]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/kernel/apic/apic.c
x86/intel: Aggregate microserver naming
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kernel / apic / apic.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Local APIC handling, local APIC timers
4 *
5 * (c) 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
6 *
7 * Fixes
8 * Maciej W. Rozycki : Bits for genuine 82489DX APICs;
9 * thanks to Eric Gilmore
10 * and Rolf G. Tews
11 * for testing these extensively.
12 * Maciej W. Rozycki : Various updates and fixes.
13 * Mikael Pettersson : Power Management for UP-APIC.
14 * Pavel Machek and
15 * Mikael Pettersson : PM converted to driver model.
16 */
17
18 #include <linux/perf_event.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mc146818rtc.h>
21 #include <linux/acpi_pmtmr.h>
22 #include <linux/clockchips.h>
23 #include <linux/interrupt.h>
24 #include <linux/memblock.h>
25 #include <linux/ftrace.h>
26 #include <linux/ioport.h>
27 #include <linux/export.h>
28 #include <linux/syscore_ops.h>
29 #include <linux/delay.h>
30 #include <linux/timex.h>
31 #include <linux/i8253.h>
32 #include <linux/dmar.h>
33 #include <linux/init.h>
34 #include <linux/cpu.h>
35 #include <linux/dmi.h>
36 #include <linux/smp.h>
37 #include <linux/mm.h>
38
39 #include <asm/trace/irq_vectors.h>
40 #include <asm/irq_remapping.h>
41 #include <asm/perf_event.h>
42 #include <asm/x86_init.h>
43 #include <asm/pgalloc.h>
44 #include <linux/atomic.h>
45 #include <asm/mpspec.h>
46 #include <asm/i8259.h>
47 #include <asm/proto.h>
48 #include <asm/traps.h>
49 #include <asm/apic.h>
50 #include <asm/io_apic.h>
51 #include <asm/desc.h>
52 #include <asm/hpet.h>
53 #include <asm/mtrr.h>
54 #include <asm/time.h>
55 #include <asm/smp.h>
56 #include <asm/mce.h>
57 #include <asm/tsc.h>
58 #include <asm/hypervisor.h>
59 #include <asm/cpu_device_id.h>
60 #include <asm/intel-family.h>
61 #include <asm/irq_regs.h>
62
63 unsigned int num_processors;
64
65 unsigned disabled_cpus;
66
67 /* Processor that is doing the boot up */
68 unsigned int boot_cpu_physical_apicid = -1U;
69 EXPORT_SYMBOL_GPL(boot_cpu_physical_apicid);
70
71 u8 boot_cpu_apic_version;
72
73 /*
74 * The highest APIC ID seen during enumeration.
75 */
76 static unsigned int max_physical_apicid;
77
78 /*
79 * Bitmask of physically existing CPUs:
80 */
81 physid_mask_t phys_cpu_present_map;
82
83 /*
84 * Processor to be disabled specified by kernel parameter
85 * disable_cpu_apicid=<int>, mostly used for the kdump 2nd kernel to
86 * avoid undefined behaviour caused by sending INIT from AP to BSP.
87 */
88 static unsigned int disabled_cpu_apicid __read_mostly = BAD_APICID;
89
90 /*
91 * This variable controls which CPUs receive external NMIs. By default,
92 * external NMIs are delivered only to the BSP.
93 */
94 static int apic_extnmi = APIC_EXTNMI_BSP;
95
96 /*
97 * Map cpu index to physical APIC ID
98 */
99 DEFINE_EARLY_PER_CPU_READ_MOSTLY(u16, x86_cpu_to_apicid, BAD_APICID);
100 DEFINE_EARLY_PER_CPU_READ_MOSTLY(u16, x86_bios_cpu_apicid, BAD_APICID);
101 DEFINE_EARLY_PER_CPU_READ_MOSTLY(u32, x86_cpu_to_acpiid, U32_MAX);
102 EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_apicid);
103 EXPORT_EARLY_PER_CPU_SYMBOL(x86_bios_cpu_apicid);
104 EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_acpiid);
105
106 #ifdef CONFIG_X86_32
107
108 /*
109 * On x86_32, the mapping between cpu and logical apicid may vary
110 * depending on apic in use. The following early percpu variable is
111 * used for the mapping. This is where the behaviors of x86_64 and 32
112 * actually diverge. Let's keep it ugly for now.
113 */
114 DEFINE_EARLY_PER_CPU_READ_MOSTLY(int, x86_cpu_to_logical_apicid, BAD_APICID);
115
116 /* Local APIC was disabled by the BIOS and enabled by the kernel */
117 static int enabled_via_apicbase;
118
119 /*
120 * Handle interrupt mode configuration register (IMCR).
121 * This register controls whether the interrupt signals
122 * that reach the BSP come from the master PIC or from the
123 * local APIC. Before entering Symmetric I/O Mode, either
124 * the BIOS or the operating system must switch out of
125 * PIC Mode by changing the IMCR.
126 */
127 static inline void imcr_pic_to_apic(void)
128 {
129 /* select IMCR register */
130 outb(0x70, 0x22);
131 /* NMI and 8259 INTR go through APIC */
132 outb(0x01, 0x23);
133 }
134
135 static inline void imcr_apic_to_pic(void)
136 {
137 /* select IMCR register */
138 outb(0x70, 0x22);
139 /* NMI and 8259 INTR go directly to BSP */
140 outb(0x00, 0x23);
141 }
142 #endif
143
144 /*
145 * Knob to control our willingness to enable the local APIC.
146 *
147 * +1=force-enable
148 */
149 static int force_enable_local_apic __initdata;
150
151 /*
152 * APIC command line parameters
153 */
154 static int __init parse_lapic(char *arg)
155 {
156 if (IS_ENABLED(CONFIG_X86_32) && !arg)
157 force_enable_local_apic = 1;
158 else if (arg && !strncmp(arg, "notscdeadline", 13))
159 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
160 return 0;
161 }
162 early_param("lapic", parse_lapic);
163
164 #ifdef CONFIG_X86_64
165 static int apic_calibrate_pmtmr __initdata;
166 static __init int setup_apicpmtimer(char *s)
167 {
168 apic_calibrate_pmtmr = 1;
169 notsc_setup(NULL);
170 return 0;
171 }
172 __setup("apicpmtimer", setup_apicpmtimer);
173 #endif
174
175 unsigned long mp_lapic_addr;
176 int disable_apic;
177 /* Disable local APIC timer from the kernel commandline or via dmi quirk */
178 static int disable_apic_timer __initdata;
179 /* Local APIC timer works in C2 */
180 int local_apic_timer_c2_ok;
181 EXPORT_SYMBOL_GPL(local_apic_timer_c2_ok);
182
183 /*
184 * Debug level, exported for io_apic.c
185 */
186 int apic_verbosity;
187
188 int pic_mode;
189
190 /* Have we found an MP table */
191 int smp_found_config;
192
193 static struct resource lapic_resource = {
194 .name = "Local APIC",
195 .flags = IORESOURCE_MEM | IORESOURCE_BUSY,
196 };
197
198 unsigned int lapic_timer_period = 0;
199
200 static void apic_pm_activate(void);
201
202 static unsigned long apic_phys;
203
204 /*
205 * Get the LAPIC version
206 */
207 static inline int lapic_get_version(void)
208 {
209 return GET_APIC_VERSION(apic_read(APIC_LVR));
210 }
211
212 /*
213 * Check, if the APIC is integrated or a separate chip
214 */
215 static inline int lapic_is_integrated(void)
216 {
217 return APIC_INTEGRATED(lapic_get_version());
218 }
219
220 /*
221 * Check, whether this is a modern or a first generation APIC
222 */
223 static int modern_apic(void)
224 {
225 /* AMD systems use old APIC versions, so check the CPU */
226 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
227 boot_cpu_data.x86 >= 0xf)
228 return 1;
229
230 /* Hygon systems use modern APIC */
231 if (boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
232 return 1;
233
234 return lapic_get_version() >= 0x14;
235 }
236
237 /*
238 * right after this call apic become NOOP driven
239 * so apic->write/read doesn't do anything
240 */
241 static void __init apic_disable(void)
242 {
243 pr_info("APIC: switched to apic NOOP\n");
244 apic = &apic_noop;
245 }
246
247 void native_apic_wait_icr_idle(void)
248 {
249 while (apic_read(APIC_ICR) & APIC_ICR_BUSY)
250 cpu_relax();
251 }
252
253 u32 native_safe_apic_wait_icr_idle(void)
254 {
255 u32 send_status;
256 int timeout;
257
258 timeout = 0;
259 do {
260 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
261 if (!send_status)
262 break;
263 inc_irq_stat(icr_read_retry_count);
264 udelay(100);
265 } while (timeout++ < 1000);
266
267 return send_status;
268 }
269
270 void native_apic_icr_write(u32 low, u32 id)
271 {
272 unsigned long flags;
273
274 local_irq_save(flags);
275 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(id));
276 apic_write(APIC_ICR, low);
277 local_irq_restore(flags);
278 }
279
280 u64 native_apic_icr_read(void)
281 {
282 u32 icr1, icr2;
283
284 icr2 = apic_read(APIC_ICR2);
285 icr1 = apic_read(APIC_ICR);
286
287 return icr1 | ((u64)icr2 << 32);
288 }
289
290 #ifdef CONFIG_X86_32
291 /**
292 * get_physical_broadcast - Get number of physical broadcast IDs
293 */
294 int get_physical_broadcast(void)
295 {
296 return modern_apic() ? 0xff : 0xf;
297 }
298 #endif
299
300 /**
301 * lapic_get_maxlvt - get the maximum number of local vector table entries
302 */
303 int lapic_get_maxlvt(void)
304 {
305 /*
306 * - we always have APIC integrated on 64bit mode
307 * - 82489DXs do not report # of LVT entries
308 */
309 return lapic_is_integrated() ? GET_APIC_MAXLVT(apic_read(APIC_LVR)) : 2;
310 }
311
312 /*
313 * Local APIC timer
314 */
315
316 /* Clock divisor */
317 #define APIC_DIVISOR 16
318 #define TSC_DIVISOR 8
319
320 /*
321 * This function sets up the local APIC timer, with a timeout of
322 * 'clocks' APIC bus clock. During calibration we actually call
323 * this function twice on the boot CPU, once with a bogus timeout
324 * value, second time for real. The other (noncalibrating) CPUs
325 * call this function only once, with the real, calibrated value.
326 *
327 * We do reads before writes even if unnecessary, to get around the
328 * P5 APIC double write bug.
329 */
330 static void __setup_APIC_LVTT(unsigned int clocks, int oneshot, int irqen)
331 {
332 unsigned int lvtt_value, tmp_value;
333
334 lvtt_value = LOCAL_TIMER_VECTOR;
335 if (!oneshot)
336 lvtt_value |= APIC_LVT_TIMER_PERIODIC;
337 else if (boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER))
338 lvtt_value |= APIC_LVT_TIMER_TSCDEADLINE;
339
340 if (!lapic_is_integrated())
341 lvtt_value |= SET_APIC_TIMER_BASE(APIC_TIMER_BASE_DIV);
342
343 if (!irqen)
344 lvtt_value |= APIC_LVT_MASKED;
345
346 apic_write(APIC_LVTT, lvtt_value);
347
348 if (lvtt_value & APIC_LVT_TIMER_TSCDEADLINE) {
349 /*
350 * See Intel SDM: TSC-Deadline Mode chapter. In xAPIC mode,
351 * writing to the APIC LVTT and TSC_DEADLINE MSR isn't serialized.
352 * According to Intel, MFENCE can do the serialization here.
353 */
354 asm volatile("mfence" : : : "memory");
355
356 printk_once(KERN_DEBUG "TSC deadline timer enabled\n");
357 return;
358 }
359
360 /*
361 * Divide PICLK by 16
362 */
363 tmp_value = apic_read(APIC_TDCR);
364 apic_write(APIC_TDCR,
365 (tmp_value & ~(APIC_TDR_DIV_1 | APIC_TDR_DIV_TMBASE)) |
366 APIC_TDR_DIV_16);
367
368 if (!oneshot)
369 apic_write(APIC_TMICT, clocks / APIC_DIVISOR);
370 }
371
372 /*
373 * Setup extended LVT, AMD specific
374 *
375 * Software should use the LVT offsets the BIOS provides. The offsets
376 * are determined by the subsystems using it like those for MCE
377 * threshold or IBS. On K8 only offset 0 (APIC500) and MCE interrupts
378 * are supported. Beginning with family 10h at least 4 offsets are
379 * available.
380 *
381 * Since the offsets must be consistent for all cores, we keep track
382 * of the LVT offsets in software and reserve the offset for the same
383 * vector also to be used on other cores. An offset is freed by
384 * setting the entry to APIC_EILVT_MASKED.
385 *
386 * If the BIOS is right, there should be no conflicts. Otherwise a
387 * "[Firmware Bug]: ..." error message is generated. However, if
388 * software does not properly determines the offsets, it is not
389 * necessarily a BIOS bug.
