]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/kernel/apic/apic.c
x86/apic/of: Fix CPU devicetree-node lookups
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kernel / apic / apic.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Local APIC handling, local APIC timers
4 *
5 * (c) 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
6 *
7 * Fixes
8 * Maciej W. Rozycki : Bits for genuine 82489DX APICs;
9 * thanks to Eric Gilmore
10 * and Rolf G. Tews
11 * for testing these extensively.
12 * Maciej W. Rozycki : Various updates and fixes.
13 * Mikael Pettersson : Power Management for UP-APIC.
14 * Pavel Machek and
15 * Mikael Pettersson : PM converted to driver model.
16 */
17
18 #include <linux/perf_event.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mc146818rtc.h>
21 #include <linux/acpi_pmtmr.h>
22 #include <linux/clockchips.h>
23 #include <linux/interrupt.h>
24 #include <linux/memblock.h>
25 #include <linux/ftrace.h>
26 #include <linux/ioport.h>
27 #include <linux/export.h>
28 #include <linux/syscore_ops.h>
29 #include <linux/delay.h>
30 #include <linux/timex.h>
31 #include <linux/i8253.h>
32 #include <linux/dmar.h>
33 #include <linux/init.h>
34 #include <linux/cpu.h>
35 #include <linux/dmi.h>
36 #include <linux/smp.h>
37 #include <linux/mm.h>
38
39 #include <asm/trace/irq_vectors.h>
40 #include <asm/irq_remapping.h>
41 #include <asm/perf_event.h>
42 #include <asm/x86_init.h>
43 #include <linux/atomic.h>
44 #include <asm/barrier.h>
45 #include <asm/mpspec.h>
46 #include <asm/i8259.h>
47 #include <asm/proto.h>
48 #include <asm/traps.h>
49 #include <asm/apic.h>
50 #include <asm/acpi.h>
51 #include <asm/io_apic.h>
52 #include <asm/desc.h>
53 #include <asm/hpet.h>
54 #include <asm/mtrr.h>
55 #include <asm/time.h>
56 #include <asm/smp.h>
57 #include <asm/mce.h>
58 #include <asm/tsc.h>
59 #include <asm/hypervisor.h>
60 #include <asm/cpu_device_id.h>
61 #include <asm/intel-family.h>
62 #include <asm/irq_regs.h>
63
64 unsigned int num_processors;
65
66 unsigned disabled_cpus;
67
68 /* Processor that is doing the boot up */
69 unsigned int boot_cpu_physical_apicid __ro_after_init = -1U;
70 EXPORT_SYMBOL_GPL(boot_cpu_physical_apicid);
71
72 u8 boot_cpu_apic_version __ro_after_init;
73
74 /*
75 * The highest APIC ID seen during enumeration.
76 */
77 static unsigned int max_physical_apicid;
78
79 /*
80 * Bitmask of physically existing CPUs:
81 */
82 physid_mask_t phys_cpu_present_map;
83
84 /*
85 * Processor to be disabled specified by kernel parameter
86 * disable_cpu_apicid=<int>, mostly used for the kdump 2nd kernel to
87 * avoid undefined behaviour caused by sending INIT from AP to BSP.
88 */
89 static unsigned int disabled_cpu_apicid __ro_after_init = BAD_APICID;
90
91 /*
92 * This variable controls which CPUs receive external NMIs. By default,
93 * external NMIs are delivered only to the BSP.
94 */
95 static int apic_extnmi __ro_after_init = APIC_EXTNMI_BSP;
96
97 /*
98 * Hypervisor supports 15 bits of APIC ID in MSI Extended Destination ID
99 */
100 static bool virt_ext_dest_id __ro_after_init;
101
102 /*
103 * Map cpu index to physical APIC ID
104 */
105 DEFINE_EARLY_PER_CPU_READ_MOSTLY(u16, x86_cpu_to_apicid, BAD_APICID);
106 DEFINE_EARLY_PER_CPU_READ_MOSTLY(u16, x86_bios_cpu_apicid, BAD_APICID);
107 DEFINE_EARLY_PER_CPU_READ_MOSTLY(u32, x86_cpu_to_acpiid, U32_MAX);
108 EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_apicid);
109 EXPORT_EARLY_PER_CPU_SYMBOL(x86_bios_cpu_apicid);
110 EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_acpiid);
111
112 #ifdef CONFIG_X86_32
113
114 /*
115 * On x86_32, the mapping between cpu and logical apicid may vary
116 * depending on apic in use. The following early percpu variable is
117 * used for the mapping. This is where the behaviors of x86_64 and 32
118 * actually diverge. Let's keep it ugly for now.
119 */
120 DEFINE_EARLY_PER_CPU_READ_MOSTLY(int, x86_cpu_to_logical_apicid, BAD_APICID);
121
122 /* Local APIC was disabled by the BIOS and enabled by the kernel */
123 static int enabled_via_apicbase __ro_after_init;
124
125 /*
126 * Handle interrupt mode configuration register (IMCR).
127 * This register controls whether the interrupt signals
128 * that reach the BSP come from the master PIC or from the
129 * local APIC. Before entering Symmetric I/O Mode, either
130 * the BIOS or the operating system must switch out of
131 * PIC Mode by changing the IMCR.
132 */
133 static inline void imcr_pic_to_apic(void)
134 {
135 /* select IMCR register */
136 outb(0x70, 0x22);
137 /* NMI and 8259 INTR go through APIC */
138 outb(0x01, 0x23);
139 }
140
141 static inline void imcr_apic_to_pic(void)
142 {
143 /* select IMCR register */
144 outb(0x70, 0x22);
145 /* NMI and 8259 INTR go directly to BSP */
146 outb(0x00, 0x23);
147 }
148 #endif
149
150 /*
151 * Knob to control our willingness to enable the local APIC.
152 *
153 * +1=force-enable
154 */
155 static int force_enable_local_apic __initdata;
156
157 /*
158 * APIC command line parameters
159 */
160 static int __init parse_lapic(char *arg)
161 {
162 if (IS_ENABLED(CONFIG_X86_32) && !arg)
163 force_enable_local_apic = 1;
164 else if (arg && !strncmp(arg, "notscdeadline", 13))
165 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
166 return 0;
167 }
168 early_param("lapic", parse_lapic);
169
170 #ifdef CONFIG_X86_64
171 static int apic_calibrate_pmtmr __initdata;
172 static __init int setup_apicpmtimer(char *s)
173 {
174 apic_calibrate_pmtmr = 1;
175 notsc_setup(NULL);
176 return 0;
177 }
178 __setup("apicpmtimer", setup_apicpmtimer);
179 #endif
180
181 unsigned long mp_lapic_addr __ro_after_init;
182 int disable_apic __ro_after_init;
183 /* Disable local APIC timer from the kernel commandline or via dmi quirk */
184 static int disable_apic_timer __initdata;
185 /* Local APIC timer works in C2 */
186 int local_apic_timer_c2_ok __ro_after_init;
187 EXPORT_SYMBOL_GPL(local_apic_timer_c2_ok);
188
189 /*
190 * Debug level, exported for io_apic.c
191 */
192 int apic_verbosity __ro_after_init;
193
194 int pic_mode __ro_after_init;
195
196 /* Have we found an MP table */
197 int smp_found_config __ro_after_init;
198
199 static struct resource lapic_resource = {
200 .name = "Local APIC",
201 .flags = IORESOURCE_MEM | IORESOURCE_BUSY,
202 };
203
204 unsigned int lapic_timer_period = 0;
205
206 static void apic_pm_activate(void);
207
208 static unsigned long apic_phys __ro_after_init;
209
210 /*
211 * Get the LAPIC version
212 */
213 static inline int lapic_get_version(void)
214 {
215 return GET_APIC_VERSION(apic_read(APIC_LVR));
216 }
217
218 /*
219 * Check, if the APIC is integrated or a separate chip
220 */
221 static inline int lapic_is_integrated(void)
222 {
223 return APIC_INTEGRATED(lapic_get_version());
224 }
225
226 /*
227 * Check, whether this is a modern or a first generation APIC
228 */
229 static int modern_apic(void)
230 {
231 /* AMD systems use old APIC versions, so check the CPU */
232 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
233 boot_cpu_data.x86 >= 0xf)
234 return 1;
235
236 /* Hygon systems use modern APIC */
237 if (boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
238 return 1;
239
240 return lapic_get_version() >= 0x14;
241 }
242
243 /*
244 * right after this call apic become NOOP driven
245 * so apic->write/read doesn't do anything
246 */
247 static void __init apic_disable(void)
248 {
249 pr_info("APIC: switched to apic NOOP\n");
250 apic = &apic_noop;
251 }
252
253 void native_apic_wait_icr_idle(void)
254 {
255 while (apic_read(APIC_ICR) & APIC_ICR_BUSY)
256 cpu_relax();
257 }
258
259 u32 native_safe_apic_wait_icr_idle(void)
260 {
261 u32 send_status;
262 int timeout;
263
264 timeout = 0;
265 do {
266 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
267 if (!send_status)
268 break;
269 inc_irq_stat(icr_read_retry_count);
270 udelay(100);
271 } while (timeout++ < 1000);
272
273 return send_status;
274 }
275
276 void native_apic_icr_write(u32 low, u32 id)
277 {
278 unsigned long flags;
279
280 local_irq_save(flags);
281 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(id));
282 apic_write(APIC_ICR, low);
283 local_irq_restore(flags);
284 }
285
286 u64 native_apic_icr_read(void)
287 {
288 u32 icr1, icr2;
289
290 icr2 = apic_read(APIC_ICR2);
291 icr1 = apic_read(APIC_ICR);
292
293 return icr1 | ((u64)icr2 << 32);
294 }
295
296 #ifdef CONFIG_X86_32
297 /**
298 * get_physical_broadcast - Get number of physical broadcast IDs
299 */
300 int get_physical_broadcast(void)
301 {
302 return modern_apic() ? 0xff : 0xf;
303 }
304 #endif
305
306 /**
307 * lapic_get_maxlvt - get the maximum number of local vector table entries
308 */
309 int lapic_get_maxlvt(void)
310 {
311 /*
312 * - we always have APIC integrated on 64bit mode
313 * - 82489DXs do not report # of LVT entries
314 */
315 return lapic_is_integrated() ? GET_APIC_MAXLVT(apic_read(APIC_LVR)) : 2;
316 }
317
318 /*
319 * Local APIC timer
320 */
321
322 /* Clock divisor */
323 #define APIC_DIVISOR 16
324 #define TSC_DIVISOR 8
325
326 /*
327 * This function sets up the local APIC timer, with a timeout of
328 * 'clocks' APIC bus clock. During calibration we actually call
329 * this function twice on the boot CPU, once with a bogus timeout
330 * value, second time for real. The other (noncalibrating) CPUs
331 * call this function only once, with the real, calibrated value.
332 *
333 * We do reads before writes even if unnecessary, to get around the
334 * P5 APIC double write bug.
335 */
336 static void __setup_APIC_LVTT(unsigned int clocks, int oneshot, int irqen)
337 {
338 unsigned int lvtt_value, tmp_value;
339
340 lvtt_value = LOCAL_TIMER_VECTOR;
341 if (!oneshot)
342 lvtt_value |= APIC_LVT_TIMER_PERIODIC;
343 else if (boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER))
344 lvtt_value |= APIC_LVT_TIMER_TSCDEADLINE;
345
346 if (!lapic_is_integrated())
347 lvtt_value |= SET_APIC_TIMER_BASE(APIC_TIMER_BASE_DIV);
348
349 if (!irqen)
350 lvtt_value |= APIC_LVT_MASKED;
351
352 apic_write(APIC_LVTT, lvtt_value);
353
354 if (lvtt_value & APIC_LVT_TIMER_TSCDEADLINE) {
355 /*
356 * See Intel SDM: TSC-Deadline Mode chapter. In xAPIC mode,
357 * writing to the APIC LVTT and TSC_DEADLINE MSR isn't serialized.
358 * According to Intel, MFENCE can do the serialization here.
359 */
360 asm volatile("mfence" : : : "memory");
361 return;
362 }
363
364 /*
365 * Divide PICLK by 16
366 */
367 tmp_value = apic_read(APIC_TDCR);
368 apic_write(APIC_TDCR,
369 (tmp_value & ~(APIC_TDR_DIV_1 | APIC_TDR_DIV_TMBASE)) |
370 APIC_TDR_DIV_16);
371
372 if (!oneshot)
373 apic_write(APIC_TMICT, clocks / APIC_DIVISOR);
374 }
375
376 /*
377 * Setup extended LVT, AMD specific
378 *
379 * Software should use the LVT offsets the BIOS provides. The offsets
380 * are determined by the subsystems using it like those for MCE
381 * threshold or IBS. On K8 only offset 0 (APIC500) and MCE interrupts
382 * are supported. Beginning with family 10h at least 4 offsets are
383 * available.
384 *
385 * Since the offsets must be consistent for all cores, we keep track
386 * of the LVT offsets in software and reserve the offset for the same
387 * vector also to be used on other cores. An offset is freed by
388 * setting the entry to APIC_EILVT_MASKED.
389 *
390 * If the BIOS is right, there should be no conflicts. Otherwise a
391 * "[Firmware Bug]: ..." error message is generated. However, if
392 * software does not properly determines the offsets, it is not
393 * necessarily a BIOS bug.
