]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/x86/kernel/amd_iommu.c
[ARM] pxa: add e750 MFP config
[mirror_ubuntu-zesty-kernel.git] / arch / x86 / kernel / amd_iommu.c
1 /*
2 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20 #include <linux/pci.h>
21 #include <linux/gfp.h>
22 #include <linux/bitops.h>
23 #include <linux/scatterlist.h>
24 #include <linux/iommu-helper.h>
25 #include <asm/proto.h>
26 #include <asm/iommu.h>
27 #include <asm/amd_iommu_types.h>
28 #include <asm/amd_iommu.h>
29
30 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
31
32 #define EXIT_LOOP_COUNT 10000000
33
34 static DEFINE_RWLOCK(amd_iommu_devtable_lock);
35
36 /* A list of preallocated protection domains */
37 static LIST_HEAD(iommu_pd_list);
38 static DEFINE_SPINLOCK(iommu_pd_list_lock);
39
40 /*
41 * general struct to manage commands send to an IOMMU
42 */
43 struct iommu_cmd {
44 u32 data[4];
45 };
46
47 static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
48 struct unity_map_entry *e);
49
50 /* returns !0 if the IOMMU is caching non-present entries in its TLB */
51 static int iommu_has_npcache(struct amd_iommu *iommu)
52 {
53 return iommu->cap & (1UL << IOMMU_CAP_NPCACHE);
54 }
55
56 /****************************************************************************
57 *
58 * Interrupt handling functions
59 *
60 ****************************************************************************/
61
62 static void iommu_print_event(void *__evt)
63 {
64 u32 *event = __evt;
65 int type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
66 int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
67 int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
68 int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
69 u64 address = (u64)(((u64)event[3]) << 32) | event[2];
70
71 printk(KERN_ERR "AMD IOMMU: Event logged [");
72
73 switch (type) {
74 case EVENT_TYPE_ILL_DEV:
75 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
76 "address=0x%016llx flags=0x%04x]\n",
77 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
78 address, flags);
79 break;
80 case EVENT_TYPE_IO_FAULT:
81 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
82 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
83 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
84 domid, address, flags);
85 break;
86 case EVENT_TYPE_DEV_TAB_ERR:
87 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
88 "address=0x%016llx flags=0x%04x]\n",
89 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90 address, flags);
91 break;
92 case EVENT_TYPE_PAGE_TAB_ERR:
93 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
94 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
95 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
96 domid, address, flags);
97 break;
98 case EVENT_TYPE_ILL_CMD:
99 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
100 break;
101 case EVENT_TYPE_CMD_HARD_ERR:
102 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
103 "flags=0x%04x]\n", address, flags);
104 break;
105 case EVENT_TYPE_IOTLB_INV_TO:
106 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
107 "address=0x%016llx]\n",
108 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
109 address);
110 break;
111 case EVENT_TYPE_INV_DEV_REQ:
112 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
113 "address=0x%016llx flags=0x%04x]\n",
114 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
115 address, flags);
116 break;
117 default:
118 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
119 }
120 }
121
122 static void iommu_poll_events(struct amd_iommu *iommu)
123 {
124 u32 head, tail;
125 unsigned long flags;
126
127 spin_lock_irqsave(&iommu->lock, flags);
128
129 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
130 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
131
132 while (head != tail) {
133 iommu_print_event(iommu->evt_buf + head);
134 head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
135 }
136
137 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
138
139 spin_unlock_irqrestore(&iommu->lock, flags);
140 }
141
142 irqreturn_t amd_iommu_int_handler(int irq, void *data)
143 {
144 struct amd_iommu *iommu;
145
146 list_for_each_entry(iommu, &amd_iommu_list, list)
147 iommu_poll_events(iommu);
148
149 return IRQ_HANDLED;
150 }
151
152 /****************************************************************************
153 *
154 * IOMMU command queuing functions
155 *
156 ****************************************************************************/
157
158 /*
159 * Writes the command to the IOMMUs command buffer and informs the
160 * hardware about the new command. Must be called with iommu->lock held.
161 */
162 static int __iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
163 {
164 u32 tail, head;
165 u8 *target;
166
167 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
168 target = iommu->cmd_buf + tail;
169 memcpy_toio(target, cmd, sizeof(*cmd));
170 tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
171 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
172 if (tail == head)
173 return -ENOMEM;
174 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
175
176 return 0;
177 }
178
179 /*
180 * General queuing function for commands. Takes iommu->lock and calls
181 * __iommu_queue_command().
182 */
183 static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
184 {
185 unsigned long flags;
186 int ret;
187
188 spin_lock_irqsave(&iommu->lock, flags);
189 ret = __iommu_queue_command(iommu, cmd);
190 spin_unlock_irqrestore(&iommu->lock, flags);
191
192 return ret;
193 }
194
195 /*
196 * This function is called whenever we need to ensure that the IOMMU has
197 * completed execution of all commands we sent. It sends a
198 * COMPLETION_WAIT command and waits for it to finish. The IOMMU informs
199 * us about that by writing a value to a physical address we pass with
200 * the command.