390 */
391
392 static atomic_t eilvt_offsets[APIC_EILVT_NR_MAX];
393
394 static inline int eilvt_entry_is_changeable(unsigned int old, unsigned int new)
395 {
396 return (old & APIC_EILVT_MASKED)
397 || (new == APIC_EILVT_MASKED)
398 || ((new & ~APIC_EILVT_MASKED) == old);
399 }
400
401 static unsigned int reserve_eilvt_offset(int offset, unsigned int new)
402 {
403 unsigned int rsvd, vector;
404
405 if (offset >= APIC_EILVT_NR_MAX)
406 return ~0;
407
408 rsvd = atomic_read(&eilvt_offsets[offset]);
409 do {
410 vector = rsvd & ~APIC_EILVT_MASKED; /* 0: unassigned */
411 if (vector && !eilvt_entry_is_changeable(vector, new))
412 /* may not change if vectors are different */
413 return rsvd;
414 rsvd = atomic_cmpxchg(&eilvt_offsets[offset], rsvd, new);
415 } while (rsvd != new);
416
417 rsvd &= ~APIC_EILVT_MASKED;
418 if (rsvd && rsvd != vector)
419 pr_info("LVT offset %d assigned for vector 0x%02x\n",
420 offset, rsvd);
421
422 return new;
423 }
424
425 /*
426 * If mask=1, the LVT entry does not generate interrupts while mask=0
427 * enables the vector. See also the BKDGs. Must be called with
428 * preemption disabled.
429 */
430
431 int setup_APIC_eilvt(u8 offset, u8 vector, u8 msg_type, u8 mask)
432 {
433 unsigned long reg = APIC_EILVTn(offset);
434 unsigned int new, old, reserved;
435
436 new = (mask << 16) | (msg_type << 8) | vector;
437 old = apic_read(reg);
438 reserved = reserve_eilvt_offset(offset, new);
439
440 if (reserved != new) {
441 pr_err(FW_BUG "cpu %d, try to use APIC%lX (LVT offset %d) for "
442 "vector 0x%x, but the register is already in use for "
443 "vector 0x%x on another cpu\n",
444 smp_processor_id(), reg, offset, new, reserved);
445 return -EINVAL;
446 }
447
448 if (!eilvt_entry_is_changeable(old, new)) {
449 pr_err(FW_BUG "cpu %d, try to use APIC%lX (LVT offset %d) for "
450 "vector 0x%x, but the register is already in use for "
451 "vector 0x%x on this cpu\n",
452 smp_processor_id(), reg, offset, new, old);
453 return -EBUSY;
454 }
455
456 apic_write(reg, new);
457
458 return 0;
459 }
460 EXPORT_SYMBOL_GPL(setup_APIC_eilvt);
461
462 /*
463 * Program the next event, relative to now
464 */
465 static int lapic_next_event(unsigned long delta,
466 struct clock_event_device *evt)
467 {
468 apic_write(APIC_TMICT, delta);
469 return 0;
470 }
471
472 static int lapic_next_deadline(unsigned long delta,
473 struct clock_event_device *evt)
474 {
475 u64 tsc;
476
477 tsc = rdtsc();
478 wrmsrl(MSR_IA32_TSC_DEADLINE, tsc + (((u64) delta) * TSC_DIVISOR));
479 return 0;
480 }
481
482 static int lapic_timer_shutdown(struct clock_event_device *evt)
483 {
484 unsigned int v;
485
486 /* Lapic used as dummy for broadcast ? */
487 if (evt->features & CLOCK_EVT_FEAT_DUMMY)
488 return 0;
489
490 v = apic_read(APIC_LVTT);
491 v |= (APIC_LVT_MASKED | LOCAL_TIMER_VECTOR);
492 apic_write(APIC_LVTT, v);
493 apic_write(APIC_TMICT, 0);
494 return 0;
495 }
496
497 static inline int
498 lapic_timer_set_periodic_oneshot(struct clock_event_device *evt, bool oneshot)
499 {
500 /* Lapic used as dummy for broadcast ? */
501 if (evt->features & CLOCK_EVT_FEAT_DUMMY)
502 return 0;
503
504 __setup_APIC_LVTT(lapic_timer_period, oneshot, 1);
505 return 0;
506 }
507
508 static int lapic_timer_set_periodic(struct clock_event_device *evt)
509 {
510 return lapic_timer_set_periodic_oneshot(evt, false);
511 }
512
513 static int lapic_timer_set_oneshot(struct clock_event_device *evt)
514 {
515 return lapic_timer_set_periodic_oneshot(evt, true);
516 }
517
518 /*
519 * Local APIC timer broadcast function
520 */
521 static void lapic_timer_broadcast(const struct cpumask *mask)
522 {
523 #ifdef CONFIG_SMP
524 apic->send_IPI_mask(mask, LOCAL_TIMER_VECTOR);
525 #endif
526 }
527
528
529 /*
530 * The local apic timer can be used for any function which is CPU local.
531 */
532 static struct clock_event_device lapic_clockevent = {
533 .name = "lapic",
534 .features = CLOCK_EVT_FEAT_PERIODIC |
535 CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_C3STOP
536 | CLOCK_EVT_FEAT_DUMMY,
537 .shift = 32,
538 .set_state_shutdown = lapic_timer_shutdown,
539 .set_state_periodic = lapic_timer_set_periodic,
540 .set_state_oneshot = lapic_timer_set_oneshot,
541 .set_state_oneshot_stopped = lapic_timer_shutdown,
542 .set_next_event = lapic_next_event,
543 .broadcast = lapic_timer_broadcast,
544 .rating = 100,
545 .irq = -1,
546 };
547 static DEFINE_PER_CPU(struct clock_event_device, lapic_events);
548
549 #define DEADLINE_MODEL_MATCH_FUNC(model, func) \
550 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_ANY, (unsigned long)&func }
551
552 #define DEADLINE_MODEL_MATCH_REV(model, rev) \
553 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_ANY, (unsigned long)rev }
554
555 static u32 hsx_deadline_rev(void)
556 {
557 switch (boot_cpu_data.x86_stepping) {
558 case 0x02: return 0x3a; /* EP */
559 case 0x04: return 0x0f; /* EX */
560 }
561
562 return ~0U;
563 }
564
565 static u32 bdx_deadline_rev(void)
566 {
567 switch (boot_cpu_data.x86_stepping) {
568 case 0x02: return 0x00000011;
569 case 0x03: return 0x0700000e;
570 case 0x04: return 0x0f00000c;
571 case 0x05: return 0x0e000003;
572 }
573
574 return ~0U;
575 }
576
577 static u32 skx_deadline_rev(void)
578 {
579 switch (boot_cpu_data.x86_stepping) {
580 case 0x03: return 0x01000136;
581 case 0x04: return 0x02000014;
582 }
583
584 if (boot_cpu_data.x86_stepping > 4)
585 return 0;
586
587 return ~0U;
588 }
589
590 static const struct x86_cpu_id deadline_match[] = {
591 DEADLINE_MODEL_MATCH_FUNC( INTEL_FAM6_HASWELL_X, hsx_deadline_rev),
592 DEADLINE_MODEL_MATCH_REV ( INTEL_FAM6_BROADWELL_X, 0x0b000020),
593 DEADLINE_MODEL_MATCH_FUNC( INTEL_FAM6_BROADWELL_D, bdx_deadline_rev),
594 DEADLINE_MODEL_MATCH_FUNC( INTEL_FAM6_SKYLAKE_X, skx_deadline_rev),
595
596 DEADLINE_MODEL_MATCH_REV ( INTEL_FAM6_HASWELL, 0x22),
597 DEADLINE_MODEL_MATCH_REV ( INTEL_FAM6_HASWELL_L, 0x20),
598 DEADLINE_MODEL_MATCH_REV ( INTEL_FAM6_HASWELL_G, 0x17),
599
600 DEADLINE_MODEL_MATCH_REV ( INTEL_FAM6_BROADWELL, 0x25),
601 DEADLINE_MODEL_MATCH_REV ( INTEL_FAM6_BROADWELL_G, 0x17),
602
603 DEADLINE_MODEL_MATCH_REV ( INTEL_FAM6_SKYLAKE_L, 0xb2),
604 DEADLINE_MODEL_MATCH_REV ( INTEL_FAM6_SKYLAKE, 0xb2),
605
606 DEADLINE_MODEL_MATCH_REV ( INTEL_FAM6_KABYLAKE_L, 0x52),
607 DEADLINE_MODEL_MATCH_REV ( INTEL_FAM6_KABYLAKE, 0x52),
608
609 {},
610 };
611
612 static void apic_check_deadline_errata(void)
613 {
614 const struct x86_cpu_id *m;
615 u32 rev;
616
617 if (!boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER) ||
618 boot_cpu_has(X86_FEATURE_HYPERVISOR))
619 return;
620
621 m = x86_match_cpu(deadline_match);
622 if (!m)
623 return;
624
625 /*
626 * Function pointers will have the MSB set due to address layout,
627 * immediate revisions will not.
628 */
629 if ((long)m->driver_data < 0)
630 rev = ((u32 (*)(void))(m->driver_data))();
631 else
632 rev = (u32)m->driver_data;
633
634 if (boot_cpu_data.microcode >= rev)
635 return;
636
637 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
638 pr_err(FW_BUG "TSC_DEADLINE disabled due to Errata; "
639 "please update microcode to version: 0x%x (or later)\n", rev);
640 }
641
642 /*
643 * Setup the local APIC timer for this CPU. Copy the initialized values
644 * of the boot CPU and register the clock event in the framework.
645 */
646 static void setup_APIC_timer(void)
647 {
648 struct clock_event_device *levt = this_cpu_ptr(&lapic_events);
649
650 if (this_cpu_has(X86_FEATURE_ARAT)) {
651 lapic_clockevent.features &= ~CLOCK_EVT_FEAT_C3STOP;
652 /* Make LAPIC timer preferrable over percpu HPET */
653 lapic_clockevent.rating = 150;
654 }
655
656 memcpy(levt, &lapic_clockevent, sizeof(*levt));
657 levt->cpumask = cpumask_of(smp_processor_id());
658
659 if (this_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER)) {
660 levt->name = "lapic-deadline";
661 levt->features &= ~(CLOCK_EVT_FEAT_PERIODIC |
662 CLOCK_EVT_FEAT_DUMMY);
663 levt->set_next_event = lapic_next_deadline;
664 clockevents_config_and_register(levt,
665 tsc_khz * (1000 / TSC_DIVISOR),
666 0xF, ~0UL);
667 } else
668 clockevents_register_device(levt);
669 }
670
671 /*
672 * Install the updated TSC frequency from recalibration at the TSC
673 * deadline clockevent devices.
674 */
675 static void __lapic_update_tsc_freq(void *info)
676 {
677 struct clock_event_device *levt = this_cpu_ptr(&lapic_events);
678
679 if (!this_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER))
680 return;
681
682 clockevents_update_freq(levt, tsc_khz * (1000 / TSC_DIVISOR));
683 }
684
685 void lapic_update_tsc_freq(void)
686 {
687 /*
688 * The clockevent device's ->mult and ->shift can both be
689 * changed. In order to avoid races, schedule the frequency
690 * update code on each CPU.
691 */
692 on_each_cpu(__lapic_update_tsc_freq, NULL, 0);
693 }
694
695 /*
696 * In this functions we calibrate APIC bus clocks to the external timer.
697 *
698 * We want to do the calibration only once since we want to have local timer
699 * irqs syncron. CPUs connected by the same APIC bus have the very same bus
700 * frequency.
701 *
702 * This was previously done by reading the PIT/HPET and waiting for a wrap
703 * around to find out, that a tick has elapsed. I have a box, where the PIT
704 * readout is broken, so it never gets out of the wait loop again. This was
705 * also reported by others.
706 *
707 * Monitoring the jiffies value is inaccurate and the clockevents
708 * infrastructure allows us to do a simple substitution of the interrupt
709 * handler.
710 *
711 * The calibration routine also uses the pm_timer when possible, as the PIT
712 * happens to run way too slow (factor 2.3 on my VAIO CoreDuo, which goes
713 * back to normal later in the boot process).
714 */
715
716 #define LAPIC_CAL_LOOPS (HZ/10)
717
718 static __initdata int lapic_cal_loops = -1;
719 static __initdata long lapic_cal_t1, lapic_cal_t2;
720 static __initdata unsigned long long lapic_cal_tsc1, lapic_cal_tsc2;
721 static __initdata unsigned long lapic_cal_pm1, lapic_cal_pm2;
722 static __initdata unsigned long lapic_cal_j1, lapic_cal_j2;
723
724 /*
725 * Temporary interrupt handler and polled calibration function.
