]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kernel/alternative.c
Merge branch 'x86-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / alternative.c
1 #define pr_fmt(fmt) "SMP alternatives: " fmt
2
3 #include <linux/module.h>
4 #include <linux/sched.h>
5 #include <linux/mutex.h>
6 #include <linux/list.h>
7 #include <linux/stringify.h>
8 #include <linux/mm.h>
9 #include <linux/vmalloc.h>
10 #include <linux/memory.h>
11 #include <linux/stop_machine.h>
12 #include <linux/slab.h>
13 #include <linux/kdebug.h>
14 #include <asm/alternative.h>
15 #include <asm/sections.h>
16 #include <asm/pgtable.h>
17 #include <asm/mce.h>
18 #include <asm/nmi.h>
19 #include <asm/cacheflush.h>
20 #include <asm/tlbflush.h>
21 #include <asm/io.h>
22 #include <asm/fixmap.h>
23
24 int __read_mostly alternatives_patched;
25
26 EXPORT_SYMBOL_GPL(alternatives_patched);
27
28 #define MAX_PATCH_LEN (255-1)
29
30 static int __initdata_or_module debug_alternative;
31
32 static int __init debug_alt(char *str)
33 {
34 debug_alternative = 1;
35 return 1;
36 }
37 __setup("debug-alternative", debug_alt);
38
39 static int noreplace_smp;
40
41 static int __init setup_noreplace_smp(char *str)
42 {
43 noreplace_smp = 1;
44 return 1;
45 }
46 __setup("noreplace-smp", setup_noreplace_smp);
47
48 #ifdef CONFIG_PARAVIRT
49 static int __initdata_or_module noreplace_paravirt = 0;
50
51 static int __init setup_noreplace_paravirt(char *str)
52 {
53 noreplace_paravirt = 1;
54 return 1;
55 }
56 __setup("noreplace-paravirt", setup_noreplace_paravirt);
57 #endif
58
59 #define DPRINTK(fmt, args...) \
60 do { \
61 if (debug_alternative) \
62 printk(KERN_DEBUG "%s: " fmt "\n", __func__, ##args); \
63 } while (0)
64
65 #define DUMP_BYTES(buf, len, fmt, args...) \
66 do { \
67 if (unlikely(debug_alternative)) { \
68 int j; \
69 \
70 if (!(len)) \
71 break; \
72 \
73 printk(KERN_DEBUG fmt, ##args); \
74 for (j = 0; j < (len) - 1; j++) \
75 printk(KERN_CONT "%02hhx ", buf[j]); \
76 printk(KERN_CONT "%02hhx\n", buf[j]); \
77 } \
78 } while (0)
79
80 /*
81 * Each GENERIC_NOPX is of X bytes, and defined as an array of bytes
82 * that correspond to that nop. Getting from one nop to the next, we
83 * add to the array the offset that is equal to the sum of all sizes of
84 * nops preceding the one we are after.
85 *
86 * Note: The GENERIC_NOP5_ATOMIC is at the end, as it breaks the
87 * nice symmetry of sizes of the previous nops.