394 */
395
396 static atomic_t eilvt_offsets[APIC_EILVT_NR_MAX];
397
398 static inline int eilvt_entry_is_changeable(unsigned int old, unsigned int new)
399 {
400 return (old & APIC_EILVT_MASKED)
401 || (new == APIC_EILVT_MASKED)
402 || ((new & ~APIC_EILVT_MASKED) == old);
403 }
404
405 static unsigned int reserve_eilvt_offset(int offset, unsigned int new)
406 {
407 unsigned int rsvd, vector;
408
409 if (offset >= APIC_EILVT_NR_MAX)
410 return ~0;
411
412 rsvd = atomic_read(&eilvt_offsets[offset]);
413 do {
414 vector = rsvd & ~APIC_EILVT_MASKED; /* 0: unassigned */
415 if (vector && !eilvt_entry_is_changeable(vector, new))
416 /* may not change if vectors are different */
417 return rsvd;
418 rsvd = atomic_cmpxchg(&eilvt_offsets[offset], rsvd, new);
419 } while (rsvd != new);
420
421 rsvd &= ~APIC_EILVT_MASKED;
422 if (rsvd && rsvd != vector)
423 pr_info("LVT offset %d assigned for vector 0x%02x\n",
424 offset, rsvd);
425
426 return new;
427 }
428
429 /*
430 * If mask=1, the LVT entry does not generate interrupts while mask=0
431 * enables the vector. See also the BKDGs. Must be called with
432 * preemption disabled.
433 */
434
435 int setup_APIC_eilvt(u8 offset, u8 vector, u8 msg_type, u8 mask)
436 {
437 unsigned long reg = APIC_EILVTn(offset);
438 unsigned int new, old, reserved;
439
440 new = (mask << 16) | (msg_type << 8) | vector;
441 old = apic_read(reg);
442 reserved = reserve_eilvt_offset(offset, new);
443
444 if (reserved != new) {
445 pr_err(FW_BUG "cpu %d, try to use APIC%lX (LVT offset %d) for "
446 "vector 0x%x, but the register is already in use for "
447 "vector 0x%x on another cpu\n",
448 smp_processor_id(), reg, offset, new, reserved);
449 return -EINVAL;
450 }
451
452 if (!eilvt_entry_is_changeable(old, new)) {
453 pr_err(FW_BUG "cpu %d, try to use APIC%lX (LVT offset %d) for "
454 "vector 0x%x, but the register is already in use for "
455 "vector 0x%x on this cpu\n",
456 smp_processor_id(), reg, offset, new, old);
457 return -EBUSY;
458 }
459
460 apic_write(reg, new);
461
462 return 0;
463 }
464 EXPORT_SYMBOL_GPL(setup_APIC_eilvt);
465
466 /*
467 * Program the next event, relative to now
468 */
469 static int lapic_next_event(unsigned long delta,
470 struct clock_event_device *evt)
471 {
472 apic_write(APIC_TMICT, delta);
473 return 0;
474 }
475
476 static int lapic_next_deadline(unsigned long delta,
477 struct clock_event_device *evt)
478 {
479 u64 tsc;
480
481 /* This MSR is special and need a special fence: */
482 weak_wrmsr_fence();
483
484 tsc = rdtsc();
485 wrmsrl(MSR_IA32_TSC_DEADLINE, tsc + (((u64) delta) * TSC_DIVISOR));
486 return 0;
487 }
488
489 static int lapic_timer_shutdown(struct clock_event_device *evt)
490 {
491 unsigned int v;
492
493 /* Lapic used as dummy for broadcast ? */
494 if (evt->features & CLOCK_EVT_FEAT_DUMMY)
495 return 0;
496
497 v = apic_read(APIC_LVTT);
498 v |= (APIC_LVT_MASKED | LOCAL_TIMER_VECTOR);
499 apic_write(APIC_LVTT, v);
500 apic_write(APIC_TMICT, 0);
501 return 0;
502 }
503
504 static inline int
505 lapic_timer_set_periodic_oneshot(struct clock_event_device *evt, bool oneshot)
506 {
507 /* Lapic used as dummy for broadcast ? */
508 if (evt->features & CLOCK_EVT_FEAT_DUMMY)
509 return 0;
510
511 __setup_APIC_LVTT(lapic_timer_period, oneshot, 1);
512 return 0;
513 }
514
515 static int lapic_timer_set_periodic(struct clock_event_device *evt)
516 {
517 return lapic_timer_set_periodic_oneshot(evt, false);
518 }
519
520 static int lapic_timer_set_oneshot(struct clock_event_device *evt)
521 {
522 return lapic_timer_set_periodic_oneshot(evt, true);
523 }
524
525 /*
526 * Local APIC timer broadcast function
527 */
528 static void lapic_timer_broadcast(const struct cpumask *mask)
529 {
530 #ifdef CONFIG_SMP
531 apic->send_IPI_mask(mask, LOCAL_TIMER_VECTOR);
532 #endif
533 }
534
535
536 /*
537 * The local apic timer can be used for any function which is CPU local.
538 */
539 static struct clock_event_device lapic_clockevent = {
540 .name = "lapic",
541 .features = CLOCK_EVT_FEAT_PERIODIC |
542 CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_C3STOP
543 | CLOCK_EVT_FEAT_DUMMY,
544 .shift = 32,
545 .set_state_shutdown = lapic_timer_shutdown,
546 .set_state_periodic = lapic_timer_set_periodic,
547 .set_state_oneshot = lapic_timer_set_oneshot,
548 .set_state_oneshot_stopped = lapic_timer_shutdown,
549 .set_next_event = lapic_next_event,
550 .broadcast = lapic_timer_broadcast,
551 .rating = 100,
552 .irq = -1,
553 };
554 static DEFINE_PER_CPU(struct clock_event_device, lapic_events);
555
556 static const struct x86_cpu_id deadline_match[] __initconst = {
557 X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(HASWELL_X, X86_STEPPINGS(0x2, 0x2), 0x3a), /* EP */
558 X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(HASWELL_X, X86_STEPPINGS(0x4, 0x4), 0x0f), /* EX */
559
560 X86_MATCH_INTEL_FAM6_MODEL( BROADWELL_X, 0x0b000020),
561
562 X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(BROADWELL_D, X86_STEPPINGS(0x2, 0x2), 0x00000011),
563 X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(BROADWELL_D, X86_STEPPINGS(0x3, 0x3), 0x0700000e),
564 X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(BROADWELL_D, X86_STEPPINGS(0x4, 0x4), 0x0f00000c),
565 X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(BROADWELL_D, X86_STEPPINGS(0x5, 0x5), 0x0e000003),
566
567 X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(SKYLAKE_X, X86_STEPPINGS(0x3, 0x3), 0x01000136),
568 X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(SKYLAKE_X, X86_STEPPINGS(0x4, 0x4), 0x02000014),
569 X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(SKYLAKE_X, X86_STEPPINGS(0x5, 0xf), 0),
570
571 X86_MATCH_INTEL_FAM6_MODEL( HASWELL, 0x22),
572 X86_MATCH_INTEL_FAM6_MODEL( HASWELL_L, 0x20),
573 X86_MATCH_INTEL_FAM6_MODEL( HASWELL_G, 0x17),
574
575 X86_MATCH_INTEL_FAM6_MODEL( BROADWELL, 0x25),
576 X86_MATCH_INTEL_FAM6_MODEL( BROADWELL_G, 0x17),
577
578 X86_MATCH_INTEL_FAM6_MODEL( SKYLAKE_L, 0xb2),
579 X86_MATCH_INTEL_FAM6_MODEL( SKYLAKE, 0xb2),
580
581 X86_MATCH_INTEL_FAM6_MODEL( KABYLAKE_L, 0x52),
582 X86_MATCH_INTEL_FAM6_MODEL( KABYLAKE, 0x52),
583
584 {},
585 };
586
587 static __init bool apic_validate_deadline_timer(void)
588 {
589 const struct x86_cpu_id *m;
590 u32 rev;
591
592 if (!boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER))
593 return false;
594 if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
595 return true;
596
597 m = x86_match_cpu(deadline_match);
598 if (!m)
599 return true;
600
601 rev = (u32)m->driver_data;
602
603 if (boot_cpu_data.microcode >= rev)
604 return true;
605
606 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
607 pr_err(FW_BUG "TSC_DEADLINE disabled due to Errata; "
608 "please update microcode to version: 0x%x (or later)\n", rev);
609 return false;
610 }
611
612 /*
613 * Setup the local APIC timer for this CPU. Copy the initialized values
614 * of the boot CPU and register the clock event in the framework.
615 */
616 static void setup_APIC_timer(void)
617 {
618 struct clock_event_device *levt = this_cpu_ptr(&lapic_events);
619
620 if (this_cpu_has(X86_FEATURE_ARAT)) {
621 lapic_clockevent.features &= ~CLOCK_EVT_FEAT_C3STOP;
622 /* Make LAPIC timer preferrable over percpu HPET */
623 lapic_clockevent.rating = 150;
624 }
625
626 memcpy(levt, &lapic_clockevent, sizeof(*levt));
627 levt->cpumask = cpumask_of(smp_processor_id());
628
629 if (this_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER)) {
630 levt->name = "lapic-deadline";
631 levt->features &= ~(CLOCK_EVT_FEAT_PERIODIC |
632 CLOCK_EVT_FEAT_DUMMY);
633 levt->set_next_event = lapic_next_deadline;
634 clockevents_config_and_register(levt,
635 tsc_khz * (1000 / TSC_DIVISOR),
636 0xF, ~0UL);
637 } else
638 clockevents_register_device(levt);
639 }
640
641 /*
642 * Install the updated TSC frequency from recalibration at the TSC
643 * deadline clockevent devices.
644 */
645 static void __lapic_update_tsc_freq(void *info)
646 {
647 struct clock_event_device *levt = this_cpu_ptr(&lapic_events);
648
649 if (!this_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER))
650 return;
651
652 clockevents_update_freq(levt, tsc_khz * (1000 / TSC_DIVISOR));
653 }
654
655 void lapic_update_tsc_freq(void)
656 {
657 /*
658 * The clockevent device's ->mult and ->shift can both be
659 * changed. In order to avoid races, schedule the frequency
660 * update code on each CPU.
661 */
662 on_each_cpu(__lapic_update_tsc_freq, NULL, 0);
663 }
664
665 /*
666 * In this functions we calibrate APIC bus clocks to the external timer.
667 *
668 * We want to do the calibration only once since we want to have local timer
669 * irqs syncron. CPUs connected by the same APIC bus have the very same bus
670 * frequency.
671 *
672 * This was previously done by reading the PIT/HPET and waiting for a wrap
673 * around to find out, that a tick has elapsed. I have a box, where the PIT
674 * readout is broken, so it never gets out of the wait loop again. This was
675 * also reported by others.
676 *
677 * Monitoring the jiffies value is inaccurate and the clockevents
678 * infrastructure allows us to do a simple substitution of the interrupt
679 * handler.
680 *
681 * The calibration routine also uses the pm_timer when possible, as the PIT
682 * happens to run way too slow (factor 2.3 on my VAIO CoreDuo, which goes
683 * back to normal later in the boot process).
684 */
685
686 #define LAPIC_CAL_LOOPS (HZ/10)
687
688 static __initdata int lapic_cal_loops = -1;
689 static __initdata long lapic_cal_t1, lapic_cal_t2;
690 static __initdata unsigned long long lapic_cal_tsc1, lapic_cal_tsc2;
691 static __initdata unsigned long lapic_cal_pm1, lapic_cal_pm2;
692 static __initdata unsigned long lapic_cal_j1, lapic_cal_j2;
693
694 /*
695 * Temporary interrupt handler and polled calibration function.
696 */
697 static void __init lapic_cal_handler(struct clock_event_device *dev)
698 {
699 unsigned long long tsc = 0;
700 long tapic = apic_read(APIC_TMCCT);
701 unsigned long pm = acpi_pm_read_early();
702
703 if (boot_cpu_has(X86_FEATURE_TSC))
704 tsc = rdtsc();
705
706 switch (lapic_cal_loops++) {
707 case 0:
708 lapic_cal_t1 = tapic;
709 lapic_cal_tsc1 = tsc;
710 lapic_cal_pm1 = pm;
711 lapic_cal_j1 = jiffies;
712 break;
713
714 case LAPIC_CAL_LOOPS:
715 lapic_cal_t2 = tapic;
716 lapic_cal_tsc2 = tsc;
717 if (pm < lapic_cal_pm1)
718 pm += ACPI_PM_OVRRUN;
719 lapic_cal_pm2 = pm;
720 lapic_cal_j2 = jiffies;
721 break;
722 }
723 }
724
725 static int __init
726 calibrate_by_pmtimer(long deltapm, long *delta, long *deltatsc)
727 {
728 const long pm_100ms = PMTMR_TICKS_PER_SEC / 10;
729 const long pm_thresh = pm_100ms / 100;
730 unsigned long mult;
731 u64 res;
732
733 #ifndef CONFIG_X86_PM_TIMER
734 return -1;
735 #endif
736
737 apic_printk(APIC_VERBOSE, "... PM-Timer delta = %ld\n", deltapm);
738
739 /* Check, if the PM timer is available */
740 if (!deltapm)
741 return -1;
742
743 mult = clocksource_hz2mult(PMTMR_TICKS_PER_SEC, 22);
744
745 if (deltapm > (pm_100ms - pm_thresh) &&
746 deltapm < (pm_100ms + pm_thresh)) {
747 apic_printk(APIC_VERBOSE, "... PM-Timer result ok\n");
748 return 0;
749 }
750
751 res = (((u64)deltapm) * mult) >> 22;
752 do_div(res, 1000000);
753 pr_warn("APIC calibration not consistent "
754 "with PM-Timer: %ldms instead of 100ms\n", (long)res);
755
756 /* Correct the lapic counter value */
757 res = (((u64)(*delta)) * pm_100ms);
758 do_div(res, deltapm);
759 pr_info("APIC delta adjusted to PM-Timer: "
760 "%lu (%ld)\n", (unsigned long)res, *delta);
761 *delta = (long)res;
762
763 /* Correct the tsc counter value */
764 if (boot_cpu_has(X86_FEATURE_TSC)) {
765 res = (((u64)(*deltatsc)) * pm_100ms);
766 do_div(res, deltapm);
767 apic_printk(APIC_VERBOSE, "TSC delta adjusted to "
768 "PM-Timer: %lu (%ld)\n",
769 (unsigned long)res, *deltatsc);
770 *deltatsc = (long)res;
771 }
772
773 return 0;
774 }
775
776 static int __init lapic_init_clockevent(void)
777 {
778 if (!lapic_timer_period)
779 return -1;
780
781 /* Calculate the scaled math multiplication factor */
782 lapic_clockevent.mult = div_sc(lapic_timer_period/APIC_DIVISOR,
783 TICK_NSEC, lapic_clockevent.shift);
784 lapic_clockevent.max_delta_ns =
785 clockevent_delta2ns(0x7FFFFFFF, &lapic_clockevent);
786 lapic_clockevent.max_delta_ticks = 0x7FFFFFFF;
787 lapic_clockevent.min_delta_ns =
788 clockevent_delta2ns(0xF, &lapic_clockevent);
789 lapic_clockevent.min_delta_ticks = 0xF;
790
791 return 0;
792 }
793
794 bool __init apic_needs_pit(void)
795 {
796 /*
797 * If the frequencies are not known, PIT is required for both TSC
798 * and apic timer calibration.