726 */
727 static void __init lapic_cal_handler(struct clock_event_device *dev)
728 {
729 unsigned long long tsc = 0;
730 long tapic = apic_read(APIC_TMCCT);
731 unsigned long pm = acpi_pm_read_early();
732
733 if (boot_cpu_has(X86_FEATURE_TSC))
734 tsc = rdtsc();
735
736 switch (lapic_cal_loops++) {
737 case 0:
738 lapic_cal_t1 = tapic;
739 lapic_cal_tsc1 = tsc;
740 lapic_cal_pm1 = pm;
741 lapic_cal_j1 = jiffies;
742 break;
743
744 case LAPIC_CAL_LOOPS:
745 lapic_cal_t2 = tapic;
746 lapic_cal_tsc2 = tsc;
747 if (pm < lapic_cal_pm1)
748 pm += ACPI_PM_OVRRUN;
749 lapic_cal_pm2 = pm;
750 lapic_cal_j2 = jiffies;
751 break;
752 }
753 }
754
755 static int __init
756 calibrate_by_pmtimer(long deltapm, long *delta, long *deltatsc)
757 {
758 const long pm_100ms = PMTMR_TICKS_PER_SEC / 10;
759 const long pm_thresh = pm_100ms / 100;
760 unsigned long mult;
761 u64 res;
762
763 #ifndef CONFIG_X86_PM_TIMER
764 return -1;
765 #endif
766
767 apic_printk(APIC_VERBOSE, "... PM-Timer delta = %ld\n", deltapm);
768
769 /* Check, if the PM timer is available */
770 if (!deltapm)
771 return -1;
772
773 mult = clocksource_hz2mult(PMTMR_TICKS_PER_SEC, 22);
774
775 if (deltapm > (pm_100ms - pm_thresh) &&
776 deltapm < (pm_100ms + pm_thresh)) {
777 apic_printk(APIC_VERBOSE, "... PM-Timer result ok\n");
778 return 0;
779 }
780
781 res = (((u64)deltapm) * mult) >> 22;
782 do_div(res, 1000000);
783 pr_warning("APIC calibration not consistent "
784 "with PM-Timer: %ldms instead of 100ms\n",(long)res);
785
786 /* Correct the lapic counter value */
787 res = (((u64)(*delta)) * pm_100ms);
788 do_div(res, deltapm);
789 pr_info("APIC delta adjusted to PM-Timer: "
790 "%lu (%ld)\n", (unsigned long)res, *delta);
791 *delta = (long)res;
792
793 /* Correct the tsc counter value */
794 if (boot_cpu_has(X86_FEATURE_TSC)) {
795 res = (((u64)(*deltatsc)) * pm_100ms);
796 do_div(res, deltapm);
797 apic_printk(APIC_VERBOSE, "TSC delta adjusted to "
798 "PM-Timer: %lu (%ld)\n",
799 (unsigned long)res, *deltatsc);
800 *deltatsc = (long)res;
801 }
802
803 return 0;
804 }
805
806 static int __init lapic_init_clockevent(void)
807 {
808 if (!lapic_timer_period)
809 return -1;
810
811 /* Calculate the scaled math multiplication factor */
812 lapic_clockevent.mult = div_sc(lapic_timer_period/APIC_DIVISOR,
813 TICK_NSEC, lapic_clockevent.shift);
814 lapic_clockevent.max_delta_ns =
815 clockevent_delta2ns(0x7FFFFFFF, &lapic_clockevent);
816 lapic_clockevent.max_delta_ticks = 0x7FFFFFFF;
817 lapic_clockevent.min_delta_ns =
818 clockevent_delta2ns(0xF, &lapic_clockevent);
819 lapic_clockevent.min_delta_ticks = 0xF;
820
821 return 0;
822 }
823
824 bool __init apic_needs_pit(void)
825 {
826 /*
827 * If the frequencies are not known, PIT is required for both TSC
828 * and apic timer calibration.
829 */
830 if (!tsc_khz || !cpu_khz)
831 return true;
832
833 /* Is there an APIC at all? */
834 if (!boot_cpu_has(X86_FEATURE_APIC))
835 return true;
836
837 /* Deadline timer is based on TSC so no further PIT action required */
838 if (boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER))
839 return false;
840
841 /* APIC timer disabled? */
842 if (disable_apic_timer)
843 return true;
844 /*
845 * The APIC timer frequency is known already, no PIT calibration
846 * required. If unknown, let the PIT be initialized.
847 */
848 return lapic_timer_period == 0;
849 }
850
851 static int __init calibrate_APIC_clock(void)
852 {
853 struct clock_event_device *levt = this_cpu_ptr(&lapic_events);
854 u64 tsc_perj = 0, tsc_start = 0;
855 unsigned long jif_start;
856 unsigned long deltaj;
857 long delta, deltatsc;
858 int pm_referenced = 0;
859
860 if (boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER))
861 return 0;
862
863 /*
864 * Check if lapic timer has already been calibrated by platform
865 * specific routine, such as tsc calibration code. If so just fill
866 * in the clockevent structure and return.
867 */
868 if (!lapic_init_clockevent()) {
869 apic_printk(APIC_VERBOSE, "lapic timer already calibrated %d\n",
870 lapic_timer_period);
871 /*
872 * Direct calibration methods must have an always running
873 * local APIC timer, no need for broadcast timer.
874 */
875 lapic_clockevent.features &= ~CLOCK_EVT_FEAT_DUMMY;
876 return 0;
877 }
878
879 apic_printk(APIC_VERBOSE, "Using local APIC timer interrupts.\n"
880 "calibrating APIC timer ...\n");
881
882 /*
883 * There are platforms w/o global clockevent devices. Instead of
884 * making the calibration conditional on that, use a polling based
885 * approach everywhere.
886 */
887 local_irq_disable();
888
889 /*
890 * Setup the APIC counter to maximum. There is no way the lapic
891 * can underflow in the 100ms detection time frame
892 */
893 __setup_APIC_LVTT(0xffffffff, 0, 0);
894
895 /*
896 * Methods to terminate the calibration loop:
897 * 1) Global clockevent if available (jiffies)
898 * 2) TSC if available and frequency is known
899 */
900 jif_start = READ_ONCE(jiffies);
901
902 if (tsc_khz) {
903 tsc_start = rdtsc();
904 tsc_perj = div_u64((u64)tsc_khz * 1000, HZ);
905 }
906
907 /*
908 * Enable interrupts so the tick can fire, if a global
909 * clockevent device is available
910 */
911 local_irq_enable();
912
913 while (lapic_cal_loops <= LAPIC_CAL_LOOPS) {
914 /* Wait for a tick to elapse */
915 while (1) {
916 if (tsc_khz) {
917 u64 tsc_now = rdtsc();
918 if ((tsc_now - tsc_start) >= tsc_perj) {
919 tsc_start += tsc_perj;
920 break;
921 }
922 } else {
923 unsigned long jif_now = READ_ONCE(jiffies);
924
925 if (time_after(jif_now, jif_start)) {
926 jif_start = jif_now;
927 break;
928 }
929 }
930 cpu_relax();
931 }
932
933 /* Invoke the calibration routine */
934 local_irq_disable();
935 lapic_cal_handler(NULL);
936 local_irq_enable();
937 }
938
939 local_irq_disable();
940
941 /* Build delta t1-t2 as apic timer counts down */
942 delta = lapic_cal_t1 - lapic_cal_t2;
943 apic_printk(APIC_VERBOSE, "... lapic delta = %ld\n", delta);
944
945 deltatsc = (long)(lapic_cal_tsc2 - lapic_cal_tsc1);
946
947 /* we trust the PM based calibration if possible */
948 pm_referenced = !calibrate_by_pmtimer(lapic_cal_pm2 - lapic_cal_pm1,
949 &delta, &deltatsc);
950
951 lapic_timer_period = (delta * APIC_DIVISOR) / LAPIC_CAL_LOOPS;
952 lapic_init_clockevent();
953
954 apic_printk(APIC_VERBOSE, "..... delta %ld\n", delta);
955 apic_printk(APIC_VERBOSE, "..... mult: %u\n", lapic_clockevent.mult);
956 apic_printk(APIC_VERBOSE, "..... calibration result: %u\n",
957 lapic_timer_period);
958
959 if (boot_cpu_has(X86_FEATURE_TSC)) {
960 apic_printk(APIC_VERBOSE, "..... CPU clock speed is "
961 "%ld.%04ld MHz.\n",
962 (deltatsc / LAPIC_CAL_LOOPS) / (1000000 / HZ),
963 (deltatsc / LAPIC_CAL_LOOPS) % (1000000 / HZ));
964 }
965
966 apic_printk(APIC_VERBOSE, "..... host bus clock speed is "
967 "%u.%04u MHz.\n",
968 lapic_timer_period / (1000000 / HZ),
969 lapic_timer_period % (1000000 / HZ));
970
971 /*
972 * Do a sanity check on the APIC calibration result
973 */
974 if (lapic_timer_period < (1000000 / HZ)) {
975 local_irq_enable();
976 pr_warning("APIC frequency too slow, disabling apic timer\n");
977 return -1;
978 }
979
980 levt->features &= ~CLOCK_EVT_FEAT_DUMMY;
981
982 /*
983 * PM timer calibration failed or not turned on so lets try APIC
984 * timer based calibration, if a global clockevent device is
985 * available.
986 */
987 if (!pm_referenced && global_clock_event) {
988 apic_printk(APIC_VERBOSE, "... verify APIC timer\n");
989
990 /*
991 * Setup the apic timer manually
992 */
993 levt->event_handler = lapic_cal_handler;
994 lapic_timer_set_periodic(levt);
995 lapic_cal_loops = -1;
996
997 /* Let the interrupts run */
998 local_irq_enable();
999
1000 while (lapic_cal_loops <= LAPIC_CAL_LOOPS)
1001 cpu_relax();
1002
1003 /* Stop the lapic timer */
1004 local_irq_disable();
1005 lapic_timer_shutdown(levt);
1006
1007 /* Jiffies delta */
1008 deltaj = lapic_cal_j2 - lapic_cal_j1;
1009 apic_printk(APIC_VERBOSE, "... jiffies delta = %lu\n", deltaj);
1010
1011 /* Check, if the jiffies result is consistent */
1012 if (deltaj >= LAPIC_CAL_LOOPS-2 && deltaj <= LAPIC_CAL_LOOPS+2)
1013 apic_printk(APIC_VERBOSE, "... jiffies result ok\n");
1014 else
1015 levt->features |= CLOCK_EVT_FEAT_DUMMY;
1016 }
1017 local_irq_enable();
1018
1019 if (levt->features & CLOCK_EVT_FEAT_DUMMY) {
1020 pr_warning("APIC timer disabled due to verification failure\n");
1021 return -1;
1022 }
1023
1024 return 0;
1025 }
1026
1027 /*
1028 * Setup the boot APIC
1029 *
1030 * Calibrate and verify the result.
1031 */
1032 void __init setup_boot_APIC_clock(void)
1033 {
1034 /*
1035 * The local apic timer can be disabled via the kernel
1036 * commandline or from the CPU detection code. Register the lapic
1037 * timer as a dummy clock event source on SMP systems, so the
1038 * broadcast mechanism is used. On UP systems simply ignore it.
1039 */
1040 if (disable_apic_timer) {
1041 pr_info("Disabling APIC timer\n");
1042 /* No broadcast on UP ! */
1043 if (num_possible_cpus() > 1) {
1044 lapic_clockevent.mult = 1;
1045 setup_APIC_timer();
1046 }
1047 return;
1048 }
1049
1050 if (calibrate_APIC_clock()) {
1051 /* No broadcast on UP ! */
1052 if (num_possible_cpus() > 1)
1053 setup_APIC_timer();
1054 return;
1055 }
1056
1057 /*
1058 * If nmi_watchdog is set to IO_APIC, we need the
1059 * PIT/HPET going. Otherwise register lapic as a dummy
1060 * device.
1061 */
1062 lapic_clockevent.features &= ~CLOCK_EVT_FEAT_DUMMY;
1063
1064 /* Setup the lapic or request the broadcast */
1065 setup_APIC_timer();
1066 amd_e400_c1e_apic_setup();
1067 }
1068
1069 void setup_secondary_APIC_clock(void)
1070 {
1071 setup_APIC_timer();
1072 amd_e400_c1e_apic_setup();
1073 }
1074
1075 /*
1076 * The guts of the apic timer interrupt
1077 */
1078 static void local_apic_timer_interrupt(void)
1079 {
1080 struct clock_event_device *evt = this_cpu_ptr(&lapic_events);
1081
1082 /*
1083 * Normally we should not be here till LAPIC has been initialized but
1084 * in some cases like kdump, its possible that there is a pending LAPIC
1085 * timer interrupt from previous kernel's context and is delivered in
1086 * new kernel the moment interrupts are enabled.
1087 *
1088 * Interrupts are enabled early and LAPIC is setup much later, hence
1089 * its possible that when we get here evt->event_handler is NULL.
1090 * Check for event_handler being NULL and discard the interrupt as
1091 * spurious.
1092 */
1093 if (!evt->event_handler) {
1094 pr_warning("Spurious LAPIC timer interrupt on cpu %d\n",
1095 smp_processor_id());
1096 /* Switch it off */
1097 lapic_timer_shutdown(evt);
1098 return;
1099 }
1100
1101 /*
1102 * the NMI deadlock-detector uses this.