88 */
89 #if defined(GENERIC_NOP1) && !defined(CONFIG_X86_64)
90 static const unsigned char intelnops[] =
91 {
92 GENERIC_NOP1,
93 GENERIC_NOP2,
94 GENERIC_NOP3,
95 GENERIC_NOP4,
96 GENERIC_NOP5,
97 GENERIC_NOP6,
98 GENERIC_NOP7,
99 GENERIC_NOP8,
100 GENERIC_NOP5_ATOMIC
101 };
102 static const unsigned char * const intel_nops[ASM_NOP_MAX+2] =
103 {
104 NULL,
105 intelnops,
106 intelnops + 1,
107 intelnops + 1 + 2,
108 intelnops + 1 + 2 + 3,
109 intelnops + 1 + 2 + 3 + 4,
110 intelnops + 1 + 2 + 3 + 4 + 5,
111 intelnops + 1 + 2 + 3 + 4 + 5 + 6,
112 intelnops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
113 intelnops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
114 };
115 #endif
116
117 #ifdef K8_NOP1
118 static const unsigned char k8nops[] =
119 {
120 K8_NOP1,
121 K8_NOP2,
122 K8_NOP3,
123 K8_NOP4,
124 K8_NOP5,
125 K8_NOP6,
126 K8_NOP7,
127 K8_NOP8,
128 K8_NOP5_ATOMIC
129 };
130 static const unsigned char * const k8_nops[ASM_NOP_MAX+2] =
131 {
132 NULL,
133 k8nops,
134 k8nops + 1,
135 k8nops + 1 + 2,
136 k8nops + 1 + 2 + 3,
137 k8nops + 1 + 2 + 3 + 4,
138 k8nops + 1 + 2 + 3 + 4 + 5,
139 k8nops + 1 + 2 + 3 + 4 + 5 + 6,
140 k8nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
141 k8nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
142 };
143 #endif
144
145 #if defined(K7_NOP1) && !defined(CONFIG_X86_64)
146 static const unsigned char k7nops[] =
147 {
148 K7_NOP1,
149 K7_NOP2,
150 K7_NOP3,
151 K7_NOP4,
152 K7_NOP5,
153 K7_NOP6,
154 K7_NOP7,
155 K7_NOP8,
156 K7_NOP5_ATOMIC
157 };
158 static const unsigned char * const k7_nops[ASM_NOP_MAX+2] =
159 {
160 NULL,
161 k7nops,
162 k7nops + 1,
163 k7nops + 1 + 2,
164 k7nops + 1 + 2 + 3,
165 k7nops + 1 + 2 + 3 + 4,
166 k7nops + 1 + 2 + 3 + 4 + 5,
167 k7nops + 1 + 2 + 3 + 4 + 5 + 6,
168 k7nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
169 k7nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
170 };
171 #endif
172
173 #ifdef P6_NOP1
174 static const unsigned char p6nops[] =
175 {
176 P6_NOP1,
177 P6_NOP2,
178 P6_NOP3,
179 P6_NOP4,
180 P6_NOP5,
181 P6_NOP6,
182 P6_NOP7,
183 P6_NOP8,
184 P6_NOP5_ATOMIC
185 };
186 static const unsigned char * const p6_nops[ASM_NOP_MAX+2] =
187 {
188 NULL,
189 p6nops,
190 p6nops + 1,
191 p6nops + 1 + 2,
192 p6nops + 1 + 2 + 3,
193 p6nops + 1 + 2 + 3 + 4,
194 p6nops + 1 + 2 + 3 + 4 + 5,
195 p6nops + 1 + 2 + 3 + 4 + 5 + 6,
196 p6nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
197 p6nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
198 };
199 #endif
200
201 /* Initialize these to a safe default */
202 #ifdef CONFIG_X86_64
203 const unsigned char * const *ideal_nops = p6_nops;
204 #else
205 const unsigned char * const *ideal_nops = intel_nops;
206 #endif
207
208 void __init arch_init_ideal_nops(void)
209 {
210 switch (boot_cpu_data.x86_vendor) {
211 case X86_VENDOR_INTEL:
212 /*
213 * Due to a decoder implementation quirk, some
214 * specific Intel CPUs actually perform better with
215 * the "k8_nops" than with the SDM-recommended NOPs.
