + PAGE_SIZE, ptep + 1, pte);
911 }
912
913 /*
914 * Loading the temporary mm behaves as a compiler barrier, which
915 * guarantees that the PTE will be set at the time memcpy() is done.
916 */
917 prev = use_temporary_mm(poking_mm);
918
919 kasan_disable_current();
920 memcpy((u8 *)poking_addr + offset_in_page(addr), opcode, len);
921 kasan_enable_current();
922
923 /*
924 * Ensure that the PTE is only cleared after the instructions of memcpy
925 * were issued by using a compiler barrier.
926 */
927 barrier();
928
929 pte_clear(poking_mm, poking_addr, ptep);
930 if (cross_page_boundary)
931 pte_clear(poking_mm, poking_addr + PAGE_SIZE, ptep + 1);
932
933 /*
934 * Loading the previous page-table hierarchy requires a serializing
935 * instruction that already allows the core to see the updated version.
936 * Xen-PV is assumed to serialize execution in a similar manner.
937 */
938 unuse_temporary_mm(prev);
939
940 /*
941 * Flushing the TLB might involve IPIs, which would require enabled
942 * IRQs, but not if the mm is not used, as it is in this point.
943 */
944 flush_tlb_mm_range(poking_mm, poking_addr, poking_addr +
945 (cross_page_boundary ? 2 : 1) * PAGE_SIZE,
946 PAGE_SHIFT, false);
947
948 /*
949 * If the text does not match what we just wrote then something is
950 * fundamentally screwy; there's nothing we can really do about that.
951 */
952 BUG_ON(memcmp(addr, opcode, len));
953
954 local_irq_restore(flags);
955 pte_unmap_unlock(ptep, ptl);
956 return addr;
957 }
958
959 /**
960 * text_poke - Update instructions on a live kernel
961 * @addr: address to modify
962 * @opcode: source of the copy
963 * @len: length to copy
964 *
965 * Only atomic text poke/set should be allowed when not doing early patching.
966 * It means the size must be writable atomically and the address must be aligned
967 * in a way that permits an atomic write. It also makes sure we fit on a single
968 * page.
969 *
970 * Note that the caller must ensure that if the modified code is part of a
971 * module, the module would not be removed during poking. This can be achieved
972 * by registering a module notifier, and ordering module removal and patching
973 * trough a mutex.
974 */
975 void *text_poke(void *addr, const void *opcode, size_t len)
976 {
977 lockdep_assert_held(&text_mutex);
978
979 return __text_poke(addr, opcode, len);
980 }
981
982 /**
983 * text_poke_kgdb - Update instructions on a live kernel by kgdb
984 * @addr: address to modify
985 * @opcode: source of the copy
986 * @len: length to copy
987 *
988 * Only atomic text poke/set should be allowed when not doing early patching.
989 * It means the size must be writable atomically and the address must be aligned
990 * in a way that permits an atomic write. It also makes sure we fit on a single
991 * page.
992 *
993 * Context: should only be used by kgdb, which ensures no other core is running,
994 * despite the fact it does not hold the text_mutex.