799 */
800 if (!tsc_khz || !cpu_khz)
801 return true;
802
803 /* Is there an APIC at all or is it disabled? */
804 if (!boot_cpu_has(X86_FEATURE_APIC) || disable_apic)
805 return true;
806
807 /*
808 * If interrupt delivery mode is legacy PIC or virtual wire without
809 * configuration, the local APIC timer wont be set up. Make sure
810 * that the PIT is initialized.
811 */
812 if (apic_intr_mode == APIC_PIC ||
813 apic_intr_mode == APIC_VIRTUAL_WIRE_NO_CONFIG)
814 return true;
815
816 /* Virt guests may lack ARAT, but still have DEADLINE */
817 if (!boot_cpu_has(X86_FEATURE_ARAT))
818 return true;
819
820 /* Deadline timer is based on TSC so no further PIT action required */
821 if (boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER))
822 return false;
823
824 /* APIC timer disabled? */
825 if (disable_apic_timer)
826 return true;
827 /*
828 * The APIC timer frequency is known already, no PIT calibration
829 * required. If unknown, let the PIT be initialized.
830 */
831 return lapic_timer_period == 0;
832 }
833
834 static int __init calibrate_APIC_clock(void)
835 {
836 struct clock_event_device *levt = this_cpu_ptr(&lapic_events);
837 u64 tsc_perj = 0, tsc_start = 0;
838 unsigned long jif_start;
839 unsigned long deltaj;
840 long delta, deltatsc;
841 int pm_referenced = 0;
842
843 if (boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER))
844 return 0;
845
846 /*
847 * Check if lapic timer has already been calibrated by platform
848 * specific routine, such as tsc calibration code. If so just fill
849 * in the clockevent structure and return.
850 */
851 if (!lapic_init_clockevent()) {
852 apic_printk(APIC_VERBOSE, "lapic timer already calibrated %d\n",
853 lapic_timer_period);
854 /*
855 * Direct calibration methods must have an always running
856 * local APIC timer, no need for broadcast timer.
857 */
858 lapic_clockevent.features &= ~CLOCK_EVT_FEAT_DUMMY;
859 return 0;
860 }
861
862 apic_printk(APIC_VERBOSE, "Using local APIC timer interrupts.\n"
863 "calibrating APIC timer ...\n");
864
865 /*
866 * There are platforms w/o global clockevent devices. Instead of
867 * making the calibration conditional on that, use a polling based
868 * approach everywhere.
869 */
870 local_irq_disable();
871
872 /*
873 * Setup the APIC counter to maximum. There is no way the lapic
874 * can underflow in the 100ms detection time frame
875 */
876 __setup_APIC_LVTT(0xffffffff, 0, 0);
877
878 /*
879 * Methods to terminate the calibration loop:
880 * 1) Global clockevent if available (jiffies)
881 * 2) TSC if available and frequency is known
882 */
883 jif_start = READ_ONCE(jiffies);
884
885 if (tsc_khz) {
886 tsc_start = rdtsc();
887 tsc_perj = div_u64((u64)tsc_khz * 1000, HZ);
888 }
889
890 /*
891 * Enable interrupts so the tick can fire, if a global
892 * clockevent device is available
893 */
894 local_irq_enable();
895
896 while (lapic_cal_loops <= LAPIC_CAL_LOOPS) {
897 /* Wait for a tick to elapse */
898 while (1) {
899 if (tsc_khz) {
900 u64 tsc_now = rdtsc();
901 if ((tsc_now - tsc_start) >= tsc_perj) {
902 tsc_start += tsc_perj;
903 break;
904 }
905 } else {
906 unsigned long jif_now = READ_ONCE(jiffies);
907
908 if (time_after(jif_now, jif_start)) {
909 jif_start = jif_now;
910 break;
911 }
912 }
913 cpu_relax();
914 }
915
916 /* Invoke the calibration routine */
917 local_irq_disable();
918 lapic_cal_handler(NULL);
919 local_irq_enable();
920 }
921
922 local_irq_disable();
923
924 /* Build delta t1-t2 as apic timer counts down */
925 delta = lapic_cal_t1 - lapic_cal_t2;
926 apic_printk(APIC_VERBOSE, "... lapic delta = %ld\n", delta);
927
928 deltatsc = (long)(lapic_cal_tsc2 - lapic_cal_tsc1);
929
930 /* we trust the PM based calibration if possible */
931 pm_referenced = !calibrate_by_pmtimer(lapic_cal_pm2 - lapic_cal_pm1,
932 &delta, &deltatsc);
933
934 lapic_timer_period = (delta * APIC_DIVISOR) / LAPIC_CAL_LOOPS;
935 lapic_init_clockevent();
936
937 apic_printk(APIC_VERBOSE, "..... delta %ld\n", delta);
938 apic_printk(APIC_VERBOSE, "..... mult: %u\n", lapic_clockevent.mult);
939 apic_printk(APIC_VERBOSE, "..... calibration result: %u\n",
940 lapic_timer_period);
941
942 if (boot_cpu_has(X86_FEATURE_TSC)) {
943 apic_printk(APIC_VERBOSE, "..... CPU clock speed is "
944 "%ld.%04ld MHz.\n",
945 (deltatsc / LAPIC_CAL_LOOPS) / (1000000 / HZ),
946 (deltatsc / LAPIC_CAL_LOOPS) % (1000000 / HZ));
947 }
948
949 apic_printk(APIC_VERBOSE, "..... host bus clock speed is "
950 "%u.%04u MHz.\n",
951 lapic_timer_period / (1000000 / HZ),
952 lapic_timer_period % (1000000 / HZ));
953
954 /*
955 * Do a sanity check on the APIC calibration result
956 */
957 if (lapic_timer_period < (1000000 / HZ)) {
958 local_irq_enable();
959 pr_warn("APIC frequency too slow, disabling apic timer\n");
960 return -1;
961 }
962
963 levt->features &= ~CLOCK_EVT_FEAT_DUMMY;
964
965 /*
966 * PM timer calibration failed or not turned on so lets try APIC
967 * timer based calibration, if a global clockevent device is
968 * available.
969 */
970 if (!pm_referenced && global_clock_event) {
971 apic_printk(APIC_VERBOSE, "... verify APIC timer\n");
972
973 /*
974 * Setup the apic timer manually
975 */
976 levt->event_handler = lapic_cal_handler;
977 lapic_timer_set_periodic(levt);
978 lapic_cal_loops = -1;
979
980 /* Let the interrupts run */
981 local_irq_enable();
982
983 while (lapic_cal_loops <= LAPIC_CAL_LOOPS)
984 cpu_relax();
985
986 /* Stop the lapic timer */
987 local_irq_disable();
988 lapic_timer_shutdown(levt);
989
990 /* Jiffies delta */
991 deltaj = lapic_cal_j2 - lapic_cal_j1;
992 apic_printk(APIC_VERBOSE, "... jiffies delta = %lu\n", deltaj);
993
994 /* Check, if the jiffies result is consistent */
995 if (deltaj >= LAPIC_CAL_LOOPS-2 && deltaj <= LAPIC_CAL_LOOPS+2)
996 apic_printk(APIC_VERBOSE, "... jiffies result ok\n");
997 else
998 levt->features |= CLOCK_EVT_FEAT_DUMMY;
999 }
1000 local_irq_enable();
1001
1002 if (levt->features & CLOCK_EVT_FEAT_DUMMY) {
1003 pr_warn("APIC timer disabled due to verification failure\n");
1004 return -1;
1005 }
1006
1007 return 0;
1008 }
1009
1010 /*
1011 * Setup the boot APIC
1012 *
1013 * Calibrate and verify the result.
1014 */
1015 void __init setup_boot_APIC_clock(void)
1016 {
1017 /*
1018 * The local apic timer can be disabled via the kernel
1019 * commandline or from the CPU detection code. Register the lapic
1020 * timer as a dummy clock event source on SMP systems, so the
1021 * broadcast mechanism is used. On UP systems simply ignore it.
1022 */
1023 if (disable_apic_timer) {
1024 pr_info("Disabling APIC timer\n");
1025 /* No broadcast on UP ! */
1026 if (num_possible_cpus() > 1) {
1027 lapic_clockevent.mult = 1;
1028 setup_APIC_timer();
1029 }
1030 return;
1031 }
1032
1033 if (calibrate_APIC_clock()) {
1034 /* No broadcast on UP ! */
1035 if (num_possible_cpus() > 1)
1036 setup_APIC_timer();
1037 return;
1038 }
1039
1040 /*
1041 * If nmi_watchdog is set to IO_APIC, we need the
1042 * PIT/HPET going. Otherwise register lapic as a dummy
1043 * device.
1044 */
1045 lapic_clockevent.features &= ~CLOCK_EVT_FEAT_DUMMY;
1046
1047 /* Setup the lapic or request the broadcast */
1048 setup_APIC_timer();
1049 amd_e400_c1e_apic_setup();
1050 }
1051
1052 void setup_secondary_APIC_clock(void)
1053 {
1054 setup_APIC_timer();
1055 amd_e400_c1e_apic_setup();
1056 }
1057
1058 /*
1059 * The guts of the apic timer interrupt
1060 */
1061 static void local_apic_timer_interrupt(void)
1062 {
1063 struct clock_event_device *evt = this_cpu_ptr(&lapic_events);
1064
1065 /*
1066 * Normally we should not be here till LAPIC has been initialized but
1067 * in some cases like kdump, its possible that there is a pending LAPIC
1068 * timer interrupt from previous kernel's context and is delivered in
1069 * new kernel the moment interrupts are enabled.
1070 *
1071 * Interrupts are enabled early and LAPIC is setup much later, hence
1072 * its possible that when we get here evt->event_handler is NULL.
1073 * Check for event_handler being NULL and discard the interrupt as
1074 * spurious.
1075 */
1076 if (!evt->event_handler) {
1077 pr_warn("Spurious LAPIC timer interrupt on cpu %d\n",
1078 smp_processor_id());
1079 /* Switch it off */
1080 lapic_timer_shutdown(evt);
1081 return;
1082 }
1083
1084 /*
1085 * the NMI deadlock-detector uses this.
1086 */
1087 inc_irq_stat(apic_timer_irqs);
1088
1089 evt->event_handler(evt);
1090 }
1091
1092 /*
1093 * Local APIC timer interrupt. This is the most natural way for doing
1094 * local interrupts, but local timer interrupts can be emulated by
1095 * broadcast interrupts too. [in case the hw doesn't support APIC timers]
1096 *
1097 * [ if a single-CPU system runs an SMP kernel then we call the local
1098 * interrupt as well. Thus we cannot inline the local irq ... ]
1099 */
1100 DEFINE_IDTENTRY_SYSVEC(sysvec_apic_timer_interrupt)
1101 {
1102 struct pt_regs *old_regs = set_irq_regs(regs);
1103
1104 ack_APIC_irq();
1105 trace_local_timer_entry(LOCAL_TIMER_VECTOR);
1106 local_apic_timer_interrupt();
1107 trace_local_timer_exit(LOCAL_TIMER_VECTOR);
1108
1109 set_irq_regs(old_regs);
1110 }
1111
1112 int setup_profiling_timer(unsigned int multiplier)
1113 {
1114 return -EINVAL;
1115 }
1116
1117 /*
1118 * Local APIC start and shutdown
1119 */
1120
1121 /**
1122 * clear_local_APIC - shutdown the local APIC
1123 *
1124 * This is called, when a CPU is disabled and before rebooting, so the state of
1125 * the local APIC has no dangling leftovers. Also used to cleanout any BIOS
1126 * leftovers during boot.
1127 */
1128 void clear_local_APIC(void)
1129 {
1130 int maxlvt;
1131 u32 v;
1132
1133 /* APIC hasn't been mapped yet */
1134 if (!x2apic_mode && !apic_phys)
1135 return;
1136
1137 maxlvt = lapic_get_maxlvt();
1138 /*
1139 * Masking an LVT entry can trigger a local APIC error
1140 * if the vector is zero. Mask LVTERR first to prevent this.
1141 */
1142 if (maxlvt >= 3) {
1143 v = ERROR_APIC_VECTOR; /* any non-zero vector will do */
1144 apic_write(APIC_LVTERR, v | APIC_LVT_MASKED);
1145 }
1146 /*
1147 * Careful: we have to set masks only first to deassert
1148 * any level-triggered sources.