216 */
217 if (boot_cpu_data.x86 == 6 &&
218 boot_cpu_data.x86_model >= 0x0f &&
219 boot_cpu_data.x86_model != 0x1c &&
220 boot_cpu_data.x86_model != 0x26 &&
221 boot_cpu_data.x86_model != 0x27 &&
222 boot_cpu_data.x86_model < 0x30) {
223 ideal_nops = k8_nops;
224 } else if (boot_cpu_has(X86_FEATURE_NOPL)) {
225 ideal_nops = p6_nops;
226 } else {
227 #ifdef CONFIG_X86_64
228 ideal_nops = k8_nops;
229 #else
230 ideal_nops = intel_nops;
231 #endif
232 }
233 break;
234
235 case X86_VENDOR_AMD:
236 if (boot_cpu_data.x86 > 0xf) {
237 ideal_nops = p6_nops;
238 return;
239 }
240
241 /* fall through */
242
243 default:
244 #ifdef CONFIG_X86_64
245 ideal_nops = k8_nops;
246 #else
247 if (boot_cpu_has(X86_FEATURE_K8))
248 ideal_nops = k8_nops;
249 else if (boot_cpu_has(X86_FEATURE_K7))
250 ideal_nops = k7_nops;
251 else
252 ideal_nops = intel_nops;
253 #endif
254 }
255 }
256
257 /* Use this to add nops to a buffer, then text_poke the whole buffer. */
258 static void __init_or_module add_nops(void *insns, unsigned int len)
259 {
260 while (len > 0) {
261 unsigned int noplen = len;
262 if (noplen > ASM_NOP_MAX)
263 noplen = ASM_NOP_MAX;
264 memcpy(insns, ideal_nops[noplen], noplen);
265 insns += noplen;
266 len -= noplen;
267 }
268 }
269
270 extern struct alt_instr __alt_instructions[], __alt_instructions_end[];
271 extern s32 __smp_locks[], __smp_locks_end[];
272 void *text_poke_early(void *addr, const void *opcode, size_t len);
273
274 /*
275 * Are we looking at a near JMP with a 1 or 4-byte displacement.
276 */
277 static inline bool is_jmp(const u8 opcode)
278 {
279 return opcode == 0xeb || opcode == 0xe9;
280 }
281
282 static void __init_or_module
283 recompute_jump(struct alt_instr *a, u8 *orig_insn, u8 *repl_insn, u8 *insnbuf)
284 {
285 u8 *next_rip, *tgt_rip;
286 s32 n_dspl, o_dspl;
287 int repl_len;
288
289 if (a->replacementlen != 5)
290 return;
291
292 o_dspl = *(s32 *)(insnbuf + 1);
293
294 /* next_rip of the replacement JMP */
295 next_rip = repl_insn + a->replacementlen;
296 /* target rip of the replacement JMP */
297 tgt_rip = next_rip + o_dspl;
298 n_dspl = tgt_rip - orig_insn;
299
300 DPRINTK("target RIP: %p, new_displ: 0x%x", tgt_rip, n_dspl);
301
302 if (tgt_rip - orig_insn >= 0) {
303 if (n_dspl - 2 <= 127)
304 goto two_byte_jmp;
305 else
306 goto five_byte_jmp;
307 /* negative offset */
308 } else {
309 if (((n_dspl - 2) & 0xff) == (n_dspl - 2))
310 goto two_byte_jmp;
311 else
312 goto five_byte_jmp;
313 }
314
315 two_byte_jmp:
316 n_dspl -= 2;
317
318 insnbuf[0] = 0xeb;
319 insnbuf[1] = (s8)n_dspl;
320 add_nops(insnbuf + 2, 3);
321
322 repl_len = 2;
323 goto done;
324
325 five_byte_jmp:
326 n_dspl -= 5;
327
328 insnbuf[0] = 0xe9;
329 *(s32 *)&insnbuf[1] = n_dspl;
330
331 repl_len = 5;
332
333 done:
334
335 DPRINTK("final displ: 0x%08x, JMP 0x%lx",
336 n_dspl, (unsigned long)orig_insn + n_dspl + repl_len);
337 }
338
339 static void __init_or_module optimize_nops(struct alt_instr *a, u8 *instr)
340 {
341 if (instr[0] != 0x90)
342 return;
343
344 add_nops(instr + (a->instrlen - a->padlen), a->padlen);
345
346 DUMP_BYTES(instr, a->instrlen, "%p: [%d:%d) optimized NOPs: ",
347 instr, a->instrlen - a->padlen, a->padlen);
348 }
349
350 /*
351 * Replace instructions with better alternatives for this CPU type. This runs
352 * before SMP is initialized to avoid SMP problems with self modifying code.
353 * This implies that asymmetric systems where APs have less capabilities than
354 * the boot processor are not handled. Tough. Make sure you disable such
355 * features by hand.