995 */
996 void *text_poke_kgdb(void *addr, const void *opcode, size_t len)
997 {
998 return __text_poke(addr, opcode, len);
999 }
1000
1001 static void do_sync_core(void *info)
1002 {
1003 sync_core();
1004 }
1005
1006 void text_poke_sync(void)
1007 {
1008 on_each_cpu(do_sync_core, NULL, 1);
1009 }
1010
1011 struct text_poke_loc {
1012 s32 rel_addr; /* addr := _stext + rel_addr */
1013 s32 rel32;
1014 u8 opcode;
1015 const u8 text[POKE_MAX_OPCODE_SIZE];
1016 u8 old;
1017 };
1018
1019 struct bp_patching_desc {
1020 struct text_poke_loc *vec;
1021 int nr_entries;
1022 atomic_t refs;
1023 };
1024
1025 static struct bp_patching_desc *bp_desc;
1026
1027 static __always_inline
1028 struct bp_patching_desc *try_get_desc(struct bp_patching_desc **descp)
1029 {
1030 struct bp_patching_desc *desc = __READ_ONCE(*descp); /* rcu_dereference */
1031
1032 if (!desc || !arch_atomic_inc_not_zero(&desc->refs))
1033 return NULL;
1034
1035 return desc;
1036 }
1037
1038 static __always_inline void put_desc(struct bp_patching_desc *desc)
1039 {
1040 smp_mb__before_atomic();
1041 arch_atomic_dec(&desc->refs);
1042 }
1043
1044 static __always_inline void *text_poke_addr(struct text_poke_loc *tp)
1045 {
1046 return _stext + tp->rel_addr;
1047 }
1048
1049 static __always_inline int patch_cmp(const void *key, const void *elt)
1050 {
1051 struct text_poke_loc *tp = (struct text_poke_loc *) elt;
1052
1053 if (key < text_poke_addr(tp))
1054 return -1;
1055 if (key > text_poke_addr(tp))
1056 return 1;
1057 return 0;
1058 }
1059
1060 noinstr int poke_int3_handler(struct pt_regs *regs)
1061 {
1062 struct bp_patching_desc *desc;
1063 struct text_poke_loc *tp;
1064 int len, ret = 0;
1065 void *ip;
1066
1067 if (user_mode(regs))
1068 return 0;
1069
1070 /*
1071 * Having observed our INT3 instruction, we now must observe
1072 * bp_desc:
1073 *
1074 * bp_desc = desc INT3
1075 * WMB RMB
1076 * write INT3 if (desc)
1077 */
1078 smp_rmb();
1079
1080 desc = try_get_desc(&bp_desc);
1081 if (!desc)
1082 return 0;
1083
1084 /*
1085 * Discount the INT3. See text_poke_bp_batch().
1086 */
1087 ip = (void *) regs->ip - INT3_INSN_SIZE;
1088
1089 /*
1090 * Skip the binary search if there is a single member in the vector.
1091 */
1092 if (unlikely(desc->nr_entries > 1)) {
1093 tp = __inline_bsearch(ip, desc->vec, desc->nr_entries,
1094 sizeof(struct text_poke_loc),
1095 patch_cmp);
1096 if (!tp)
1097 goto out_put;
1098 } else {
1099 tp = desc->vec;
1100 if (text_poke_addr(tp) != ip)
1101 goto out_put;
1102 }
1103
1104 len = text_opcode_size(tp->opcode);
1105 ip += len;
1106
1107 switch (tp->opcode) {
1108 case INT3_INSN_OPCODE:
1109 /*
1110 * Someone poked an explicit INT3, they'll want to handle it,
1111 * do not consume.
1112 */
1113 goto out_put;
1114
1115 case RET_INSN_OPCODE:
1116 int3_emulate_ret(regs);
1117 break;
1118
1119 case CALL_INSN_OPCODE:
1120 int3_emulate_call(regs, (long)ip + tp->rel32);
1121 break;
1122
1123 case JMP32_INSN_OPCODE:
1124 case JMP8_INSN_OPCODE:
1125 int3_emulate_jmp(regs, (long)ip + tp->rel32);
1126 break;
1127
1128 default:
1129 BUG();
1130 }
1131
1132 ret = 1;
1133
1134 out_put:
1135 put_desc(desc);
1136 return ret;
1137 }
1138
1139 #define TP_VEC_MAX (PAGE_SIZE / sizeof(struct text_poke_loc))
1140 static struct text_poke_loc tp_vec[TP_VEC_MAX];
1141 static int tp_vec_nr;
1142
1143 /**
1144 * text_poke_bp_batch() -- update instructions on live kernel on SMP
1145 * @tp: vector of instructions to patch
1146 * @nr_entries: number of entries in the vector
1147 *
1148 * Modify multi-byte instruction by using int3 breakpoint on SMP.
1149 * We completely avoid stop_machine() here, and achieve the
1150 * synchronization using int3 breakpoint.