1149 */
1150 v = apic_read(APIC_LVTT);
1151 apic_write(APIC_LVTT, v | APIC_LVT_MASKED);
1152 v = apic_read(APIC_LVT0);
1153 apic_write(APIC_LVT0, v | APIC_LVT_MASKED);
1154 v = apic_read(APIC_LVT1);
1155 apic_write(APIC_LVT1, v | APIC_LVT_MASKED);
1156 if (maxlvt >= 4) {
1157 v = apic_read(APIC_LVTPC);
1158 apic_write(APIC_LVTPC, v | APIC_LVT_MASKED);
1159 }
1160
1161 /* lets not touch this if we didn't frob it */
1162 #ifdef CONFIG_X86_THERMAL_VECTOR
1163 if (maxlvt >= 5) {
1164 v = apic_read(APIC_LVTTHMR);
1165 apic_write(APIC_LVTTHMR, v | APIC_LVT_MASKED);
1166 }
1167 #endif
1168 #ifdef CONFIG_X86_MCE_INTEL
1169 if (maxlvt >= 6) {
1170 v = apic_read(APIC_LVTCMCI);
1171 if (!(v & APIC_LVT_MASKED))
1172 apic_write(APIC_LVTCMCI, v | APIC_LVT_MASKED);
1173 }
1174 #endif
1175
1176 /*
1177 * Clean APIC state for other OSs:
1178 */
1179 apic_write(APIC_LVTT, APIC_LVT_MASKED);
1180 apic_write(APIC_LVT0, APIC_LVT_MASKED);
1181 apic_write(APIC_LVT1, APIC_LVT_MASKED);
1182 if (maxlvt >= 3)
1183 apic_write(APIC_LVTERR, APIC_LVT_MASKED);
1184 if (maxlvt >= 4)
1185 apic_write(APIC_LVTPC, APIC_LVT_MASKED);
1186
1187 /* Integrated APIC (!82489DX) ? */
1188 if (lapic_is_integrated()) {
1189 if (maxlvt > 3)
1190 /* Clear ESR due to Pentium errata 3AP and 11AP */
1191 apic_write(APIC_ESR, 0);
1192 apic_read(APIC_ESR);
1193 }
1194 }
1195
1196 /**
1197 * apic_soft_disable - Clears and software disables the local APIC on hotplug
1198 *
1199 * Contrary to disable_local_APIC() this does not touch the enable bit in
1200 * MSR_IA32_APICBASE. Clearing that bit on systems based on the 3 wire APIC
1201 * bus would require a hardware reset as the APIC would lose track of bus
1202 * arbitration. On systems with FSB delivery APICBASE could be disabled,
1203 * but it has to be guaranteed that no interrupt is sent to the APIC while
1204 * in that state and it's not clear from the SDM whether it still responds
1205 * to INIT/SIPI messages. Stay on the safe side and use software disable.
1206 */
1207 void apic_soft_disable(void)
1208 {
1209 u32 value;
1210
1211 clear_local_APIC();
1212
1213 /* Soft disable APIC (implies clearing of registers for 82489DX!). */
1214 value = apic_read(APIC_SPIV);
1215 value &= ~APIC_SPIV_APIC_ENABLED;
1216 apic_write(APIC_SPIV, value);
1217 }
1218
1219 /**
1220 * disable_local_APIC - clear and disable the local APIC
1221 */
1222 void disable_local_APIC(void)
1223 {
1224 /* APIC hasn't been mapped yet */
1225 if (!x2apic_mode && !apic_phys)
1226 return;
1227
1228 apic_soft_disable();
1229
1230 #ifdef CONFIG_X86_32
1231 /*
1232 * When LAPIC was disabled by the BIOS and enabled by the kernel,
1233 * restore the disabled state.
1234 */
1235 if (enabled_via_apicbase) {
1236 unsigned int l, h;
1237
1238 rdmsr(MSR_IA32_APICBASE, l, h);
1239 l &= ~MSR_IA32_APICBASE_ENABLE;
1240 wrmsr(MSR_IA32_APICBASE, l, h);
1241 }
1242 #endif
1243 }
1244
1245 /*
1246 * If Linux enabled the LAPIC against the BIOS default disable it down before
1247 * re-entering the BIOS on shutdown. Otherwise the BIOS may get confused and
1248 * not power-off. Additionally clear all LVT entries before disable_local_APIC
1249 * for the case where Linux didn't enable the LAPIC.
1250 */
1251 void lapic_shutdown(void)
1252 {
1253 unsigned long flags;
1254
1255 if (!boot_cpu_has(X86_FEATURE_APIC) && !apic_from_smp_config())
1256 return;
1257
1258 local_irq_save(flags);
1259
1260 #ifdef CONFIG_X86_32
1261 if (!enabled_via_apicbase)
1262 clear_local_APIC();
1263 else
1264 #endif
1265 disable_local_APIC();
1266
1267
1268 local_irq_restore(flags);
1269 }
1270
1271 /**
1272 * sync_Arb_IDs - synchronize APIC bus arbitration IDs
1273 */
1274 void __init sync_Arb_IDs(void)
1275 {
1276 /*
1277 * Unsupported on P4 - see Intel Dev. Manual Vol. 3, Ch. 8.6.1 And not
1278 * needed on AMD.
1279 */
1280 if (modern_apic() || boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
1281 return;
1282
1283 /*
1284 * Wait for idle.
1285 */
1286 apic_wait_icr_idle();
1287
1288 apic_printk(APIC_DEBUG, "Synchronizing Arb IDs.\n");
1289 apic_write(APIC_ICR, APIC_DEST_ALLINC |
1290 APIC_INT_LEVELTRIG | APIC_DM_INIT);
1291 }
1292
1293 enum apic_intr_mode_id apic_intr_mode __ro_after_init;
1294
1295 static int __init __apic_intr_mode_select(void)
1296 {
1297 /* Check kernel option */
1298 if (disable_apic) {
1299 pr_info("APIC disabled via kernel command line\n");
1300 return APIC_PIC;
1301 }
1302
1303 /* Check BIOS */
1304 #ifdef CONFIG_X86_64
1305 /* On 64-bit, the APIC must be integrated, Check local APIC only */
1306 if (!boot_cpu_has(X86_FEATURE_APIC)) {
1307 disable_apic = 1;
1308 pr_info("APIC disabled by BIOS\n");
1309 return APIC_PIC;
1310 }
1311 #else
1312 /* On 32-bit, the APIC may be integrated APIC or 82489DX */
1313
1314 /* Neither 82489DX nor integrated APIC ? */
1315 if (!boot_cpu_has(X86_FEATURE_APIC) && !smp_found_config) {
1316 disable_apic = 1;
1317 return APIC_PIC;
1318 }
1319
1320 /* If the BIOS pretends there is an integrated APIC ? */
1321 if (!boot_cpu_has(X86_FEATURE_APIC) &&
1322 APIC_INTEGRATED(boot_cpu_apic_version)) {
1323 disable_apic = 1;
1324 pr_err(FW_BUG "Local APIC %d not detected, force emulation\n",
1325 boot_cpu_physical_apicid);
1326 return APIC_PIC;
1327 }
1328 #endif
1329
1330 /* Check MP table or ACPI MADT configuration */
1331 if (!smp_found_config) {
1332 disable_ioapic_support();
1333 if (!acpi_lapic) {
1334 pr_info("APIC: ACPI MADT or MP tables are not detected\n");
1335 return APIC_VIRTUAL_WIRE_NO_CONFIG;
1336 }
1337 return APIC_VIRTUAL_WIRE;
1338 }
1339
1340 #ifdef CONFIG_SMP
1341 /* If SMP should be disabled, then really disable it! */
1342 if (!setup_max_cpus) {
1343 pr_info("APIC: SMP mode deactivated\n");
1344 return APIC_SYMMETRIC_IO_NO_ROUTING;
1345 }
1346
1347 if (read_apic_id() != boot_cpu_physical_apicid) {
1348 panic("Boot APIC ID in local APIC unexpected (%d vs %d)",
1349 read_apic_id(), boot_cpu_physical_apicid);
1350 /* Or can we switch back to PIC here? */
1351 }
1352 #endif
1353
1354 return APIC_SYMMETRIC_IO;
1355 }
1356
1357 /* Select the interrupt delivery mode for the BSP */
1358 void __init apic_intr_mode_select(void)
1359 {
1360 apic_intr_mode = __apic_intr_mode_select();
1361 }
1362
1363 /*
1364 * An initial setup of the virtual wire mode.
1365 */
1366 void __init init_bsp_APIC(void)
1367 {
1368 unsigned int value;
1369
1370 /*
1371 * Don't do the setup now if we have a SMP BIOS as the
1372 * through-I/O-APIC virtual wire mode might be active.
1373 */
1374 if (smp_found_config || !boot_cpu_has(X86_FEATURE_APIC))
1375 return;
1376
1377 /*
1378 * Do not trust the local APIC being empty at bootup.
1379 */
1380 clear_local_APIC();
1381
1382 /*
1383 * Enable APIC.
1384 */
1385 value = apic_read(APIC_SPIV);
1386 value &= ~APIC_VECTOR_MASK;
1387 value |= APIC_SPIV_APIC_ENABLED;
1388
1389 #ifdef CONFIG_X86_32
1390 /* This bit is reserved on P4/Xeon and should be cleared */
1391 if ((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) &&
1392 (boot_cpu_data.x86 == 15))
1393 value &= ~APIC_SPIV_FOCUS_DISABLED;
1394 else
1395 #endif
1396 value |= APIC_SPIV_FOCUS_DISABLED;
1397 value |= SPURIOUS_APIC_VECTOR;
1398 apic_write(APIC_SPIV, value);
1399
1400 /*
1401 * Set up the virtual wire mode.
1402 */
1403 apic_write(APIC_LVT0, APIC_DM_EXTINT);
1404 value = APIC_DM_NMI;
1405 if (!lapic_is_integrated()) /* 82489DX */
1406 value |= APIC_LVT_LEVEL_TRIGGER;
1407 if (apic_extnmi == APIC_EXTNMI_NONE)
1408 value |= APIC_LVT_MASKED;
1409 apic_write(APIC_LVT1, value);
1410 }
1411
1412 static void __init apic_bsp_setup(bool upmode);
1413
1414 /* Init the interrupt delivery mode for the BSP */
1415 void __init apic_intr_mode_init(void)
1416 {
1417 bool upmode = IS_ENABLED(CONFIG_UP_LATE_INIT);
1418
1419 switch (apic_intr_mode) {
1420 case APIC_PIC:
1421 pr_info("APIC: Keep in PIC mode(8259)\n");
1422 return;
1423 case APIC_VIRTUAL_WIRE:
1424 pr_info("APIC: Switch to virtual wire mode setup\n");
1425 default_setup_apic_routing();
1426 break;
1427 case APIC_VIRTUAL_WIRE_NO_CONFIG:
1428 pr_info("APIC: Switch to virtual wire mode setup with no configuration\n");
1429 upmode = true;
1430 default_setup_apic_routing();
1431 break;
1432 case APIC_SYMMETRIC_IO:
1433 pr_info("APIC: Switch to symmetric I/O mode setup\n");
1434 default_setup_apic_routing();
1435 break;
1436 case APIC_SYMMETRIC_IO_NO_ROUTING:
1437 pr_info("APIC: Switch to symmetric I/O mode setup in no SMP routine\n");
1438 break;
1439 }
1440
1441 if (x86_platform.apic_post_init)
1442 x86_platform.apic_post_init();
1443
1444 apic_bsp_setup(upmode);
1445 }
1446
1447 static void lapic_setup_esr(void)
1448 {
1449 unsigned int oldvalue, value, maxlvt;
1450
1451 if (!lapic_is_integrated()) {
1452 pr_info("No ESR for 82489DX.\n");
1453 return;
1454 }
1455
1456 if (apic->disable_esr) {
1457 /*
1458 * Something untraceable is creating bad interrupts on
1459 * secondary quads ... for the moment, just leave the
1460 * ESR disabled - we can't do anything useful with the
1461 * errors anyway - mbligh
1462 */
1463 pr_info("Leaving ESR disabled.\n");
1464 return;
1465 }
1466
1467 maxlvt = lapic_get_maxlvt();
1468 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
1469 apic_write(APIC_ESR, 0);
1470 oldvalue = apic_read(APIC_ESR);
1471
1472 /* enables sending errors */
1473 value = ERROR_APIC_VECTOR;
1474 apic_write(APIC_LVTERR, value);
1475
1476 /*
1477 * spec says clear errors after enabling vector.
1478 */
1479 if (maxlvt > 3)
1480 apic_write(APIC_ESR, 0);
1481 value = apic_read(APIC_ESR);
1482 if (value != oldvalue)
1483 apic_printk(APIC_VERBOSE, "ESR value before enabling "
1484 "vector: 0x%08x after: 0x%08x\n",
1485 oldvalue, value);
1486 }
1487
1488 #define APIC_IR_REGS APIC_ISR_NR
1489 #define APIC_IR_BITS (APIC_IR_REGS * 32)
1490 #define APIC_IR_MAPSIZE (APIC_IR_BITS / BITS_PER_LONG)
1491
1492 union apic_ir {
1493 unsigned long map[APIC_IR_MAPSIZE];
1494 u32 regs[APIC_IR_REGS];
1495 };
1496
1497 static bool apic_check_and_ack(union apic_ir *irr, union apic_ir *isr)
1498 {
1499 int i, bit;
1500
1501 /* Read the IRRs */
1502 for (i = 0; i < APIC_IR_REGS; i++)
1503 irr->regs[i] = apic_read(APIC_IRR + i * 0x10);
1504
1505 /* Read the ISRs */
1506 for (i = 0; i < APIC_IR_REGS; i++)
1507 isr->regs[i] = apic_read(APIC_ISR + i * 0x10);
1508
1509 /*
1510 * If the ISR map is not empty. ACK the APIC and run another round
1511 * to verify whether a pending IRR has been unblocked and turned
1512 * into a ISR.