201 */
202 static int iommu_completion_wait(struct amd_iommu *iommu)
203 {
204 int ret = 0, ready = 0;
205 unsigned status = 0;
206 struct iommu_cmd cmd;
207 unsigned long flags, i = 0;
208
209 memset(&cmd, 0, sizeof(cmd));
210 cmd.data[0] = CMD_COMPL_WAIT_INT_MASK;
211 CMD_SET_TYPE(&cmd, CMD_COMPL_WAIT);
212
213 iommu->need_sync = 0;
214
215 spin_lock_irqsave(&iommu->lock, flags);
216
217 ret = __iommu_queue_command(iommu, &cmd);
218
219 if (ret)
220 goto out;
221
222 while (!ready && (i < EXIT_LOOP_COUNT)) {
223 ++i;
224 /* wait for the bit to become one */
225 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
226 ready = status & MMIO_STATUS_COM_WAIT_INT_MASK;
227 }
228
229 /* set bit back to zero */
230 status &= ~MMIO_STATUS_COM_WAIT_INT_MASK;
231 writel(status, iommu->mmio_base + MMIO_STATUS_OFFSET);
232
233 if (unlikely((i == EXIT_LOOP_COUNT) && printk_ratelimit()))
234 printk(KERN_WARNING "AMD IOMMU: Completion wait loop failed\n");
235 out:
236 spin_unlock_irqrestore(&iommu->lock, flags);
237
238 return 0;
239 }
240
241 /*
242 * Command send function for invalidating a device table entry
243 */
244 static int iommu_queue_inv_dev_entry(struct amd_iommu *iommu, u16 devid)
245 {
246 struct iommu_cmd cmd;
247 int ret;
248
249 BUG_ON(iommu == NULL);
250
251 memset(&cmd, 0, sizeof(cmd));
252 CMD_SET_TYPE(&cmd, CMD_INV_DEV_ENTRY);
253 cmd.data[0] = devid;
254
255 ret = iommu_queue_command(iommu, &cmd);
256
257 iommu->need_sync = 1;
258
259 return ret;
260 }
261
262 /*
263 * Generic command send function for invalidaing TLB entries
264 */
265 static int iommu_queue_inv_iommu_pages(struct amd_iommu *iommu,
266 u64 address, u16 domid, int pde, int s)
267 {
268 struct iommu_cmd cmd;
269 int ret;
270
271 memset(&cmd, 0, sizeof(cmd));
272 address &= PAGE_MASK;
273 CMD_SET_TYPE(&cmd, CMD_INV_IOMMU_PAGES);
274 cmd.data[1] |= domid;
275 cmd.data[2] = lower_32_bits(address);
276 cmd.data[3] = upper_32_bits(address);
277 if (s) /* size bit - we flush more than one 4kb page */
278 cmd.data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
279 if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
280 cmd.data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
281
282 ret = iommu_queue_command(iommu, &cmd);
283
284 iommu->need_sync = 1;
285
286 return ret;
287 }
288
289 /*
290 * TLB invalidation function which is called from the mapping functions.
291 * It invalidates a single PTE if the range to flush is within a single
292 * page. Otherwise it flushes the whole TLB of the IOMMU.
293 */
294 static int iommu_flush_pages(struct amd_iommu *iommu, u16 domid,
295 u64 address, size_t size)
296 {
297 int s = 0;
298 unsigned pages = iommu_num_pages(address, size, PAGE_SIZE);
299
300 address &= PAGE_MASK;
301
302 if (pages > 1) {
303 /*
304 * If we have to flush more than one page, flush all
305 * TLB entries for this domain
306 */
307 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
308 s = 1;
309 }
310
311 iommu_queue_inv_iommu_pages(iommu, address, domid, 0, s);
312
313 return 0;
314 }
315
316 /* Flush the whole IO/TLB for a given protection domain */
317 static void iommu_flush_tlb(struct amd_iommu *iommu, u16 domid)
318 {
319 u64 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
320
321 iommu_queue_inv_iommu_pages(iommu, address, domid, 0, 1);
322 }
323
324 /****************************************************************************
325 *
326 * The functions below are used the create the page table mappings for
327 * unity mapped regions.
328 *
329 ****************************************************************************/
330
331 /*
332 * Generic mapping functions. It maps a physical address into a DMA
333 * address space. It allocates the page table pages if necessary.
334 * In the future it can be extended to a generic mapping function
335 * supporting all features of AMD IOMMU page tables like level skipping
336 * and full 64 bit address spaces.
337 */
338 static int iommu_map(struct protection_domain *dom,
339 unsigned long bus_addr,
340 unsigned long phys_addr,
341 int prot)
342 {
343 u64 __pte, *pte, *page;
344
345 bus_addr = PAGE_ALIGN(bus_addr);
346 phys_addr = PAGE_ALIGN(bus_addr);
347
348 /* only support 512GB address spaces for now */
349 if (bus_addr > IOMMU_MAP_SIZE_L3 || !(prot & IOMMU_PROT_MASK))
350 return -EINVAL;
351
352 pte = &dom->pt_root[IOMMU_PTE_L2_INDEX(bus_addr)];
353
354 if (!IOMMU_PTE_PRESENT(*pte)) {
355 page = (u64 *)get_zeroed_page(GFP_KERNEL);
356 if (!page)
357 return -ENOMEM;
358 *pte = IOMMU_L2_PDE(virt_to_phys(page));
359 }
360
361 pte = IOMMU_PTE_PAGE(*pte);
362 pte = &pte[IOMMU_PTE_L1_INDEX(bus_addr)];
363
364 if (!IOMMU_PTE_PRESENT(*pte)) {
365 page = (u64 *)get_zeroed_page(GFP_KERNEL);
366 if (!page)
367 return -ENOMEM;
368 *pte = IOMMU_L1_PDE(virt_to_phys(page));
369 }
370
371 pte = IOMMU_PTE_PAGE(*pte);
372 pte = &pte[IOMMU_PTE_L0_INDEX(bus_addr)];
373
374 if (IOMMU_PTE_PRESENT(*pte))
375 return -EBUSY;
376
377 __pte = phys_addr | IOMMU_PTE_P;
378 if (prot & IOMMU_PROT_IR)
379 __pte |= IOMMU_PTE_IR;
380 if (prot & IOMMU_PROT_IW)
381 __pte |= IOMMU_PTE_IW;
382
383 *pte = __pte;
384
385 return 0;
386 }
387
388 /*
389 * This function checks if a specific unity mapping entry is needed for
390 * this specific IOMMU.