356 */
357 void __init_or_module apply_alternatives(struct alt_instr *start,
358 struct alt_instr *end)
359 {
360 struct alt_instr *a;
361 u8 *instr, *replacement;
362 u8 insnbuf[MAX_PATCH_LEN];
363
364 DPRINTK("alt table %p -> %p", start, end);
365 /*
366 * The scan order should be from start to end. A later scanned
367 * alternative code can overwrite previously scanned alternative code.
368 * Some kernel functions (e.g. memcpy, memset, etc) use this order to
369 * patch code.
370 *
371 * So be careful if you want to change the scan order to any other
372 * order.
373 */
374 for (a = start; a < end; a++) {
375 int insnbuf_sz = 0;
376
377 instr = (u8 *)&a->instr_offset + a->instr_offset;
378 replacement = (u8 *)&a->repl_offset + a->repl_offset;
379 BUG_ON(a->instrlen > sizeof(insnbuf));
380 BUG_ON(a->cpuid >= (NCAPINTS + NBUGINTS) * 32);
381 if (!boot_cpu_has(a->cpuid)) {
382 if (a->padlen > 1)
383 optimize_nops(a, instr);
384
385 continue;
386 }
387
388 DPRINTK("feat: %d*32+%d, old: (%p, len: %d), repl: (%p, len: %d), pad: %d",
389 a->cpuid >> 5,
390 a->cpuid & 0x1f,
391 instr, a->instrlen,
392 replacement, a->replacementlen, a->padlen);
393
394 DUMP_BYTES(instr, a->instrlen, "%p: old_insn: ", instr);
395 DUMP_BYTES(replacement, a->replacementlen, "%p: rpl_insn: ", replacement);
396
397 memcpy(insnbuf, replacement, a->replacementlen);
398 insnbuf_sz = a->replacementlen;
399
400 /* 0xe8 is a relative jump; fix the offset. */
401 if (*insnbuf == 0xe8 && a->replacementlen == 5) {
402 *(s32 *)(insnbuf + 1) += replacement - instr;
403 DPRINTK("Fix CALL offset: 0x%x, CALL 0x%lx",
404 *(s32 *)(insnbuf + 1),
405 (unsigned long)instr + *(s32 *)(insnbuf + 1) + 5);
406 }
407
408 if (a->replacementlen && is_jmp(replacement[0]))
409 recompute_jump(a, instr, replacement, insnbuf);
410
411 if (a->instrlen > a->replacementlen) {
412 add_nops(insnbuf + a->replacementlen,
413 a->instrlen - a->replacementlen);
414 insnbuf_sz += a->instrlen - a->replacementlen;
415 }
416 DUMP_BYTES(insnbuf, insnbuf_sz, "%p: final_insn: ", instr);
417
418 text_poke_early(instr, insnbuf, insnbuf_sz);
419 }
420 }
421
422 #ifdef CONFIG_SMP
423 static void alternatives_smp_lock(const s32 *start, const s32 *end,
424 u8 *text, u8 *text_end)
425 {
426 const s32 *poff;
427
428 mutex_lock(&text_mutex);
429 for (poff = start; poff < end; poff++) {
430 u8 *ptr = (u8 *)poff + *poff;
431
432 if (!*poff || ptr < text || ptr >= text_end)
433 continue;
434 /* turn DS segment override prefix into lock prefix */
435 if (*ptr == 0x3e)
436 text_poke(ptr, ((unsigned char []){0xf0}), 1);
437 }
438 mutex_unlock(&text_mutex);
439 }
440
441 static void alternatives_smp_unlock(const s32 *start, const s32 *end,
442 u8 *text, u8 *text_end)
443 {
444 const s32 *poff;
445
446 mutex_lock(&text_mutex);
447 for (poff = start; poff < end; poff++) {
448 u8 *ptr = (u8 *)poff + *poff;
449
450 if (!*poff || ptr < text || ptr >= text_end)
451 continue;
452 /* turn lock prefix into DS segment override prefix */
453 if (*ptr == 0xf0)
454 text_poke(ptr, ((unsigned char []){0x3E}), 1);
455 }
456 mutex_unlock(&text_mutex);
457 }
458
459 struct smp_alt_module {
460 /* what is this ??? */
461 struct module *mod;
462 char *name;
463
464 /* ptrs to lock prefixes */
465 const s32 *locks;
466 const s32 *locks_end;
467
468 /* .text segment, needed to avoid patching init code ;) */
469 u8 *text;
470 u8 *text_end;
471
472 struct list_head next;
473 };
474 static LIST_HEAD(smp_alt_modules);
475 static DEFINE_MUTEX(smp_alt);
476 static bool uniproc_patched = false; /* protected by smp_alt */
477
