]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kernel/amd_iommu.c
AMD IOMMU: add stats counter for completion wait events
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / amd_iommu.c
1 /*
2 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20 #include <linux/pci.h>
21 #include <linux/gfp.h>
22 #include <linux/bitops.h>
23 #include <linux/debugfs.h>
24 #include <linux/scatterlist.h>
25 #include <linux/iommu-helper.h>
26 #ifdef CONFIG_IOMMU_API
27 #include <linux/iommu.h>
28 #endif
29 #include <asm/proto.h>
30 #include <asm/iommu.h>
31 #include <asm/gart.h>
32 #include <asm/amd_iommu_types.h>
33 #include <asm/amd_iommu.h>
34
35 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
36
37 #define EXIT_LOOP_COUNT 10000000
38
39 static DEFINE_RWLOCK(amd_iommu_devtable_lock);
40
41 /* A list of preallocated protection domains */
42 static LIST_HEAD(iommu_pd_list);
43 static DEFINE_SPINLOCK(iommu_pd_list_lock);
44
45 #ifdef CONFIG_IOMMU_API
46 static struct iommu_ops amd_iommu_ops;
47 #endif
48
49 /*
50 * general struct to manage commands send to an IOMMU
51 */
52 struct iommu_cmd {
53 u32 data[4];
54 };
55
56 static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
57 struct unity_map_entry *e);
58 static struct dma_ops_domain *find_protection_domain(u16 devid);
59
60
61 #ifdef CONFIG_AMD_IOMMU_STATS
62
63 /*
64 * Initialization code for statistics collection
65 */
66
67 DECLARE_STATS_COUNTER(compl_wait);
68
69 static struct dentry *stats_dir;
70 static struct dentry *de_isolate;
71 static struct dentry *de_fflush;
72
73 static void amd_iommu_stats_add(struct __iommu_counter *cnt)
74 {
75 if (stats_dir == NULL)
76 return;
77
78 cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
79 &cnt->value);
80 }
81
82 static void amd_iommu_stats_init(void)
83 {
84 stats_dir = debugfs_create_dir("amd-iommu", NULL);
85 if (stats_dir == NULL)
86 return;
87
88 de_isolate = debugfs_create_bool("isolation", 0444, stats_dir,
89 (u32 *)&amd_iommu_isolate);
90
91 de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
92 (u32 *)&amd_iommu_unmap_flush);
93
94 amd_iommu_stats_add(&compl_wait);
95 }
96
97 #endif
98
99 /* returns !0 if the IOMMU is caching non-present entries in its TLB */
100 static int iommu_has_npcache(struct amd_iommu *iommu)
101 {
102 return iommu->cap & (1UL << IOMMU_CAP_NPCACHE);
103 }
104
105 /****************************************************************************
106 *
107 * Interrupt handling functions
108 *
109 ****************************************************************************/
110
111 static void iommu_print_event(void *__evt)
112 {
113 u32 *event = __evt;
114 int type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
115 int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
116 int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
117 int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
118 u64 address = (u64)(((u64)event[3]) << 32) | event[2];
119
120 printk(KERN_ERR "AMD IOMMU: Event logged [");
121
122 switch (type) {
123 case EVENT_TYPE_ILL_DEV:
124 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
125 "address=0x%016llx flags=0x%04x]\n",
126 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
127 address, flags);
128 break;
129 case EVENT_TYPE_IO_FAULT:
130 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
131 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
132 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
133 domid, address, flags);
134 break;
135 case EVENT_TYPE_DEV_TAB_ERR:
136 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
137 "address=0x%016llx flags=0x%04x]\n",
138 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
139 address, flags);
140 break;
141 case EVENT_TYPE_PAGE_TAB_ERR:
142 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
143 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
144 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
145 domid, address, flags);
146 break;
147 case EVENT_TYPE_ILL_CMD:
148 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
149 break;
150 case EVENT_TYPE_CMD_HARD_ERR:
151 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
152 "flags=0x%04x]\n", address, flags);
153 break;
154 case EVENT_TYPE_IOTLB_INV_TO:
155 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
156 "address=0x%016llx]\n",
157 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
158 address);
159 break;
160 case EVENT_TYPE_INV_DEV_REQ:
161 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
162 "address=0x%016llx flags=0x%04x]\n",
163 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
164 address, flags);
165 break;
166 default:
167 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
168 }
169 }
170
171 static void iommu_poll_events(struct amd_iommu *iommu)
172 {
173 u32 head, tail;
174 unsigned long flags;
175
176 spin_lock_irqsave(&iommu->lock, flags);
177
178 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
179 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
180
181 while (head != tail) {
182 iommu_print_event(iommu->evt_buf + head);
183 head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
184 }
185
186 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
187
188 spin_unlock_irqrestore(&iommu->lock, flags);
189 }
190
191 irqreturn_t amd_iommu_int_handler(int irq, void *data)
192 {
193 struct amd_iommu *iommu;
194
195 list_for_each_entry(iommu, &amd_iommu_list, list)
196 iommu_poll_events(iommu);
197
198 return IRQ_HANDLED;
199 }
200
201 /****************************************************************************
202 *
203 * IOMMU command queuing functions
204 *
205 ****************************************************************************/
206
207 /*
208 * Writes the command to the IOMMUs command buffer and informs the
209 * hardware about the new command. Must be called with iommu->lock held.
210 */
211 static int __iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
212 {
213 u32 tail, head;
214 u8 *target;
215
216 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
217 target = iommu->cmd_buf + tail;
218 memcpy_toio(target, cmd, sizeof(*cmd));
219 tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
220 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
221 if (tail == head)
222 return -ENOMEM;
223 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
224
225 return 0;
226 }
227
228 /*
229 * General queuing function for commands. Takes iommu->lock and calls
230 * __iommu_queue_command().
231 */
232 static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
233 {
234 unsigned long flags;
235 int ret;
236
237 spin_lock_irqsave(&iommu->lock, flags);
238 ret = __iommu_queue_command(iommu, cmd);
239 if (!ret)
240 iommu->need_sync = true;
241 spin_unlock_irqrestore(&iommu->lock, flags);
242
243 return ret;
244 }
245
246 /*
247 * This function waits until an IOMMU has completed a completion
248 * wait command
249 */
250 static void __iommu_wait_for_completion(struct amd_iommu *iommu)
251 {
252 int ready = 0;
253 unsigned status = 0;
254 unsigned long i = 0;
255
256 INC_STATS_COUNTER(compl_wait);
257
258 while (!ready && (i < EXIT_LOOP_COUNT)) {
259 ++i;
260 /* wait for the bit to become one */
261 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
262 ready = status & MMIO_STATUS_COM_WAIT_INT_MASK;
263 }
264
265 /* set bit back to zero */
266 status &= ~MMIO_STATUS_COM_WAIT_INT_MASK;
267 writel(status, iommu->mmio_base + MMIO_STATUS_OFFSET);
268
269 if (unlikely(i == EXIT_LOOP_COUNT))
270 panic("AMD IOMMU: Completion wait loop failed\n");
271 }
272
273 /*
274 * This function queues a completion wait command into the command
275 * buffer of an IOMMU
276 */
277 static int __iommu_completion_wait(struct amd_iommu *iommu)
278 {
279 struct iommu_cmd cmd;
280
281 memset(&cmd, 0, sizeof(cmd));
282 cmd.data[0] = CMD_COMPL_WAIT_INT_MASK;
283 CMD_SET_TYPE(&cmd, CMD_COMPL_WAIT);
284
285 return __iommu_queue_command(iommu, &cmd);
286 }
287
288 /*
289 * This function is called whenever we need to ensure that the IOMMU has
290 * completed execution of all commands we sent. It sends a
291 * COMPLETION_WAIT command and waits for it to finish. The IOMMU informs
292 * us about that by writing a value to a physical address we pass with
293 * the command.
