2 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include <linux/pci.h>
21 #include <linux/gfp.h>
22 #include <linux/bitops.h>
23 #include <linux/scatterlist.h>
24 #include <linux/iommu-helper.h>
25 #include <asm/proto.h>
26 #include <asm/iommu.h>
27 #include <asm/amd_iommu_types.h>
28 #include <asm/amd_iommu.h>
30 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
32 #define EXIT_LOOP_COUNT 10000000
34 static DEFINE_RWLOCK(amd_iommu_devtable_lock
);
36 /* A list of preallocated protection domains */
37 static LIST_HEAD(iommu_pd_list
);
38 static DEFINE_SPINLOCK(iommu_pd_list_lock
);
41 * general struct to manage commands send to an IOMMU
47 static int dma_ops_unity_map(struct dma_ops_domain
*dma_dom
,
48 struct unity_map_entry
*e
);
50 /* returns !0 if the IOMMU is caching non-present entries in its TLB */
51 static int iommu_has_npcache(struct amd_iommu
*iommu
)
53 return iommu
->cap
& (1UL << IOMMU_CAP_NPCACHE
);
56 /****************************************************************************
58 * Interrupt handling functions
60 ****************************************************************************/
62 static void iommu_print_event(void *__evt
)
65 int type
= (event
[1] >> EVENT_TYPE_SHIFT
) & EVENT_TYPE_MASK
;
66 int devid
= (event
[0] >> EVENT_DEVID_SHIFT
) & EVENT_DEVID_MASK
;
67 int domid
= (event
[1] >> EVENT_DOMID_SHIFT
) & EVENT_DOMID_MASK
;
68 int flags
= (event
[1] >> EVENT_FLAGS_SHIFT
) & EVENT_FLAGS_MASK
;
69 u64 address
= (u64
)(((u64
)event
[3]) << 32) | event
[2];
71 printk(KERN_ERR
"AMD IOMMU: Event logged [");
74 case EVENT_TYPE_ILL_DEV
:
75 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
76 "address=0x%016llx flags=0x%04x]\n",
77 PCI_BUS(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
80 case EVENT_TYPE_IO_FAULT
:
81 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
82 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
83 PCI_BUS(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
84 domid
, address
, flags
);
86 case EVENT_TYPE_DEV_TAB_ERR
:
87 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
88 "address=0x%016llx flags=0x%04x]\n",
89 PCI_BUS(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
92 case EVENT_TYPE_PAGE_TAB_ERR
:
93 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
94 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
95 PCI_BUS(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
96 domid
, address
, flags
);
98 case EVENT_TYPE_ILL_CMD
:
99 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address
);
101 case EVENT_TYPE_CMD_HARD_ERR
:
102 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
103 "flags=0x%04x]\n", address
, flags
);
105 case EVENT_TYPE_IOTLB_INV_TO
:
106 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
107 "address=0x%016llx]\n",
108 PCI_BUS(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
111 case EVENT_TYPE_INV_DEV_REQ
:
112 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
113 "address=0x%016llx flags=0x%04x]\n",
114 PCI_BUS(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
118 printk(KERN_ERR
"UNKNOWN type=0x%02x]\n", type
);
122 static void iommu_poll_events(struct amd_iommu
*iommu
)
127 spin_lock_irqsave(&iommu
->lock
, flags
);
129 head
= readl(iommu
->mmio_base
+ MMIO_EVT_HEAD_OFFSET
);
130 tail
= readl(iommu
->mmio_base
+ MMIO_EVT_TAIL_OFFSET
);
132 while (head
!= tail
) {
133 iommu_print_event(iommu
->evt_buf
+ head
);
134 head
= (head
+ EVENT_ENTRY_SIZE
) % iommu
->evt_buf_size
;
137 writel(head
, iommu
->mmio_base
+ MMIO_EVT_HEAD_OFFSET
);
139 spin_unlock_irqrestore(&iommu
->lock
, flags
);
142 irqreturn_t
amd_iommu_int_handler(int irq
, void *data
)
144 struct amd_iommu
*iommu
;
146 list_for_each_entry(iommu
, &amd_iommu_list
, list
)
147 iommu_poll_events(iommu
);
152 /****************************************************************************
154 * IOMMU command queuing functions
156 ****************************************************************************/
159 * Writes the command to the IOMMUs command buffer and informs the
160 * hardware about the new command. Must be called with iommu->lock held.
162 static int __iommu_queue_command(struct amd_iommu
*iommu
, struct iommu_cmd
*cmd
)
167 tail
= readl(iommu
->mmio_base
+ MMIO_CMD_TAIL_OFFSET
);
168 target
= iommu
->cmd_buf
+ tail
;
169 memcpy_toio(target
, cmd
, sizeof(*cmd
));
170 tail
= (tail
+ sizeof(*cmd
)) % iommu
->cmd_buf_size
;
171 head
= readl(iommu
->mmio_base
+ MMIO_CMD_HEAD_OFFSET
);
174 writel(tail
, iommu
->mmio_base
+ MMIO_CMD_TAIL_OFFSET
);
180 * General queuing function for commands. Takes iommu->lock and calls
181 * __iommu_queue_command().