391 */
392 static int iommu_for_unity_map(struct amd_iommu *iommu,
393 struct unity_map_entry *entry)
394 {
395 u16 bdf, i;
396
397 for (i = entry->devid_start; i <= entry->devid_end; ++i) {
398 bdf = amd_iommu_alias_table[i];
399 if (amd_iommu_rlookup_table[bdf] == iommu)
400 return 1;
401 }
402
403 return 0;
404 }
405
406 /*
407 * Init the unity mappings for a specific IOMMU in the system
408 *
409 * Basically iterates over all unity mapping entries and applies them to
410 * the default domain DMA of that IOMMU if necessary.
411 */
412 static int iommu_init_unity_mappings(struct amd_iommu *iommu)
413 {
414 struct unity_map_entry *entry;
415 int ret;
416
417 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
418 if (!iommu_for_unity_map(iommu, entry))
419 continue;
420 ret = dma_ops_unity_map(iommu->default_dom, entry);
421 if (ret)
422 return ret;
423 }
424
425 return 0;
426 }
427
428 /*
429 * This function actually applies the mapping to the page table of the
430 * dma_ops domain.
431 */
432 static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
433 struct unity_map_entry *e)
434 {
435 u64 addr;
436 int ret;
437
438 for (addr = e->address_start; addr < e->address_end;
439 addr += PAGE_SIZE) {
440 ret = iommu_map(&dma_dom->domain, addr, addr, e->prot);
441 if (ret)
442 return ret;
443 /*
444 * if unity mapping is in aperture range mark the page
445 * as allocated in the aperture
446 */
447 if (addr < dma_dom->aperture_size)
448 __set_bit(addr >> PAGE_SHIFT, dma_dom->bitmap);
449 }
450
451 return 0;
452 }
453
454 /*
455 * Inits the unity mappings required for a specific device
456 */
457 static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
458 u16 devid)
459 {
460 struct unity_map_entry *e;
461 int ret;
462
463 list_for_each_entry(e, &amd_iommu_unity_map, list) {
464 if (!(devid >= e->devid_start && devid <= e->devid_end))
465 continue;
466 ret = dma_ops_unity_map(dma_dom, e);
467 if (ret)
468 return ret;
469 }
470
471 return 0;
472 }
473
474 /****************************************************************************
475 *
476 * The next functions belong to the address allocator for the dma_ops
477 * interface functions. They work like the allocators in the other IOMMU
478 * drivers. Its basically a bitmap which marks the allocated pages in
479 * the aperture. Maybe it could be enhanced in the future to a more
480 * efficient allocator.
481 *
482 ****************************************************************************/
483
484 /*
485 * The address allocator core function.
486 *
487 * called with domain->lock held
488 */
489 static unsigned long dma_ops_alloc_addresses(struct device *dev,
490 struct dma_ops_domain *dom,
491 unsigned int pages,
492 unsigned long align_mask,
493 u64 dma_mask)
494 {
495 unsigned long limit;
496 unsigned long address;
497 unsigned long boundary_size;
498
499 boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
500 PAGE_SIZE) >> PAGE_SHIFT;
501 limit = iommu_device_max_index(dom->aperture_size >> PAGE_SHIFT, 0,
502 dma_mask >> PAGE_SHIFT);
503
504 if (dom->next_bit >= limit) {
505 dom->next_bit = 0;
506 dom->need_flush = true;
507 }
508
509 address = iommu_area_alloc(dom->bitmap, limit, dom->next_bit, pages,
510 0 , boundary_size, align_mask);
511 if (address == -1) {
512 address = iommu_area_alloc(dom->bitmap, limit, 0, pages,
513 0, boundary_size, align_mask);
514 dom->need_flush = true;
515 }
516
517 if (likely(address != -1)) {
518 dom->next_bit = address + pages;
519 address <<= PAGE_SHIFT;
520 } else
521 address = bad_dma_address;
522
523 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
524
525 return address;
526 }
527
528 /*
529 * The address free function.
530 *
531 * called with domain->lock held
532 */
533 static void dma_ops_free_addresses(struct dma_ops_domain *dom,
534 unsigned long address,
535 unsigned int pages)
536 {
537 address >>= PAGE_SHIFT;
538 iommu_area_free(dom->bitmap, address, pages);
539
540 if (address >= dom->next_bit)
541 dom->need_flush = true;
542 }
543
544 /****************************************************************************
545 *
546 * The next functions belong to the domain allocation. A domain is
547 * allocated for every IOMMU as the default domain. If device isolation
548 * is enabled, every device get its own domain. The most important thing
549 * about domains is the page table mapping the DMA address space they
550 * contain.