1513 */
1514 if (!bitmap_empty(isr->map, APIC_IR_BITS)) {
1515 /*
1516 * There can be multiple ISR bits set when a high priority
1517 * interrupt preempted a lower priority one. Issue an ACK
1518 * per set bit.
1519 */
1520 for_each_set_bit(bit, isr->map, APIC_IR_BITS)
1521 ack_APIC_irq();
1522 return true;
1523 }
1524
1525 return !bitmap_empty(irr->map, APIC_IR_BITS);
1526 }
1527
1528 /*
1529 * After a crash, we no longer service the interrupts and a pending
1530 * interrupt from previous kernel might still have ISR bit set.
1531 *
1532 * Most probably by now the CPU has serviced that pending interrupt and it
1533 * might not have done the ack_APIC_irq() because it thought, interrupt
1534 * came from i8259 as ExtInt. LAPIC did not get EOI so it does not clear
1535 * the ISR bit and cpu thinks it has already serivced the interrupt. Hence
1536 * a vector might get locked. It was noticed for timer irq (vector
1537 * 0x31). Issue an extra EOI to clear ISR.
1538 *
1539 * If there are pending IRR bits they turn into ISR bits after a higher
1540 * priority ISR bit has been acked.
1541 */
1542 static void apic_pending_intr_clear(void)
1543 {
1544 union apic_ir irr, isr;
1545 unsigned int i;
1546
1547 /* 512 loops are way oversized and give the APIC a chance to obey. */
1548 for (i = 0; i < 512; i++) {
1549 if (!apic_check_and_ack(&irr, &isr))
1550 return;
1551 }
1552 /* Dump the IRR/ISR content if that failed */
1553 pr_warn("APIC: Stale IRR: %256pb ISR: %256pb\n", irr.map, isr.map);
1554 }
1555
1556 /**
1557 * setup_local_APIC - setup the local APIC
1558 *
1559 * Used to setup local APIC while initializing BSP or bringing up APs.
1560 * Always called with preemption disabled.
1561 */
1562 static void setup_local_APIC(void)
1563 {
1564 int cpu = smp_processor_id();
1565 unsigned int value;
1566
1567 if (disable_apic) {
1568 disable_ioapic_support();
1569 return;
1570 }
1571
1572 /*
1573 * If this comes from kexec/kcrash the APIC might be enabled in
1574 * SPIV. Soft disable it before doing further initialization.
1575 */
1576 value = apic_read(APIC_SPIV);
1577 value &= ~APIC_SPIV_APIC_ENABLED;
1578 apic_write(APIC_SPIV, value);
1579
1580 #ifdef CONFIG_X86_32
1581 /* Pound the ESR really hard over the head with a big hammer - mbligh */
1582 if (lapic_is_integrated() && apic->disable_esr) {
1583 apic_write(APIC_ESR, 0);
1584 apic_write(APIC_ESR, 0);
1585 apic_write(APIC_ESR, 0);
1586 apic_write(APIC_ESR, 0);
1587 }
1588 #endif
1589 /*
1590 * Double-check whether this APIC is really registered.
1591 * This is meaningless in clustered apic mode, so we skip it.
1592 */
1593 BUG_ON(!apic->apic_id_registered());
1594
1595 /*
1596 * Intel recommends to set DFR, LDR and TPR before enabling
1597 * an APIC. See e.g. "AP-388 82489DX User's Manual" (Intel
1598 * document number 292116). So here it goes...
1599 */
1600 apic->init_apic_ldr();
1601
1602 #ifdef CONFIG_X86_32
1603 if (apic->dest_mode_logical) {
1604 int logical_apicid, ldr_apicid;
1605
1606 /*
1607 * APIC LDR is initialized. If logical_apicid mapping was
1608 * initialized during get_smp_config(), make sure it matches
1609 * the actual value.
1610 */
1611 logical_apicid = early_per_cpu(x86_cpu_to_logical_apicid, cpu);
1612 ldr_apicid = GET_APIC_LOGICAL_ID(apic_read(APIC_LDR));
1613 if (logical_apicid != BAD_APICID)
1614 WARN_ON(logical_apicid != ldr_apicid);
1615 /* Always use the value from LDR. */
1616 early_per_cpu(x86_cpu_to_logical_apicid, cpu) = ldr_apicid;
1617 }
1618 #endif
1619
1620 /*
1621 * Set Task Priority to 'accept all except vectors 0-31'. An APIC
1622 * vector in the 16-31 range could be delivered if TPR == 0, but we
1623 * would think it's an exception and terrible things will happen. We
1624 * never change this later on.
1625 */
1626 value = apic_read(APIC_TASKPRI);
1627 value &= ~APIC_TPRI_MASK;
1628 value |= 0x10;
1629 apic_write(APIC_TASKPRI, value);
1630
1631 /* Clear eventually stale ISR/IRR bits */
1632 apic_pending_intr_clear();
1633
1634 /*
1635 * Now that we are all set up, enable the APIC
1636 */
1637 value = apic_read(APIC_SPIV);
1638 value &= ~APIC_VECTOR_MASK;
1639 /*
1640 * Enable APIC
1641 */
1642 value |= APIC_SPIV_APIC_ENABLED;
1643
1644 #ifdef CONFIG_X86_32
1645 /*
1646 * Some unknown Intel IO/APIC (or APIC) errata is biting us with
1647 * certain networking cards. If high frequency interrupts are
1648 * happening on a particular IOAPIC pin, plus the IOAPIC routing
1649 * entry is masked/unmasked at a high rate as well then sooner or
1650 * later IOAPIC line gets 'stuck', no more interrupts are received
1651 * from the device. If focus CPU is disabled then the hang goes
1652 * away, oh well :-(
1653 *
1654 * [ This bug can be reproduced easily with a level-triggered
1655 * PCI Ne2000 networking cards and PII/PIII processors, dual
1656 * BX chipset. ]
1657 */
1658 /*
1659 * Actually disabling the focus CPU check just makes the hang less
1660 * frequent as it makes the interrupt distributon model be more
1661 * like LRU than MRU (the short-term load is more even across CPUs).
1662 */
1663
1664 /*
1665 * - enable focus processor (bit==0)
1666 * - 64bit mode always use processor focus
1667 * so no need to set it
1668 */
1669 value &= ~APIC_SPIV_FOCUS_DISABLED;
1670 #endif
1671
1672 /*
1673 * Set spurious IRQ vector
1674 */
1675 value |= SPURIOUS_APIC_VECTOR;
1676 apic_write(APIC_SPIV, value);
1677
1678 perf_events_lapic_init();
1679
1680 /*
1681 * Set up LVT0, LVT1:
1682 *
1683 * set up through-local-APIC on the boot CPU's LINT0. This is not
1684 * strictly necessary in pure symmetric-IO mode, but sometimes
1685 * we delegate interrupts to the 8259A.
1686 */
1687 /*
1688 * TODO: set up through-local-APIC from through-I/O-APIC? --macro
1689 */
1690 value = apic_read(APIC_LVT0) & APIC_LVT_MASKED;
1691 if (!cpu && (pic_mode || !value || skip_ioapic_setup)) {
1692 value = APIC_DM_EXTINT;
1693 apic_printk(APIC_VERBOSE, "enabled ExtINT on CPU#%d\n", cpu);
1694 } else {
1695 value = APIC_DM_EXTINT | APIC_LVT_MASKED;
1696 apic_printk(APIC_VERBOSE, "masked ExtINT on CPU#%d\n", cpu);
1697 }
1698 apic_write(APIC_LVT0, value);
1699
1700 /*
1701 * Only the BSP sees the LINT1 NMI signal by default. This can be
1702 * modified by apic_extnmi= boot option.
1703 */
1704 if ((!cpu && apic_extnmi != APIC_EXTNMI_NONE) ||
1705 apic_extnmi == APIC_EXTNMI_ALL)
1706 value = APIC_DM_NMI;
1707 else
1708 value = APIC_DM_NMI | APIC_LVT_MASKED;
1709
1710 /* Is 82489DX ? */
1711 if (!lapic_is_integrated())
1712 value |= APIC_LVT_LEVEL_TRIGGER;
1713 apic_write(APIC_LVT1, value);
1714
1715 #ifdef CONFIG_X86_MCE_INTEL
1716 /* Recheck CMCI information after local APIC is up on CPU #0 */
1717 if (!cpu)
1718 cmci_recheck();
1719 #endif
1720 }
1721
1722 static void end_local_APIC_setup(void)
1723 {
1724 lapic_setup_esr();
1725
1726 #ifdef CONFIG_X86_32
1727 {
1728 unsigned int value;
1729 /* Disable the local apic timer */
1730 value = apic_read(APIC_LVTT);
1731 value |= (APIC_LVT_MASKED | LOCAL_TIMER_VECTOR);
1732 apic_write(APIC_LVTT, value);
1733 }
1734 #endif
1735
1736 apic_pm_activate();
1737 }
1738
1739 /*
1740 * APIC setup function for application processors. Called from smpboot.c
1741 */
1742 void apic_ap_setup(void)
1743 {
1744 setup_local_APIC();
1745 end_local_APIC_setup();
1746 }
1747
1748 #ifdef CONFIG_X86_X2APIC
1749 int x2apic_mode;
1750 EXPORT_SYMBOL_GPL(x2apic_mode);
1751
1752 enum {
1753 X2APIC_OFF,
1754 X2APIC_ON,
1755 X2APIC_DISABLED,
1756 };
1757 static int x2apic_state;
1758
1759 static void __x2apic_disable(void)
1760 {
1761 u64 msr;
1762
1763 if (!boot_cpu_has(X86_FEATURE_APIC))
1764 return;
1765
1766 rdmsrl(MSR_IA32_APICBASE, msr);
1767 if (!(msr & X2APIC_ENABLE))
1768 return;
1769 /* Disable xapic and x2apic first and then reenable xapic mode */
1770 wrmsrl(MSR_IA32_APICBASE, msr & ~(X2APIC_ENABLE | XAPIC_ENABLE));
1771 wrmsrl(MSR_IA32_APICBASE, msr & ~X2APIC_ENABLE);
1772 printk_once(KERN_INFO "x2apic disabled\n");
1773 }
1774
1775 static void __x2apic_enable(void)
1776 {
1777 u64 msr;
1778
1779 rdmsrl(MSR_IA32_APICBASE, msr);
1780 if (msr & X2APIC_ENABLE)
1781 return;
1782 wrmsrl(MSR_IA32_APICBASE, msr | X2APIC_ENABLE);
1783 printk_once(KERN_INFO "x2apic enabled\n");
1784 }
1785
1786 static int __init setup_nox2apic(char *str)
1787 {
1788 if (x2apic_enabled()) {
1789 int apicid = native_apic_msr_read(APIC_ID);
1790
1791 if (apicid >= 255) {
1792 pr_warn("Apicid: %08x, cannot enforce nox2apic\n",
1793 apicid);
1794 return 0;
1795 }
1796 pr_warn("x2apic already enabled.\n");
1797 __x2apic_disable();
1798 }
1799 setup_clear_cpu_cap(X86_FEATURE_X2APIC);
1800 x2apic_state = X2APIC_DISABLED;
1801 x2apic_mode = 0;
1802 return 0;
1803 }
1804 early_param("nox2apic", setup_nox2apic);
1805
1806 /* Called from cpu_init() to enable x2apic on (secondary) cpus */
1807 void x2apic_setup(void)
1808 {
1809 /*
1810 * If x2apic is not in ON state, disable it if already enabled
1811 * from BIOS.
1812 */
1813 if (x2apic_state != X2APIC_ON) {
1814 __x2apic_disable();
1815 return;
1816 }
1817 __x2apic_enable();
1818 }
1819
1820 static __init void x2apic_disable(void)
1821 {
1822 u32 x2apic_id, state = x2apic_state;
1823
1824 x2apic_mode = 0;
1825 x2apic_state = X2APIC_DISABLED;
1826
1827 if (state != X2APIC_ON)
1828 return;
1829
1830 x2apic_id = read_apic_id();
1831 if (x2apic_id >= 255)
1832 panic("Cannot disable x2apic, id: %08x\n", x2apic_id);
1833
1834 __x2apic_disable();
1835 register_lapic_address(mp_lapic_addr);
1836 }
1837
1838 static __init void x2apic_enable(void)
1839 {
1840 if (x2apic_state != X2APIC_OFF)
1841 return;
1842
1843 x2apic_mode = 1;
1844 x2apic_state = X2APIC_ON;
1845 __x2apic_enable();
1846 }
1847
1848 static __init void try_to_enable_x2apic(int remap_mode)
1849 {
1850 if (x2apic_state == X2APIC_DISABLED)
1851 return;
1852
1853 if (remap_mode != IRQ_REMAP_X2APIC_MODE) {
1854 u32 apic_limit = 255;
1855
1856 /*
1857 * Using X2APIC without IR is not architecturally supported
1858 * on bare metal but may be supported in guests.
1859 */
1860 if (!x86_init.hyper.x2apic_available()) {
1861 pr_info("x2apic: IRQ remapping doesn't support X2APIC mode\n");
1862 x2apic_disable();
1863 return;
1864 }
1865
1866 /*
1867 * If the hypervisor supports extended destination ID in
1868 * MSI, that increases the maximum APIC ID that can be
1869 * used for non-remapped IRQ domains.