183 static int iommu_queue_command(struct amd_iommu
*iommu
, struct iommu_cmd
*cmd
)
188 spin_lock_irqsave(&iommu
->lock
, flags
);
189 ret
= __iommu_queue_command(iommu
, cmd
);
190 spin_unlock_irqrestore(&iommu
->lock
, flags
);
196 * This function is called whenever we need to ensure that the IOMMU has
197 * completed execution of all commands we sent. It sends a
198 * COMPLETION_WAIT command and waits for it to finish. The IOMMU informs
199 * us about that by writing a value to a physical address we pass with
202 static int iommu_completion_wait(struct amd_iommu
*iommu
)
204 int ret
= 0, ready
= 0;
206 struct iommu_cmd cmd
;
207 unsigned long flags
, i
= 0;
209 memset(&cmd
, 0, sizeof(cmd
));
210 cmd
.data
[0] = CMD_COMPL_WAIT_INT_MASK
;
211 CMD_SET_TYPE(&cmd
, CMD_COMPL_WAIT
);
213 iommu
->need_sync
= 0;
215 spin_lock_irqsave(&iommu
->lock
, flags
);
217 ret
= __iommu_queue_command(iommu
, &cmd
);
222 while (!ready
&& (i
< EXIT_LOOP_COUNT
)) {
224 /* wait for the bit to become one */
225 status
= readl(iommu
->mmio_base
+ MMIO_STATUS_OFFSET
);
226 ready
= status
& MMIO_STATUS_COM_WAIT_INT_MASK
;
229 /* set bit back to zero */
230 status
&= ~MMIO_STATUS_COM_WAIT_INT_MASK
;
231 writel(status
, iommu
->mmio_base
+ MMIO_STATUS_OFFSET
);
233 if (unlikely((i
== EXIT_LOOP_COUNT
) && printk_ratelimit()))
234 printk(KERN_WARNING
"AMD IOMMU: Completion wait loop failed\n");
236 spin_unlock_irqrestore(&iommu
->lock
, flags
);
242 * Command send function for invalidating a device table entry
244 static int iommu_queue_inv_dev_entry(struct amd_iommu
*iommu
, u16 devid
)
246 struct iommu_cmd cmd
;
249 BUG_ON(iommu
== NULL
);
251 memset(&cmd
, 0, sizeof(cmd
));
252 CMD_SET_TYPE(&cmd
, CMD_INV_DEV_ENTRY
);
255 ret
= iommu_queue_command(iommu
, &cmd
);
257 iommu
->need_sync
= 1;
263 * Generic command send function for invalidaing TLB entries
265 static int iommu_queue_inv_iommu_pages(struct amd_iommu
*iommu
,
266 u64 address
, u16 domid
, int pde
, int s
)
268 struct iommu_cmd cmd
;
271 memset(&cmd
, 0, sizeof(cmd
));
272 address
&= PAGE_MASK
;
273 CMD_SET_TYPE(&cmd
, CMD_INV_IOMMU_PAGES
);
274 cmd
.data
[1] |= domid
;
275 cmd
.data
[2] = lower_32_bits(address
);
276 cmd
.data
[3] = upper_32_bits(address
);
277 if (s
) /* size bit - we flush more than one 4kb page */
278 cmd
.data
[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK
;
279 if (pde
) /* PDE bit - we wan't flush everything not only the PTEs */
280 cmd
.data
[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK
;
282 ret
= iommu_queue_command(iommu
, &cmd
);
284 iommu
->need_sync
= 1;
290 * TLB invalidation function which is called from the mapping functions.
291 * It invalidates a single PTE if the range to flush is within a single
292 * page. Otherwise it flushes the whole TLB of the IOMMU.
294 static int iommu_flush_pages(struct amd_iommu
*iommu
, u16 domid
,
295 u64 address
, size_t size
)
298 unsigned pages
= iommu_num_pages(address
, size
, PAGE_SIZE
);
300 address
&= PAGE_MASK
;
304 * If we have to flush more than one page, flush all
305 * TLB entries for this domain
307 address
= CMD_INV_IOMMU_ALL_PAGES_ADDRESS
;
311 iommu_queue_inv_iommu_pages(iommu
, address
, domid
, 0, s
);
316 /* Flush the whole IO/TLB for a given protection domain */
317 static void iommu_flush_tlb(struct amd_iommu
*iommu
, u16 domid
)
319 u64 address
= CMD_INV_IOMMU_ALL_PAGES_ADDRESS
;
321 iommu_queue_inv_iommu_pages(iommu
, address
, domid
, 0, 1);
324 /****************************************************************************
326 * The functions below are used the create the page table mappings for
327 * unity mapped regions.
329 ****************************************************************************/
332 * Generic mapping functions. It maps a physical address into a DMA
333 * address space. It allocates the page table pages if necessary.
334 * In the future it can be extended to a generic mapping function
335 * supporting all features of AMD IOMMU page tables like level skipping
336 * and full 64 bit address spaces.