478 void __init_or_module alternatives_smp_module_add(struct module *mod,
479 char *name,
480 void *locks, void *locks_end,
481 void *text, void *text_end)
482 {
483 struct smp_alt_module *smp;
484
485 mutex_lock(&smp_alt);
486 if (!uniproc_patched)
487 goto unlock;
488
489 if (num_possible_cpus() == 1)
490 /* Don't bother remembering, we'll never have to undo it. */
491 goto smp_unlock;
492
493 smp = kzalloc(sizeof(*smp), GFP_KERNEL);
494 if (NULL == smp)
495 /* we'll run the (safe but slow) SMP code then ... */
496 goto unlock;
497
498 smp->mod = mod;
499 smp->name = name;
500 smp->locks = locks;
501 smp->locks_end = locks_end;
502 smp->text = text;
503 smp->text_end = text_end;
504 DPRINTK("locks %p -> %p, text %p -> %p, name %s\n",
505 smp->locks, smp->locks_end,
506 smp->text, smp->text_end, smp->name);
507
508 list_add_tail(&smp->next, &smp_alt_modules);
509 smp_unlock:
510 alternatives_smp_unlock(locks, locks_end, text, text_end);
511 unlock:
512 mutex_unlock(&smp_alt);
513 }
514
515 void __init_or_module alternatives_smp_module_del(struct module *mod)
516 {
517 struct smp_alt_module *item;
518
519 mutex_lock(&smp_alt);
520 list_for_each_entry(item, &smp_alt_modules, next) {
521 if (mod != item->mod)
522 continue;
523 list_del(&item->next);
524 kfree(item);
525 break;
526 }
527 mutex_unlock(&smp_alt);
528 }
529
530 void alternatives_enable_smp(void)
531 {
532 struct smp_alt_module *mod;
533
534 /* Why bother if there are no other CPUs? */
535 BUG_ON(num_possible_cpus() == 1);
536
537 mutex_lock(&smp_alt);
538
539 if (uniproc_patched) {
540 pr_info("switching to SMP code\n");
541 BUG_ON(num_online_cpus() != 1);
542 clear_cpu_cap(&boot_cpu_data, X86_FEATURE_UP);
543 clear_cpu_cap(&cpu_data(0), X86_FEATURE_UP);
544 list_for_each_entry(mod, &smp_alt_modules, next)
545 alternatives_smp_lock(mod->locks, mod->locks_end,
546 mod->text, mod->text_end);
547 uniproc_patched = false;
548 }
549 mutex_unlock(&smp_alt);
550 }
551
552 /* Return 1 if the address range is reserved for smp-alternatives */
553 int alternatives_text_reserved(void *start, void *end)
554 {
555 struct smp_alt_module *mod;
556 const s32 *poff;
557 u8 *text_start = start;
558 u8 *text_end = end;
559
560 list_for_each_entry(mod, &smp_alt_modules, next) {
561 if (mod->text > text_end || mod->text_end < text_start)
562 continue;
563 for (poff = mod->locks; poff < mod->locks_end; poff++) {
564 const u8 *ptr = (const u8 *)poff + *poff;
565
566 if (text_start <= ptr && text_end > ptr)
567 return 1;
568 }
569 }
570
571 return 0;
572 }
573 #endif /* CONFIG_SMP */
574
575 #ifdef CONFIG_PARAVIRT
576 void __init_or_module apply_paravirt(struct paravirt_patch_site *start,
577 struct paravirt_patch_site *end)
578 {
579 struct paravirt_patch_site *p;
580 char insnbuf[MAX_PATCH_LEN];
581
582 if (noreplace_paravirt)
583 return;
584
585 for (p = start; p < end; p++) {
586 unsigned int used;
587
588 BUG_ON(p->len > MAX_PATCH_LEN);
589 /* prep the buffer with the original instructions */
590 memcpy(insnbuf, p->instr, p->len);
591 used = pv_init_ops.patch(p->instrtype, p->clobbers, insnbuf,
592 (unsigned long)p->instr, p->len);
593
594 BUG_ON(used > p->len);
595
596 /* Pad the rest with nops */
597 add_nops(insnbuf + used, p->len - used);
598 text_poke_early(p->instr, insnbuf, p->len);
599 }
600 }
601 extern struct paravirt_patch_site __start_parainstructions[],
602 __stop_parainstructions[];
603 #endif /* CONFIG_PARAVIRT */
604
605 void __init alternative_instructions(void)
606 {
607 /* The patching is not fully atomic, so try to avoid local interruptions
608 that might execute the to be patched code.