1870 */
1871 if (x86_init.hyper.msi_ext_dest_id()) {
1872 virt_ext_dest_id = 1;
1873 apic_limit = 32767;
1874 }
1875
1876 /*
1877 * Without IR, all CPUs can be addressed by IOAPIC/MSI only
1878 * in physical mode, and CPUs with an APIC ID that cannnot
1879 * be addressed must not be brought online.
1880 */
1881 x2apic_set_max_apicid(apic_limit);
1882 x2apic_phys = 1;
1883 }
1884 x2apic_enable();
1885 }
1886
1887 void __init check_x2apic(void)
1888 {
1889 if (x2apic_enabled()) {
1890 pr_info("x2apic: enabled by BIOS, switching to x2apic ops\n");
1891 x2apic_mode = 1;
1892 x2apic_state = X2APIC_ON;
1893 } else if (!boot_cpu_has(X86_FEATURE_X2APIC)) {
1894 x2apic_state = X2APIC_DISABLED;
1895 }
1896 }
1897 #else /* CONFIG_X86_X2APIC */
1898 static int __init validate_x2apic(void)
1899 {
1900 if (!apic_is_x2apic_enabled())
1901 return 0;
1902 /*
1903 * Checkme: Can we simply turn off x2apic here instead of panic?
1904 */
1905 panic("BIOS has enabled x2apic but kernel doesn't support x2apic, please disable x2apic in BIOS.\n");
1906 }
1907 early_initcall(validate_x2apic);
1908
1909 static inline void try_to_enable_x2apic(int remap_mode) { }
1910 static inline void __x2apic_enable(void) { }
1911 #endif /* !CONFIG_X86_X2APIC */
1912
1913 void __init enable_IR_x2apic(void)
1914 {
1915 unsigned long flags;
1916 int ret, ir_stat;
1917
1918 if (skip_ioapic_setup) {
1919 pr_info("Not enabling interrupt remapping due to skipped IO-APIC setup\n");
1920 return;
1921 }
1922
1923 ir_stat = irq_remapping_prepare();
1924 if (ir_stat < 0 && !x2apic_supported())
1925 return;
1926
1927 ret = save_ioapic_entries();
1928 if (ret) {
1929 pr_info("Saving IO-APIC state failed: %d\n", ret);
1930 return;
1931 }
1932
1933 local_irq_save(flags);
1934 legacy_pic->mask_all();
1935 mask_ioapic_entries();
1936
1937 /* If irq_remapping_prepare() succeeded, try to enable it */
1938 if (ir_stat >= 0)
1939 ir_stat = irq_remapping_enable();
1940 /* ir_stat contains the remap mode or an error code */
1941 try_to_enable_x2apic(ir_stat);
1942
1943 if (ir_stat < 0)
1944 restore_ioapic_entries();
1945 legacy_pic->restore_mask();
1946 local_irq_restore(flags);
1947 }
1948
1949 #ifdef CONFIG_X86_64
1950 /*
1951 * Detect and enable local APICs on non-SMP boards.
1952 * Original code written by Keir Fraser.
1953 * On AMD64 we trust the BIOS - if it says no APIC it is likely
1954 * not correctly set up (usually the APIC timer won't work etc.)
1955 */
1956 static int __init detect_init_APIC(void)
1957 {
1958 if (!boot_cpu_has(X86_FEATURE_APIC)) {
1959 pr_info("No local APIC present\n");
1960 return -1;
1961 }
1962
1963 mp_lapic_addr = APIC_DEFAULT_PHYS_BASE;
1964 return 0;
1965 }
1966 #else
1967
1968 static int __init apic_verify(void)
1969 {
1970 u32 features, h, l;
1971
1972 /*
1973 * The APIC feature bit should now be enabled
1974 * in `cpuid'
1975 */
1976 features = cpuid_edx(1);
1977 if (!(features & (1 << X86_FEATURE_APIC))) {
1978 pr_warn("Could not enable APIC!\n");
1979 return -1;
1980 }
1981 set_cpu_cap(&boot_cpu_data, X86_FEATURE_APIC);
1982 mp_lapic_addr = APIC_DEFAULT_PHYS_BASE;
1983
1984 /* The BIOS may have set up the APIC at some other address */
1985 if (boot_cpu_data.x86 >= 6) {
1986 rdmsr(MSR_IA32_APICBASE, l, h);
1987 if (l & MSR_IA32_APICBASE_ENABLE)
1988 mp_lapic_addr = l & MSR_IA32_APICBASE_BASE;
1989 }
1990
1991 pr_info("Found and enabled local APIC!\n");
1992 return 0;
1993 }
1994
1995 int __init apic_force_enable(unsigned long addr)
1996 {
1997 u32 h, l;
1998
1999 if (disable_apic)
2000 return -1;
2001
2002 /*
2003 * Some BIOSes disable the local APIC in the APIC_BASE
2004 * MSR. This can only be done in software for Intel P6 or later
2005 * and AMD K7 (Model > 1) or later.
2006 */
2007 if (boot_cpu_data.x86 >= 6) {
2008 rdmsr(MSR_IA32_APICBASE, l, h);
2009 if (!(l & MSR_IA32_APICBASE_ENABLE)) {
2010 pr_info("Local APIC disabled by BIOS -- reenabling.\n");
2011 l &= ~MSR_IA32_APICBASE_BASE;
2012 l |= MSR_IA32_APICBASE_ENABLE | addr;
2013 wrmsr(MSR_IA32_APICBASE, l, h);
2014 enabled_via_apicbase = 1;
2015 }
2016 }
2017 return apic_verify();
2018 }
2019
2020 /*
2021 * Detect and initialize APIC
2022 */
2023 static int __init detect_init_APIC(void)
2024 {
2025 /* Disabled by kernel option? */
2026 if (disable_apic)
2027 return -1;
2028
2029 switch (boot_cpu_data.x86_vendor) {
2030 case X86_VENDOR_AMD:
2031 if ((boot_cpu_data.x86 == 6 && boot_cpu_data.x86_model > 1) ||
2032 (boot_cpu_data.x86 >= 15))
2033 break;
2034 goto no_apic;
2035 case X86_VENDOR_HYGON:
2036 break;
2037 case X86_VENDOR_INTEL:
2038 if (boot_cpu_data.x86 == 6 || boot_cpu_data.x86 == 15 ||
2039 (boot_cpu_data.x86 == 5 && boot_cpu_has(X86_FEATURE_APIC)))
2040 break;
2041 goto no_apic;
2042 default:
2043 goto no_apic;
2044 }
2045
2046 if (!boot_cpu_has(X86_FEATURE_APIC)) {
2047 /*
2048 * Over-ride BIOS and try to enable the local APIC only if
2049 * "lapic" specified.
2050 */
2051 if (!force_enable_local_apic) {
2052 pr_info("Local APIC disabled by BIOS -- "
2053 "you can enable it with \"lapic\"\n");
2054 return -1;
2055 }
2056 if (apic_force_enable(APIC_DEFAULT_PHYS_BASE))
2057 return -1;
2058 } else {
2059 if (apic_verify())
2060 return -1;
2061 }
2062
2063 apic_pm_activate();
2064
2065 return 0;
2066
2067 no_apic:
2068 pr_info("No local APIC present or hardware disabled\n");
2069 return -1;
2070 }
2071 #endif
2072
2073 /**
2074 * init_apic_mappings - initialize APIC mappings
2075 */
2076 void __init init_apic_mappings(void)
2077 {
2078 unsigned int new_apicid;
2079
2080 if (apic_validate_deadline_timer())
2081 pr_info("TSC deadline timer available\n");
2082
2083 if (x2apic_mode) {
2084 boot_cpu_physical_apicid = read_apic_id();
2085 return;
2086 }
2087
2088 /* If no local APIC can be found return early */
2089 if (!smp_found_config && detect_init_APIC()) {
2090 /* lets NOP'ify apic operations */
2091 pr_info("APIC: disable apic facility\n");
2092 apic_disable();
2093 } else {
2094 apic_phys = mp_lapic_addr;
2095
2096 /*
2097 * If the system has ACPI MADT tables or MP info, the LAPIC
2098 * address is already registered.
2099 */
2100 if (!acpi_lapic && !smp_found_config)
2101 register_lapic_address(apic_phys);
2102 }
2103
2104 /*
2105 * Fetch the APIC ID of the BSP in case we have a
2106 * default configuration (or the MP table is broken).
2107 */
2108 new_apicid = read_apic_id();
2109 if (boot_cpu_physical_apicid != new_apicid) {
2110 boot_cpu_physical_apicid = new_apicid;
2111 /*
2112 * yeah -- we lie about apic_version
2113 * in case if apic was disabled via boot option
2114 * but it's not a problem for SMP compiled kernel
2115 * since apic_intr_mode_select is prepared for such
2116 * a case and disable smp mode
2117 */
2118 boot_cpu_apic_version = GET_APIC_VERSION(apic_read(APIC_LVR));
2119 }
2120 }
2121
2122 void __init register_lapic_address(unsigned long address)
2123 {
2124 mp_lapic_addr = address;
2125
2126 if (!x2apic_mode) {
2127 set_fixmap_nocache(FIX_APIC_BASE, address);
2128 apic_printk(APIC_VERBOSE, "mapped APIC to %16lx (%16lx)\n",
2129 APIC_BASE, address);
2130 }
2131 if (boot_cpu_physical_apicid == -1U) {
2132 boot_cpu_physical_apicid = read_apic_id();
2133 boot_cpu_apic_version = GET_APIC_VERSION(apic_read(APIC_LVR));
2134 }
2135 }
2136
2137 /*
2138 * Local APIC interrupts
2139 */
2140
2141 /*
2142 * Common handling code for spurious_interrupt and spurious_vector entry
2143 * points below. No point in allowing the compiler to inline it twice.
2144 */
2145 static noinline void handle_spurious_interrupt(u8 vector)
2146 {
2147 u32 v;
2148
2149 trace_spurious_apic_entry(vector);
2150
2151 inc_irq_stat(irq_spurious_count);
2152
2153 /*
2154 * If this is a spurious interrupt then do not acknowledge
2155 */
2156 if (vector == SPURIOUS_APIC_VECTOR) {
2157 /* See SDM vol 3 */
2158 pr_info("Spurious APIC interrupt (vector 0xFF) on CPU#%d, should never happen.\n",
2159 smp_processor_id());
2160 goto out;
2161 }
2162
2163 /*
2164 * If it is a vectored one, verify it's set in the ISR. If set,
2165 * acknowledge it.
2166 */
2167 v = apic_read(APIC_ISR + ((vector & ~0x1f) >> 1));
2168 if (v & (1 << (vector & 0x1f))) {
2169 pr_info("Spurious interrupt (vector 0x%02x) on CPU#%d. Acked\n",
2170 vector, smp_processor_id());
2171 ack_APIC_irq();
2172 } else {
2173 pr_info("Spurious interrupt (vector 0x%02x) on CPU#%d. Not pending!\n",
2174 vector, smp_processor_id());
2175 }
2176 out:
2177 trace_spurious_apic_exit(vector);
2178 }
2179
2180 /**
2181 * spurious_interrupt - Catch all for interrupts raised on unused vectors
2182 * @regs: Pointer to pt_regs on stack
2183 * @vector: The vector number
2184 *
2185 * This is invoked from ASM entry code to catch all interrupts which
2186 * trigger on an entry which is routed to the common_spurious idtentry
2187 * point.
2188 */
2189 DEFINE_IDTENTRY_IRQ(spurious_interrupt)
2190 {
2191 handle_spurious_interrupt(vector);
2192 }
2193
2194 DEFINE_IDTENTRY_SYSVEC(sysvec_spurious_apic_interrupt)
2195 {
2196 handle_spurious_interrupt(SPURIOUS_APIC_VECTOR);
2197 }
2198
2199 /*
2200 * This interrupt should never happen with our APIC/SMP architecture
2201 */
2202 DEFINE_IDTENTRY_SYSVEC(sysvec_error_interrupt)
2203 {
2204 static const char * const error_interrupt_reason[] = {
2205 "Send CS error", /* APIC Error Bit 0 */
2206 "Receive CS error", /* APIC Error Bit 1 */
2207 "Send accept error", /* APIC Error Bit 2 */
2208 "Receive accept error", /* APIC Error Bit 3 */
2209 "Redirectable IPI", /* APIC Error Bit 4 */
2210 "Send illegal vector", /* APIC Error Bit 5 */
2211 "Received illegal vector", /* APIC Error Bit 6 */
2212 "Illegal register address", /* APIC Error Bit 7 */
2213 };
2214 u32 v, i = 0;
2215
2216 trace_error_apic_entry(ERROR_APIC_VECTOR);
2217
2218 /* First tickle the hardware, only then report what went on. -- REW */
2219 if (lapic_get_maxlvt() > 3) /* Due to the Pentium erratum 3AP. */
2220 apic_write(APIC_ESR, 0);
2221 v = apic_read(APIC_ESR);
2222 ack_APIC_irq();
2223 atomic_inc(&irq_err_count);
2224
2225 apic_printk(APIC_DEBUG, KERN_DEBUG "APIC error on CPU%d: %02x",
2226 smp_processor_id(), v);
2227
2228 v &= 0xff;
2229 while (v) {
2230 if (v & 0x1)
2231 apic_printk(APIC_DEBUG, KERN_CONT " : %s", error_interrupt_reason[i]);
2232 i++;
2233 v >>= 1;
2234 }
2235
2236 apic_printk(APIC_DEBUG, KERN_CONT "\n");
2237
2238 trace_error_apic_exit(ERROR_APIC_VECTOR);
2239 }
2240
2241 /**
2242 * connect_bsp_APIC - attach the APIC to the interrupt system
2243 */
2244 static void __init connect_bsp_APIC(void)
2245 {
2246 #ifdef CONFIG_X86_32
2247 if (pic_mode) {
2248 /*
2249 * Do not trust the local APIC being empty at bootup.