338 static int iommu_map(struct protection_domain
*dom
,
339 unsigned long bus_addr
,
340 unsigned long phys_addr
,
343 u64 __pte
, *pte
, *page
;
345 bus_addr
= PAGE_ALIGN(bus_addr
);
346 phys_addr
= PAGE_ALIGN(bus_addr
);
348 /* only support 512GB address spaces for now */
349 if (bus_addr
> IOMMU_MAP_SIZE_L3
|| !(prot
& IOMMU_PROT_MASK
))
352 pte
= &dom
->pt_root
[IOMMU_PTE_L2_INDEX(bus_addr
)];
354 if (!IOMMU_PTE_PRESENT(*pte
)) {
355 page
= (u64
*)get_zeroed_page(GFP_KERNEL
);
358 *pte
= IOMMU_L2_PDE(virt_to_phys(page
));
361 pte
= IOMMU_PTE_PAGE(*pte
);
362 pte
= &pte
[IOMMU_PTE_L1_INDEX(bus_addr
)];
364 if (!IOMMU_PTE_PRESENT(*pte
)) {
365 page
= (u64
*)get_zeroed_page(GFP_KERNEL
);
368 *pte
= IOMMU_L1_PDE(virt_to_phys(page
));
371 pte
= IOMMU_PTE_PAGE(*pte
);
372 pte
= &pte
[IOMMU_PTE_L0_INDEX(bus_addr
)];
374 if (IOMMU_PTE_PRESENT(*pte
))
377 __pte
= phys_addr
| IOMMU_PTE_P
;
378 if (prot
& IOMMU_PROT_IR
)
379 __pte
|= IOMMU_PTE_IR
;
380 if (prot
& IOMMU_PROT_IW
)
381 __pte
|= IOMMU_PTE_IW
;
389 * This function checks if a specific unity mapping entry is needed for
390 * this specific IOMMU.
392 static int iommu_for_unity_map(struct amd_iommu
*iommu
,
393 struct unity_map_entry
*entry
)
397 for (i
= entry
->devid_start
; i
<= entry
->devid_end
; ++i
) {
398 bdf
= amd_iommu_alias_table
[i
];
399 if (amd_iommu_rlookup_table
[bdf
] == iommu
)
407 * Init the unity mappings for a specific IOMMU in the system
409 * Basically iterates over all unity mapping entries and applies them to
410 * the default domain DMA of that IOMMU if necessary.
412 static int iommu_init_unity_mappings(struct amd_iommu
*iommu
)
414 struct unity_map_entry
*entry
;
417 list_for_each_entry(entry
, &amd_iommu_unity_map
, list
) {
418 if (!iommu_for_unity_map(iommu
, entry
))
420 ret
= dma_ops_unity_map(iommu
->default_dom
, entry
);
429 * This function actually applies the mapping to the page table of the
432 static int dma_ops_unity_map(struct dma_ops_domain
*dma_dom
,
433 struct unity_map_entry
*e
)
438 for (addr
= e
->address_start
; addr
< e
->address_end
;
440 ret
= iommu_map(&dma_dom
->domain
, addr
, addr
, e
->prot
);
444 * if unity mapping is in aperture range mark the page
445 * as allocated in the aperture
447 if (addr
< dma_dom
->aperture_size
)
448 __set_bit(addr
>> PAGE_SHIFT
, dma_dom
->bitmap
);
455 * Inits the unity mappings required for a specific device
457 static int init_unity_mappings_for_device(struct dma_ops_domain
*dma_dom
,
460 struct unity_map_entry
*e
;
463 list_for_each_entry(e
, &amd_iommu_unity_map
, list
) {
464 if (!(devid
>= e
->devid_start
&& devid
<= e
->devid_end
))
466 ret
= dma_ops_unity_map(dma_dom
, e
);
474 /****************************************************************************
476 * The next functions belong to the address allocator for the dma_ops
477 * interface functions. They work like the allocators in the other IOMMU
478 * drivers. Its basically a bitmap which marks the allocated pages in
479 * the aperture. Maybe it could be enhanced in the future to a more
480 * efficient allocator.
482 ****************************************************************************/
485 * The address allocator core function.
487 * called with domain->lock held
489 static unsigned long dma_ops_alloc_addresses(struct device
*dev
,
490 struct dma_ops_domain
*dom
,
492 unsigned long align_mask
,
496 unsigned long address
;
497 unsigned long boundary_size
;
499 boundary_size
= ALIGN(dma_get_seg_boundary(dev
) + 1,
500 PAGE_SIZE
) >> PAGE_SHIFT
;
501 limit
= iommu_device_max_index(dom
->aperture_size
>> PAGE_SHIFT
, 0,
502 dma_mask
>> PAGE_SHIFT
);
504 if (dom
->next_bit
>= limit
) {
506 dom
->need_flush
= true;
509 address
= iommu_area_alloc(dom
->bitmap
, limit
, dom
->next_bit
, pages
,
510 0 , boundary_size
, align_mask
);
512 address
= iommu_area_alloc(dom
->bitmap
, limit
, 0, pages
,
513 0, boundary_size
, align_mask
);
514 dom
->need_flush
= true;
517 if (likely(address
!= -1)) {
518 dom
->next_bit
= address
+ pages
;
519 address
<<= PAGE_SHIFT
;
521 address
= bad_dma_address
;
523 WARN_ON((address
+ (PAGE_SIZE
*pages
)) > dom
->aperture_size
);
529 * The address free function.