294 */
295 static int iommu_completion_wait(struct amd_iommu *iommu)
296 {
297 int ret = 0;
298 unsigned long flags;
299
300 spin_lock_irqsave(&iommu->lock, flags);
301
302 if (!iommu->need_sync)
303 goto out;
304
305 ret = __iommu_completion_wait(iommu);
306
307 iommu->need_sync = false;
308
309 if (ret)
310 goto out;
311
312 __iommu_wait_for_completion(iommu);
313
314 out:
315 spin_unlock_irqrestore(&iommu->lock, flags);
316
317 return 0;
318 }
319
320 /*
321 * Command send function for invalidating a device table entry
322 */
323 static int iommu_queue_inv_dev_entry(struct amd_iommu *iommu, u16 devid)
324 {
325 struct iommu_cmd cmd;
326 int ret;
327
328 BUG_ON(iommu == NULL);
329
330 memset(&cmd, 0, sizeof(cmd));
331 CMD_SET_TYPE(&cmd, CMD_INV_DEV_ENTRY);
332 cmd.data[0] = devid;
333
334 ret = iommu_queue_command(iommu, &cmd);
335
336 return ret;
337 }
338
339 static void __iommu_build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
340 u16 domid, int pde, int s)
341 {
342 memset(cmd, 0, sizeof(*cmd));
343 address &= PAGE_MASK;
344 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
345 cmd->data[1] |= domid;
346 cmd->data[2] = lower_32_bits(address);
347 cmd->data[3] = upper_32_bits(address);
348 if (s) /* size bit - we flush more than one 4kb page */
349 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
350 if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
351 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
352 }
353
354 /*
355 * Generic command send function for invalidaing TLB entries
356 */
357 static int iommu_queue_inv_iommu_pages(struct amd_iommu *iommu,
358 u64 address, u16 domid, int pde, int s)
359 {
360 struct iommu_cmd cmd;
361 int ret;
362
363 __iommu_build_inv_iommu_pages(&cmd, address, domid, pde, s);
364
365 ret = iommu_queue_command(iommu, &cmd);
366
367 return ret;
368 }
369
370 /*
371 * TLB invalidation function which is called from the mapping functions.
372 * It invalidates a single PTE if the range to flush is within a single
373 * page. Otherwise it flushes the whole TLB of the IOMMU.
374 */
375 static int iommu_flush_pages(struct amd_iommu *iommu, u16 domid,
376 u64 address, size_t size)
377 {
378 int s = 0;
379 unsigned pages = iommu_num_pages(address, size, PAGE_SIZE);
380
381 address &= PAGE_MASK;
382
383 if (pages > 1) {
384 /*
385 * If we have to flush more than one page, flush all
386 * TLB entries for this domain
387 */
388 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
389 s = 1;
390 }
391
392 iommu_queue_inv_iommu_pages(iommu, address, domid, 0, s);
393
394 return 0;
395 }
396
397 /* Flush the whole IO/TLB for a given protection domain */
398 static void iommu_flush_tlb(struct amd_iommu *iommu, u16 domid)
399 {
400 u64 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
401
402 iommu_queue_inv_iommu_pages(iommu, address, domid, 0, 1);
403 }
404
405 #ifdef CONFIG_IOMMU_API
406 /*
407 * This function is used to flush the IO/TLB for a given protection domain
408 * on every IOMMU in the system
409 */
410 static void iommu_flush_domain(u16 domid)
411 {
412 unsigned long flags;
413 struct amd_iommu *iommu;
414 struct iommu_cmd cmd;
415
416 __iommu_build_inv_iommu_pages(&cmd, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
417 domid, 1, 1);
418
419 list_for_each_entry(iommu, &amd_iommu_list, list) {
420 spin_lock_irqsave(&iommu->lock, flags);
421 __iommu_queue_command(iommu, &cmd);
422 __iommu_completion_wait(iommu);
423 __iommu_wait_for_completion(iommu);
424 spin_unlock_irqrestore(&iommu->lock, flags);
425 }
426 }
427 #endif
428
429 /****************************************************************************
430 *
431 * The functions below are used the create the page table mappings for
432 * unity mapped regions.
433 *
434 ****************************************************************************/
435
436 /*
437 * Generic mapping functions. It maps a physical address into a DMA
438 * address space. It allocates the page table pages if necessary.
439 * In the future it can be extended to a generic mapping function
440 * supporting all features of AMD IOMMU page tables like level skipping
441 * and full 64 bit address spaces.
442 */
443 static int iommu_map_page(struct protection_domain *dom,
444 unsigned long bus_addr,
445 unsigned long phys_addr,
446 int prot)
447 {
448 u64 __pte, *pte, *page;
449
450 bus_addr = PAGE_ALIGN(bus_addr);
451 phys_addr = PAGE_ALIGN(phys_addr);
452
453 /* only support 512GB address spaces for now */
454 if (bus_addr > IOMMU_MAP_SIZE_L3 || !(prot & IOMMU_PROT_MASK))
455 return -EINVAL;
456
457 pte = &dom->pt_root[IOMMU_PTE_L2_INDEX(bus_addr)];
458
459 if (!IOMMU_PTE_PRESENT(*pte)) {
460 page = (u64 *)get_zeroed_page(GFP_KERNEL);
461 if (!page)
462 return -ENOMEM;
463 *pte = IOMMU_L2_PDE(virt_to_phys(page));
464 }
465
466 pte = IOMMU_PTE_PAGE(*pte);
467 pte = &pte[IOMMU_PTE_L1_INDEX(bus_addr)];
468
469 if (!IOMMU_PTE_PRESENT(*pte)) {
470 page = (u64 *)get_zeroed_page(GFP_KERNEL);
471 if (!page)
472 return -ENOMEM;
473 *pte = IOMMU_L1_PDE(virt_to_phys(page));
474 }
475
476 pte = IOMMU_PTE_PAGE(*pte);
477 pte = &pte[IOMMU_PTE_L0_INDEX(bus_addr)];
478
479 if (IOMMU_PTE_PRESENT(*pte))
480 return -EBUSY;
481
482 __pte = phys_addr | IOMMU_PTE_P;
483 if (prot & IOMMU_PROT_IR)
484 __pte |= IOMMU_PTE_IR;
485 if (prot & IOMMU_PROT_IW)
486 __pte |= IOMMU_PTE_IW;
487
488 *pte = __pte;
489
490 return 0;
491 }
492
493 #ifdef CONFIG_IOMMU_API
494 static void iommu_unmap_page(struct protection_domain *dom,
495 unsigned long bus_addr)
496 {
497 u64 *pte;
498
499 pte = &dom->pt_root[IOMMU_PTE_L2_INDEX(bus_addr)];
500
501 if (!IOMMU_PTE_PRESENT(*pte))
502 return;
503
504 pte = IOMMU_PTE_PAGE(*pte);
505 pte = &pte[IOMMU_PTE_L1_INDEX(bus_addr)];
506
507 if (!IOMMU_PTE_PRESENT(*pte))
508 return;
509
510 pte = IOMMU_PTE_PAGE(*pte);
511 pte = &pte[IOMMU_PTE_L1_INDEX(bus_addr)];
512
513 *pte = 0;
514 }
515 #endif
516
517 /*
518 * This function checks if a specific unity mapping entry is needed for
519 * this specific IOMMU.