609 Other CPUs are not running. */
610 stop_nmi();
611
612 /*
613 * Don't stop machine check exceptions while patching.
614 * MCEs only happen when something got corrupted and in this
615 * case we must do something about the corruption.
616 * Ignoring it is worse than a unlikely patching race.
617 * Also machine checks tend to be broadcast and if one CPU
618 * goes into machine check the others follow quickly, so we don't
619 * expect a machine check to cause undue problems during to code
620 * patching.
621 */
622
623 apply_alternatives(__alt_instructions, __alt_instructions_end);
624
625 #ifdef CONFIG_SMP
626 /* Patch to UP if other cpus not imminent. */
627 if (!noreplace_smp && (num_present_cpus() == 1 || setup_max_cpus <= 1)) {
628 uniproc_patched = true;
629 alternatives_smp_module_add(NULL, "core kernel",
630 __smp_locks, __smp_locks_end,
631 _text, _etext);
632 }
633
634 if (!uniproc_patched || num_possible_cpus() == 1)
635 free_init_pages("SMP alternatives",
636 (unsigned long)__smp_locks,
637 (unsigned long)__smp_locks_end);
638 #endif
639
640 apply_paravirt(__parainstructions, __parainstructions_end);
641
642 restart_nmi();
643 alternatives_patched = 1;
644 }
645
646 /**
647 * text_poke_early - Update instructions on a live kernel at boot time
648 * @addr: address to modify
649 * @opcode: source of the copy
650 * @len: length to copy
651 *
652 * When you use this code to patch more than one byte of an instruction
653 * you need to make sure that other CPUs cannot execute this code in parallel.
654 * Also no thread must be currently preempted in the middle of these
655 * instructions. And on the local CPU you need to be protected again NMI or MCE
656 * handlers seeing an inconsistent instruction while you patch.
657 */
658 void *__init_or_module text_poke_early(void *addr, const void *opcode,
659 size_t len)
660 {
661 unsigned long flags;
662 local_irq_save(flags);
663 memcpy(addr, opcode, len);
664 sync_core();
665 local_irq_restore(flags);
666 /* Could also do a CLFLUSH here to speed up CPU recovery; but
667 that causes hangs on some VIA CPUs. */
668 return addr;
669 }
670
671 /**
672 * text_poke - Update instructions on a live kernel
673 * @addr: address to modify
674 * @opcode: source of the copy
675 * @len: length to copy
676 *
677 * Only atomic text poke/set should be allowed when not doing early patching.
678 * It means the size must be writable atomically and the address must be aligned
679 * in a way that permits an atomic write. It also makes sure we fit on a single
680 * page.
681 *
682 * Note: Must be called under text_mutex.