531 * called with domain->lock held
533 static void dma_ops_free_addresses(struct dma_ops_domain
*dom
,
534 unsigned long address
,
537 address
>>= PAGE_SHIFT
;
538 iommu_area_free(dom
->bitmap
, address
, pages
);
540 if (address
>= dom
->next_bit
)
541 dom
->need_flush
= true;
544 /****************************************************************************
546 * The next functions belong to the domain allocation. A domain is
547 * allocated for every IOMMU as the default domain. If device isolation
548 * is enabled, every device get its own domain. The most important thing
549 * about domains is the page table mapping the DMA address space they
552 ****************************************************************************/
554 static u16
domain_id_alloc(void)
559 write_lock_irqsave(&amd_iommu_devtable_lock
, flags
);
560 id
= find_first_zero_bit(amd_iommu_pd_alloc_bitmap
, MAX_DOMAIN_ID
);
562 if (id
> 0 && id
< MAX_DOMAIN_ID
)
563 __set_bit(id
, amd_iommu_pd_alloc_bitmap
);
566 write_unlock_irqrestore(&amd_iommu_devtable_lock
, flags
);
572 * Used to reserve address ranges in the aperture (e.g. for exclusion
575 static void dma_ops_reserve_addresses(struct dma_ops_domain
*dom
,
576 unsigned long start_page
,
579 unsigned int last_page
= dom
->aperture_size
>> PAGE_SHIFT
;
581 if (start_page
+ pages
> last_page
)
582 pages
= last_page
- start_page
;
584 iommu_area_reserve(dom
->bitmap
, start_page
, pages
);
587 static void dma_ops_free_pagetable(struct dma_ops_domain
*dma_dom
)
592 p1
= dma_dom
->domain
.pt_root
;
597 for (i
= 0; i
< 512; ++i
) {
598 if (!IOMMU_PTE_PRESENT(p1
[i
]))
601 p2
= IOMMU_PTE_PAGE(p1
[i
]);
602 for (j
= 0; j
< 512; ++i
) {
603 if (!IOMMU_PTE_PRESENT(p2
[j
]))
605 p3
= IOMMU_PTE_PAGE(p2
[j
]);
606 free_page((unsigned long)p3
);
609 free_page((unsigned long)p2
);
612 free_page((unsigned long)p1
);
616 * Free a domain, only used if something went wrong in the
617 * allocation path and we need to free an already allocated page table
619 static void dma_ops_domain_free(struct dma_ops_domain
*dom
)
624 dma_ops_free_pagetable(dom
);
626 kfree(dom
->pte_pages
);
634 * Allocates a new protection domain usable for the dma_ops functions.
635 * It also intializes the page table and the address allocator data
636 * structures required for the dma_ops interface
638 static struct dma_ops_domain
*dma_ops_domain_alloc(struct amd_iommu
*iommu
,
641 struct dma_ops_domain
*dma_dom
;
642 unsigned i
, num_pte_pages
;
647 * Currently the DMA aperture must be between 32 MB and 1GB in size
649 if ((order
< 25) || (order
> 30))
652 dma_dom
= kzalloc(sizeof(struct dma_ops_domain
), GFP_KERNEL
);
656 spin_lock_init(&dma_dom
->domain
.lock
);
658 dma_dom
->domain
.id
= domain_id_alloc();
659 if (dma_dom
->domain
.id
== 0)
661 dma_dom
->domain
.mode
= PAGE_MODE_3_LEVEL
;
662 dma_dom
->domain
.pt_root
= (void *)get_zeroed_page(GFP_KERNEL
);
663 dma_dom
->domain
.priv
= dma_dom
;
664 if (!dma_dom
->domain
.pt_root
)
666 dma_dom
->aperture_size
= (1ULL << order
);
667 dma_dom
->bitmap
= kzalloc(dma_dom
->aperture_size
/ (PAGE_SIZE
* 8),
669 if (!dma_dom
->bitmap
)
672 * mark the first page as allocated so we never return 0 as
673 * a valid dma-address. So we can use 0 as error value
675 dma_dom
->bitmap
[0] = 1;
676 dma_dom
->next_bit
= 0;
678 dma_dom
->need_flush
= false;
679 dma_dom
->target_dev
= 0xffff;
681 /* Intialize the exclusion range if necessary */
682 if (iommu
->exclusion_start
&&
683 iommu
->exclusion_start
< dma_dom
->aperture_size
) {
684 unsigned long startpage
= iommu
->exclusion_start
>> PAGE_SHIFT
;
685 int pages
= iommu_num_pages(iommu
->exclusion_start
,
686 iommu
->exclusion_length
,
688 dma_ops_reserve_addresses(dma_dom
, startpage
, pages
);
692 * At the last step, build the page tables so we don't need to
693 * allocate page table pages in the dma_ops mapping/unmapping
696 num_pte_pages
= dma_dom
->aperture_size
/ (PAGE_SIZE
* 512);
697 dma_dom
->pte_pages
= kzalloc(num_pte_pages
* sizeof(void *),
699 if (!dma_dom
->pte_pages
)
702 l2_pde
= (u64
*)get_zeroed_page(GFP_KERNEL
);
706 dma_dom
->domain
.pt_root
[0] = IOMMU_L2_PDE(virt_to_phys(l2_pde
));
708 for (i
= 0; i
< num_pte_pages
; ++i
) {
709 dma_dom
->pte_pages
[i
] = (u64
*)get_zeroed_page(GFP_KERNEL
);
710 if (!dma_dom
->pte_pages
[i
])
712 address
= virt_to_phys(dma_dom
->pte_pages
[i
]);
713 l2_pde
[i
] = IOMMU_L1_PDE(address
);
719 dma_ops_domain_free(dma_dom
);
725 * Find out the protection domain structure for a given PCI device. This
726 * will give us the pointer to the page table root for example.