551 *
552 ****************************************************************************/
553
554 static u16 domain_id_alloc(void)
555 {
556 unsigned long flags;
557 int id;
558
559 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
560 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
561 BUG_ON(id == 0);
562 if (id > 0 && id < MAX_DOMAIN_ID)
563 __set_bit(id, amd_iommu_pd_alloc_bitmap);
564 else
565 id = 0;
566 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
567
568 return id;
569 }
570
571 /*
572 * Used to reserve address ranges in the aperture (e.g. for exclusion
573 * ranges.
574 */
575 static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
576 unsigned long start_page,
577 unsigned int pages)
578 {
579 unsigned int last_page = dom->aperture_size >> PAGE_SHIFT;
580
581 if (start_page + pages > last_page)
582 pages = last_page - start_page;
583
584 iommu_area_reserve(dom->bitmap, start_page, pages);
585 }
586
587 static void dma_ops_free_pagetable(struct dma_ops_domain *dma_dom)
588 {
589 int i, j;
590 u64 *p1, *p2, *p3;
591
592 p1 = dma_dom->domain.pt_root;
593
594 if (!p1)
595 return;
596
597 for (i = 0; i < 512; ++i) {
598 if (!IOMMU_PTE_PRESENT(p1[i]))
599 continue;
600
601 p2 = IOMMU_PTE_PAGE(p1[i]);
602 for (j = 0; j < 512; ++i) {
603 if (!IOMMU_PTE_PRESENT(p2[j]))
604 continue;
605 p3 = IOMMU_PTE_PAGE(p2[j]);
606 free_page((unsigned long)p3);
607 }
608
609 free_page((unsigned long)p2);
610 }
611
612 free_page((unsigned long)p1);
613 }
614
615 /*
616 * Free a domain, only used if something went wrong in the
617 * allocation path and we need to free an already allocated page table
618 */
619 static void dma_ops_domain_free(struct dma_ops_domain *dom)
620 {
621 if (!dom)
622 return;
623
624 dma_ops_free_pagetable(dom);
625
626 kfree(dom->pte_pages);
627
628 kfree(dom->bitmap);
629
630 kfree(dom);
631 }
632
633 /*
634 * Allocates a new protection domain usable for the dma_ops functions.
635 * It also intializes the page table and the address allocator data
636 * structures required for the dma_ops interface
637 */
638 static struct dma_ops_domain *dma_ops_domain_alloc(struct amd_iommu *iommu,
639 unsigned order)
640 {
641 struct dma_ops_domain *dma_dom;
642 unsigned i, num_pte_pages;
643 u64 *l2_pde;
644 u64 address;
645
646 /*
647 * Currently the DMA aperture must be between 32 MB and 1GB in size
648 */
649 if ((order < 25) || (order > 30))
650 return NULL;
651
652 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
653 if (!dma_dom)
654 return NULL;
655
656 spin_lock_init(&dma_dom->domain.lock);
657
658 dma_dom->domain.id = domain_id_alloc();
659 if (dma_dom->domain.id == 0)
660 goto free_dma_dom;
661 dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
662 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
663 dma_dom->domain.priv = dma_dom;
664 if (!dma_dom->domain.pt_root)
665 goto free_dma_dom;
666 dma_dom->aperture_size = (1ULL << order);
667 dma_dom->bitmap = kzalloc(dma_dom->aperture_size / (PAGE_SIZE * 8),
668 GFP_KERNEL);
669 if (!dma_dom->bitmap)
670 goto free_dma_dom;
671 /*
672 * mark the first page as allocated so we never return 0 as
673 * a valid dma-address. So we can use 0 as error value
674 */
675 dma_dom->bitmap[0] = 1;
676 dma_dom->next_bit = 0;
677
678 dma_dom->need_flush = false;
679 dma_dom->target_dev = 0xffff;
680
681 /* Intialize the exclusion range if necessary */
682 if (iommu->exclusion_start &&
683 iommu->exclusion_start < dma_dom->aperture_size) {
684 unsigned long startpage = iommu->exclusion_start >> PAGE_SHIFT;
685 int pages = iommu_num_pages(iommu->exclusion_start,
686 iommu->exclusion_length,
687 PAGE_SIZE);
688 dma_ops_reserve_addresses(dma_dom, startpage, pages);
689 }
690
691 /*
692 * At the last step, build the page tables so we don't need to
693 * allocate page table pages in the dma_ops mapping/unmapping
694 * path.
695 */
696 num_pte_pages = dma_dom->aperture_size / (PAGE_SIZE * 512);
697 dma_dom->pte_pages = kzalloc(num_pte_pages * sizeof(void *),
698 GFP_KERNEL);
699 if (!dma_dom->pte_pages)
700 goto free_dma_dom;
701
702 l2_pde = (u64 *)get_zeroed_page(GFP_KERNEL);
703 if (l2_pde == NULL)
704 goto free_dma_dom;
705
706 dma_dom->domain.pt_root[0] = IOMMU_L2_PDE(virt_to_phys(l2_pde));
707
708 for (i = 0; i < num_pte_pages; ++i) {
709 dma_dom->pte_pages[i] = (u64 *)get_zeroed_page(GFP_KERNEL);
710 if (!dma_dom->pte_pages[i])
711 goto free_dma_dom;
712 address = virt_to_phys(dma_dom->pte_pages[i]);
713 l2_pde[i] = IOMMU_L1_PDE(address);
714 }
715
716 return dma_dom;
717
718 free_dma_dom:
719 dma_ops_domain_free(dma_dom);
720
721 return NULL;
722 }
723
724 /*
725 * Find out the protection domain structure for a given PCI device. This
726 * will give us the pointer to the page table root for example.