1103 */
1104 inc_irq_stat(apic_timer_irqs);
1105
1106 evt->event_handler(evt);
1107 }
1108
1109 /*
1110 * Local APIC timer interrupt. This is the most natural way for doing
1111 * local interrupts, but local timer interrupts can be emulated by
1112 * broadcast interrupts too. [in case the hw doesn't support APIC timers]
1113 *
1114 * [ if a single-CPU system runs an SMP kernel then we call the local
1115 * interrupt as well. Thus we cannot inline the local irq ... ]
1116 */
1117 __visible void __irq_entry smp_apic_timer_interrupt(struct pt_regs *regs)
1118 {
1119 struct pt_regs *old_regs = set_irq_regs(regs);
1120
1121 /*
1122 * NOTE! We'd better ACK the irq immediately,
1123 * because timer handling can be slow.
1124 *
1125 * update_process_times() expects us to have done irq_enter().
1126 * Besides, if we don't timer interrupts ignore the global
1127 * interrupt lock, which is the WrongThing (tm) to do.
1128 */
1129 entering_ack_irq();
1130 trace_local_timer_entry(LOCAL_TIMER_VECTOR);
1131 local_apic_timer_interrupt();
1132 trace_local_timer_exit(LOCAL_TIMER_VECTOR);
1133 exiting_irq();
1134
1135 set_irq_regs(old_regs);
1136 }
1137
1138 int setup_profiling_timer(unsigned int multiplier)
1139 {
1140 return -EINVAL;
1141 }
1142
1143 /*
1144 * Local APIC start and shutdown
1145 */
1146
1147 /**
1148 * clear_local_APIC - shutdown the local APIC
1149 *
1150 * This is called, when a CPU is disabled and before rebooting, so the state of
1151 * the local APIC has no dangling leftovers. Also used to cleanout any BIOS
1152 * leftovers during boot.
1153 */
1154 void clear_local_APIC(void)
1155 {
1156 int maxlvt;
1157 u32 v;
1158
1159 /* APIC hasn't been mapped yet */
1160 if (!x2apic_mode && !apic_phys)
1161 return;
1162
1163 maxlvt = lapic_get_maxlvt();
1164 /*
1165 * Masking an LVT entry can trigger a local APIC error
1166 * if the vector is zero. Mask LVTERR first to prevent this.
1167 */
1168 if (maxlvt >= 3) {
1169 v = ERROR_APIC_VECTOR; /* any non-zero vector will do */
1170 apic_write(APIC_LVTERR, v | APIC_LVT_MASKED);
1171 }
1172 /*
1173 * Careful: we have to set masks only first to deassert
1174 * any level-triggered sources.
1175 */
1176 v = apic_read(APIC_LVTT);
1177 apic_write(APIC_LVTT, v | APIC_LVT_MASKED);
1178 v = apic_read(APIC_LVT0);
1179 apic_write(APIC_LVT0, v | APIC_LVT_MASKED);
1180 v = apic_read(APIC_LVT1);
1181 apic_write(APIC_LVT1, v | APIC_LVT_MASKED);
1182 if (maxlvt >= 4) {
1183 v = apic_read(APIC_LVTPC);
1184 apic_write(APIC_LVTPC, v | APIC_LVT_MASKED);
1185 }
1186
1187 /* lets not touch this if we didn't frob it */
1188 #ifdef CONFIG_X86_THERMAL_VECTOR
1189 if (maxlvt >= 5) {
1190 v = apic_read(APIC_LVTTHMR);
1191 apic_write(APIC_LVTTHMR, v | APIC_LVT_MASKED);
1192 }
1193 #endif
1194 #ifdef CONFIG_X86_MCE_INTEL
1195 if (maxlvt >= 6) {
1196 v = apic_read(APIC_LVTCMCI);
1197 if (!(v & APIC_LVT_MASKED))
1198 apic_write(APIC_LVTCMCI, v | APIC_LVT_MASKED);
1199 }
1200 #endif
1201
1202 /*
1203 * Clean APIC state for other OSs:
1204 */
1205 apic_write(APIC_LVTT, APIC_LVT_MASKED);
1206 apic_write(APIC_LVT0, APIC_LVT_MASKED);
1207 apic_write(APIC_LVT1, APIC_LVT_MASKED);
1208 if (maxlvt >= 3)
1209 apic_write(APIC_LVTERR, APIC_LVT_MASKED);
1210 if (maxlvt >= 4)
1211 apic_write(APIC_LVTPC, APIC_LVT_MASKED);
1212
1213 /* Integrated APIC (!82489DX) ? */
1214 if (lapic_is_integrated()) {
1215 if (maxlvt > 3)
1216 /* Clear ESR due to Pentium errata 3AP and 11AP */
1217 apic_write(APIC_ESR, 0);
1218 apic_read(APIC_ESR);
1219 }
1220 }
1221
1222 /**
1223 * disable_local_APIC - clear and disable the local APIC
1224 */
1225 void disable_local_APIC(void)
1226 {
1227 unsigned int value;
1228
1229 /* APIC hasn't been mapped yet */
1230 if (!x2apic_mode && !apic_phys)
1231 return;
1232
1233 clear_local_APIC();
1234
1235 /*
1236 * Disable APIC (implies clearing of registers
1237 * for 82489DX!).
1238 */
1239 value = apic_read(APIC_SPIV);
1240 value &= ~APIC_SPIV_APIC_ENABLED;
1241 apic_write(APIC_SPIV, value);
1242
1243 #ifdef CONFIG_X86_32
1244 /*
1245 * When LAPIC was disabled by the BIOS and enabled by the kernel,
1246 * restore the disabled state.
1247 */
1248 if (enabled_via_apicbase) {
1249 unsigned int l, h;
1250
1251 rdmsr(MSR_IA32_APICBASE, l, h);
1252 l &= ~MSR_IA32_APICBASE_ENABLE;
1253 wrmsr(MSR_IA32_APICBASE, l, h);
1254 }
1255 #endif
1256 }
1257
1258 /*
1259 * If Linux enabled the LAPIC against the BIOS default disable it down before
1260 * re-entering the BIOS on shutdown. Otherwise the BIOS may get confused and
1261 * not power-off. Additionally clear all LVT entries before disable_local_APIC
1262 * for the case where Linux didn't enable the LAPIC.
1263 */
1264 void lapic_shutdown(void)
1265 {
1266 unsigned long flags;
1267
1268 if (!boot_cpu_has(X86_FEATURE_APIC) && !apic_from_smp_config())
1269 return;
1270
1271 local_irq_save(flags);
1272
1273 #ifdef CONFIG_X86_32
1274 if (!enabled_via_apicbase)
1275 clear_local_APIC();
1276 else
1277 #endif
1278 disable_local_APIC();
1279
1280
1281 local_irq_restore(flags);
1282 }
1283
1284 /**
1285 * sync_Arb_IDs - synchronize APIC bus arbitration IDs
1286 */
1287 void __init sync_Arb_IDs(void)
1288 {
1289 /*
1290 * Unsupported on P4 - see Intel Dev. Manual Vol. 3, Ch. 8.6.1 And not
1291 * needed on AMD.
1292 */
1293 if (modern_apic() || boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
1294 return;
1295
1296 /*
1297 * Wait for idle.
1298 */
1299 apic_wait_icr_idle();
1300
1301 apic_printk(APIC_DEBUG, "Synchronizing Arb IDs.\n");
1302 apic_write(APIC_ICR, APIC_DEST_ALLINC |
1303 APIC_INT_LEVELTRIG | APIC_DM_INIT);
1304 }
1305
1306 enum apic_intr_mode_id apic_intr_mode;
1307
1308 static int __init apic_intr_mode_select(void)
1309 {
1310 /* Check kernel option */
1311 if (disable_apic) {
1312 pr_info("APIC disabled via kernel command line\n");
1313 return APIC_PIC;
1314 }
1315
1316 /* Check BIOS */
1317 #ifdef CONFIG_X86_64
1318 /* On 64-bit, the APIC must be integrated, Check local APIC only */
1319 if (!boot_cpu_has(X86_FEATURE_APIC)) {
1320 disable_apic = 1;
1321 pr_info("APIC disabled by BIOS\n");
1322 return APIC_PIC;
1323 }
1324 #else
1325 /* On 32-bit, the APIC may be integrated APIC or 82489DX */
1326
1327 /* Neither 82489DX nor integrated APIC ? */
1328 if (!boot_cpu_has(X86_FEATURE_APIC) && !smp_found_config) {
1329 disable_apic = 1;
1330 return APIC_PIC;
1331 }
1332
1333 /* If the BIOS pretends there is an integrated APIC ? */
1334 if (!boot_cpu_has(X86_FEATURE_APIC) &&
1335 APIC_INTEGRATED(boot_cpu_apic_version)) {
1336 disable_apic = 1;
1337 pr_err(FW_BUG "Local APIC %d not detected, force emulation\n",
1338 boot_cpu_physical_apicid);
1339 return APIC_PIC;
1340 }
1341 #endif
1342
1343 /* Check MP table or ACPI MADT configuration */
1344 if (!smp_found_config) {
1345 disable_ioapic_support();
1346 if (!acpi_lapic) {
1347 pr_info("APIC: ACPI MADT or MP tables are not detected\n");
1348 return APIC_VIRTUAL_WIRE_NO_CONFIG;
1349 }
1350 return APIC_VIRTUAL_WIRE;
1351 }
1352
1353 #ifdef CONFIG_SMP
1354 /* If SMP should be disabled, then really disable it! */
1355 if (!setup_max_cpus) {
1356 pr_info("APIC: SMP mode deactivated\n");
1357 return APIC_SYMMETRIC_IO_NO_ROUTING;
1358 }
1359
1360 if (read_apic_id() != boot_cpu_physical_apicid) {
1361 panic("Boot APIC ID in local APIC unexpected (%d vs %d)",
1362 read_apic_id(), boot_cpu_physical_apicid);
1363 /* Or can we switch back to PIC here? */
1364 }
1365 #endif
1366
1367 return APIC_SYMMETRIC_IO;
1368 }
1369
1370 /*
1371 * An initial setup of the virtual wire mode.
1372 */
1373 void __init init_bsp_APIC(void)
1374 {
1375 unsigned int value;
1376
1377 /*
1378 * Don't do the setup now if we have a SMP BIOS as the
1379 * through-I/O-APIC virtual wire mode might be active.
1380 */
1381 if (smp_found_config || !boot_cpu_has(X86_FEATURE_APIC))
1382 return;
1383
1384 /*
1385 * Do not trust the local APIC being empty at bootup.
1386 */
1387 clear_local_APIC();
1388
1389 /*
1390 * Enable APIC.
1391 */
1392 value = apic_read(APIC_SPIV);
1393 value &= ~APIC_VECTOR_MASK;
1394 value |= APIC_SPIV_APIC_ENABLED;
1395
1396 #ifdef CONFIG_X86_32
1397 /* This bit is reserved on P4/Xeon and should be cleared */
1398 if ((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) &&
1399 (boot_cpu_data.x86 == 15))
1400 value &= ~APIC_SPIV_FOCUS_DISABLED;
1401 else
1402 #endif
1403 value |= APIC_SPIV_FOCUS_DISABLED;
1404 value |= SPURIOUS_APIC_VECTOR;
1405 apic_write(APIC_SPIV, value);
1406
1407 /*
1408 * Set up the virtual wire mode.
1409 */
1410 apic_write(APIC_LVT0, APIC_DM_EXTINT);
1411 value = APIC_DM_NMI;
1412 if (!lapic_is_integrated()) /* 82489DX */
1413 value |= APIC_LVT_LEVEL_TRIGGER;
1414 if (apic_extnmi == APIC_EXTNMI_NONE)
1415 value |= APIC_LVT_MASKED;
1416 apic_write(APIC_LVT1, value);
1417 }
1418
1419 static void __init apic_bsp_setup(bool upmode);
1420
1421 /* Init the interrupt delivery mode for the BSP */
1422 void __init apic_intr_mode_init(void)
1423 {
1424 bool upmode = IS_ENABLED(CONFIG_UP_LATE_INIT);
1425
1426 apic_intr_mode = apic_intr_mode_select();
1427
1428 switch (apic_intr_mode) {
1429 case APIC_PIC:
1430 pr_info("APIC: Keep in PIC mode(8259)\n");
1431 return;
1432 case APIC_VIRTUAL_WIRE:
1433 pr_info("APIC: Switch to virtual wire mode setup\n");
1434 default_setup_apic_routing();
1435 break;
1436 case APIC_VIRTUAL_WIRE_NO_CONFIG:
1437 pr_info("APIC: Switch to virtual wire mode setup with no configuration\n");
1438 upmode = true;
1439 default_setup_apic_routing();
1440 break;
1441 case APIC_SYMMETRIC_IO:
1442 pr_info("APIC: Switch to symmetric I/O mode setup\n");
1443 default_setup_apic_routing();
1444 break;
1445 case APIC_SYMMETRIC_IO_NO_ROUTING:
1446 pr_info("APIC: Switch to symmetric I/O mode setup in no SMP routine\n");
1447 break;
1448 }
1449
1450 apic_bsp_setup(upmode);
1451 }
1452
1453 static void lapic_setup_esr(void)
1454 {
1455 unsigned int oldvalue, value, maxlvt;
1456
1457 if (!lapic_is_integrated()) {
1458 pr_info("No ESR for 82489DX.\n");
1459 return;
1460 }
1461
1462 if (apic->disable_esr) {
1463 /*
1464 * Something untraceable is creating bad interrupts on
1465 * secondary quads ... for the moment, just leave the
1466 * ESR disabled - we can't do anything useful with the
1467 * errors anyway - mbligh
1468 */
1469 pr_info("Leaving ESR disabled.\n");
1470 return;
1471 }
1472
1473 maxlvt = lapic_get_maxlvt();
1474 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
1475 apic_write(APIC_ESR, 0);
1476 oldvalue = apic_read(APIC_ESR);
1477
1478 /* enables sending errors */
1479 value = ERROR_APIC_VECTOR;
1480 apic_write(APIC_LVTERR, value);
1481
1482 /*
1483 * spec says clear errors after enabling vector.