1151 *
1152 * The way it is done:
1153 * - For each entry in the vector:
1154 * - add a int3 trap to the address that will be patched
1155 * - sync cores
1156 * - For each entry in the vector:
1157 * - update all but the first byte of the patched range
1158 * - sync cores
1159 * - For each entry in the vector:
1160 * - replace the first byte (int3) by the first byte of
1161 * replacing opcode
1162 * - sync cores
1163 */
1164 static void text_poke_bp_batch(struct text_poke_loc *tp, unsigned int nr_entries)
1165 {
1166 struct bp_patching_desc desc = {
1167 .vec = tp,
1168 .nr_entries = nr_entries,
1169 .refs = ATOMIC_INIT(1),
1170 };
1171 unsigned char int3 = INT3_INSN_OPCODE;
1172 unsigned int i;
1173 int do_sync;
1174
1175 lockdep_assert_held(&text_mutex);
1176
1177 smp_store_release(&bp_desc, &desc); /* rcu_assign_pointer */
1178
1179 /*
1180 * Corresponding read barrier in int3 notifier for making sure the
1181 * nr_entries and handler are correctly ordered wrt. patching.
1182 */
1183 smp_wmb();
1184
1185 /*
1186 * First step: add a int3 trap to the address that will be patched.
1187 */
1188 for (i = 0; i < nr_entries; i++) {
1189 tp[i].old = *(u8 *)text_poke_addr(&tp[i]);
1190 text_poke(text_poke_addr(&tp[i]), &int3, INT3_INSN_SIZE);
1191 }
1192
1193 text_poke_sync();
1194
1195 /*
1196 * Second step: update all but the first byte of the patched range.
1197 */
1198 for (do_sync = 0, i = 0; i < nr_entries; i++) {
1199 u8 old[POKE_MAX_OPCODE_SIZE] = { tp[i].old, };
1200 int len = text_opcode_size(tp[i].opcode);
1201
1202 if (len - INT3_INSN_SIZE > 0) {
1203 memcpy(old + INT3_INSN_SIZE,
1204 text_poke_addr(&tp[i]) + INT3_INSN_SIZE,
1205 len - INT3_INSN_SIZE);
1206 text_poke(text_poke_addr(&tp[i]) + INT3_INSN_SIZE,
1207 (const char *)tp[i].text + INT3_INSN_SIZE,
1208 len - INT3_INSN_SIZE);
1209 do_sync++;
1210 }
1211
1212 /*
1213 * Emit a perf event to record the text poke, primarily to
1214 * support Intel PT decoding which must walk the executable code
1215 * to reconstruct the trace. The flow up to here is:
1216 * - write INT3 byte
1217 * - IPI-SYNC
1218 * - write instruction tail
1219 * At this point the actual control flow will be through the
1220 * INT3 and handler and not hit the old or new instruction.
1221 * Intel PT outputs FUP/TIP packets for the INT3, so the flow
1222 * can still be decoded. Subsequently:
1223 * - emit RECORD_TEXT_POKE with the new instruction
1224 * - IPI-SYNC
1225 * - write first byte
1226 * - IPI-SYNC
1227 * So before the text poke event timestamp, the decoder will see
1228 * either the old instruction flow or FUP/TIP of INT3. After the
1229 * text poke event timestamp, the decoder will see either the
1230 * new instruction flow or FUP/TIP of INT3. Thus decoders can
1231 * use the timestamp as the point at which to modify the
1232 * executable code.
1233 * The old instruction is recorded so that the event can be
1234 * processed forwards or backwards.
1235 */
1236 perf_event_text_poke(text_poke_addr(&tp[i]), old, len,
1237 tp[i].text, len);
1238 }
1239
1240 if (do_sync) {
1241 /*
1242 * According to Intel, this core syncing is very likely
1243 * not necessary and we'd be safe even without it. But
1244 * better safe than sorry (plus there's not only Intel).
1245 */
1246 text_poke_sync();
1247 }
1248
1249 /*
1250 * Third step: replace the first byte (int3) by the first byte of
1251 * replacing opcode.
1252 */
1253 for (do_sync = 0, i = 0; i < nr_entries; i++) {
1254 if (tp[i].text[0] == INT3_INSN_OPCODE)
1255 continue;
1256
1257 text_poke(text_poke_addr(&tp[i]), tp[i].text, INT3_INSN_SIZE);
1258 do_sync++;
1259 }
1260
1261 if (do_sync)
1262 text_poke_sync();
1263
1264 /*
1265 * Remove and synchronize_rcu(), except we have a very primitive
1266 * refcount based completion.