728 static struct protection_domain
*domain_for_device(u16 devid
)
730 struct protection_domain
*dom
;
733 read_lock_irqsave(&amd_iommu_devtable_lock
, flags
);
734 dom
= amd_iommu_pd_table
[devid
];
735 read_unlock_irqrestore(&amd_iommu_devtable_lock
, flags
);
741 * If a device is not yet associated with a domain, this function does
742 * assigns it visible for the hardware
744 static void set_device_domain(struct amd_iommu
*iommu
,
745 struct protection_domain
*domain
,
750 u64 pte_root
= virt_to_phys(domain
->pt_root
);
752 pte_root
|= (domain
->mode
& DEV_ENTRY_MODE_MASK
)
753 << DEV_ENTRY_MODE_SHIFT
;
754 pte_root
|= IOMMU_PTE_IR
| IOMMU_PTE_IW
| IOMMU_PTE_P
| IOMMU_PTE_TV
;
756 write_lock_irqsave(&amd_iommu_devtable_lock
, flags
);
757 amd_iommu_dev_table
[devid
].data
[0] = lower_32_bits(pte_root
);
758 amd_iommu_dev_table
[devid
].data
[1] = upper_32_bits(pte_root
);
759 amd_iommu_dev_table
[devid
].data
[2] = domain
->id
;
761 amd_iommu_pd_table
[devid
] = domain
;
762 write_unlock_irqrestore(&amd_iommu_devtable_lock
, flags
);
764 iommu_queue_inv_dev_entry(iommu
, devid
);
766 iommu
->need_sync
= 1;
769 /*****************************************************************************
771 * The next functions belong to the dma_ops mapping/unmapping code.
773 *****************************************************************************/
776 * This function checks if the driver got a valid device from the caller to
777 * avoid dereferencing invalid pointers.
779 static bool check_device(struct device
*dev
)
781 if (!dev
|| !dev
->dma_mask
)
788 * In this function the list of preallocated protection domains is traversed to
789 * find the domain for a specific device
791 static struct dma_ops_domain
*find_protection_domain(u16 devid
)
793 struct dma_ops_domain
*entry
, *ret
= NULL
;
796 if (list_empty(&iommu_pd_list
))
799 spin_lock_irqsave(&iommu_pd_list_lock
, flags
);
801 list_for_each_entry(entry
, &iommu_pd_list
, list
) {
802 if (entry
->target_dev
== devid
) {
804 list_del(&ret
->list
);
809 spin_unlock_irqrestore(&iommu_pd_list_lock
, flags
);
815 * In the dma_ops path we only have the struct device. This function
816 * finds the corresponding IOMMU, the protection domain and the
817 * requestor id for a given device.
818 * If the device is not yet associated with a domain this is also done
821 static int get_device_resources(struct device
*dev
,
822 struct amd_iommu
**iommu
,
823 struct protection_domain
**domain
,
826 struct dma_ops_domain
*dma_dom
;
827 struct pci_dev
*pcidev
;
834 if (dev
->bus
!= &pci_bus_type
)
837 pcidev
= to_pci_dev(dev
);
838 _bdf
= calc_devid(pcidev
->bus
->number
, pcidev
->devfn
);
840 /* device not translated by any IOMMU in the system? */
841 if (_bdf
> amd_iommu_last_bdf
)
844 *bdf
= amd_iommu_alias_table
[_bdf
];
846 *iommu
= amd_iommu_rlookup_table
[*bdf
];
849 *domain
= domain_for_device(*bdf
);
850 if (*domain
== NULL
) {
851 dma_dom
= find_protection_domain(*bdf
);
853 dma_dom
= (*iommu
)->default_dom
;
854 *domain
= &dma_dom
->domain
;
855 set_device_domain(*iommu
, *domain
, *bdf
);
856 printk(KERN_INFO
"AMD IOMMU: Using protection domain %d for "
857 "device ", (*domain
)->id
);
858 print_devid(_bdf
, 1);
865 * This is the generic map function. It maps one 4kb page at paddr to
866 * the given address in the DMA address space for the domain.