1484 */
1485 if (maxlvt > 3)
1486 apic_write(APIC_ESR, 0);
1487 value = apic_read(APIC_ESR);
1488 if (value != oldvalue)
1489 apic_printk(APIC_VERBOSE, "ESR value before enabling "
1490 "vector: 0x%08x after: 0x%08x\n",
1491 oldvalue, value);
1492 }
1493
1494 static void apic_pending_intr_clear(void)
1495 {
1496 long long max_loops = cpu_khz ? cpu_khz : 1000000;
1497 unsigned long long tsc = 0, ntsc;
1498 unsigned int queued;
1499 unsigned long value;
1500 int i, j, acked = 0;
1501
1502 if (boot_cpu_has(X86_FEATURE_TSC))
1503 tsc = rdtsc();
1504 /*
1505 * After a crash, we no longer service the interrupts and a pending
1506 * interrupt from previous kernel might still have ISR bit set.
1507 *
1508 * Most probably by now CPU has serviced that pending interrupt and
1509 * it might not have done the ack_APIC_irq() because it thought,
1510 * interrupt came from i8259 as ExtInt. LAPIC did not get EOI so it
1511 * does not clear the ISR bit and cpu thinks it has already serivced
1512 * the interrupt. Hence a vector might get locked. It was noticed
1513 * for timer irq (vector 0x31). Issue an extra EOI to clear ISR.
1514 */
1515 do {
1516 queued = 0;
1517 for (i = APIC_ISR_NR - 1; i >= 0; i--)
1518 queued |= apic_read(APIC_IRR + i*0x10);
1519
1520 for (i = APIC_ISR_NR - 1; i >= 0; i--) {
1521 value = apic_read(APIC_ISR + i*0x10);
1522 for_each_set_bit(j, &value, 32) {
1523 ack_APIC_irq();
1524 acked++;
1525 }
1526 }
1527 if (acked > 256) {
1528 pr_err("LAPIC pending interrupts after %d EOI\n", acked);
1529 break;
1530 }
1531 if (queued) {
1532 if (boot_cpu_has(X86_FEATURE_TSC) && cpu_khz) {
1533 ntsc = rdtsc();
1534 max_loops = (long long)cpu_khz << 10;
1535 max_loops -= ntsc - tsc;
1536 } else {
1537 max_loops--;
1538 }
1539 }
1540 } while (queued && max_loops > 0);
1541 WARN_ON(max_loops <= 0);
1542 }
1543
1544 /**
1545 * setup_local_APIC - setup the local APIC
1546 *
1547 * Used to setup local APIC while initializing BSP or bringing up APs.
1548 * Always called with preemption disabled.
1549 */
1550 static void setup_local_APIC(void)
1551 {
1552 int cpu = smp_processor_id();
1553 unsigned int value;
1554 #ifdef CONFIG_X86_32
1555 int logical_apicid, ldr_apicid;
1556 #endif
1557
1558
1559 if (disable_apic) {
1560 disable_ioapic_support();
1561 return;
1562 }
1563
1564 #ifdef CONFIG_X86_32
1565 /* Pound the ESR really hard over the head with a big hammer - mbligh */
1566 if (lapic_is_integrated() && apic->disable_esr) {
1567 apic_write(APIC_ESR, 0);
1568 apic_write(APIC_ESR, 0);
1569 apic_write(APIC_ESR, 0);
1570 apic_write(APIC_ESR, 0);
1571 }
1572 #endif
1573 perf_events_lapic_init();
1574
1575 /*
1576 * Double-check whether this APIC is really registered.
1577 * This is meaningless in clustered apic mode, so we skip it.
1578 */
1579 BUG_ON(!apic->apic_id_registered());
1580
1581 /*
1582 * Intel recommends to set DFR, LDR and TPR before enabling
1583 * an APIC. See e.g. "AP-388 82489DX User's Manual" (Intel
1584 * document number 292116). So here it goes...
1585 */
1586 apic->init_apic_ldr();
1587
1588 #ifdef CONFIG_X86_32
1589 /*
1590 * APIC LDR is initialized. If logical_apicid mapping was
1591 * initialized during get_smp_config(), make sure it matches the
1592 * actual value.
1593 */
1594 logical_apicid = early_per_cpu(x86_cpu_to_logical_apicid, cpu);
1595 ldr_apicid = GET_APIC_LOGICAL_ID(apic_read(APIC_LDR));
1596 WARN_ON(logical_apicid != BAD_APICID && logical_apicid != ldr_apicid);
1597 /* always use the value from LDR */
1598 early_per_cpu(x86_cpu_to_logical_apicid, cpu) = ldr_apicid;
1599 #endif
1600
1601 /*
1602 * Set Task Priority to 'accept all'. We never change this
1603 * later on.
1604 */
1605 value = apic_read(APIC_TASKPRI);
1606 value &= ~APIC_TPRI_MASK;
1607 apic_write(APIC_TASKPRI, value);
1608
1609 apic_pending_intr_clear();
1610
1611 /*
1612 * Now that we are all set up, enable the APIC
1613 */
1614 value = apic_read(APIC_SPIV);
1615 value &= ~APIC_VECTOR_MASK;
1616 /*
1617 * Enable APIC
1618 */
1619 value |= APIC_SPIV_APIC_ENABLED;
1620
1621 #ifdef CONFIG_X86_32
1622 /*
1623 * Some unknown Intel IO/APIC (or APIC) errata is biting us with
1624 * certain networking cards. If high frequency interrupts are
1625 * happening on a particular IOAPIC pin, plus the IOAPIC routing
1626 * entry is masked/unmasked at a high rate as well then sooner or
1627 * later IOAPIC line gets 'stuck', no more interrupts are received
1628 * from the device. If focus CPU is disabled then the hang goes
1629 * away, oh well :-(
1630 *
1631 * [ This bug can be reproduced easily with a level-triggered
1632 * PCI Ne2000 networking cards and PII/PIII processors, dual
1633 * BX chipset. ]
1634 */
1635 /*
1636 * Actually disabling the focus CPU check just makes the hang less
1637 * frequent as it makes the interrupt distributon model be more
1638 * like LRU than MRU (the short-term load is more even across CPUs).
1639 */
1640
1641 /*
1642 * - enable focus processor (bit==0)
1643 * - 64bit mode always use processor focus
1644 * so no need to set it
1645 */
1646 value &= ~APIC_SPIV_FOCUS_DISABLED;
1647 #endif
1648
1649 /*
1650 * Set spurious IRQ vector
1651 */
1652 value |= SPURIOUS_APIC_VECTOR;
1653 apic_write(APIC_SPIV, value);
1654
1655 /*
1656 * Set up LVT0, LVT1:
1657 *
1658 * set up through-local-APIC on the boot CPU's LINT0. This is not
1659 * strictly necessary in pure symmetric-IO mode, but sometimes
1660 * we delegate interrupts to the 8259A.
1661 */
1662 /*
1663 * TODO: set up through-local-APIC from through-I/O-APIC? --macro
1664 */
1665 value = apic_read(APIC_LVT0) & APIC_LVT_MASKED;
1666 if (!cpu && (pic_mode || !value || skip_ioapic_setup)) {
1667 value = APIC_DM_EXTINT;
1668 apic_printk(APIC_VERBOSE, "enabled ExtINT on CPU#%d\n", cpu);
1669 } else {
1670 value = APIC_DM_EXTINT | APIC_LVT_MASKED;
1671 apic_printk(APIC_VERBOSE, "masked ExtINT on CPU#%d\n", cpu);
1672 }
1673 apic_write(APIC_LVT0, value);
1674
1675 /*
1676 * Only the BSP sees the LINT1 NMI signal by default. This can be
1677 * modified by apic_extnmi= boot option.
1678 */
1679 if ((!cpu && apic_extnmi != APIC_EXTNMI_NONE) ||
1680 apic_extnmi == APIC_EXTNMI_ALL)
1681 value = APIC_DM_NMI;
1682 else
1683 value = APIC_DM_NMI | APIC_LVT_MASKED;
1684
1685 /* Is 82489DX ? */
1686 if (!lapic_is_integrated())
1687 value |= APIC_LVT_LEVEL_TRIGGER;
1688 apic_write(APIC_LVT1, value);
1689
1690 #ifdef CONFIG_X86_MCE_INTEL
1691 /* Recheck CMCI information after local APIC is up on CPU #0 */
1692 if (!cpu)
1693 cmci_recheck();
1694 #endif
1695 }
1696
1697 static void end_local_APIC_setup(void)
1698 {
1699 lapic_setup_esr();
1700
1701 #ifdef CONFIG_X86_32
1702 {
1703 unsigned int value;
1704 /* Disable the local apic timer */
1705 value = apic_read(APIC_LVTT);
1706 value |= (APIC_LVT_MASKED | LOCAL_TIMER_VECTOR);
1707 apic_write(APIC_LVTT, value);
1708 }
1709 #endif
1710
1711 apic_pm_activate();
1712 }
1713
1714 /*
1715 * APIC setup function for application processors. Called from smpboot.c
1716 */
1717 void apic_ap_setup(void)
1718 {
1719 setup_local_APIC();
1720 end_local_APIC_setup();
1721 }
1722
1723 #ifdef CONFIG_X86_X2APIC
1724 int x2apic_mode;
1725
1726 enum {
1727 X2APIC_OFF,
1728 X2APIC_ON,
1729 X2APIC_DISABLED,
1730 };
1731 static int x2apic_state;
1732
1733 static void __x2apic_disable(void)
1734 {
1735 u64 msr;
1736
1737 if (!boot_cpu_has(X86_FEATURE_APIC))
1738 return;
1739
1740 rdmsrl(MSR_IA32_APICBASE, msr);
1741 if (!(msr & X2APIC_ENABLE))
1742 return;
1743 /* Disable xapic and x2apic first and then reenable xapic mode */
1744 wrmsrl(MSR_IA32_APICBASE, msr & ~(X2APIC_ENABLE | XAPIC_ENABLE));
1745 wrmsrl(MSR_IA32_APICBASE, msr & ~X2APIC_ENABLE);
1746 printk_once(KERN_INFO "x2apic disabled\n");
1747 }
1748
1749 static void __x2apic_enable(void)
1750 {
1751 u64 msr;
1752
1753 rdmsrl(MSR_IA32_APICBASE, msr);
1754 if (msr & X2APIC_ENABLE)
1755 return;
1756 wrmsrl(MSR_IA32_APICBASE, msr | X2APIC_ENABLE);
1757 printk_once(KERN_INFO "x2apic enabled\n");
1758 }
1759
1760 static int __init setup_nox2apic(char *str)
1761 {
1762 if (x2apic_enabled()) {
1763 int apicid = native_apic_msr_read(APIC_ID);
1764
1765 if (apicid >= 255) {
1766 pr_warning("Apicid: %08x, cannot enforce nox2apic\n",
1767 apicid);
1768 return 0;
1769 }
1770 pr_warning("x2apic already enabled.\n");
1771 __x2apic_disable();
1772 }
1773 setup_clear_cpu_cap(X86_FEATURE_X2APIC);
1774 x2apic_state = X2APIC_DISABLED;
1775 x2apic_mode = 0;
1776 return 0;
1777 }
1778 early_param("nox2apic", setup_nox2apic);
1779
1780 /* Called from cpu_init() to enable x2apic on (secondary) cpus */
1781 void x2apic_setup(void)
1782 {
1783 /*
1784 * If x2apic is not in ON state, disable it if already enabled
1785 * from BIOS.