727 */
728 static struct protection_domain *domain_for_device(u16 devid)
729 {
730 struct protection_domain *dom;
731 unsigned long flags;
732
733 read_lock_irqsave(&amd_iommu_devtable_lock, flags);
734 dom = amd_iommu_pd_table[devid];
735 read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
736
737 return dom;
738 }
739
740 /*
741 * If a device is not yet associated with a domain, this function does
742 * assigns it visible for the hardware
743 */
744 static void set_device_domain(struct amd_iommu *iommu,
745 struct protection_domain *domain,
746 u16 devid)
747 {
748 unsigned long flags;
749
750 u64 pte_root = virt_to_phys(domain->pt_root);
751
752 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
753 << DEV_ENTRY_MODE_SHIFT;
754 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
755
756 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
757 amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root);
758 amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root);
759 amd_iommu_dev_table[devid].data[2] = domain->id;
760
761 amd_iommu_pd_table[devid] = domain;
762 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
763
764 iommu_queue_inv_dev_entry(iommu, devid);
765
766 iommu->need_sync = 1;
767 }
768
769 /*****************************************************************************
770 *
771 * The next functions belong to the dma_ops mapping/unmapping code.
772 *
773 *****************************************************************************/
774
775 /*
776 * This function checks if the driver got a valid device from the caller to
777 * avoid dereferencing invalid pointers.
778 */
779 static bool check_device(struct device *dev)
780 {
781 if (!dev || !dev->dma_mask)
782 return false;
783
784 return true;
785 }
786
787 /*
788 * In this function the list of preallocated protection domains is traversed to
789 * find the domain for a specific device
790 */
791 static struct dma_ops_domain *find_protection_domain(u16 devid)
792 {
793 struct dma_ops_domain *entry, *ret = NULL;
794 unsigned long flags;
795
796 if (list_empty(&iommu_pd_list))
797 return NULL;
798
799 spin_lock_irqsave(&iommu_pd_list_lock, flags);
800
801 list_for_each_entry(entry, &iommu_pd_list, list) {
802 if (entry->target_dev == devid) {
803 ret = entry;
804 list_del(&ret->list);
805 break;
806 }
807 }
808
809 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
810
811 return ret;
812 }
813
814 /*
815 * In the dma_ops path we only have the struct device. This function
816 * finds the corresponding IOMMU, the protection domain and the
817 * requestor id for a given device.
818 * If the device is not yet associated with a domain this is also done
819 * in this function.
820 */
821 static int get_device_resources(struct device *dev,
822 struct amd_iommu **iommu,
823 struct protection_domain **domain,
824 u16 *bdf)
825 {
826 struct dma_ops_domain *dma_dom;
827 struct pci_dev *pcidev;
828 u16 _bdf;
829
830 *iommu = NULL;
831 *domain = NULL;
832 *bdf = 0xffff;
833
834 if (dev->bus != &pci_bus_type)
835 return 0;
836
837 pcidev = to_pci_dev(dev);
838 _bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
839
840 /* device not translated by any IOMMU in the system? */
841 if (_bdf > amd_iommu_last_bdf)
842 return 0;
843
844 *bdf = amd_iommu_alias_table[_bdf];
845
846 *iommu = amd_iommu_rlookup_table[*bdf];
847 if (*iommu == NULL)
848 return 0;
849 *domain = domain_for_device(*bdf);
850 if (*domain == NULL) {
851 dma_dom = find_protection_domain(*bdf);
852 if (!dma_dom)
853 dma_dom = (*iommu)->default_dom;
854 *domain = &dma_dom->domain;
855 set_device_domain(*iommu, *domain, *bdf);
856 printk(KERN_INFO "AMD IOMMU: Using protection domain %d for "
857 "device ", (*domain)->id);
858 print_devid(_bdf, 1);
859 }
860
861 return 1;
862 }
863
864 /*
865 * This is the generic map function. It maps one 4kb page at paddr to
866 * the given address in the DMA address space for the domain.
867 */
868 static dma_addr_t dma_ops_domain_map(struct amd_iommu *iommu,
869 struct dma_ops_domain *dom,
870 unsigned long address,
871 phys_addr_t paddr,
872 int direction)
873 {
874 u64 *pte, __pte;
875
876 WARN_ON(address > dom->aperture_size);
877
878 paddr &= PAGE_MASK;
879
880 pte = dom->pte_pages[IOMMU_PTE_L1_INDEX(address)];
881 pte += IOMMU_PTE_L0_INDEX(address);
882
883 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
884
885 if (direction == DMA_TO_DEVICE)
886 __pte |= IOMMU_PTE_IR;
887 else if (direction == DMA_FROM_DEVICE)
888 __pte |= IOMMU_PTE_IW;
889 else if (direction == DMA_BIDIRECTIONAL)
890 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
891
892 WARN_ON(*pte);
893
894 *pte = __pte;
895
896 return (dma_addr_t)address;
897 }
898
899 /*
900 * The generic unmapping function for on page in the DMA address space.