2250 */
2251 clear_local_APIC();
2252 /*
2253 * PIC mode, enable APIC mode in the IMCR, i.e. connect BSP's
2254 * local APIC to INT and NMI lines.
2255 */
2256 apic_printk(APIC_VERBOSE, "leaving PIC mode, "
2257 "enabling APIC mode.\n");
2258 imcr_pic_to_apic();
2259 }
2260 #endif
2261 }
2262
2263 /**
2264 * disconnect_bsp_APIC - detach the APIC from the interrupt system
2265 * @virt_wire_setup: indicates, whether virtual wire mode is selected
2266 *
2267 * Virtual wire mode is necessary to deliver legacy interrupts even when the
2268 * APIC is disabled.
2269 */
2270 void disconnect_bsp_APIC(int virt_wire_setup)
2271 {
2272 unsigned int value;
2273
2274 #ifdef CONFIG_X86_32
2275 if (pic_mode) {
2276 /*
2277 * Put the board back into PIC mode (has an effect only on
2278 * certain older boards). Note that APIC interrupts, including
2279 * IPIs, won't work beyond this point! The only exception are
2280 * INIT IPIs.
2281 */
2282 apic_printk(APIC_VERBOSE, "disabling APIC mode, "
2283 "entering PIC mode.\n");
2284 imcr_apic_to_pic();
2285 return;
2286 }
2287 #endif
2288
2289 /* Go back to Virtual Wire compatibility mode */
2290
2291 /* For the spurious interrupt use vector F, and enable it */
2292 value = apic_read(APIC_SPIV);
2293 value &= ~APIC_VECTOR_MASK;
2294 value |= APIC_SPIV_APIC_ENABLED;
2295 value |= 0xf;
2296 apic_write(APIC_SPIV, value);
2297
2298 if (!virt_wire_setup) {
2299 /*
2300 * For LVT0 make it edge triggered, active high,
2301 * external and enabled
2302 */
2303 value = apic_read(APIC_LVT0);
2304 value &= ~(APIC_MODE_MASK | APIC_SEND_PENDING |
2305 APIC_INPUT_POLARITY | APIC_LVT_REMOTE_IRR |
2306 APIC_LVT_LEVEL_TRIGGER | APIC_LVT_MASKED);
2307 value |= APIC_LVT_REMOTE_IRR | APIC_SEND_PENDING;
2308 value = SET_APIC_DELIVERY_MODE(value, APIC_MODE_EXTINT);
2309 apic_write(APIC_LVT0, value);
2310 } else {
2311 /* Disable LVT0 */
2312 apic_write(APIC_LVT0, APIC_LVT_MASKED);
2313 }
2314
2315 /*
2316 * For LVT1 make it edge triggered, active high,
2317 * nmi and enabled
2318 */
2319 value = apic_read(APIC_LVT1);
2320 value &= ~(APIC_MODE_MASK | APIC_SEND_PENDING |
2321 APIC_INPUT_POLARITY | APIC_LVT_REMOTE_IRR |
2322 APIC_LVT_LEVEL_TRIGGER | APIC_LVT_MASKED);
2323 value |= APIC_LVT_REMOTE_IRR | APIC_SEND_PENDING;
2324 value = SET_APIC_DELIVERY_MODE(value, APIC_MODE_NMI);
2325 apic_write(APIC_LVT1, value);
2326 }
2327
2328 /*
2329 * The number of allocated logical CPU IDs. Since logical CPU IDs are allocated
2330 * contiguously, it equals to current allocated max logical CPU ID plus 1.
2331 * All allocated CPU IDs should be in the [0, nr_logical_cpuids) range,
2332 * so the maximum of nr_logical_cpuids is nr_cpu_ids.
2333 *
2334 * NOTE: Reserve 0 for BSP.
2335 */
2336 static int nr_logical_cpuids = 1;
2337
2338 /*
2339 * Used to store mapping between logical CPU IDs and APIC IDs.
2340 */
2341 static int cpuid_to_apicid[] = {
2342 [0 ... NR_CPUS - 1] = -1,
2343 };
2344
2345 bool arch_match_cpu_phys_id(int cpu, u64 phys_id)
2346 {
2347 return phys_id == cpuid_to_apicid[cpu];
2348 }
2349
2350 #ifdef CONFIG_SMP
2351 /**
2352 * apic_id_is_primary_thread - Check whether APIC ID belongs to a primary thread
2353 * @apicid: APIC ID to check
2354 */
2355 bool apic_id_is_primary_thread(unsigned int apicid)
2356 {
2357 u32 mask;
2358
2359 if (smp_num_siblings == 1)
2360 return true;
2361 /* Isolate the SMT bit(s) in the APICID and check for 0 */
2362 mask = (1U << (fls(smp_num_siblings) - 1)) - 1;
2363 return !(apicid & mask);
2364 }
2365 #endif
2366
2367 /*
2368 * Should use this API to allocate logical CPU IDs to keep nr_logical_cpuids
2369 * and cpuid_to_apicid[] synchronized.
2370 */
2371 static int allocate_logical_cpuid(int apicid)
2372 {
2373 int i;
2374
2375 /*
2376 * cpuid <-> apicid mapping is persistent, so when a cpu is up,
2377 * check if the kernel has allocated a cpuid for it.
2378 */
2379 for (i = 0; i < nr_logical_cpuids; i++) {
2380 if (cpuid_to_apicid[i] == apicid)
2381 return i;
2382 }
2383
2384 /* Allocate a new cpuid. */
2385 if (nr_logical_cpuids >= nr_cpu_ids) {
2386 WARN_ONCE(1, "APIC: NR_CPUS/possible_cpus limit of %u reached. "
2387 "Processor %d/0x%x and the rest are ignored.\n",
2388 nr_cpu_ids, nr_logical_cpuids, apicid);
2389 return -EINVAL;
2390 }
2391
2392 cpuid_to_apicid[nr_logical_cpuids] = apicid;
2393 return nr_logical_cpuids++;
2394 }
2395
2396 int generic_processor_info(int apicid, int version)
2397 {
2398 int cpu, max = nr_cpu_ids;
2399 bool boot_cpu_detected = physid_isset(boot_cpu_physical_apicid,
2400 phys_cpu_present_map);
2401
2402 /*
2403 * boot_cpu_physical_apicid is designed to have the apicid
2404 * returned by read_apic_id(), i.e, the apicid of the
2405 * currently booting-up processor. However, on some platforms,
2406 * it is temporarily modified by the apicid reported as BSP
2407 * through MP table. Concretely:
2408 *
2409 * - arch/x86/kernel/mpparse.c: MP_processor_info()
2410 * - arch/x86/mm/amdtopology.c: amd_numa_init()
2411 *
2412 * This function is executed with the modified
2413 * boot_cpu_physical_apicid. So, disabled_cpu_apicid kernel
2414 * parameter doesn't work to disable APs on kdump 2nd kernel.
2415 *
2416 * Since fixing handling of boot_cpu_physical_apicid requires
2417 * another discussion and tests on each platform, we leave it
2418 * for now and here we use read_apic_id() directly in this
2419 * function, generic_processor_info().
2420 */
2421 if (disabled_cpu_apicid != BAD_APICID &&
2422 disabled_cpu_apicid != read_apic_id() &&
2423 disabled_cpu_apicid == apicid) {
2424 int thiscpu = num_processors + disabled_cpus;
2425
2426 pr_warn("APIC: Disabling requested cpu."
2427 " Processor %d/0x%x ignored.\n", thiscpu, apicid);
2428
2429 disabled_cpus++;
2430 return -ENODEV;
2431 }
2432
2433 /*
2434 * If boot cpu has not been detected yet, then only allow upto
2435 * nr_cpu_ids - 1 processors and keep one slot free for boot cpu
2436 */
2437 if (!boot_cpu_detected && num_processors >= nr_cpu_ids - 1 &&
2438 apicid != boot_cpu_physical_apicid) {
2439 int thiscpu = max + disabled_cpus - 1;
2440
2441 pr_warn("APIC: NR_CPUS/possible_cpus limit of %i almost"
2442 " reached. Keeping one slot for boot cpu."
2443 " Processor %d/0x%x ignored.\n", max, thiscpu, apicid);
2444
2445 disabled_cpus++;
2446 return -ENODEV;
2447 }
2448
2449 if (num_processors >= nr_cpu_ids) {
2450 int thiscpu = max + disabled_cpus;
2451
2452 pr_warn("APIC: NR_CPUS/possible_cpus limit of %i reached. "
2453 "Processor %d/0x%x ignored.\n", max, thiscpu, apicid);
2454
2455 disabled_cpus++;
2456 return -EINVAL;
2457 }
2458
2459 if (apicid == boot_cpu_physical_apicid) {
2460 /*
2461 * x86_bios_cpu_apicid is required to have processors listed
2462 * in same order as logical cpu numbers. Hence the first
2463 * entry is BSP, and so on.
2464 * boot_cpu_init() already hold bit 0 in cpu_present_mask
2465 * for BSP.
2466 */
2467 cpu = 0;
2468
2469 /* Logical cpuid 0 is reserved for BSP. */
2470 cpuid_to_apicid[0] = apicid;
2471 } else {
2472 cpu = allocate_logical_cpuid(apicid);
2473 if (cpu < 0) {
2474 disabled_cpus++;
2475 return -EINVAL;
2476 }
2477 }
2478
2479 /*
2480 * Validate version
2481 */
2482 if (version == 0x0) {
2483 pr_warn("BIOS bug: APIC version is 0 for CPU %d/0x%x, fixing up to 0x10\n",
2484 cpu, apicid);
2485 version = 0x10;
2486 }
2487
2488 if (version != boot_cpu_apic_version) {
2489 pr_warn("BIOS bug: APIC version mismatch, boot CPU: %x, CPU %d: version %x\n",
2490 boot_cpu_apic_version, cpu, version);
2491 }
2492
2493 if (apicid > max_physical_apicid)
2494 max_physical_apicid = apicid;
2495
2496 #if defined(CONFIG_SMP) || defined(CONFIG_X86_64)
2497 early_per_cpu(x86_cpu_to_apicid, cpu) = apicid;
2498 early_per_cpu(x86_bios_cpu_apicid, cpu) = apicid;
2499 #endif
2500 #ifdef CONFIG_X86_32
2501 early_per_cpu(x86_cpu_to_logical_apicid, cpu) =
2502 apic->x86_32_early_logical_apicid(cpu);
2503 #endif
2504 set_cpu_possible(cpu, true);
2505 physid_set(apicid, phys_cpu_present_map);
2506 set_cpu_present(cpu, true);
2507 num_processors++;
2508
2509 return cpu;
2510 }
2511
2512 int hard_smp_processor_id(void)
2513 {
2514 return read_apic_id();
2515 }
2516
2517 void __irq_msi_compose_msg(struct irq_cfg *cfg, struct msi_msg *msg,
2518 bool dmar)
2519 {
2520 memset(msg, 0, sizeof(*msg));
2521
2522 msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW;
2523 msg->arch_addr_lo.dest_mode_logical = apic->dest_mode_logical;
2524 msg->arch_addr_lo.destid_0_7 = cfg->dest_apicid & 0xFF;
2525
2526 msg->arch_data.delivery_mode = APIC_DELIVERY_MODE_FIXED;
2527 msg->arch_data.vector = cfg->vector;
2528
2529 msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
2530 /*
2531 * Only the IOMMU itself can use the trick of putting destination
2532 * APIC ID into the high bits of the address. Anything else would
2533 * just be writing to memory if it tried that, and needs IR to
2534 * address APICs which can't be addressed in the normal 32-bit
2535 * address range at 0xFFExxxxx. That is typically just 8 bits, but
2536 * some hypervisors allow the extended destination ID field in bits
2537 * 5-11 to be used, giving support for 15 bits of APIC IDs in total.
2538 */
2539 if (dmar)
2540 msg->arch_addr_hi.destid_8_31 = cfg->dest_apicid >> 8;
2541 else if (virt_ext_dest_id && cfg->dest_apicid < 0x8000)
2542 msg->arch_addr_lo.virt_destid_8_14 = cfg->dest_apicid >> 8;
2543 else
2544 WARN_ON_ONCE(cfg->dest_apicid > 0xFF);
2545 }
2546
2547 u32 x86_msi_msg_get_destid(struct msi_msg *msg, bool extid)
2548 {
2549 u32 dest = msg->arch_addr_lo.destid_0_7;
2550
2551 if (extid)
2552 dest |= msg->arch_addr_hi.destid_8_31 << 8;
2553 return dest;
2554 }
2555 EXPORT_SYMBOL_GPL(x86_msi_msg_get_destid);
2556
2557 /*
2558 * Override the generic EOI implementation with an optimized version.
2559 * Only called during early boot when only one CPU is active and with
2560 * interrupts disabled, so we know this does not race with actual APIC driver
2561 * use.
2562 */
2563 void __init apic_set_eoi_write(void (*eoi_write)(u32 reg, u32 v))
2564 {
2565 struct apic **drv;
2566
2567 for (drv = __apicdrivers; drv < __apicdrivers_end; drv++) {
2568 /* Should happen once for each apic */
2569 WARN_ON((*drv)->eoi_write == eoi_write);
2570 (*drv)->native_eoi_write = (*drv)->eoi_write;
2571 (*drv)->eoi_write = eoi_write;
2572 }
2573 }
2574
2575 static void __init apic_bsp_up_setup(void)
2576 {
2577 #ifdef CONFIG_X86_64
2578 apic_write(APIC_ID, apic->set_apic_id(boot_cpu_physical_apicid));
2579 #else
2580 /*
2581 * Hack: In case of kdump, after a crash, kernel might be booting
2582 * on a cpu with non-zero lapic id. But boot_cpu_physical_apicid
2583 * might be zero if read from MP tables. Get it from LAPIC.