520 */
521 static int iommu_for_unity_map(struct amd_iommu *iommu,
522 struct unity_map_entry *entry)
523 {
524 u16 bdf, i;
525
526 for (i = entry->devid_start; i <= entry->devid_end; ++i) {
527 bdf = amd_iommu_alias_table[i];
528 if (amd_iommu_rlookup_table[bdf] == iommu)
529 return 1;
530 }
531
532 return 0;
533 }
534
535 /*
536 * Init the unity mappings for a specific IOMMU in the system
537 *
538 * Basically iterates over all unity mapping entries and applies them to
539 * the default domain DMA of that IOMMU if necessary.
540 */
541 static int iommu_init_unity_mappings(struct amd_iommu *iommu)
542 {
543 struct unity_map_entry *entry;
544 int ret;
545
546 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
547 if (!iommu_for_unity_map(iommu, entry))
548 continue;
549 ret = dma_ops_unity_map(iommu->default_dom, entry);
550 if (ret)
551 return ret;
552 }
553
554 return 0;
555 }
556
557 /*
558 * This function actually applies the mapping to the page table of the
559 * dma_ops domain.
560 */
561 static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
562 struct unity_map_entry *e)
563 {
564 u64 addr;
565 int ret;
566
567 for (addr = e->address_start; addr < e->address_end;
568 addr += PAGE_SIZE) {
569 ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot);
570 if (ret)
571 return ret;
572 /*
573 * if unity mapping is in aperture range mark the page
574 * as allocated in the aperture
575 */
576 if (addr < dma_dom->aperture_size)
577 __set_bit(addr >> PAGE_SHIFT, dma_dom->bitmap);
578 }
579
580 return 0;
581 }
582
583 /*
584 * Inits the unity mappings required for a specific device
585 */
586 static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
587 u16 devid)
588 {
589 struct unity_map_entry *e;
590 int ret;
591
592 list_for_each_entry(e, &amd_iommu_unity_map, list) {
593 if (!(devid >= e->devid_start && devid <= e->devid_end))
594 continue;
595 ret = dma_ops_unity_map(dma_dom, e);
596 if (ret)
597 return ret;
598 }
599
600 return 0;
601 }
602
603 /****************************************************************************
604 *
605 * The next functions belong to the address allocator for the dma_ops
606 * interface functions. They work like the allocators in the other IOMMU
607 * drivers. Its basically a bitmap which marks the allocated pages in
608 * the aperture. Maybe it could be enhanced in the future to a more
609 * efficient allocator.
610 *
611 ****************************************************************************/
612
613 /*
614 * The address allocator core function.
615 *
616 * called with domain->lock held
617 */
618 static unsigned long dma_ops_alloc_addresses(struct device *dev,
619 struct dma_ops_domain *dom,
620 unsigned int pages,
621 unsigned long align_mask,
622 u64 dma_mask)
623 {
624 unsigned long limit;
625 unsigned long address;
626 unsigned long boundary_size;
627
628 boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
629 PAGE_SIZE) >> PAGE_SHIFT;
630 limit = iommu_device_max_index(dom->aperture_size >> PAGE_SHIFT, 0,
631 dma_mask >> PAGE_SHIFT);
632
633 if (dom->next_bit >= limit) {
634 dom->next_bit = 0;
635 dom->need_flush = true;
636 }
637
638 address = iommu_area_alloc(dom->bitmap, limit, dom->next_bit, pages,
639 0 , boundary_size, align_mask);
640 if (address == -1) {
641 address = iommu_area_alloc(dom->bitmap, limit, 0, pages,
642 0, boundary_size, align_mask);
643 dom->need_flush = true;
644 }
645
646 if (likely(address != -1)) {
647 dom->next_bit = address + pages;
648 address <<= PAGE_SHIFT;
649 } else
650 address = bad_dma_address;
651
652 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
653
654 return address;
655 }
656
657 /*
658 * The address free function.
659 *
660 * called with domain->lock held
661 */
662 static void dma_ops_free_addresses(struct dma_ops_domain *dom,
663 unsigned long address,
664 unsigned int pages)
665 {
666 address >>= PAGE_SHIFT;
667 iommu_area_free(dom->bitmap, address, pages);
668
669 if (address >= dom->next_bit)
670 dom->need_flush = true;
671 }
672
673 /****************************************************************************
674 *
675 * The next functions belong to the domain allocation. A domain is
676 * allocated for every IOMMU as the default domain. If device isolation
677 * is enabled, every device get its own domain. The most important thing
678 * about domains is the page table mapping the DMA address space they
679 * contain.
680 *
681 ****************************************************************************/
682
683 static u16 domain_id_alloc(void)
684 {
685 unsigned long flags;
686 int id;
687
688 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
689 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
690 BUG_ON(id == 0);
691 if (id > 0 && id < MAX_DOMAIN_ID)
692 __set_bit(id, amd_iommu_pd_alloc_bitmap);
693 else
694 id = 0;
695 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
696
697 return id;
698 }
699
700 #ifdef CONFIG_IOMMU_API
701 static void domain_id_free(int id)
702 {
703 unsigned long flags;
704
705 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
706 if (id > 0 && id < MAX_DOMAIN_ID)
707 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
708 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
709 }
710 #endif
711
712 /*
713 * Used to reserve address ranges in the aperture (e.g. for exclusion
714 * ranges.
715 */
716 static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
717 unsigned long start_page,
718 unsigned int pages)
719 {
720 unsigned int last_page = dom->aperture_size >> PAGE_SHIFT;
721
722 if (start_page + pages > last_page)
723 pages = last_page - start_page;
724
725 iommu_area_reserve(dom->bitmap, start_page, pages);
726 }
727
728 static void free_pagetable(struct protection_domain *domain)
729 {
730 int i, j;
731 u64 *p1, *p2, *p3;
732
733 p1 = domain->pt_root;
734
735 if (!p1)
736 return;
737
738 for (i = 0; i < 512; ++i) {
739 if (!IOMMU_PTE_PRESENT(p1[i]))
740 continue;
741
742 p2 = IOMMU_PTE_PAGE(p1[i]);
743 for (j = 0; j < 512; ++j) {
744 if (!IOMMU_PTE_PRESENT(p2[j]))
745 continue;
746 p3 = IOMMU_PTE_PAGE(p2[j]);
747 free_page((unsigned long)p3);
748 }
749
750 free_page((unsigned long)p2);
751 }
752
753 free_page((unsigned long)p1);
754
755 domain->pt_root = NULL;
756 }
757
758 /*
759 * Free a domain, only used if something went wrong in the
760 * allocation path and we need to free an already allocated page table
761 */
762 static void dma_ops_domain_free(struct dma_ops_domain *dom)
763 {
764 if (!dom)
765 return;
766
767 free_pagetable(&dom->domain);
768
769 kfree(dom->pte_pages);
770
771 kfree(dom->bitmap);
772
773 kfree(dom);
774 }
775
776 /*
777 * Allocates a new protection domain usable for the dma_ops functions.