1786 */
1787 if (x2apic_state != X2APIC_ON) {
1788 __x2apic_disable();
1789 return;
1790 }
1791 __x2apic_enable();
1792 }
1793
1794 static __init void x2apic_disable(void)
1795 {
1796 u32 x2apic_id, state = x2apic_state;
1797
1798 x2apic_mode = 0;
1799 x2apic_state = X2APIC_DISABLED;
1800
1801 if (state != X2APIC_ON)
1802 return;
1803
1804 x2apic_id = read_apic_id();
1805 if (x2apic_id >= 255)
1806 panic("Cannot disable x2apic, id: %08x\n", x2apic_id);
1807
1808 __x2apic_disable();
1809 register_lapic_address(mp_lapic_addr);
1810 }
1811
1812 static __init void x2apic_enable(void)
1813 {
1814 if (x2apic_state != X2APIC_OFF)
1815 return;
1816
1817 x2apic_mode = 1;
1818 x2apic_state = X2APIC_ON;
1819 __x2apic_enable();
1820 }
1821
1822 static __init void try_to_enable_x2apic(int remap_mode)
1823 {
1824 if (x2apic_state == X2APIC_DISABLED)
1825 return;
1826
1827 if (remap_mode != IRQ_REMAP_X2APIC_MODE) {
1828 /* IR is required if there is APIC ID > 255 even when running
1829 * under KVM
1830 */
1831 if (max_physical_apicid > 255 ||
1832 !x86_init.hyper.x2apic_available()) {
1833 pr_info("x2apic: IRQ remapping doesn't support X2APIC mode\n");
1834 x2apic_disable();
1835 return;
1836 }
1837
1838 /*
1839 * without IR all CPUs can be addressed by IOAPIC/MSI
1840 * only in physical mode
1841 */
1842 x2apic_phys = 1;
1843 }
1844 x2apic_enable();
1845 }
1846
1847 void __init check_x2apic(void)
1848 {
1849 if (x2apic_enabled()) {
1850 pr_info("x2apic: enabled by BIOS, switching to x2apic ops\n");
1851 x2apic_mode = 1;
1852 x2apic_state = X2APIC_ON;
1853 } else if (!boot_cpu_has(X86_FEATURE_X2APIC)) {
1854 x2apic_state = X2APIC_DISABLED;
1855 }
1856 }
1857 #else /* CONFIG_X86_X2APIC */
1858 static int __init validate_x2apic(void)
1859 {
1860 if (!apic_is_x2apic_enabled())
1861 return 0;
1862 /*
1863 * Checkme: Can we simply turn off x2apic here instead of panic?
1864 */
1865 panic("BIOS has enabled x2apic but kernel doesn't support x2apic, please disable x2apic in BIOS.\n");
1866 }
1867 early_initcall(validate_x2apic);
1868
1869 static inline void try_to_enable_x2apic(int remap_mode) { }
1870 static inline void __x2apic_enable(void) { }
1871 #endif /* !CONFIG_X86_X2APIC */
1872
1873 void __init enable_IR_x2apic(void)
1874 {
1875 unsigned long flags;
1876 int ret, ir_stat;
1877
1878 if (skip_ioapic_setup) {
1879 pr_info("Not enabling interrupt remapping due to skipped IO-APIC setup\n");
1880 return;
1881 }
1882
1883 ir_stat = irq_remapping_prepare();
1884 if (ir_stat < 0 && !x2apic_supported())
1885 return;
1886
1887 ret = save_ioapic_entries();
1888 if (ret) {
1889 pr_info("Saving IO-APIC state failed: %d\n", ret);
1890 return;
1891 }
1892
1893 local_irq_save(flags);
1894 legacy_pic->mask_all();
1895 mask_ioapic_entries();
1896
1897 /* If irq_remapping_prepare() succeeded, try to enable it */
1898 if (ir_stat >= 0)
1899 ir_stat = irq_remapping_enable();
1900 /* ir_stat contains the remap mode or an error code */
1901 try_to_enable_x2apic(ir_stat);
1902
1903 if (ir_stat < 0)
1904 restore_ioapic_entries();
1905 legacy_pic->restore_mask();
1906 local_irq_restore(flags);
1907 }
1908
1909 #ifdef CONFIG_X86_64
1910 /*
1911 * Detect and enable local APICs on non-SMP boards.
1912 * Original code written by Keir Fraser.
1913 * On AMD64 we trust the BIOS - if it says no APIC it is likely
1914 * not correctly set up (usually the APIC timer won't work etc.)
1915 */
1916 static int __init detect_init_APIC(void)
1917 {
1918 if (!boot_cpu_has(X86_FEATURE_APIC)) {
1919 pr_info("No local APIC present\n");
1920 return -1;
1921 }
1922
1923 mp_lapic_addr = APIC_DEFAULT_PHYS_BASE;
1924 return 0;
1925 }
1926 #else
1927
1928 static int __init apic_verify(void)
1929 {
1930 u32 features, h, l;
1931
1932 /*
1933 * The APIC feature bit should now be enabled
1934 * in `cpuid'
1935 */
1936 features = cpuid_edx(1);
1937 if (!(features & (1 << X86_FEATURE_APIC))) {
1938 pr_warning("Could not enable APIC!\n");
1939 return -1;
1940 }
1941 set_cpu_cap(&boot_cpu_data, X86_FEATURE_APIC);
1942 mp_lapic_addr = APIC_DEFAULT_PHYS_BASE;
1943
1944 /* The BIOS may have set up the APIC at some other address */
1945 if (boot_cpu_data.x86 >= 6) {
1946 rdmsr(MSR_IA32_APICBASE, l, h);
1947 if (l & MSR_IA32_APICBASE_ENABLE)
1948 mp_lapic_addr = l & MSR_IA32_APICBASE_BASE;
1949 }
1950
1951 pr_info("Found and enabled local APIC!\n");
1952 return 0;
1953 }
1954
1955 int __init apic_force_enable(unsigned long addr)
1956 {
1957 u32 h, l;
1958
1959 if (disable_apic)
1960 return -1;
1961
1962 /*
1963 * Some BIOSes disable the local APIC in the APIC_BASE
1964 * MSR. This can only be done in software for Intel P6 or later
1965 * and AMD K7 (Model > 1) or later.
1966 */
1967 if (boot_cpu_data.x86 >= 6) {
1968 rdmsr(MSR_IA32_APICBASE, l, h);
1969 if (!(l & MSR_IA32_APICBASE_ENABLE)) {
1970 pr_info("Local APIC disabled by BIOS -- reenabling.\n");
1971 l &= ~MSR_IA32_APICBASE_BASE;
1972 l |= MSR_IA32_APICBASE_ENABLE | addr;
1973 wrmsr(MSR_IA32_APICBASE, l, h);
1974 enabled_via_apicbase = 1;
1975 }
1976 }
1977 return apic_verify();
1978 }
1979
1980 /*
1981 * Detect and initialize APIC
1982 */
1983 static int __init detect_init_APIC(void)
1984 {
1985 /* Disabled by kernel option? */
1986 if (disable_apic)
1987 return -1;
1988
1989 switch (boot_cpu_data.x86_vendor) {
1990 case X86_VENDOR_AMD:
1991 if ((boot_cpu_data.x86 == 6 && boot_cpu_data.x86_model > 1) ||
1992 (boot_cpu_data.x86 >= 15))
1993 break;
1994 goto no_apic;
1995 case X86_VENDOR_HYGON:
1996 break;
1997 case X86_VENDOR_INTEL:
1998 if (boot_cpu_data.x86 == 6 || boot_cpu_data.x86 == 15 ||
1999 (boot_cpu_data.x86 == 5 && boot_cpu_has(X86_FEATURE_APIC)))
2000 break;
2001 goto no_apic;
2002 default:
2003 goto no_apic;
2004 }
2005
2006 if (!boot_cpu_has(X86_FEATURE_APIC)) {
2007 /*
2008 * Over-ride BIOS and try to enable the local APIC only if
2009 * "lapic" specified.
2010 */
2011 if (!force_enable_local_apic) {
2012 pr_info("Local APIC disabled by BIOS -- "
2013 "you can enable it with \"lapic\"\n");
2014 return -1;
2015 }
2016 if (apic_force_enable(APIC_DEFAULT_PHYS_BASE))
2017 return -1;
2018 } else {
2019 if (apic_verify())
2020 return -1;
2021 }
2022
2023 apic_pm_activate();
2024
2025 return 0;
2026
2027 no_apic:
2028 pr_info("No local APIC present or hardware disabled\n");
2029 return -1;
2030 }
2031 #endif
2032
2033 /**
2034 * init_apic_mappings - initialize APIC mappings
2035 */
2036 void __init init_apic_mappings(void)
2037 {
2038 unsigned int new_apicid;
2039
2040 apic_check_deadline_errata();
2041
2042 if (x2apic_mode) {
2043 boot_cpu_physical_apicid = read_apic_id();
2044 return;
2045 }
2046
2047 /* If no local APIC can be found return early */
2048 if (!smp_found_config && detect_init_APIC()) {
2049 /* lets NOP'ify apic operations */
2050 pr_info("APIC: disable apic facility\n");
2051 apic_disable();
2052 } else {
2053 apic_phys = mp_lapic_addr;
2054
2055 /*
2056 * If the system has ACPI MADT tables or MP info, the LAPIC
2057 * address is already registered.
2058 */
2059 if (!acpi_lapic && !smp_found_config)
2060 register_lapic_address(apic_phys);
2061 }
2062
2063 /*
2064 * Fetch the APIC ID of the BSP in case we have a
2065 * default configuration (or the MP table is broken).
2066 */
2067 new_apicid = read_apic_id();
2068 if (boot_cpu_physical_apicid != new_apicid) {
2069 boot_cpu_physical_apicid = new_apicid;
2070 /*
2071 * yeah -- we lie about apic_version
2072 * in case if apic was disabled via boot option
2073 * but it's not a problem for SMP compiled kernel
2074 * since apic_intr_mode_select is prepared for such
2075 * a case and disable smp mode
2076 */
2077 boot_cpu_apic_version = GET_APIC_VERSION(apic_read(APIC_LVR));
2078 }
2079 }
2080
2081 void __init register_lapic_address(unsigned long address)
2082 {
2083 mp_lapic_addr = address;
2084
2085 if (!x2apic_mode) {
2086 set_fixmap_nocache(FIX_APIC_BASE, address);
2087 apic_printk(APIC_VERBOSE, "mapped APIC to %16lx (%16lx)\n",
2088 APIC_BASE, address);
2089 }
2090 if (boot_cpu_physical_apicid == -1U) {
2091 boot_cpu_physical_apicid = read_apic_id();
2092 boot_cpu_apic_version = GET_APIC_VERSION(apic_read(APIC_LVR));
2093 }
2094 }
2095
2096 /*
2097 * Local APIC interrupts
2098 */
2099
2100 /*
2101 * This interrupt should _never_ happen with our APIC/SMP architecture
2102 */
2103 __visible void __irq_entry smp_spurious_interrupt(struct pt_regs *regs)
2104 {
2105 u8 vector = ~regs->orig_ax;
2106 u32 v;
2107
2108 entering_irq();
2109 trace_spurious_apic_entry(vector);
2110
2111 inc_irq_stat(irq_spurious_count);
2112
2113 /*
2114 * If this is a spurious interrupt then do not acknowledge
2115 */
2116 if (vector == SPURIOUS_APIC_VECTOR) {
2117 /* See SDM vol 3 */
2118 pr_info("Spurious APIC interrupt (vector 0xFF) on CPU#%d, should never happen.\n",
2119 smp_processor_id());
2120 goto out;
2121 }
2122
2123 /*
2124 * If it is a vectored one, verify it's set in the ISR. If set,
2125 * acknowledge it.
2126 */
2127 v = apic_read(APIC_ISR + ((vector & ~0x1f) >> 1));
2128 if (v & (1 << (vector & 0x1f))) {
2129 pr_info("Spurious interrupt (vector 0x%02x) on CPU#%d. Acked\n",
2130 vector, smp_processor_id());
2131 ack_APIC_irq();
2132 } else {
2133 pr_info("Spurious interrupt (vector 0x%02x) on CPU#%d. Not pending!\n",
2134 vector, smp_processor_id());
2135 }
2136 out:
2137 trace_spurious_apic_exit(vector);
2138 exiting_irq();
2139 }
2140
2141 /*
2142 * This interrupt should never happen with our APIC/SMP architecture
2143 */
2144 __visible void __irq_entry smp_error_interrupt(struct pt_regs *regs)
2145 {
2146 static const char * const error_interrupt_reason[] = {
2147 "Send CS error", /* APIC Error Bit 0 */
2148 "Receive CS error", /* APIC Error Bit 1 */
2149 "Send accept error", /* APIC Error Bit 2 */
2150 "Receive accept error", /* APIC Error Bit 3 */
2151 "Redirectable IPI", /* APIC Error Bit 4 */
2152 "Send illegal vector", /* APIC Error Bit 5 */
2153 "Received illegal vector", /* APIC Error Bit 6 */
2154 "Illegal register address", /* APIC Error Bit 7 */
2155 };
2156 u32 v, i = 0;
2157
2158 entering_irq();
2159 trace_error_apic_entry(ERROR_APIC_VECTOR);
2160
2161 /* First tickle the hardware, only then report what went on. -- REW */
2162 if (lapic_get_maxlvt() > 3) /* Due to the Pentium erratum 3AP. */
2163 apic_write(APIC_ESR, 0);
2164 v = apic_read(APIC_ESR);
2165 ack_APIC_irq();
2166 atomic_inc(&irq_err_count);
2167
2168 apic_printk(APIC_DEBUG, KERN_DEBUG "APIC error on CPU%d: %02x",
2169 smp_processor_id(), v);
2170
2171 v &= 0xff;
2172 while (v) {
2173 if (v & 0x1)
2174 apic_printk(APIC_DEBUG, KERN_CONT " : %s", error_interrupt_reason[i]);
2175 i++;
2176 v >>= 1;
2177 }
2178
2179 apic_printk(APIC_DEBUG, KERN_CONT "\n");
2180
2181 trace_error_apic_exit(ERROR_APIC_VECTOR);
2182 exiting_irq();
2183 }
2184
2185 /**
2186 * connect_bsp_APIC - attach the APIC to the interrupt system
2187 */
2188 static void __init connect_bsp_APIC(void)
2189 {
2190 #ifdef CONFIG_X86_32
2191 if (pic_mode) {
2192 /*
2193 * Do not trust the local APIC being empty at bootup.