2584 */
2585 # ifdef CONFIG_CRASH_DUMP
2586 boot_cpu_physical_apicid = read_apic_id();
2587 # endif
2588 #endif
2589 physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
2590 }
2591
2592 /**
2593 * apic_bsp_setup - Setup function for local apic and io-apic
2594 * @upmode: Force UP mode (for APIC_init_uniprocessor)
2595 */
2596 static void __init apic_bsp_setup(bool upmode)
2597 {
2598 connect_bsp_APIC();
2599 if (upmode)
2600 apic_bsp_up_setup();
2601 setup_local_APIC();
2602
2603 enable_IO_APIC();
2604 end_local_APIC_setup();
2605 irq_remap_enable_fault_handling();
2606 setup_IO_APIC();
2607 }
2608
2609 #ifdef CONFIG_UP_LATE_INIT
2610 void __init up_late_init(void)
2611 {
2612 if (apic_intr_mode == APIC_PIC)
2613 return;
2614
2615 /* Setup local timer */
2616 x86_init.timers.setup_percpu_clockev();
2617 }
2618 #endif
2619
2620 /*
2621 * Power management
2622 */
2623 #ifdef CONFIG_PM
2624
2625 static struct {
2626 /*
2627 * 'active' is true if the local APIC was enabled by us and
2628 * not the BIOS; this signifies that we are also responsible
2629 * for disabling it before entering apm/acpi suspend
2630 */
2631 int active;
2632 /* r/w apic fields */
2633 unsigned int apic_id;
2634 unsigned int apic_taskpri;
2635 unsigned int apic_ldr;
2636 unsigned int apic_dfr;
2637 unsigned int apic_spiv;
2638 unsigned int apic_lvtt;
2639 unsigned int apic_lvtpc;
2640 unsigned int apic_lvt0;
2641 unsigned int apic_lvt1;
2642 unsigned int apic_lvterr;
2643 unsigned int apic_tmict;
2644 unsigned int apic_tdcr;
2645 unsigned int apic_thmr;
2646 unsigned int apic_cmci;
2647 } apic_pm_state;
2648
2649 static int lapic_suspend(void)
2650 {
2651 unsigned long flags;
2652 int maxlvt;
2653
2654 if (!apic_pm_state.active)
2655 return 0;
2656
2657 maxlvt = lapic_get_maxlvt();
2658
2659 apic_pm_state.apic_id = apic_read(APIC_ID);
2660 apic_pm_state.apic_taskpri = apic_read(APIC_TASKPRI);
2661 apic_pm_state.apic_ldr = apic_read(APIC_LDR);
2662 apic_pm_state.apic_dfr = apic_read(APIC_DFR);
2663 apic_pm_state.apic_spiv = apic_read(APIC_SPIV);
2664 apic_pm_state.apic_lvtt = apic_read(APIC_LVTT);
2665 if (maxlvt >= 4)
2666 apic_pm_state.apic_lvtpc = apic_read(APIC_LVTPC);
2667 apic_pm_state.apic_lvt0 = apic_read(APIC_LVT0);
2668 apic_pm_state.apic_lvt1 = apic_read(APIC_LVT1);
2669 apic_pm_state.apic_lvterr = apic_read(APIC_LVTERR);
2670 apic_pm_state.apic_tmict = apic_read(APIC_TMICT);
2671 apic_pm_state.apic_tdcr = apic_read(APIC_TDCR);
2672 #ifdef CONFIG_X86_THERMAL_VECTOR
2673 if (maxlvt >= 5)
2674 apic_pm_state.apic_thmr = apic_read(APIC_LVTTHMR);
2675 #endif
2676 #ifdef CONFIG_X86_MCE_INTEL
2677 if (maxlvt >= 6)
2678 apic_pm_state.apic_cmci = apic_read(APIC_LVTCMCI);
2679 #endif
2680
2681 local_irq_save(flags);
2682
2683 /*
2684 * Mask IOAPIC before disabling the local APIC to prevent stale IRR
2685 * entries on some implementations.
2686 */
2687 mask_ioapic_entries();
2688
2689 disable_local_APIC();
2690
2691 irq_remapping_disable();
2692
2693 local_irq_restore(flags);
2694 return 0;
2695 }
2696
2697 static void lapic_resume(void)
2698 {
2699 unsigned int l, h;
2700 unsigned long flags;
2701 int maxlvt;
2702
2703 if (!apic_pm_state.active)
2704 return;
2705
2706 local_irq_save(flags);
2707
2708 /*
2709 * IO-APIC and PIC have their own resume routines.
2710 * We just mask them here to make sure the interrupt
2711 * subsystem is completely quiet while we enable x2apic
2712 * and interrupt-remapping.
2713 */
2714 mask_ioapic_entries();
2715 legacy_pic->mask_all();
2716
2717 if (x2apic_mode) {
2718 __x2apic_enable();
2719 } else {
2720 /*
2721 * Make sure the APICBASE points to the right address
2722 *
2723 * FIXME! This will be wrong if we ever support suspend on
2724 * SMP! We'll need to do this as part of the CPU restore!
2725 */
2726 if (boot_cpu_data.x86 >= 6) {
2727 rdmsr(MSR_IA32_APICBASE, l, h);
2728 l &= ~MSR_IA32_APICBASE_BASE;
2729 l |= MSR_IA32_APICBASE_ENABLE | mp_lapic_addr;
2730 wrmsr(MSR_IA32_APICBASE, l, h);
2731 }
2732 }
2733
2734 maxlvt = lapic_get_maxlvt();
2735 apic_write(APIC_LVTERR, ERROR_APIC_VECTOR | APIC_LVT_MASKED);
2736 apic_write(APIC_ID, apic_pm_state.apic_id);
2737 apic_write(APIC_DFR, apic_pm_state.apic_dfr);
2738 apic_write(APIC_LDR, apic_pm_state.apic_ldr);
2739 apic_write(APIC_TASKPRI, apic_pm_state.apic_taskpri);
2740 apic_write(APIC_SPIV, apic_pm_state.apic_spiv);
2741 apic_write(APIC_LVT0, apic_pm_state.apic_lvt0);
2742 apic_write(APIC_LVT1, apic_pm_state.apic_lvt1);
2743 #ifdef CONFIG_X86_THERMAL_VECTOR
2744 if (maxlvt >= 5)
2745 apic_write(APIC_LVTTHMR, apic_pm_state.apic_thmr);
2746 #endif
2747 #ifdef CONFIG_X86_MCE_INTEL
2748 if (maxlvt >= 6)
2749 apic_write(APIC_LVTCMCI, apic_pm_state.apic_cmci);
2750 #endif
2751 if (maxlvt >= 4)
2752 apic_write(APIC_LVTPC, apic_pm_state.apic_lvtpc);
2753 apic_write(APIC_LVTT, apic_pm_state.apic_lvtt);
2754 apic_write(APIC_TDCR, apic_pm_state.apic_tdcr);
2755 apic_write(APIC_TMICT, apic_pm_state.apic_tmict);
2756 apic_write(APIC_ESR, 0);
2757 apic_read(APIC_ESR);
2758 apic_write(APIC_LVTERR, apic_pm_state.apic_lvterr);
2759 apic_write(APIC_ESR, 0);
2760 apic_read(APIC_ESR);
2761
2762 irq_remapping_reenable(x2apic_mode);
2763
2764 local_irq_restore(flags);
2765 }
2766
2767 /*
2768 * This device has no shutdown method - fully functioning local APICs
2769 * are needed on every CPU up until machine_halt/restart/poweroff.
2770 */
2771
2772 static struct syscore_ops lapic_syscore_ops = {
2773 .resume = lapic_resume,
2774 .suspend = lapic_suspend,
2775 };
2776
2777 static void apic_pm_activate(void)
2778 {
2779 apic_pm_state.active = 1;
2780 }
2781
2782 static int __init init_lapic_sysfs(void)
2783 {
2784 /* XXX: remove suspend/resume procs if !apic_pm_state.active? */
2785 if (boot_cpu_has(X86_FEATURE_APIC))
2786 register_syscore_ops(&lapic_syscore_ops);
2787
2788 return 0;
2789 }
2790
2791 /* local apic needs to resume before other devices access its registers. */
2792 core_initcall(init_lapic_sysfs);
2793
2794 #else /* CONFIG_PM */
2795
2796 static void apic_pm_activate(void) { }
2797
2798 #endif /* CONFIG_PM */
2799
2800 #ifdef CONFIG_X86_64
2801
2802 static int multi_checked;
2803 static int multi;
2804
2805 static int set_multi(const struct dmi_system_id *d)
2806 {
2807 if (multi)
2808 return 0;
2809 pr_info("APIC: %s detected, Multi Chassis\n", d->ident);
2810 multi = 1;
2811 return 0;
2812 }
2813
2814 static const struct dmi_system_id multi_dmi_table[] = {
2815 {
2816 .callback = set_multi,
2817 .ident = "IBM System Summit2",
2818 .matches = {
2819 DMI_MATCH(DMI_SYS_VENDOR, "IBM"),
2820 DMI_MATCH(DMI_PRODUCT_NAME, "Summit2"),
2821 },
2822 },
2823 {}
2824 };
2825
2826 static void dmi_check_multi(void)
2827 {
2828 if (multi_checked)
2829 return;
2830
2831 dmi_check_system(multi_dmi_table);
2832 multi_checked = 1;
2833 }
2834
2835 /*
2836 * apic_is_clustered_box() -- Check if we can expect good TSC
2837 *
2838 * Thus far, the major user of this is IBM's Summit2 series:
2839 * Clustered boxes may have unsynced TSC problems if they are
2840 * multi-chassis.
2841 * Use DMI to check them
2842 */
2843 int apic_is_clustered_box(void)
2844 {
2845 dmi_check_multi();
2846 return multi;
2847 }
2848 #endif
2849
2850 /*
2851 * APIC command line parameters
2852 */
2853 static int __init setup_disableapic(char *arg)
2854 {
2855 disable_apic = 1;
2856 setup_clear_cpu_cap(X86_FEATURE_APIC);
2857 return 0;
2858 }
2859 early_param("disableapic", setup_disableapic);
2860
2861 /* same as disableapic, for compatibility */
2862 static int __init setup_nolapic(char *arg)
2863 {
2864 return setup_disableapic(arg);
2865 }
2866 early_param("nolapic", setup_nolapic);
2867
2868 static int __init parse_lapic_timer_c2_ok(char *arg)
2869 {
2870 local_apic_timer_c2_ok = 1;
2871 return 0;
2872 }
2873 early_param("lapic_timer_c2_ok", parse_lapic_timer_c2_ok);
2874
2875 static int __init parse_disable_apic_timer(char *arg)
2876 {
2877 disable_apic_timer = 1;
2878 return 0;
2879 }
2880 early_param("noapictimer", parse_disable_apic_timer);
2881
2882 static int __init parse_nolapic_timer(char *arg)
2883 {
2884 disable_apic_timer = 1;
2885 return 0;
2886 }
2887 early_param("nolapic_timer", parse_nolapic_timer);
2888
2889 static int __init apic_set_verbosity(char *arg)
2890 {
2891 if (!arg) {
2892 #ifdef CONFIG_X86_64
2893 skip_ioapic_setup = 0;
2894 return 0;
2895 #endif
2896 return -EINVAL;
2897 }
2898
2899 if (strcmp("debug", arg) == 0)
2900 apic_verbosity = APIC_DEBUG;
2901 else if (strcmp("verbose", arg) == 0)
2902 apic_verbosity = APIC_VERBOSE;
2903 #ifdef CONFIG_X86_64
2904 else {
2905 pr_warn("APIC Verbosity level %s not recognised"
2906 " use apic=verbose or apic=debug\n", arg);
2907 return -EINVAL;
2908 }
2909 #endif
2910
2911 return 0;
2912 }
2913 early_param("apic", apic_set_verbosity);
2914
2915 static int __init lapic_insert_resource(void)
2916 {
2917 if (!apic_phys)
2918 return -1;
2919
2920 /* Put local APIC into the resource map. */
2921 lapic_resource.start = apic_phys;
2922 lapic_resource.end = lapic_resource.start + PAGE_SIZE - 1;
2923 insert_resource(&iomem_resource, &lapic_resource);
2924
2925 return 0;
2926 }
2927
2928 /*
2929 * need call insert after e820__reserve_resources()
2930 * that is using request_resource
2931 */
2932 late_initcall(lapic_insert_resource);
2933
2934 static int __init apic_set_disabled_cpu_apicid(char *arg)
2935 {
2936 if (!arg || !get_option(&arg, &disabled_cpu_apicid))
2937 return -EINVAL;
2938
2939 return 0;
2940 }
2941 early_param("disable_cpu_apicid", apic_set_disabled_cpu_apicid);
2942
2943 static int __init apic_set_extnmi(char *arg)
2944 {
2945 if (!arg)
2946 return -EINVAL;
2947
2948 if (!strncmp("all", arg, 3))
2949 apic_extnmi = APIC_EXTNMI_ALL;
2950 else if (!strncmp("none", arg, 4))
2951 apic_extnmi = APIC_EXTNMI_NONE;
2952 else if (!strncmp("bsp", arg, 3))
2953 apic_extnmi = APIC_EXTNMI_BSP;
2954 else {
2955 pr_warn("Unknown external NMI delivery mode `%s' ignored\n", arg);
2956 return -EINVAL;
2957 }
2958
2959 return 0;
2960 }
2961 early_param("apic_extnmi", apic_set_extnmi);