901 */
902 static void dma_ops_domain_unmap(struct amd_iommu *iommu,
903 struct dma_ops_domain *dom,
904 unsigned long address)
905 {
906 u64 *pte;
907
908 if (address >= dom->aperture_size)
909 return;
910
911 WARN_ON(address & 0xfffULL || address > dom->aperture_size);
912
913 pte = dom->pte_pages[IOMMU_PTE_L1_INDEX(address)];
914 pte += IOMMU_PTE_L0_INDEX(address);
915
916 WARN_ON(!*pte);
917
918 *pte = 0ULL;
919 }
920
921 /*
922 * This function contains common code for mapping of a physically
923 * contiguous memory region into DMA address space. It is uses by all
924 * mapping functions provided by this IOMMU driver.
925 * Must be called with the domain lock held.
926 */
927 static dma_addr_t __map_single(struct device *dev,
928 struct amd_iommu *iommu,
929 struct dma_ops_domain *dma_dom,
930 phys_addr_t paddr,
931 size_t size,
932 int dir,
933 bool align,
934 u64 dma_mask)
935 {
936 dma_addr_t offset = paddr & ~PAGE_MASK;
937 dma_addr_t address, start;
938 unsigned int pages;
939 unsigned long align_mask = 0;
940 int i;
941
942 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
943 paddr &= PAGE_MASK;
944
945 if (align)
946 align_mask = (1UL << get_order(size)) - 1;
947
948 address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
949 dma_mask);
950 if (unlikely(address == bad_dma_address))
951 goto out;
952
953 start = address;
954 for (i = 0; i < pages; ++i) {
955 dma_ops_domain_map(iommu, dma_dom, start, paddr, dir);
956 paddr += PAGE_SIZE;
957 start += PAGE_SIZE;
958 }
959 address += offset;
960
961 if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
962 iommu_flush_tlb(iommu, dma_dom->domain.id);
963 dma_dom->need_flush = false;
964 } else if (unlikely(iommu_has_npcache(iommu)))
965 iommu_flush_pages(iommu, dma_dom->domain.id, address, size);
966
967 out:
968 return address;
969 }
970
971 /*
972 * Does the reverse of the __map_single function. Must be called with
973 * the domain lock held too
974 */
975 static void __unmap_single(struct amd_iommu *iommu,
976 struct dma_ops_domain *dma_dom,
977 dma_addr_t dma_addr,
978 size_t size,
979 int dir)
980 {
981 dma_addr_t i, start;
982 unsigned int pages;
983
984 if ((dma_addr == 0) || (dma_addr + size > dma_dom->aperture_size))
985 return;
986
987 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
988 dma_addr &= PAGE_MASK;
989 start = dma_addr;
990
991 for (i = 0; i < pages; ++i) {
992 dma_ops_domain_unmap(iommu, dma_dom, start);
993 start += PAGE_SIZE;
994 }
995
996 dma_ops_free_addresses(dma_dom, dma_addr, pages);
997
998 if (amd_iommu_unmap_flush || dma_dom->need_flush) {
999 iommu_flush_pages(iommu, dma_dom->domain.id, dma_addr, size);
1000 dma_dom->need_flush = false;
1001 }
1002 }
1003
1004 /*
1005 * The exported map_single function for dma_ops.
1006 */
1007 static dma_addr_t map_single(struct device *dev, phys_addr_t paddr,
1008 size_t size, int dir)
1009 {
1010 unsigned long flags;
1011 struct amd_iommu *iommu;
1012 struct protection_domain *domain;
1013 u16 devid;
1014 dma_addr_t addr;
1015 u64 dma_mask;
1016
1017 if (!check_device(dev))
1018 return bad_dma_address;
1019
1020 dma_mask = *dev->dma_mask;
1021
1022 get_device_resources(dev, &iommu, &domain, &devid);
1023
1024 if (iommu == NULL || domain == NULL)
1025 /* device not handled by any AMD IOMMU */
1026 return (dma_addr_t)paddr;
1027
1028 spin_lock_irqsave(&domain->lock, flags);
1029 addr = __map_single(dev, iommu, domain->priv, paddr, size, dir, false,
1030 dma_mask);
1031 if (addr == bad_dma_address)
1032 goto out;
1033
1034 if (unlikely(iommu->need_sync))
1035 iommu_completion_wait(iommu);
1036
1037 out:
1038 spin_unlock_irqrestore(&domain->lock, flags);
1039
1040 return addr;
1041 }
1042
1043 /*
1044 * The exported unmap_single function for dma_ops.
1045 */
1046 static void unmap_single(struct device *dev, dma_addr_t dma_addr,
1047 size_t size, int dir)
1048 {
1049 unsigned long flags;
1050 struct amd_iommu *iommu;
1051 struct protection_domain *domain;
1052 u16 devid;
1053
1054 if (!check_device(dev) ||
1055 !get_device_resources(dev, &iommu, &domain, &devid))
1056 /* device not handled by any AMD IOMMU */
1057 return;
1058
1059 spin_lock_irqsave(&domain->lock, flags);
1060
1061 __unmap_single(iommu, domain->priv, dma_addr, size, dir);
1062
1063 if (unlikely(iommu->need_sync))
1064 iommu_completion_wait(iommu);
1065
1066 spin_unlock_irqrestore(&domain->lock, flags);
1067 }
1068
1069 /*
1070 * This is a special map_sg function which is used if we should map a
1071 * device which is not handled by an AMD IOMMU in the system.