778 * It also intializes the page table and the address allocator data
779 * structures required for the dma_ops interface
780 */
781 static struct dma_ops_domain *dma_ops_domain_alloc(struct amd_iommu *iommu,
782 unsigned order)
783 {
784 struct dma_ops_domain *dma_dom;
785 unsigned i, num_pte_pages;
786 u64 *l2_pde;
787 u64 address;
788
789 /*
790 * Currently the DMA aperture must be between 32 MB and 1GB in size
791 */
792 if ((order < 25) || (order > 30))
793 return NULL;
794
795 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
796 if (!dma_dom)
797 return NULL;
798
799 spin_lock_init(&dma_dom->domain.lock);
800
801 dma_dom->domain.id = domain_id_alloc();
802 if (dma_dom->domain.id == 0)
803 goto free_dma_dom;
804 dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
805 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
806 dma_dom->domain.flags = PD_DMA_OPS_MASK;
807 dma_dom->domain.priv = dma_dom;
808 if (!dma_dom->domain.pt_root)
809 goto free_dma_dom;
810 dma_dom->aperture_size = (1ULL << order);
811 dma_dom->bitmap = kzalloc(dma_dom->aperture_size / (PAGE_SIZE * 8),
812 GFP_KERNEL);
813 if (!dma_dom->bitmap)
814 goto free_dma_dom;
815 /*
816 * mark the first page as allocated so we never return 0 as
817 * a valid dma-address. So we can use 0 as error value
818 */
819 dma_dom->bitmap[0] = 1;
820 dma_dom->next_bit = 0;
821
822 dma_dom->need_flush = false;
823 dma_dom->target_dev = 0xffff;
824
825 /* Intialize the exclusion range if necessary */
826 if (iommu->exclusion_start &&
827 iommu->exclusion_start < dma_dom->aperture_size) {
828 unsigned long startpage = iommu->exclusion_start >> PAGE_SHIFT;
829 int pages = iommu_num_pages(iommu->exclusion_start,
830 iommu->exclusion_length,
831 PAGE_SIZE);
832 dma_ops_reserve_addresses(dma_dom, startpage, pages);
833 }
834
835 /*
836 * At the last step, build the page tables so we don't need to
837 * allocate page table pages in the dma_ops mapping/unmapping
838 * path.
839 */
840 num_pte_pages = dma_dom->aperture_size / (PAGE_SIZE * 512);
841 dma_dom->pte_pages = kzalloc(num_pte_pages * sizeof(void *),
842 GFP_KERNEL);
843 if (!dma_dom->pte_pages)
844 goto free_dma_dom;
845
846 l2_pde = (u64 *)get_zeroed_page(GFP_KERNEL);
847 if (l2_pde == NULL)
848 goto free_dma_dom;
849
850 dma_dom->domain.pt_root[0] = IOMMU_L2_PDE(virt_to_phys(l2_pde));
851
852 for (i = 0; i < num_pte_pages; ++i) {
853 dma_dom->pte_pages[i] = (u64 *)get_zeroed_page(GFP_KERNEL);
854 if (!dma_dom->pte_pages[i])
855 goto free_dma_dom;
856 address = virt_to_phys(dma_dom->pte_pages[i]);
857 l2_pde[i] = IOMMU_L1_PDE(address);
858 }
859
860 return dma_dom;
861
862 free_dma_dom:
863 dma_ops_domain_free(dma_dom);
864
865 return NULL;
866 }
867
868 /*
869 * little helper function to check whether a given protection domain is a
870 * dma_ops domain
871 */
872 static bool dma_ops_domain(struct protection_domain *domain)
873 {
874 return domain->flags & PD_DMA_OPS_MASK;
875 }
876
877 /*
878 * Find out the protection domain structure for a given PCI device. This
879 * will give us the pointer to the page table root for example.
880 */
881 static struct protection_domain *domain_for_device(u16 devid)
882 {
883 struct protection_domain *dom;
884 unsigned long flags;
885
886 read_lock_irqsave(&amd_iommu_devtable_lock, flags);
887 dom = amd_iommu_pd_table[devid];
888 read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
889
890 return dom;
891 }
892
893 /*
894 * If a device is not yet associated with a domain, this function does
895 * assigns it visible for the hardware
896 */
897 static void attach_device(struct amd_iommu *iommu,
898 struct protection_domain *domain,
899 u16 devid)
900 {
901 unsigned long flags;
902 u64 pte_root = virt_to_phys(domain->pt_root);
903
904 domain->dev_cnt += 1;
905
906 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
907 << DEV_ENTRY_MODE_SHIFT;
908 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
909
910 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
911 amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root);
912 amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root);
913 amd_iommu_dev_table[devid].data[2] = domain->id;
914
915 amd_iommu_pd_table[devid] = domain;
916 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
917
918 iommu_queue_inv_dev_entry(iommu, devid);
919 }
920
921 /*
922 * Removes a device from a protection domain (unlocked)
923 */
924 static void __detach_device(struct protection_domain *domain, u16 devid)
925 {
926
927 /* lock domain */
928 spin_lock(&domain->lock);
929
930 /* remove domain from the lookup table */
931 amd_iommu_pd_table[devid] = NULL;
932
933 /* remove entry from the device table seen by the hardware */
934 amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
935 amd_iommu_dev_table[devid].data[1] = 0;
936 amd_iommu_dev_table[devid].data[2] = 0;
937
938 /* decrease reference counter */
939 domain->dev_cnt -= 1;
940
941 /* ready */
942 spin_unlock(&domain->lock);
943 }
944
945 /*
946 * Removes a device from a protection domain (with devtable_lock held)
947 */
948 static void detach_device(struct protection_domain *domain, u16 devid)
949 {
950 unsigned long flags;
951
952 /* lock device table */
953 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
954 __detach_device(domain, devid);
955 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
956 }
957
958 static int device_change_notifier(struct notifier_block *nb,
959 unsigned long action, void *data)
960 {
961 struct device *dev = data;
962 struct pci_dev *pdev = to_pci_dev(dev);
963 u16 devid = calc_devid(pdev->bus->number, pdev->devfn);
964 struct protection_domain *domain;
965 struct dma_ops_domain *dma_domain;
966 struct amd_iommu *iommu;
967 int order = amd_iommu_aperture_order;
968 unsigned long flags;
969
970 if (devid > amd_iommu_last_bdf)
971 goto out;
972
973 devid = amd_iommu_alias_table[devid];
974
975 iommu = amd_iommu_rlookup_table[devid];
976 if (iommu == NULL)
977 goto out;
978
979 domain = domain_for_device(devid);
980
981 if (domain && !dma_ops_domain(domain))
982 WARN_ONCE(1, "AMD IOMMU WARNING: device %s already bound "
983 "to a non-dma-ops domain\n", dev_name(dev));
984
985 switch (action) {
986 case BUS_NOTIFY_BOUND_DRIVER:
987 if (domain)
988 goto out;
989 dma_domain = find_protection_domain(devid);
990 if (!dma_domain)
991 dma_domain = iommu->default_dom;
992 attach_device(iommu, &dma_domain->domain, devid);
993 printk(KERN_INFO "AMD IOMMU: Using protection domain %d for "
994 "device %s\n", dma_domain->domain.id, dev_name(dev));
995 break;
996 case BUS_NOTIFY_UNBIND_DRIVER:
997 if (!domain)
998 goto out;
999 detach_device(domain, devid);
1000 break;
1001 case BUS_NOTIFY_ADD_DEVICE:
1002 /* allocate a protection domain if a device is added */
1003 dma_domain = find_protection_domain(devid);
1004 if (dma_domain)
1005 goto out;
1006 dma_domain = dma_ops_domain_alloc(iommu, order);
1007 if (!dma_domain)
1008 goto out;
1009 dma_domain->target_dev = devid;
1010
1011 spin_lock_irqsave(&iommu_pd_list_lock, flags);
1012 list_add_tail(&dma_domain->list, &iommu_pd_list);
1013 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
1014
1015 break;
1016 default:
1017 goto out;
1018 }
1019
1020 iommu_queue_inv_dev_entry(iommu, devid);
1021 iommu_completion_wait(iommu);
1022
1023 out:
1024 return 0;
1025 }
1026
1027 struct notifier_block device_nb = {
1028 .notifier_call = device_change_notifier,
1029 };
1030
1031 /*****************************************************************************
1032 *
1033 * The next functions belong to the dma_ops mapping/unmapping code.