868 static dma_addr_t
dma_ops_domain_map(struct amd_iommu
*iommu
,
869 struct dma_ops_domain
*dom
,
870 unsigned long address
,
876 WARN_ON(address
> dom
->aperture_size
);
880 pte
= dom
->pte_pages
[IOMMU_PTE_L1_INDEX(address
)];
881 pte
+= IOMMU_PTE_L0_INDEX(address
);
883 __pte
= paddr
| IOMMU_PTE_P
| IOMMU_PTE_FC
;
885 if (direction
== DMA_TO_DEVICE
)
886 __pte
|= IOMMU_PTE_IR
;
887 else if (direction
== DMA_FROM_DEVICE
)
888 __pte
|= IOMMU_PTE_IW
;
889 else if (direction
== DMA_BIDIRECTIONAL
)
890 __pte
|= IOMMU_PTE_IR
| IOMMU_PTE_IW
;
896 return (dma_addr_t
)address
;
900 * The generic unmapping function for on page in the DMA address space.
902 static void dma_ops_domain_unmap(struct amd_iommu
*iommu
,
903 struct dma_ops_domain
*dom
,
904 unsigned long address
)
908 if (address
>= dom
->aperture_size
)
911 WARN_ON(address
& 0xfffULL
|| address
> dom
->aperture_size
);
913 pte
= dom
->pte_pages
[IOMMU_PTE_L1_INDEX(address
)];
914 pte
+= IOMMU_PTE_L0_INDEX(address
);
922 * This function contains common code for mapping of a physically
923 * contiguous memory region into DMA address space. It is uses by all
924 * mapping functions provided by this IOMMU driver.
925 * Must be called with the domain lock held.
927 static dma_addr_t
__map_single(struct device
*dev
,
928 struct amd_iommu
*iommu
,
929 struct dma_ops_domain
*dma_dom
,
936 dma_addr_t offset
= paddr
& ~PAGE_MASK
;
937 dma_addr_t address
, start
;
939 unsigned long align_mask
= 0;
942 pages
= iommu_num_pages(paddr
, size
, PAGE_SIZE
);
946 align_mask
= (1UL << get_order(size
)) - 1;
948 address
= dma_ops_alloc_addresses(dev
, dma_dom
, pages
, align_mask
,
950 if (unlikely(address
== bad_dma_address
))
954 for (i
= 0; i
< pages
; ++i
) {
955 dma_ops_domain_map(iommu
, dma_dom
, start
, paddr
, dir
);
961 if (unlikely(dma_dom
->need_flush
&& !amd_iommu_unmap_flush
)) {
962 iommu_flush_tlb(iommu
, dma_dom
->domain
.id
);
963 dma_dom
->need_flush
= false;
964 } else if (unlikely(iommu_has_npcache(iommu
)))
965 iommu_flush_pages(iommu
, dma_dom
->domain
.id
, address
, size
);
972 * Does the reverse of the __map_single function. Must be called with
973 * the domain lock held too
975 static void __unmap_single(struct amd_iommu
*iommu
,
976 struct dma_ops_domain
*dma_dom
,
984 if ((dma_addr
== 0) || (dma_addr
+ size
> dma_dom
->aperture_size
))
987 pages
= iommu_num_pages(dma_addr
, size
, PAGE_SIZE
);
988 dma_addr
&= PAGE_MASK
;
991 for (i
= 0; i
< pages
; ++i
) {
992 dma_ops_domain_unmap(iommu
, dma_dom
, start
);
996 dma_ops_free_addresses(dma_dom
, dma_addr
, pages
);
998 if (amd_iommu_unmap_flush
|| dma_dom
->need_flush
) {
999 iommu_flush_pages(iommu
, dma_dom
->domain
.id
, dma_addr
, size
);
1000 dma_dom
->need_flush
= false;
1005 * The exported map_single function for dma_ops.
1007 static dma_addr_t
map_single(struct device
*dev
, phys_addr_t paddr
,
1008 size_t size
, int dir
)
1010 unsigned long flags
;
1011 struct amd_iommu
*iommu
;
1012 struct protection_domain
*domain
;
1017 if (!check_device(dev
))
1018 return bad_dma_address
;
1020 dma_mask
= *dev
->dma_mask
;
1022 get_device_resources(dev
, &iommu
, &domain
, &devid
);
1024 if (iommu
== NULL
|| domain
== NULL
)
1025 /* device not handled by any AMD IOMMU */
1026 return (dma_addr_t
)paddr
;
1028 spin_lock_irqsave(&domain
->lock
, flags
);
1029 addr
= __map_single(dev
, iommu
, domain
->priv
, paddr
, size
, dir
, false,
1031 if (addr
== bad_dma_address
)
1034 if (unlikely(iommu
->need_sync
))
1035 iommu_completion_wait(iommu
);
1038 spin_unlock_irqrestore(&domain
->lock
, flags
);
1044 * The exported unmap_single function for dma_ops.