1072 */
1073 static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
1074 int nelems, int dir)
1075 {
1076 struct scatterlist *s;
1077 int i;
1078
1079 for_each_sg(sglist, s, nelems, i) {
1080 s->dma_address = (dma_addr_t)sg_phys(s);
1081 s->dma_length = s->length;
1082 }
1083
1084 return nelems;
1085 }
1086
1087 /*
1088 * The exported map_sg function for dma_ops (handles scatter-gather
1089 * lists).
1090 */
1091 static int map_sg(struct device *dev, struct scatterlist *sglist,
1092 int nelems, int dir)
1093 {
1094 unsigned long flags;
1095 struct amd_iommu *iommu;
1096 struct protection_domain *domain;
1097 u16 devid;
1098 int i;
1099 struct scatterlist *s;
1100 phys_addr_t paddr;
1101 int mapped_elems = 0;
1102 u64 dma_mask;
1103
1104 if (!check_device(dev))
1105 return 0;
1106
1107 dma_mask = *dev->dma_mask;
1108
1109 get_device_resources(dev, &iommu, &domain, &devid);
1110
1111 if (!iommu || !domain)
1112 return map_sg_no_iommu(dev, sglist, nelems, dir);
1113
1114 spin_lock_irqsave(&domain->lock, flags);
1115
1116 for_each_sg(sglist, s, nelems, i) {
1117 paddr = sg_phys(s);
1118
1119 s->dma_address = __map_single(dev, iommu, domain->priv,
1120 paddr, s->length, dir, false,
1121 dma_mask);
1122
1123 if (s->dma_address) {
1124 s->dma_length = s->length;
1125 mapped_elems++;
1126 } else
1127 goto unmap;
1128 }
1129
1130 if (unlikely(iommu->need_sync))
1131 iommu_completion_wait(iommu);
1132
1133 out:
1134 spin_unlock_irqrestore(&domain->lock, flags);
1135
1136 return mapped_elems;
1137 unmap:
1138 for_each_sg(sglist, s, mapped_elems, i) {
1139 if (s->dma_address)
1140 __unmap_single(iommu, domain->priv, s->dma_address,
1141 s->dma_length, dir);
1142 s->dma_address = s->dma_length = 0;
1143 }
1144
1145 mapped_elems = 0;
1146
1147 goto out;
1148 }
1149
1150 /*
1151 * The exported map_sg function for dma_ops (handles scatter-gather
1152 * lists).
1153 */
1154 static void unmap_sg(struct device *dev, struct scatterlist *sglist,
1155 int nelems, int dir)
1156 {
1157 unsigned long flags;
1158 struct amd_iommu *iommu;
1159 struct protection_domain *domain;
1160 struct scatterlist *s;
1161 u16 devid;
1162 int i;
1163
1164 if (!check_device(dev) ||
1165 !get_device_resources(dev, &iommu, &domain, &devid))
1166 return;
1167
1168 spin_lock_irqsave(&domain->lock, flags);
1169
1170 for_each_sg(sglist, s, nelems, i) {
1171 __unmap_single(iommu, domain->priv, s->dma_address,
1172 s->dma_length, dir);
1173 s->dma_address = s->dma_length = 0;
1174 }
1175
1176 if (unlikely(iommu->need_sync))
1177 iommu_completion_wait(iommu);
1178
1179 spin_unlock_irqrestore(&domain->lock, flags);
1180 }
1181
1182 /*
1183 * The exported alloc_coherent function for dma_ops.
1184 */
1185 static void *alloc_coherent(struct device *dev, size_t size,
1186 dma_addr_t *dma_addr, gfp_t flag)
1187 {
1188 unsigned long flags;
1189 void *virt_addr;
1190 struct amd_iommu *iommu;
1191 struct protection_domain *domain;
1192 u16 devid;
1193 phys_addr_t paddr;
1194 u64 dma_mask = dev->coherent_dma_mask;
1195
1196 if (!check_device(dev))
1197 return NULL;
1198
1199 if (!get_device_resources(dev, &iommu, &domain, &devid))
1200 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
1201
1202 flag |= __GFP_ZERO;
1203 virt_addr = (void *)__get_free_pages(flag, get_order(size));
1204 if (!virt_addr)
1205 return 0;
1206
1207 paddr = virt_to_phys(virt_addr);
1208
1209 if (!iommu || !domain) {
1210 *dma_addr = (dma_addr_t)paddr;
1211 return virt_addr;
1212 }
1213
1214 if (!dma_mask)
1215 dma_mask = *dev->dma_mask;
1216
1217 spin_lock_irqsave(&domain->lock, flags);
1218
1219 *dma_addr = __map_single(dev, iommu, domain->priv, paddr,
1220 size, DMA_BIDIRECTIONAL, true, dma_mask);
1221
1222 if (*dma_addr == bad_dma_address) {
1223 free_pages((unsigned long)virt_addr, get_order(size));
1224 virt_addr = NULL;
1225 goto out;
1226 }
1227
1228 if (unlikely(iommu->need_sync))
1229 iommu_completion_wait(iommu);
1230
1231 out:
1232 spin_unlock_irqrestore(&domain->lock, flags);
1233
1234 return virt_addr;
1235 }
1236
1237 /*
1238 * The exported free_coherent function for dma_ops.