1034 *
1035 *****************************************************************************/
1036
1037 /*
1038 * This function checks if the driver got a valid device from the caller to
1039 * avoid dereferencing invalid pointers.
1040 */
1041 static bool check_device(struct device *dev)
1042 {
1043 if (!dev || !dev->dma_mask)
1044 return false;
1045
1046 return true;
1047 }
1048
1049 /*
1050 * In this function the list of preallocated protection domains is traversed to
1051 * find the domain for a specific device
1052 */
1053 static struct dma_ops_domain *find_protection_domain(u16 devid)
1054 {
1055 struct dma_ops_domain *entry, *ret = NULL;
1056 unsigned long flags;
1057
1058 if (list_empty(&iommu_pd_list))
1059 return NULL;
1060
1061 spin_lock_irqsave(&iommu_pd_list_lock, flags);
1062
1063 list_for_each_entry(entry, &iommu_pd_list, list) {
1064 if (entry->target_dev == devid) {
1065 ret = entry;
1066 break;
1067 }
1068 }
1069
1070 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
1071
1072 return ret;
1073 }
1074
1075 /*
1076 * In the dma_ops path we only have the struct device. This function
1077 * finds the corresponding IOMMU, the protection domain and the
1078 * requestor id for a given device.
1079 * If the device is not yet associated with a domain this is also done
1080 * in this function.
1081 */
1082 static int get_device_resources(struct device *dev,
1083 struct amd_iommu **iommu,
1084 struct protection_domain **domain,
1085 u16 *bdf)
1086 {
1087 struct dma_ops_domain *dma_dom;
1088 struct pci_dev *pcidev;
1089 u16 _bdf;
1090
1091 *iommu = NULL;
1092 *domain = NULL;
1093 *bdf = 0xffff;
1094
1095 if (dev->bus != &pci_bus_type)
1096 return 0;
1097
1098 pcidev = to_pci_dev(dev);
1099 _bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
1100
1101 /* device not translated by any IOMMU in the system? */
1102 if (_bdf > amd_iommu_last_bdf)
1103 return 0;
1104
1105 *bdf = amd_iommu_alias_table[_bdf];
1106
1107 *iommu = amd_iommu_rlookup_table[*bdf];
1108 if (*iommu == NULL)
1109 return 0;
1110 *domain = domain_for_device(*bdf);
1111 if (*domain == NULL) {
1112 dma_dom = find_protection_domain(*bdf);
1113 if (!dma_dom)
1114 dma_dom = (*iommu)->default_dom;
1115 *domain = &dma_dom->domain;
1116 attach_device(*iommu, *domain, *bdf);
1117 printk(KERN_INFO "AMD IOMMU: Using protection domain %d for "
1118 "device %s\n", (*domain)->id, dev_name(dev));
1119 }
1120
1121 if (domain_for_device(_bdf) == NULL)
1122 attach_device(*iommu, *domain, _bdf);
1123
1124 return 1;
1125 }
1126
1127 /*
1128 * This is the generic map function. It maps one 4kb page at paddr to
1129 * the given address in the DMA address space for the domain.
1130 */
1131 static dma_addr_t dma_ops_domain_map(struct amd_iommu *iommu,
1132 struct dma_ops_domain *dom,
1133 unsigned long address,
1134 phys_addr_t paddr,
1135 int direction)
1136 {
1137 u64 *pte, __pte;
1138
1139 WARN_ON(address > dom->aperture_size);
1140
1141 paddr &= PAGE_MASK;
1142
1143 pte = dom->pte_pages[IOMMU_PTE_L1_INDEX(address)];
1144 pte += IOMMU_PTE_L0_INDEX(address);
1145
1146 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
1147
1148 if (direction == DMA_TO_DEVICE)
1149 __pte |= IOMMU_PTE_IR;
1150 else if (direction == DMA_FROM_DEVICE)
1151 __pte |= IOMMU_PTE_IW;
1152 else if (direction == DMA_BIDIRECTIONAL)
1153 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
1154
1155 WARN_ON(*pte);
1156
1157 *pte = __pte;
1158
1159 return (dma_addr_t)address;
1160 }
1161
1162 /*
1163 * The generic unmapping function for on page in the DMA address space.
1164 */
1165 static void dma_ops_domain_unmap(struct amd_iommu *iommu,
1166 struct dma_ops_domain *dom,
1167 unsigned long address)
1168 {
1169 u64 *pte;
1170
1171 if (address >= dom->aperture_size)
1172 return;
1173
1174 WARN_ON(address & ~PAGE_MASK || address >= dom->aperture_size);
1175
1176 pte = dom->pte_pages[IOMMU_PTE_L1_INDEX(address)];
1177 pte += IOMMU_PTE_L0_INDEX(address);
1178
1179 WARN_ON(!*pte);
1180
1181 *pte = 0ULL;
1182 }
1183
1184 /*
1185 * This function contains common code for mapping of a physically
1186 * contiguous memory region into DMA address space. It is used by all
1187 * mapping functions provided with this IOMMU driver.
1188 * Must be called with the domain lock held.