1267 */
1268 WRITE_ONCE(bp_desc, NULL); /* RCU_INIT_POINTER */
1269 if (!atomic_dec_and_test(&desc.refs))
1270 atomic_cond_read_acquire(&desc.refs, !VAL);
1271 }
1272
1273 static void text_poke_loc_init(struct text_poke_loc *tp, void *addr,
1274 const void *opcode, size_t len, const void *emulate)
1275 {
1276 struct insn insn;
1277
1278 memcpy((void *)tp->text, opcode, len);
1279 if (!emulate)
1280 emulate = opcode;
1281
1282 kernel_insn_init(&insn, emulate, MAX_INSN_SIZE);
1283 insn_get_length(&insn);
1284
1285 BUG_ON(!insn_complete(&insn));
1286 BUG_ON(len != insn.length);
1287
1288 tp->rel_addr = addr - (void *)_stext;
1289 tp->opcode = insn.opcode.bytes[0];
1290
1291 switch (tp->opcode) {
1292 case INT3_INSN_OPCODE:
1293 case RET_INSN_OPCODE:
1294 break;
1295
1296 case CALL_INSN_OPCODE:
1297 case JMP32_INSN_OPCODE:
1298 case JMP8_INSN_OPCODE:
1299 tp->rel32 = insn.immediate.value;
1300 break;
1301
1302 default: /* assume NOP */
1303 switch (len) {
1304 case 2: /* NOP2 -- emulate as JMP8+0 */
1305 BUG_ON(memcmp(emulate, ideal_nops[len], len));
1306 tp->opcode = JMP8_INSN_OPCODE;
1307 tp->rel32 = 0;
1308 break;
1309
1310 case 5: /* NOP5 -- emulate as JMP32+0 */
1311 BUG_ON(memcmp(emulate, ideal_nops[NOP_ATOMIC5], len));
1312 tp->opcode = JMP32_INSN_OPCODE;
1313 tp->rel32 = 0;
1314 break;
1315
1316 default: /* unknown instruction */
1317 BUG();
1318 }
1319 break;
1320 }
1321 }
1322
1323 /*
1324 * We hard rely on the tp_vec being ordered; ensure this is so by flushing
1325 * early if needed.
1326 */
1327 static bool tp_order_fail(void *addr)
1328 {
1329 struct text_poke_loc *tp;
1330
1331 if (!tp_vec_nr)
1332 return false;
1333
1334 if (!addr) /* force */
1335 return true;
1336
1337 tp = &tp_vec[tp_vec_nr - 1];
1338 if ((unsigned long)text_poke_addr(tp) > (unsigned long)addr)
1339 return true;
1340
1341 return false;
1342 }
1343
1344 static void text_poke_flush(void *addr)
1345 {
1346 if (tp_vec_nr == TP_VEC_MAX || tp_order_fail(addr)) {
1347 text_poke_bp_batch(tp_vec, tp_vec_nr);
1348 tp_vec_nr = 0;
1349 }
1350 }
1351
1352 void text_poke_finish(void)
1353 {
1354 text_poke_flush(NULL);
1355 }
1356
1357 void __ref text_poke_queue(void *addr, const void *opcode, size_t len, const void *emulate)
1358 {
1359 struct text_poke_loc *tp;
1360
1361 if (unlikely(system_state == SYSTEM_BOOTING)) {
1362 text_poke_early(addr, opcode, len);
1363 return;
1364 }
1365
1366 text_poke_flush(addr);
1367
1368 tp = &tp_vec[tp_vec_nr++];
1369 text_poke_loc_init(tp, addr, opcode, len, emulate);
1370 }
1371
1372 /**
1373 * text_poke_bp() -- update instructions on live kernel on SMP
1374 * @addr: address to patch
1375 * @opcode: opcode of new instruction
1376 * @len: length to copy
1377 * @emulate: instruction to be emulated
1378 *
1379 * Update a single instruction with the vector in the stack, avoiding
1380 * dynamically allocated memory. This function should be used when it is
1381 * not possible to allocate memory.
1382 */
1383 void __ref text_poke_bp(void *addr, const void *opcode, size_t len, const void *emulate)
1384 {
1385 struct text_poke_loc tp;
1386
1387 if (unlikely(system_state == SYSTEM_BOOTING)) {
1388 text_poke_early(addr, opcode, len);
1389 return;
1390 }
1391
1392 text_poke_loc_init(&tp, addr, opcode, len, emulate);
1393 text_poke_bp_batch(&tp, 1);
1394 }