1046 static void unmap_single(struct device
*dev
, dma_addr_t dma_addr
,
1047 size_t size
, int dir
)
1049 unsigned long flags
;
1050 struct amd_iommu
*iommu
;
1051 struct protection_domain
*domain
;
1054 if (!check_device(dev
) ||
1055 !get_device_resources(dev
, &iommu
, &domain
, &devid
))
1056 /* device not handled by any AMD IOMMU */
1059 spin_lock_irqsave(&domain
->lock
, flags
);
1061 __unmap_single(iommu
, domain
->priv
, dma_addr
, size
, dir
);
1063 if (unlikely(iommu
->need_sync
))
1064 iommu_completion_wait(iommu
);
1066 spin_unlock_irqrestore(&domain
->lock
, flags
);
1070 * This is a special map_sg function which is used if we should map a
1071 * device which is not handled by an AMD IOMMU in the system.
1073 static int map_sg_no_iommu(struct device
*dev
, struct scatterlist
*sglist
,
1074 int nelems
, int dir
)
1076 struct scatterlist
*s
;
1079 for_each_sg(sglist
, s
, nelems
, i
) {
1080 s
->dma_address
= (dma_addr_t
)sg_phys(s
);
1081 s
->dma_length
= s
->length
;
1088 * The exported map_sg function for dma_ops (handles scatter-gather
1091 static int map_sg(struct device
*dev
, struct scatterlist
*sglist
,
1092 int nelems
, int dir
)
1094 unsigned long flags
;
1095 struct amd_iommu
*iommu
;
1096 struct protection_domain
*domain
;
1099 struct scatterlist
*s
;
1101 int mapped_elems
= 0;
1104 if (!check_device(dev
))
1107 dma_mask
= *dev
->dma_mask
;
1109 get_device_resources(dev
, &iommu
, &domain
, &devid
);
1111 if (!iommu
|| !domain
)
1112 return map_sg_no_iommu(dev
, sglist
, nelems
, dir
);
1114 spin_lock_irqsave(&domain
->lock
, flags
);
1116 for_each_sg(sglist
, s
, nelems
, i
) {
1119 s
->dma_address
= __map_single(dev
, iommu
, domain
->priv
,
1120 paddr
, s
->length
, dir
, false,
1123 if (s
->dma_address
) {
1124 s
->dma_length
= s
->length
;
1130 if (unlikely(iommu
->need_sync
))
1131 iommu_completion_wait(iommu
);
1134 spin_unlock_irqrestore(&domain
->lock
, flags
);
1136 return mapped_elems
;
1138 for_each_sg(sglist
, s
, mapped_elems
, i
) {
1140 __unmap_single(iommu
, domain
->priv
, s
->dma_address
,
1141 s
->dma_length
, dir
);
1142 s
->dma_address
= s
->dma_length
= 0;
1151 * The exported map_sg function for dma_ops (handles scatter-gather
1154 static void unmap_sg(struct device
*dev
, struct scatterlist
*sglist
,
1155 int nelems
, int dir
)
1157 unsigned long flags
;
1158 struct amd_iommu
*iommu
;
1159 struct protection_domain
*domain
;
1160 struct scatterlist
*s
;
1164 if (!check_device(dev
) ||
1165 !get_device_resources(dev
, &iommu
, &domain
, &devid
))
1168 spin_lock_irqsave(&domain
->lock
, flags
);
1170 for_each_sg(sglist
, s
, nelems
, i
) {
1171 __unmap_single(iommu
, domain
->priv
, s
->dma_address
,
1172 s
->dma_length
, dir
);
1173 s
->dma_address
= s
->dma_length
= 0;
1176 if (unlikely(iommu
->need_sync
))
1177 iommu_completion_wait(iommu
);
1179 spin_unlock_irqrestore(&domain
->lock
, flags
);
1183 * The exported alloc_coherent function for dma_ops.
1185 static void *alloc_coherent(struct device
*dev
, size_t size
,
1186 dma_addr_t
*dma_addr
, gfp_t flag
)
1188 unsigned long flags
;
1190 struct amd_iommu
*iommu
;
1191 struct protection_domain
*domain
;
1194 u64 dma_mask
= dev
->coherent_dma_mask
;
1196 if (!check_device(dev
))
1199 if (!get_device_resources(dev
, &iommu
, &domain
, &devid
))
1200 flag
&= ~(__GFP_DMA
| __GFP_HIGHMEM
| __GFP_DMA32
);
1203 virt_addr
= (void *)__get_free_pages(flag
, get_order(size
));
1207 paddr
= virt_to_phys(virt_addr
);
1209 if (!iommu
|| !domain
) {
1210 *dma_addr
= (dma_addr_t
)paddr
;
1215 dma_mask
= *dev
->dma_mask
;
1217 spin_lock_irqsave(&domain
->lock
, flags
);
1219 *dma_addr
= __map_single(dev
, iommu
, domain
->priv
, paddr
,
1220 size
, DMA_BIDIRECTIONAL
, true, dma_mask
);
1222 if (*dma_addr
== bad_dma_address
) {
1223 free_pages((unsigned long)virt_addr
, get_order(size
));
1228 if (unlikely(iommu
->need_sync
))
1229 iommu_completion_wait(iommu
);
1232 spin_unlock_irqrestore(&domain
->lock
, flags
);
1238 * The exported free_coherent function for dma_ops.