1189 */
1190 static dma_addr_t __map_single(struct device *dev,
1191 struct amd_iommu *iommu,
1192 struct dma_ops_domain *dma_dom,
1193 phys_addr_t paddr,
1194 size_t size,
1195 int dir,
1196 bool align,
1197 u64 dma_mask)
1198 {
1199 dma_addr_t offset = paddr & ~PAGE_MASK;
1200 dma_addr_t address, start;
1201 unsigned int pages;
1202 unsigned long align_mask = 0;
1203 int i;
1204
1205 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
1206 paddr &= PAGE_MASK;
1207
1208 if (align)
1209 align_mask = (1UL << get_order(size)) - 1;
1210
1211 address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
1212 dma_mask);
1213 if (unlikely(address == bad_dma_address))
1214 goto out;
1215
1216 start = address;
1217 for (i = 0; i < pages; ++i) {
1218 dma_ops_domain_map(iommu, dma_dom, start, paddr, dir);
1219 paddr += PAGE_SIZE;
1220 start += PAGE_SIZE;
1221 }
1222 address += offset;
1223
1224 if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
1225 iommu_flush_tlb(iommu, dma_dom->domain.id);
1226 dma_dom->need_flush = false;
1227 } else if (unlikely(iommu_has_npcache(iommu)))
1228 iommu_flush_pages(iommu, dma_dom->domain.id, address, size);
1229
1230 out:
1231 return address;
1232 }
1233
1234 /*
1235 * Does the reverse of the __map_single function. Must be called with
1236 * the domain lock held too
1237 */
1238 static void __unmap_single(struct amd_iommu *iommu,
1239 struct dma_ops_domain *dma_dom,
1240 dma_addr_t dma_addr,
1241 size_t size,
1242 int dir)
1243 {
1244 dma_addr_t i, start;
1245 unsigned int pages;
1246
1247 if ((dma_addr == bad_dma_address) ||
1248 (dma_addr + size > dma_dom->aperture_size))
1249 return;
1250
1251 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
1252 dma_addr &= PAGE_MASK;
1253 start = dma_addr;
1254
1255 for (i = 0; i < pages; ++i) {
1256 dma_ops_domain_unmap(iommu, dma_dom, start);
1257 start += PAGE_SIZE;
1258 }
1259
1260 dma_ops_free_addresses(dma_dom, dma_addr, pages);
1261
1262 if (amd_iommu_unmap_flush || dma_dom->need_flush) {
1263 iommu_flush_pages(iommu, dma_dom->domain.id, dma_addr, size);
1264 dma_dom->need_flush = false;
1265 }
1266 }
1267
1268 /*
1269 * The exported map_single function for dma_ops.
1270 */
1271 static dma_addr_t map_single(struct device *dev, phys_addr_t paddr,
1272 size_t size, int dir)
1273 {
1274 unsigned long flags;
1275 struct amd_iommu *iommu;
1276 struct protection_domain *domain;
1277 u16 devid;
1278 dma_addr_t addr;
1279 u64 dma_mask;
1280
1281 if (!check_device(dev))
1282 return bad_dma_address;
1283
1284 dma_mask = *dev->dma_mask;
1285
1286 get_device_resources(dev, &iommu, &domain, &devid);
1287
1288 if (iommu == NULL || domain == NULL)
1289 /* device not handled by any AMD IOMMU */
1290 return (dma_addr_t)paddr;
1291
1292 if (!dma_ops_domain(domain))
1293 return bad_dma_address;
1294
1295 spin_lock_irqsave(&domain->lock, flags);
1296 addr = __map_single(dev, iommu, domain->priv, paddr, size, dir, false,
1297 dma_mask);
1298 if (addr == bad_dma_address)
1299 goto out;
1300
1301 iommu_completion_wait(iommu);
1302
1303 out:
1304 spin_unlock_irqrestore(&domain->lock, flags);
1305
1306 return addr;
1307 }
1308
1309 /*
1310 * The exported unmap_single function for dma_ops.
1311 */
1312 static void unmap_single(struct device *dev, dma_addr_t dma_addr,
1313 size_t size, int dir)
1314 {
1315 unsigned long flags;
1316 struct amd_iommu *iommu;
1317 struct protection_domain *domain;
1318 u16 devid;
1319
1320 if (!check_device(dev) ||
1321 !get_device_resources(dev, &iommu, &domain, &devid))
1322 /* device not handled by any AMD IOMMU */
1323 return;
1324
1325 if (!dma_ops_domain(domain))
1326 return;
1327
1328 spin_lock_irqsave(&domain->lock, flags);
1329
1330 __unmap_single(iommu, domain->priv, dma_addr, size, dir);
1331
1332 iommu_completion_wait(iommu);
1333
1334 spin_unlock_irqrestore(&domain->lock, flags);
1335 }
1336
1337 /*
1338 * This is a special map_sg function which is used if we should map a
1339 * device which is not handled by an AMD IOMMU in the system.
1340 */
1341 static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
1342 int nelems, int dir)
1343 {
1344 struct scatterlist *s;
1345 int i;
1346
1347 for_each_sg(sglist, s, nelems, i) {
1348 s->dma_address = (dma_addr_t)sg_phys(s);
1349 s->dma_length = s->length;
1350 }
1351
1352 return nelems;
1353 }
1354
1355 /*
1356 * The exported map_sg function for dma_ops (handles scatter-gather
1357 * lists).
1358 */
1359 static int map_sg(struct device *dev, struct scatterlist *sglist,
1360 int nelems, int dir)
1361 {
1362 unsigned long flags;
1363 struct amd_iommu *iommu;
1364 struct protection_domain *domain;
1365 u16 devid;
1366 int i;
1367 struct scatterlist *s;
1368 phys_addr_t paddr;
1369 int mapped_elems = 0;
1370 u64 dma_mask;
1371
1372 if (!check_device(dev))
1373 return 0;
1374
1375 dma_mask = *dev->dma_mask;
1376
1377 get_device_resources(dev, &iommu, &domain, &devid);
1378
1379 if (!iommu || !domain)
1380 return map_sg_no_iommu(dev, sglist, nelems, dir);
1381
1382 if (!dma_ops_domain(domain))
1383 return 0;
1384
1385 spin_lock_irqsave(&domain->lock, flags);
1386
1387 for_each_sg(sglist, s, nelems, i) {
1388 paddr = sg_phys(s);
1389
1390 s->dma_address = __map_single(dev, iommu, domain->priv,
1391 paddr, s->length, dir, false,
1392 dma_mask);
1393
1394 if (s->dma_address) {
1395 s->dma_length = s->length;
1396 mapped_elems++;
1397 } else
1398 goto unmap;
1399 }
1400
1401 iommu_completion_wait(iommu);
1402
1403 out:
1404 spin_unlock_irqrestore(&domain->lock, flags);
1405
1406 return mapped_elems;
1407 unmap:
1408 for_each_sg(sglist, s, mapped_elems, i) {
1409 if (s->dma_address)
1410 __unmap_single(iommu, domain->priv, s->dma_address,
1411 s->dma_length, dir);
1412 s->dma_address = s->dma_length = 0;
1413 }
1414
1415 mapped_elems = 0;
1416
1417 goto out;
1418 }
1419
1420 /*
1421 * The exported map_sg function for dma_ops (handles scatter-gather
1422 * lists).
1423 */
1424 static void unmap_sg(struct device *dev, struct scatterlist *sglist,
1425 int nelems, int dir)
1426 {
1427 unsigned long flags;
1428 struct amd_iommu *iommu;
1429 struct protection_domain *domain;
1430 struct scatterlist *s;
1431 u16 devid;
1432 int i;
1433
1434 if (!check_device(dev) ||
1435 !get_device_resources(dev, &iommu, &domain, &devid))
1436 return;
1437
1438 if (!dma_ops_domain(domain))
1439 return;
1440
1441 spin_lock_irqsave(&domain->lock, flags);
1442
1443 for_each_sg(sglist, s, nelems, i) {
1444 __unmap_single(iommu, domain->priv, s->dma_address,
1445 s->dma_length, dir);
1446 s->dma_address = s->dma_length = 0;
1447 }
1448
1449 iommu_completion_wait(iommu);
1450
1451 spin_unlock_irqrestore(&domain->lock, flags);
1452 }
1453
1454 /*
1455 * The exported alloc_coherent function for dma_ops.