2194 */
2195 clear_local_APIC();
2196 /*
2197 * PIC mode, enable APIC mode in the IMCR, i.e. connect BSP's
2198 * local APIC to INT and NMI lines.
2199 */
2200 apic_printk(APIC_VERBOSE, "leaving PIC mode, "
2201 "enabling APIC mode.\n");
2202 imcr_pic_to_apic();
2203 }
2204 #endif
2205 }
2206
2207 /**
2208 * disconnect_bsp_APIC - detach the APIC from the interrupt system
2209 * @virt_wire_setup: indicates, whether virtual wire mode is selected
2210 *
2211 * Virtual wire mode is necessary to deliver legacy interrupts even when the
2212 * APIC is disabled.
2213 */
2214 void disconnect_bsp_APIC(int virt_wire_setup)
2215 {
2216 unsigned int value;
2217
2218 #ifdef CONFIG_X86_32
2219 if (pic_mode) {
2220 /*
2221 * Put the board back into PIC mode (has an effect only on
2222 * certain older boards). Note that APIC interrupts, including
2223 * IPIs, won't work beyond this point! The only exception are
2224 * INIT IPIs.
2225 */
2226 apic_printk(APIC_VERBOSE, "disabling APIC mode, "
2227 "entering PIC mode.\n");
2228 imcr_apic_to_pic();
2229 return;
2230 }
2231 #endif
2232
2233 /* Go back to Virtual Wire compatibility mode */
2234
2235 /* For the spurious interrupt use vector F, and enable it */
2236 value = apic_read(APIC_SPIV);
2237 value &= ~APIC_VECTOR_MASK;
2238 value |= APIC_SPIV_APIC_ENABLED;
2239 value |= 0xf;
2240 apic_write(APIC_SPIV, value);
2241
2242 if (!virt_wire_setup) {
2243 /*
2244 * For LVT0 make it edge triggered, active high,
2245 * external and enabled
2246 */
2247 value = apic_read(APIC_LVT0);
2248 value &= ~(APIC_MODE_MASK | APIC_SEND_PENDING |
2249 APIC_INPUT_POLARITY | APIC_LVT_REMOTE_IRR |
2250 APIC_LVT_LEVEL_TRIGGER | APIC_LVT_MASKED);
2251 value |= APIC_LVT_REMOTE_IRR | APIC_SEND_PENDING;
2252 value = SET_APIC_DELIVERY_MODE(value, APIC_MODE_EXTINT);
2253 apic_write(APIC_LVT0, value);
2254 } else {
2255 /* Disable LVT0 */
2256 apic_write(APIC_LVT0, APIC_LVT_MASKED);
2257 }
2258
2259 /*
2260 * For LVT1 make it edge triggered, active high,
2261 * nmi and enabled
2262 */
2263 value = apic_read(APIC_LVT1);
2264 value &= ~(APIC_MODE_MASK | APIC_SEND_PENDING |
2265 APIC_INPUT_POLARITY | APIC_LVT_REMOTE_IRR |
2266 APIC_LVT_LEVEL_TRIGGER | APIC_LVT_MASKED);
2267 value |= APIC_LVT_REMOTE_IRR | APIC_SEND_PENDING;
2268 value = SET_APIC_DELIVERY_MODE(value, APIC_MODE_NMI);
2269 apic_write(APIC_LVT1, value);
2270 }
2271
2272 /*
2273 * The number of allocated logical CPU IDs. Since logical CPU IDs are allocated
2274 * contiguously, it equals to current allocated max logical CPU ID plus 1.
2275 * All allocated CPU IDs should be in the [0, nr_logical_cpuids) range,
2276 * so the maximum of nr_logical_cpuids is nr_cpu_ids.
2277 *
2278 * NOTE: Reserve 0 for BSP.
2279 */
2280 static int nr_logical_cpuids = 1;
2281
2282 /*
2283 * Used to store mapping between logical CPU IDs and APIC IDs.
2284 */
2285 static int cpuid_to_apicid[] = {
2286 [0 ... NR_CPUS - 1] = -1,
2287 };
2288
2289 #ifdef CONFIG_SMP
2290 /**
2291 * apic_id_is_primary_thread - Check whether APIC ID belongs to a primary thread
2292 * @id: APIC ID to check
2293 */
2294 bool apic_id_is_primary_thread(unsigned int apicid)
2295 {
2296 u32 mask;
2297
2298 if (smp_num_siblings == 1)
2299 return true;
2300 /* Isolate the SMT bit(s) in the APICID and check for 0 */
2301 mask = (1U << (fls(smp_num_siblings) - 1)) - 1;
2302 return !(apicid & mask);
2303 }
2304 #endif
2305
2306 /*
2307 * Should use this API to allocate logical CPU IDs to keep nr_logical_cpuids
2308 * and cpuid_to_apicid[] synchronized.
2309 */
2310 static int allocate_logical_cpuid(int apicid)
2311 {
2312 int i;
2313
2314 /*
2315 * cpuid <-> apicid mapping is persistent, so when a cpu is up,
2316 * check if the kernel has allocated a cpuid for it.
2317 */
2318 for (i = 0; i < nr_logical_cpuids; i++) {
2319 if (cpuid_to_apicid[i] == apicid)
2320 return i;
2321 }
2322
2323 /* Allocate a new cpuid. */
2324 if (nr_logical_cpuids >= nr_cpu_ids) {
2325 WARN_ONCE(1, "APIC: NR_CPUS/possible_cpus limit of %u reached. "
2326 "Processor %d/0x%x and the rest are ignored.\n",
2327 nr_cpu_ids, nr_logical_cpuids, apicid);
2328 return -EINVAL;
2329 }
2330
2331 cpuid_to_apicid[nr_logical_cpuids] = apicid;
2332 return nr_logical_cpuids++;
2333 }
2334
2335 int generic_processor_info(int apicid, int version)
2336 {
2337 int cpu, max = nr_cpu_ids;
2338 bool boot_cpu_detected = physid_isset(boot_cpu_physical_apicid,
2339 phys_cpu_present_map);
2340
2341 /*
2342 * boot_cpu_physical_apicid is designed to have the apicid
2343 * returned by read_apic_id(), i.e, the apicid of the
2344 * currently booting-up processor. However, on some platforms,
2345 * it is temporarily modified by the apicid reported as BSP
2346 * through MP table. Concretely:
2347 *
2348 * - arch/x86/kernel/mpparse.c: MP_processor_info()
2349 * - arch/x86/mm/amdtopology.c: amd_numa_init()
2350 *
2351 * This function is executed with the modified
2352 * boot_cpu_physical_apicid. So, disabled_cpu_apicid kernel
2353 * parameter doesn't work to disable APs on kdump 2nd kernel.
2354 *
2355 * Since fixing handling of boot_cpu_physical_apicid requires
2356 * another discussion and tests on each platform, we leave it
2357 * for now and here we use read_apic_id() directly in this
2358 * function, generic_processor_info().
2359 */
2360 if (disabled_cpu_apicid != BAD_APICID &&
2361 disabled_cpu_apicid != read_apic_id() &&
2362 disabled_cpu_apicid == apicid) {
2363 int thiscpu = num_processors + disabled_cpus;
2364
2365 pr_warning("APIC: Disabling requested cpu."
2366 " Processor %d/0x%x ignored.\n",
2367 thiscpu, apicid);
2368
2369 disabled_cpus++;
2370 return -ENODEV;
2371 }
2372
2373 /*
2374 * If boot cpu has not been detected yet, then only allow upto
2375 * nr_cpu_ids - 1 processors and keep one slot free for boot cpu
2376 */
2377 if (!boot_cpu_detected && num_processors >= nr_cpu_ids - 1 &&
2378 apicid != boot_cpu_physical_apicid) {
2379 int thiscpu = max + disabled_cpus - 1;
2380
2381 pr_warning(
2382 "APIC: NR_CPUS/possible_cpus limit of %i almost"
2383 " reached. Keeping one slot for boot cpu."
2384 " Processor %d/0x%x ignored.\n", max, thiscpu, apicid);
2385
2386 disabled_cpus++;
2387 return -ENODEV;
2388 }
2389
2390 if (num_processors >= nr_cpu_ids) {
2391 int thiscpu = max + disabled_cpus;
2392
2393 pr_warning("APIC: NR_CPUS/possible_cpus limit of %i "
2394 "reached. Processor %d/0x%x ignored.\n",
2395 max, thiscpu, apicid);
2396
2397 disabled_cpus++;
2398 return -EINVAL;
2399 }
2400
2401 if (apicid == boot_cpu_physical_apicid) {
2402 /*
2403 * x86_bios_cpu_apicid is required to have processors listed
2404 * in same order as logical cpu numbers. Hence the first
2405 * entry is BSP, and so on.
2406 * boot_cpu_init() already hold bit 0 in cpu_present_mask
2407 * for BSP.
2408 */
2409 cpu = 0;
2410
2411 /* Logical cpuid 0 is reserved for BSP. */
2412 cpuid_to_apicid[0] = apicid;
2413 } else {
2414 cpu = allocate_logical_cpuid(apicid);
2415 if (cpu < 0) {
2416 disabled_cpus++;
2417 return -EINVAL;
2418 }
2419 }
2420
2421 /*
2422 * Validate version
2423 */
2424 if (version == 0x0) {
2425 pr_warning("BIOS bug: APIC version is 0 for CPU %d/0x%x, fixing up to 0x10\n",
2426 cpu, apicid);
2427 version = 0x10;
2428 }
2429
2430 if (version != boot_cpu_apic_version) {
2431 pr_warning("BIOS bug: APIC version mismatch, boot CPU: %x, CPU %d: version %x\n",
2432 boot_cpu_apic_version, cpu, version);
2433 }
2434
2435 if (apicid > max_physical_apicid)
2436 max_physical_apicid = apicid;
2437
2438 #if defined(CONFIG_SMP) || defined(CONFIG_X86_64)
2439 early_per_cpu(x86_cpu_to_apicid, cpu) = apicid;
2440 early_per_cpu(x86_bios_cpu_apicid, cpu) = apicid;
2441 #endif
2442 #ifdef CONFIG_X86_32
2443 early_per_cpu(x86_cpu_to_logical_apicid, cpu) =
2444 apic->x86_32_early_logical_apicid(cpu);
2445 #endif
2446 set_cpu_possible(cpu, true);
2447 physid_set(apicid, phys_cpu_present_map);
2448 set_cpu_present(cpu, true);
2449 num_processors++;
2450
2451 return cpu;
2452 }
2453
2454 int hard_smp_processor_id(void)
2455 {
2456 return read_apic_id();
2457 }
2458
2459 /*
2460 * Override the generic EOI implementation with an optimized version.
2461 * Only called during early boot when only one CPU is active and with
2462 * interrupts disabled, so we know this does not race with actual APIC driver
2463 * use.
2464 */
2465 void __init apic_set_eoi_write(void (*eoi_write)(u32 reg, u32 v))
2466 {
2467 struct apic **drv;
2468
2469 for (drv = __apicdrivers; drv < __apicdrivers_end; drv++) {
2470 /* Should happen once for each apic */
2471 WARN_ON((*drv)->eoi_write == eoi_write);
2472 (*drv)->native_eoi_write = (*drv)->eoi_write;
2473 (*drv)->eoi_write = eoi_write;
2474 }
2475 }
2476
2477 static void __init apic_bsp_up_setup(void)
2478 {
2479 #ifdef CONFIG_X86_64
2480 apic_write(APIC_ID, apic->set_apic_id(boot_cpu_physical_apicid));
2481 #else
2482 /*
2483 * Hack: In case of kdump, after a crash, kernel might be booting
2484 * on a cpu with non-zero lapic id. But boot_cpu_physical_apicid
2485 * might be zero if read from MP tables. Get it from LAPIC.