1240 static void free_coherent(struct device
*dev
, size_t size
,
1241 void *virt_addr
, dma_addr_t dma_addr
)
1243 unsigned long flags
;
1244 struct amd_iommu
*iommu
;
1245 struct protection_domain
*domain
;
1248 if (!check_device(dev
))
1251 get_device_resources(dev
, &iommu
, &domain
, &devid
);
1253 if (!iommu
|| !domain
)
1256 spin_lock_irqsave(&domain
->lock
, flags
);
1258 __unmap_single(iommu
, domain
->priv
, dma_addr
, size
, DMA_BIDIRECTIONAL
);
1260 if (unlikely(iommu
->need_sync
))
1261 iommu_completion_wait(iommu
);
1263 spin_unlock_irqrestore(&domain
->lock
, flags
);
1266 free_pages((unsigned long)virt_addr
, get_order(size
));
1270 * This function is called by the DMA layer to find out if we can handle a
1271 * particular device. It is part of the dma_ops.
1273 static int amd_iommu_dma_supported(struct device
*dev
, u64 mask
)
1276 struct pci_dev
*pcidev
;
1278 /* No device or no PCI device */
1279 if (!dev
|| dev
->bus
!= &pci_bus_type
)
1282 pcidev
= to_pci_dev(dev
);
1284 bdf
= calc_devid(pcidev
->bus
->number
, pcidev
->devfn
);
1286 /* Out of our scope? */
1287 if (bdf
> amd_iommu_last_bdf
)
1294 * The function for pre-allocating protection domains.
1296 * If the driver core informs the DMA layer if a driver grabs a device
1297 * we don't need to preallocate the protection domains anymore.
1298 * For now we have to.
1300 void prealloc_protection_domains(void)
1302 struct pci_dev
*dev
= NULL
;
1303 struct dma_ops_domain
*dma_dom
;
1304 struct amd_iommu
*iommu
;
1305 int order
= amd_iommu_aperture_order
;
1308 while ((dev
= pci_get_device(PCI_ANY_ID
, PCI_ANY_ID
, dev
)) != NULL
) {
1309 devid
= (dev
->bus
->number
<< 8) | dev
->devfn
;
1310 if (devid
> amd_iommu_last_bdf
)
1312 devid
= amd_iommu_alias_table
[devid
];
1313 if (domain_for_device(devid
))
1315 iommu
= amd_iommu_rlookup_table
[devid
];
1318 dma_dom
= dma_ops_domain_alloc(iommu
, order
);
1321 init_unity_mappings_for_device(dma_dom
, devid
);
1322 dma_dom
->target_dev
= devid
;
1324 list_add_tail(&dma_dom
->list
, &iommu_pd_list
);
1328 static struct dma_mapping_ops amd_iommu_dma_ops
= {
1329 .alloc_coherent
= alloc_coherent
,
1330 .free_coherent
= free_coherent
,
1331 .map_single
= map_single
,
1332 .unmap_single
= unmap_single
,
1334 .unmap_sg
= unmap_sg
,
1335 .dma_supported
= amd_iommu_dma_supported
,
1339 * The function which clues the AMD IOMMU driver into dma_ops.
1341 int __init
amd_iommu_init_dma_ops(void)
1343 struct amd_iommu
*iommu
;
1344 int order
= amd_iommu_aperture_order
;
1348 * first allocate a default protection domain for every IOMMU we
1349 * found in the system. Devices not assigned to any other
1350 * protection domain will be assigned to the default one.
1352 list_for_each_entry(iommu
, &amd_iommu_list
, list
) {
1353 iommu
->default_dom
= dma_ops_domain_alloc(iommu
, order
);
1354 if (iommu
->default_dom
== NULL
)
1356 ret
= iommu_init_unity_mappings(iommu
);
1362 * If device isolation is enabled, pre-allocate the protection
1363 * domains for each device.
1365 if (amd_iommu_isolate
)
1366 prealloc_protection_domains();
1370 bad_dma_address
= 0;
1371 #ifdef CONFIG_GART_IOMMU
1372 gart_iommu_aperture_disabled
= 1;
1373 gart_iommu_aperture
= 0;
1376 /* Make the driver finally visible to the drivers */
1377 dma_ops
= &amd_iommu_dma_ops
;
1383 list_for_each_entry(iommu
, &amd_iommu_list
, list
) {
1384 if (iommu
->default_dom
)
1385 dma_ops_domain_free(iommu
->default_dom
);