1456 */
1457 static void *alloc_coherent(struct device *dev, size_t size,
1458 dma_addr_t *dma_addr, gfp_t flag)
1459 {
1460 unsigned long flags;
1461 void *virt_addr;
1462 struct amd_iommu *iommu;
1463 struct protection_domain *domain;
1464 u16 devid;
1465 phys_addr_t paddr;
1466 u64 dma_mask = dev->coherent_dma_mask;
1467
1468 if (!check_device(dev))
1469 return NULL;
1470
1471 if (!get_device_resources(dev, &iommu, &domain, &devid))
1472 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
1473
1474 flag |= __GFP_ZERO;
1475 virt_addr = (void *)__get_free_pages(flag, get_order(size));
1476 if (!virt_addr)
1477 return 0;
1478
1479 paddr = virt_to_phys(virt_addr);
1480
1481 if (!iommu || !domain) {
1482 *dma_addr = (dma_addr_t)paddr;
1483 return virt_addr;
1484 }
1485
1486 if (!dma_ops_domain(domain))
1487 goto out_free;
1488
1489 if (!dma_mask)
1490 dma_mask = *dev->dma_mask;
1491
1492 spin_lock_irqsave(&domain->lock, flags);
1493
1494 *dma_addr = __map_single(dev, iommu, domain->priv, paddr,
1495 size, DMA_BIDIRECTIONAL, true, dma_mask);
1496
1497 if (*dma_addr == bad_dma_address)
1498 goto out_free;
1499
1500 iommu_completion_wait(iommu);
1501
1502 spin_unlock_irqrestore(&domain->lock, flags);
1503
1504 return virt_addr;
1505
1506 out_free:
1507
1508 free_pages((unsigned long)virt_addr, get_order(size));
1509
1510 return NULL;
1511 }
1512
1513 /*
1514 * The exported free_coherent function for dma_ops.
1515 */
1516 static void free_coherent(struct device *dev, size_t size,
1517 void *virt_addr, dma_addr_t dma_addr)
1518 {
1519 unsigned long flags;
1520 struct amd_iommu *iommu;
1521 struct protection_domain *domain;
1522 u16 devid;
1523
1524 if (!check_device(dev))
1525 return;
1526
1527 get_device_resources(dev, &iommu, &domain, &devid);
1528
1529 if (!iommu || !domain)
1530 goto free_mem;
1531
1532 if (!dma_ops_domain(domain))
1533 goto free_mem;
1534
1535 spin_lock_irqsave(&domain->lock, flags);
1536
1537 __unmap_single(iommu, domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
1538
1539 iommu_completion_wait(iommu);
1540
1541 spin_unlock_irqrestore(&domain->lock, flags);
1542
1543 free_mem:
1544 free_pages((unsigned long)virt_addr, get_order(size));
1545 }
1546
1547 /*
1548 * This function is called by the DMA layer to find out if we can handle a
1549 * particular device. It is part of the dma_ops.
1550 */
1551 static int amd_iommu_dma_supported(struct device *dev, u64 mask)
1552 {
1553 u16 bdf;
1554 struct pci_dev *pcidev;
1555
1556 /* No device or no PCI device */
1557 if (!dev || dev->bus != &pci_bus_type)
1558 return 0;
1559
1560 pcidev = to_pci_dev(dev);
1561
1562 bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
1563
1564 /* Out of our scope? */
1565 if (bdf > amd_iommu_last_bdf)
1566 return 0;
1567
1568 return 1;
1569 }
1570
1571 /*
1572 * The function for pre-allocating protection domains.
1573 *
1574 * If the driver core informs the DMA layer if a driver grabs a device
1575 * we don't need to preallocate the protection domains anymore.
1576 * For now we have to.
1577 */
1578 void prealloc_protection_domains(void)
1579 {
1580 struct pci_dev *dev = NULL;
1581 struct dma_ops_domain *dma_dom;
1582 struct amd_iommu *iommu;
1583 int order = amd_iommu_aperture_order;
1584 u16 devid;
1585
1586 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
1587 devid = calc_devid(dev->bus->number, dev->devfn);
1588 if (devid > amd_iommu_last_bdf)
1589 continue;
1590 devid = amd_iommu_alias_table[devid];
1591 if (domain_for_device(devid))
1592 continue;
1593 iommu = amd_iommu_rlookup_table[devid];
1594 if (!iommu)
1595 continue;
1596 dma_dom = dma_ops_domain_alloc(iommu, order);
1597 if (!dma_dom)
1598 continue;
1599 init_unity_mappings_for_device(dma_dom, devid);
1600 dma_dom->target_dev = devid;
1601
1602 list_add_tail(&dma_dom->list, &iommu_pd_list);
1603 }
1604 }
1605
1606 static struct dma_mapping_ops amd_iommu_dma_ops = {
1607 .alloc_coherent = alloc_coherent,
1608 .free_coherent = free_coherent,
1609 .map_single = map_single,
1610 .unmap_single = unmap_single,
1611 .map_sg = map_sg,
1612 .unmap_sg = unmap_sg,
1613 .dma_supported = amd_iommu_dma_supported,
1614 };
1615
1616 /*
1617 * The function which clues the AMD IOMMU driver into dma_ops.
1618 */
1619 int __init amd_iommu_init_dma_ops(void)
1620 {
1621 struct amd_iommu *iommu;
1622 int order = amd_iommu_aperture_order;
1623 int ret;
1624
1625 /*
1626 * first allocate a default protection domain for every IOMMU we
1627 * found in the system. Devices not assigned to any other
1628 * protection domain will be assigned to the default one.
1629 */
1630 list_for_each_entry(iommu, &amd_iommu_list, list) {
1631 iommu->default_dom = dma_ops_domain_alloc(iommu, order);
1632 if (iommu->default_dom == NULL)
1633 return -ENOMEM;
1634 iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
1635 ret = iommu_init_unity_mappings(iommu);
1636 if (ret)
1637 goto free_domains;
1638 }
1639
1640 /*
1641 * If device isolation is enabled, pre-allocate the protection
1642 * domains for each device.
1643 */
1644 if (amd_iommu_isolate)
1645 prealloc_protection_domains();
1646
1647 iommu_detected = 1;
1648 force_iommu = 1;
1649 bad_dma_address = 0;
1650 #ifdef CONFIG_GART_IOMMU
1651 gart_iommu_aperture_disabled = 1;
1652 gart_iommu_aperture = 0;
1653 #endif
1654
1655 /* Make the driver finally visible to the drivers */
1656 dma_ops = &amd_iommu_dma_ops;
1657
1658 #ifdef CONFIG_IOMMU_API
1659 register_iommu(&amd_iommu_ops);
1660 #endif
1661
1662 bus_register_notifier(&pci_bus_type, &device_nb);
1663
1664 amd_iommu_stats_init();
1665
1666 return 0;
1667
1668 free_domains:
1669
1670 list_for_each_entry(iommu, &amd_iommu_list, list) {
1671 if (iommu->default_dom)
1672 dma_ops_domain_free(iommu->default_dom);
1673 }
1674
1675 return ret;
1676 }
1677
1678 /*****************************************************************************
1679 *
1680 * The following functions belong to the exported interface of AMD IOMMU
1681 *
1682 * This interface allows access to lower level functions of the IOMMU
1683 * like protection domain handling and assignement of devices to domains
1684 * which is not possible with the dma_ops interface.