683 */
684 void *text_poke(void *addr, const void *opcode, size_t len)
685 {
686 unsigned long flags;
687 char *vaddr;
688 struct page *pages[2];
689 int i;
690
691 if (!core_kernel_text((unsigned long)addr)) {
692 pages[0] = vmalloc_to_page(addr);
693 pages[1] = vmalloc_to_page(addr + PAGE_SIZE);
694 } else {
695 pages[0] = virt_to_page(addr);
696 WARN_ON(!PageReserved(pages[0]));
697 pages[1] = virt_to_page(addr + PAGE_SIZE);
698 }
699 BUG_ON(!pages[0]);
700 local_irq_save(flags);
701 set_fixmap(FIX_TEXT_POKE0, page_to_phys(pages[0]));
702 if (pages[1])
703 set_fixmap(FIX_TEXT_POKE1, page_to_phys(pages[1]));
704 vaddr = (char *)fix_to_virt(FIX_TEXT_POKE0);
705 memcpy(&vaddr[(unsigned long)addr & ~PAGE_MASK], opcode, len);
706 clear_fixmap(FIX_TEXT_POKE0);
707 if (pages[1])
708 clear_fixmap(FIX_TEXT_POKE1);
709 local_flush_tlb();
710 sync_core();
711 /* Could also do a CLFLUSH here to speed up CPU recovery; but
712 that causes hangs on some VIA CPUs. */
713 for (i = 0; i < len; i++)
714 BUG_ON(((char *)addr)[i] != ((char *)opcode)[i]);
715 local_irq_restore(flags);
716 return addr;
717 }
718
719 static void do_sync_core(void *info)
720 {
721 sync_core();
722 }
723
724 static bool bp_patching_in_progress;
725 static void *bp_int3_handler, *bp_int3_addr;
726
727 int poke_int3_handler(struct pt_regs *regs)
728 {
729 /* bp_patching_in_progress */
730 smp_rmb();
731
732 if (likely(!bp_patching_in_progress))
733 return 0;
734
735 if (user_mode(regs) || regs->ip != (unsigned long)bp_int3_addr)
736 return 0;
737
738 /* set up the specified breakpoint handler */
739 regs->ip = (unsigned long) bp_int3_handler;
740
741 return 1;
742
743 }
744
745 /**
746 * text_poke_bp() -- update instructions on live kernel on SMP
747 * @addr: address to patch
748 * @opcode: opcode of new instruction
749 * @len: length to copy
750 * @handler: address to jump to when the temporary breakpoint is hit
751 *
752 * Modify multi-byte instruction by using int3 breakpoint on SMP.
753 * We completely avoid stop_machine() here, and achieve the
754 * synchronization using int3 breakpoint.
755 *
756 * The way it is done:
757 * - add a int3 trap to the address that will be patched
758 * - sync cores
759 * - update all but the first byte of the patched range
760 * - sync cores
761 * - replace the first byte (int3) by the first byte of
762 * replacing opcode
763 * - sync cores
764 *
765 * Note: must be called under text_mutex.
766 */
767 void *text_poke_bp(void *addr, const void *opcode, size_t len, void *handler)
768 {
769 unsigned char int3 = 0xcc;
770
771 bp_int3_handler = handler;
772 bp_int3_addr = (u8 *)addr + sizeof(int3);
773 bp_patching_in_progress = true;
774 /*
775 * Corresponding read barrier in int3 notifier for
776 * making sure the in_progress flags is correctly ordered wrt.
777 * patching
778 */
779 smp_wmb();
780
781 text_poke(addr, &int3, sizeof(int3));
782
783 on_each_cpu(do_sync_core, NULL, 1);
784
785 if (len - sizeof(int3) > 0) {
786 /* patch all but the first byte */
787 text_poke((char *)addr + sizeof(int3),
788 (const char *) opcode + sizeof(int3),
789 len - sizeof(int3));
790 /*
791 * According to Intel, this core syncing is very likely
792 * not necessary and we'd be safe even without it. But
793 * better safe than sorry (plus there's not only Intel).
794 */
795 on_each_cpu(do_sync_core, NULL, 1);
796 }
797
798 /* patch the first byte */
799 text_poke(addr, opcode, sizeof(int3));
800
801 on_each_cpu(do_sync_core, NULL, 1);
802
803 bp_patching_in_progress = false;
804 smp_wmb();
805
806 return addr;
807 }
808