2486 */
2487 # ifdef CONFIG_CRASH_DUMP
2488 boot_cpu_physical_apicid = read_apic_id();
2489 # endif
2490 #endif
2491 physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
2492 }
2493
2494 /**
2495 * apic_bsp_setup - Setup function for local apic and io-apic
2496 * @upmode: Force UP mode (for APIC_init_uniprocessor)
2497 */
2498 static void __init apic_bsp_setup(bool upmode)
2499 {
2500 connect_bsp_APIC();
2501 if (upmode)
2502 apic_bsp_up_setup();
2503 setup_local_APIC();
2504
2505 enable_IO_APIC();
2506 end_local_APIC_setup();
2507 irq_remap_enable_fault_handling();
2508 setup_IO_APIC();
2509 }
2510
2511 #ifdef CONFIG_UP_LATE_INIT
2512 void __init up_late_init(void)
2513 {
2514 if (apic_intr_mode == APIC_PIC)
2515 return;
2516
2517 /* Setup local timer */
2518 x86_init.timers.setup_percpu_clockev();
2519 }
2520 #endif
2521
2522 /*
2523 * Power management
2524 */
2525 #ifdef CONFIG_PM
2526
2527 static struct {
2528 /*
2529 * 'active' is true if the local APIC was enabled by us and
2530 * not the BIOS; this signifies that we are also responsible
2531 * for disabling it before entering apm/acpi suspend
2532 */
2533 int active;
2534 /* r/w apic fields */
2535 unsigned int apic_id;
2536 unsigned int apic_taskpri;
2537 unsigned int apic_ldr;
2538 unsigned int apic_dfr;
2539 unsigned int apic_spiv;
2540 unsigned int apic_lvtt;
2541 unsigned int apic_lvtpc;
2542 unsigned int apic_lvt0;
2543 unsigned int apic_lvt1;
2544 unsigned int apic_lvterr;
2545 unsigned int apic_tmict;
2546 unsigned int apic_tdcr;
2547 unsigned int apic_thmr;
2548 unsigned int apic_cmci;
2549 } apic_pm_state;
2550
2551 static int lapic_suspend(void)
2552 {
2553 unsigned long flags;
2554 int maxlvt;
2555
2556 if (!apic_pm_state.active)
2557 return 0;
2558
2559 maxlvt = lapic_get_maxlvt();
2560
2561 apic_pm_state.apic_id = apic_read(APIC_ID);
2562 apic_pm_state.apic_taskpri = apic_read(APIC_TASKPRI);
2563 apic_pm_state.apic_ldr = apic_read(APIC_LDR);
2564 apic_pm_state.apic_dfr = apic_read(APIC_DFR);
2565 apic_pm_state.apic_spiv = apic_read(APIC_SPIV);
2566 apic_pm_state.apic_lvtt = apic_read(APIC_LVTT);
2567 if (maxlvt >= 4)
2568 apic_pm_state.apic_lvtpc = apic_read(APIC_LVTPC);
2569 apic_pm_state.apic_lvt0 = apic_read(APIC_LVT0);
2570 apic_pm_state.apic_lvt1 = apic_read(APIC_LVT1);
2571 apic_pm_state.apic_lvterr = apic_read(APIC_LVTERR);
2572 apic_pm_state.apic_tmict = apic_read(APIC_TMICT);
2573 apic_pm_state.apic_tdcr = apic_read(APIC_TDCR);
2574 #ifdef CONFIG_X86_THERMAL_VECTOR
2575 if (maxlvt >= 5)
2576 apic_pm_state.apic_thmr = apic_read(APIC_LVTTHMR);
2577 #endif
2578 #ifdef CONFIG_X86_MCE_INTEL
2579 if (maxlvt >= 6)
2580 apic_pm_state.apic_cmci = apic_read(APIC_LVTCMCI);
2581 #endif
2582
2583 local_irq_save(flags);
2584 disable_local_APIC();
2585
2586 irq_remapping_disable();
2587
2588 local_irq_restore(flags);
2589 return 0;
2590 }
2591
2592 static void lapic_resume(void)
2593 {
2594 unsigned int l, h;
2595 unsigned long flags;
2596 int maxlvt;
2597
2598 if (!apic_pm_state.active)
2599 return;
2600
2601 local_irq_save(flags);
2602
2603 /*
2604 * IO-APIC and PIC have their own resume routines.
2605 * We just mask them here to make sure the interrupt
2606 * subsystem is completely quiet while we enable x2apic
2607 * and interrupt-remapping.
2608 */
2609 mask_ioapic_entries();
2610 legacy_pic->mask_all();
2611
2612 if (x2apic_mode) {
2613 __x2apic_enable();
2614 } else {
2615 /*
2616 * Make sure the APICBASE points to the right address
2617 *
2618 * FIXME! This will be wrong if we ever support suspend on
2619 * SMP! We'll need to do this as part of the CPU restore!
2620 */
2621 if (boot_cpu_data.x86 >= 6) {
2622 rdmsr(MSR_IA32_APICBASE, l, h);
2623 l &= ~MSR_IA32_APICBASE_BASE;
2624 l |= MSR_IA32_APICBASE_ENABLE | mp_lapic_addr;
2625 wrmsr(MSR_IA32_APICBASE, l, h);
2626 }
2627 }
2628
2629 maxlvt = lapic_get_maxlvt();
2630 apic_write(APIC_LVTERR, ERROR_APIC_VECTOR | APIC_LVT_MASKED);
2631 apic_write(APIC_ID, apic_pm_state.apic_id);
2632 apic_write(APIC_DFR, apic_pm_state.apic_dfr);
2633 apic_write(APIC_LDR, apic_pm_state.apic_ldr);
2634 apic_write(APIC_TASKPRI, apic_pm_state.apic_taskpri);
2635 apic_write(APIC_SPIV, apic_pm_state.apic_spiv);
2636 apic_write(APIC_LVT0, apic_pm_state.apic_lvt0);
2637 apic_write(APIC_LVT1, apic_pm_state.apic_lvt1);
2638 #ifdef CONFIG_X86_THERMAL_VECTOR
2639 if (maxlvt >= 5)
2640 apic_write(APIC_LVTTHMR, apic_pm_state.apic_thmr);
2641 #endif
2642 #ifdef CONFIG_X86_MCE_INTEL
2643 if (maxlvt >= 6)
2644 apic_write(APIC_LVTCMCI, apic_pm_state.apic_cmci);
2645 #endif
2646 if (maxlvt >= 4)
2647 apic_write(APIC_LVTPC, apic_pm_state.apic_lvtpc);
2648 apic_write(APIC_LVTT, apic_pm_state.apic_lvtt);
2649 apic_write(APIC_TDCR, apic_pm_state.apic_tdcr);
2650 apic_write(APIC_TMICT, apic_pm_state.apic_tmict);
2651 apic_write(APIC_ESR, 0);
2652 apic_read(APIC_ESR);
2653 apic_write(APIC_LVTERR, apic_pm_state.apic_lvterr);
2654 apic_write(APIC_ESR, 0);
2655 apic_read(APIC_ESR);
2656
2657 irq_remapping_reenable(x2apic_mode);
2658
2659 local_irq_restore(flags);
2660 }
2661
2662 /*
2663 * This device has no shutdown method - fully functioning local APICs
2664 * are needed on every CPU up until machine_halt/restart/poweroff.
2665 */
2666
2667 static struct syscore_ops lapic_syscore_ops = {
2668 .resume = lapic_resume,
2669 .suspend = lapic_suspend,
2670 };
2671
2672 static void apic_pm_activate(void)
2673 {
2674 apic_pm_state.active = 1;
2675 }
2676
2677 static int __init init_lapic_sysfs(void)
2678 {
2679 /* XXX: remove suspend/resume procs if !apic_pm_state.active? */
2680 if (boot_cpu_has(X86_FEATURE_APIC))
2681 register_syscore_ops(&lapic_syscore_ops);
2682
2683 return 0;
2684 }
2685
2686 /* local apic needs to resume before other devices access its registers. */
2687 core_initcall(init_lapic_sysfs);
2688
2689 #else /* CONFIG_PM */
2690
2691 static void apic_pm_activate(void) { }
2692
2693 #endif /* CONFIG_PM */
2694
2695 #ifdef CONFIG_X86_64
2696
2697 static int multi_checked;
2698 static int multi;
2699
2700 static int set_multi(const struct dmi_system_id *d)
2701 {
2702 if (multi)
2703 return 0;
2704 pr_info("APIC: %s detected, Multi Chassis\n", d->ident);
2705 multi = 1;
2706 return 0;
2707 }
2708
2709 static const struct dmi_system_id multi_dmi_table[] = {
2710 {
2711 .callback = set_multi,
2712 .ident = "IBM System Summit2",
2713 .matches = {
2714 DMI_MATCH(DMI_SYS_VENDOR, "IBM"),
2715 DMI_MATCH(DMI_PRODUCT_NAME, "Summit2"),
2716 },
2717 },
2718 {}
2719 };
2720
2721 static void dmi_check_multi(void)
2722 {
2723 if (multi_checked)
2724 return;
2725
2726 dmi_check_system(multi_dmi_table);
2727 multi_checked = 1;
2728 }
2729
2730 /*
2731 * apic_is_clustered_box() -- Check if we can expect good TSC
2732 *
2733 * Thus far, the major user of this is IBM's Summit2 series:
2734 * Clustered boxes may have unsynced TSC problems if they are
2735 * multi-chassis.
2736 * Use DMI to check them
2737 */
2738 int apic_is_clustered_box(void)
2739 {
2740 dmi_check_multi();
2741 return multi;
2742 }
2743 #endif
2744
2745 /*
2746 * APIC command line parameters
2747 */
2748 static int __init setup_disableapic(char *arg)
2749 {
2750 disable_apic = 1;
2751 setup_clear_cpu_cap(X86_FEATURE_APIC);
2752 return 0;
2753 }
2754 early_param("disableapic", setup_disableapic);
2755
2756 /* same as disableapic, for compatibility */
2757 static int __init setup_nolapic(char *arg)
2758 {
2759 return setup_disableapic(arg);
2760 }
2761 early_param("nolapic", setup_nolapic);
2762
2763 static int __init parse_lapic_timer_c2_ok(char *arg)
2764 {
2765 local_apic_timer_c2_ok = 1;
2766 return 0;
2767 }
2768 early_param("lapic_timer_c2_ok", parse_lapic_timer_c2_ok);
2769
2770 static int __init parse_disable_apic_timer(char *arg)
2771 {
2772 disable_apic_timer = 1;
2773 return 0;
2774 }
2775 early_param("noapictimer", parse_disable_apic_timer);
2776
2777 static int __init parse_nolapic_timer(char *arg)
2778 {
2779 disable_apic_timer = 1;
2780 return 0;
2781 }
2782 early_param("nolapic_timer", parse_nolapic_timer);
2783
2784 static int __init apic_set_verbosity(char *arg)
2785 {
2786 if (!arg) {
2787 #ifdef CONFIG_X86_64
2788 skip_ioapic_setup = 0;
2789 return 0;
2790 #endif
2791 return -EINVAL;
2792 }
2793
2794 if (strcmp("debug", arg) == 0)
2795 apic_verbosity = APIC_DEBUG;
2796 else if (strcmp("verbose", arg) == 0)
2797 apic_verbosity = APIC_VERBOSE;
2798 #ifdef CONFIG_X86_64
2799 else {
2800 pr_warning("APIC Verbosity level %s not recognised"
2801 " use apic=verbose or apic=debug\n", arg);
2802 return -EINVAL;
2803 }
2804 #endif
2805
2806 return 0;
2807 }
2808 early_param("apic", apic_set_verbosity);
2809
2810 static int __init lapic_insert_resource(void)
2811 {
2812 if (!apic_phys)
2813 return -1;
2814
2815 /* Put local APIC into the resource map. */
2816 lapic_resource.start = apic_phys;
2817 lapic_resource.end = lapic_resource.start + PAGE_SIZE - 1;
2818 insert_resource(&iomem_resource, &lapic_resource);
2819
2820 return 0;
2821 }
2822
2823 /*
2824 * need call insert after e820__reserve_resources()
2825 * that is using request_resource
2826 */
2827 late_initcall(lapic_insert_resource);
2828
2829 static int __init apic_set_disabled_cpu_apicid(char *arg)
2830 {
2831 if (!arg || !get_option(&arg, &disabled_cpu_apicid))
2832 return -EINVAL;
2833
2834 return 0;
2835 }
2836 early_param("disable_cpu_apicid", apic_set_disabled_cpu_apicid);
2837
2838 static int __init apic_set_extnmi(char *arg)
2839 {
2840 if (!arg)
2841 return -EINVAL;
2842
2843 if (!strncmp("all", arg, 3))
2844 apic_extnmi = APIC_EXTNMI_ALL;
2845 else if (!strncmp("none", arg, 4))
2846 apic_extnmi = APIC_EXTNMI_NONE;
2847 else if (!strncmp("bsp", arg, 3))
2848 apic_extnmi = APIC_EXTNMI_BSP;
2849 else {
2850 pr_warn("Unknown external NMI delivery mode `%s' ignored\n", arg);
2851 return -EINVAL;
2852 }
2853
2854 return 0;
2855 }
2856 early_param("apic_extnmi", apic_set_extnmi);