1685 *
1686 *****************************************************************************/
1687
1688 #ifdef CONFIG_IOMMU_API
1689
1690 static void cleanup_domain(struct protection_domain *domain)
1691 {
1692 unsigned long flags;
1693 u16 devid;
1694
1695 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1696
1697 for (devid = 0; devid <= amd_iommu_last_bdf; ++devid)
1698 if (amd_iommu_pd_table[devid] == domain)
1699 __detach_device(domain, devid);
1700
1701 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1702 }
1703
1704 static int amd_iommu_domain_init(struct iommu_domain *dom)
1705 {
1706 struct protection_domain *domain;
1707
1708 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
1709 if (!domain)
1710 return -ENOMEM;
1711
1712 spin_lock_init(&domain->lock);
1713 domain->mode = PAGE_MODE_3_LEVEL;
1714 domain->id = domain_id_alloc();
1715 if (!domain->id)
1716 goto out_free;
1717 domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1718 if (!domain->pt_root)
1719 goto out_free;
1720
1721 dom->priv = domain;
1722
1723 return 0;
1724
1725 out_free:
1726 kfree(domain);
1727
1728 return -ENOMEM;
1729 }
1730
1731 static void amd_iommu_domain_destroy(struct iommu_domain *dom)
1732 {
1733 struct protection_domain *domain = dom->priv;
1734
1735 if (!domain)
1736 return;
1737
1738 if (domain->dev_cnt > 0)
1739 cleanup_domain(domain);
1740
1741 BUG_ON(domain->dev_cnt != 0);
1742
1743 free_pagetable(domain);
1744
1745 domain_id_free(domain->id);
1746
1747 kfree(domain);
1748
1749 dom->priv = NULL;
1750 }
1751
1752 static void amd_iommu_detach_device(struct iommu_domain *dom,
1753 struct device *dev)
1754 {
1755 struct protection_domain *domain = dom->priv;
1756 struct amd_iommu *iommu;
1757 struct pci_dev *pdev;
1758 u16 devid;
1759
1760 if (dev->bus != &pci_bus_type)
1761 return;
1762
1763 pdev = to_pci_dev(dev);
1764
1765 devid = calc_devid(pdev->bus->number, pdev->devfn);
1766
1767 if (devid > 0)
1768 detach_device(domain, devid);
1769
1770 iommu = amd_iommu_rlookup_table[devid];
1771 if (!iommu)
1772 return;
1773
1774 iommu_queue_inv_dev_entry(iommu, devid);
1775 iommu_completion_wait(iommu);
1776 }
1777
1778 static int amd_iommu_attach_device(struct iommu_domain *dom,
1779 struct device *dev)
1780 {
1781 struct protection_domain *domain = dom->priv;
1782 struct protection_domain *old_domain;
1783 struct amd_iommu *iommu;
1784 struct pci_dev *pdev;
1785 u16 devid;
1786
1787 if (dev->bus != &pci_bus_type)
1788 return -EINVAL;
1789
1790 pdev = to_pci_dev(dev);
1791
1792 devid = calc_devid(pdev->bus->number, pdev->devfn);
1793
1794 if (devid >= amd_iommu_last_bdf ||
1795 devid != amd_iommu_alias_table[devid])
1796 return -EINVAL;
1797
1798 iommu = amd_iommu_rlookup_table[devid];
1799 if (!iommu)
1800 return -EINVAL;
1801
1802 old_domain = domain_for_device(devid);
1803 if (old_domain)
1804 return -EBUSY;
1805
1806 attach_device(iommu, domain, devid);
1807
1808 iommu_completion_wait(iommu);
1809
1810 return 0;
1811 }
1812
1813 static int amd_iommu_map_range(struct iommu_domain *dom,
1814 unsigned long iova, phys_addr_t paddr,
1815 size_t size, int iommu_prot)
1816 {
1817 struct protection_domain *domain = dom->priv;
1818 unsigned long i, npages = iommu_num_pages(paddr, size, PAGE_SIZE);
1819 int prot = 0;
1820 int ret;
1821
1822 if (iommu_prot & IOMMU_READ)
1823 prot |= IOMMU_PROT_IR;
1824 if (iommu_prot & IOMMU_WRITE)
1825 prot |= IOMMU_PROT_IW;
1826
1827 iova &= PAGE_MASK;
1828 paddr &= PAGE_MASK;
1829
1830 for (i = 0; i < npages; ++i) {
1831 ret = iommu_map_page(domain, iova, paddr, prot);
1832 if (ret)
1833 return ret;
1834
1835 iova += PAGE_SIZE;
1836 paddr += PAGE_SIZE;
1837 }
1838
1839 return 0;
1840 }
1841
1842 static void amd_iommu_unmap_range(struct iommu_domain *dom,
1843 unsigned long iova, size_t size)
1844 {
1845
1846 struct protection_domain *domain = dom->priv;
1847 unsigned long i, npages = iommu_num_pages(iova, size, PAGE_SIZE);
1848
1849 iova &= PAGE_MASK;
1850
1851 for (i = 0; i < npages; ++i) {
1852 iommu_unmap_page(domain, iova);
1853 iova += PAGE_SIZE;
1854 }
1855
1856 iommu_flush_domain(domain->id);
1857 }
1858
1859 static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
1860 unsigned long iova)
1861 {
1862 struct protection_domain *domain = dom->priv;
1863 unsigned long offset = iova & ~PAGE_MASK;
1864 phys_addr_t paddr;
1865 u64 *pte;
1866
1867 pte = &domain->pt_root[IOMMU_PTE_L2_INDEX(iova)];
1868
1869 if (!IOMMU_PTE_PRESENT(*pte))
1870 return 0;
1871
1872 pte = IOMMU_PTE_PAGE(*pte);
1873 pte = &pte[IOMMU_PTE_L1_INDEX(iova)];
1874
1875 if (!IOMMU_PTE_PRESENT(*pte))
1876 return 0;
1877
1878 pte = IOMMU_PTE_PAGE(*pte);
1879 pte = &pte[IOMMU_PTE_L0_INDEX(iova)];
1880
1881 if (!IOMMU_PTE_PRESENT(*pte))
1882 return 0;
1883
1884 paddr = *pte & IOMMU_PAGE_MASK;
1885 paddr |= offset;
1886
1887 return paddr;
1888 }
1889
1890 static struct iommu_ops amd_iommu_ops = {
1891 .domain_init = amd_iommu_domain_init,
1892 .domain_destroy = amd_iommu_domain_destroy,
1893 .attach_dev = amd_iommu_attach_device,
1894 .detach_dev = amd_iommu_detach_device,
1895 .map = amd_iommu_map_range,
1896 .unmap = amd_iommu_unmap_range,
1897 .iova_to_phys = amd_iommu_iova_to_phys,
1898 };
1899
1900 #endif