1239 */
1240 static void free_coherent(struct device *dev, size_t size,
1241 void *virt_addr, dma_addr_t dma_addr)
1242 {
1243 unsigned long flags;
1244 struct amd_iommu *iommu;
1245 struct protection_domain *domain;
1246 u16 devid;
1247
1248 if (!check_device(dev))
1249 return;
1250
1251 get_device_resources(dev, &iommu, &domain, &devid);
1252
1253 if (!iommu || !domain)
1254 goto free_mem;
1255
1256 spin_lock_irqsave(&domain->lock, flags);
1257
1258 __unmap_single(iommu, domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
1259
1260 if (unlikely(iommu->need_sync))
1261 iommu_completion_wait(iommu);
1262
1263 spin_unlock_irqrestore(&domain->lock, flags);
1264
1265 free_mem:
1266 free_pages((unsigned long)virt_addr, get_order(size));
1267 }
1268
1269 /*
1270 * This function is called by the DMA layer to find out if we can handle a
1271 * particular device. It is part of the dma_ops.
1272 */
1273 static int amd_iommu_dma_supported(struct device *dev, u64 mask)
1274 {
1275 u16 bdf;
1276 struct pci_dev *pcidev;
1277
1278 /* No device or no PCI device */
1279 if (!dev || dev->bus != &pci_bus_type)
1280 return 0;
1281
1282 pcidev = to_pci_dev(dev);
1283
1284 bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
1285
1286 /* Out of our scope? */
1287 if (bdf > amd_iommu_last_bdf)
1288 return 0;
1289
1290 return 1;
1291 }
1292
1293 /*
1294 * The function for pre-allocating protection domains.
1295 *
1296 * If the driver core informs the DMA layer if a driver grabs a device
1297 * we don't need to preallocate the protection domains anymore.
1298 * For now we have to.
1299 */
1300 void prealloc_protection_domains(void)
1301 {
1302 struct pci_dev *dev = NULL;
1303 struct dma_ops_domain *dma_dom;
1304 struct amd_iommu *iommu;
1305 int order = amd_iommu_aperture_order;
1306 u16 devid;
1307
1308 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
1309 devid = (dev->bus->number << 8) | dev->devfn;
1310 if (devid > amd_iommu_last_bdf)
1311 continue;
1312 devid = amd_iommu_alias_table[devid];
1313 if (domain_for_device(devid))
1314 continue;
1315 iommu = amd_iommu_rlookup_table[devid];
1316 if (!iommu)
1317 continue;
1318 dma_dom = dma_ops_domain_alloc(iommu, order);
1319 if (!dma_dom)
1320 continue;
1321 init_unity_mappings_for_device(dma_dom, devid);
1322 dma_dom->target_dev = devid;
1323
1324 list_add_tail(&dma_dom->list, &iommu_pd_list);
1325 }
1326 }
1327
1328 static struct dma_mapping_ops amd_iommu_dma_ops = {
1329 .alloc_coherent = alloc_coherent,
1330 .free_coherent = free_coherent,
1331 .map_single = map_single,
1332 .unmap_single = unmap_single,
1333 .map_sg = map_sg,
1334 .unmap_sg = unmap_sg,
1335 .dma_supported = amd_iommu_dma_supported,
1336 };
1337
1338 /*
1339 * The function which clues the AMD IOMMU driver into dma_ops.
1340 */
1341 int __init amd_iommu_init_dma_ops(void)
1342 {
1343 struct amd_iommu *iommu;
1344 int order = amd_iommu_aperture_order;
1345 int ret;
1346
1347 /*
1348 * first allocate a default protection domain for every IOMMU we
1349 * found in the system. Devices not assigned to any other
1350 * protection domain will be assigned to the default one.
1351 */
1352 list_for_each_entry(iommu, &amd_iommu_list, list) {
1353 iommu->default_dom = dma_ops_domain_alloc(iommu, order);
1354 if (iommu->default_dom == NULL)
1355 return -ENOMEM;
1356 ret = iommu_init_unity_mappings(iommu);
1357 if (ret)
1358 goto free_domains;
1359 }
1360
1361 /*
1362 * If device isolation is enabled, pre-allocate the protection
1363 * domains for each device.
1364 */
1365 if (amd_iommu_isolate)
1366 prealloc_protection_domains();
1367
1368 iommu_detected = 1;
1369 force_iommu = 1;
1370 bad_dma_address = 0;
1371 #ifdef CONFIG_GART_IOMMU
1372 gart_iommu_aperture_disabled = 1;
1373 gart_iommu_aperture = 0;
1374 #endif
1375
1376 /* Make the driver finally visible to the drivers */
1377 dma_ops = &amd_iommu_dma_ops;
1378
1379 return 0;
1380
1381 free_domains:
1382
1383 list_for_each_entry(iommu, &amd_iommu_list, list) {
1384 if (iommu->default_dom)
1385 dma_ops_domain_free(iommu->default_dom);
1386 }
1387
1388 return ret;
1389 }