]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kernel/apic/apic.c
x86/smpboot: Make logical package management more robust
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kernel / apic / apic.c
1 /*
2 * Local APIC handling, local APIC timers
3 *
4 * (c) 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
5 *
6 * Fixes
7 * Maciej W. Rozycki : Bits for genuine 82489DX APICs;
8 * thanks to Eric Gilmore
9 * and Rolf G. Tews
10 * for testing these extensively.
11 * Maciej W. Rozycki : Various updates and fixes.
12 * Mikael Pettersson : Power Management for UP-APIC.
13 * Pavel Machek and
14 * Mikael Pettersson : PM converted to driver model.
15 */
16
17 #include <linux/perf_event.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/mc146818rtc.h>
20 #include <linux/acpi_pmtmr.h>
21 #include <linux/clockchips.h>
22 #include <linux/interrupt.h>
23 #include <linux/bootmem.h>
24 #include <linux/ftrace.h>
25 #include <linux/ioport.h>
26 #include <linux/export.h>
27 #include <linux/syscore_ops.h>
28 #include <linux/delay.h>
29 #include <linux/timex.h>
30 #include <linux/i8253.h>
31 #include <linux/dmar.h>
32 #include <linux/init.h>
33 #include <linux/cpu.h>
34 #include <linux/dmi.h>
35 #include <linux/smp.h>
36 #include <linux/mm.h>
37
38 #include <asm/trace/irq_vectors.h>
39 #include <asm/irq_remapping.h>
40 #include <asm/perf_event.h>
41 #include <asm/x86_init.h>
42 #include <asm/pgalloc.h>
43 #include <linux/atomic.h>
44 #include <asm/mpspec.h>
45 #include <asm/i8259.h>
46 #include <asm/proto.h>
47 #include <asm/apic.h>
48 #include <asm/io_apic.h>
49 #include <asm/desc.h>
50 #include <asm/hpet.h>
51 #include <asm/mtrr.h>
52 #include <asm/time.h>
53 #include <asm/smp.h>
54 #include <asm/mce.h>
55 #include <asm/tsc.h>
56 #include <asm/hypervisor.h>
57
58 unsigned int num_processors;
59
60 unsigned disabled_cpus;
61
62 /* Processor that is doing the boot up */
63 unsigned int boot_cpu_physical_apicid = -1U;
64 EXPORT_SYMBOL_GPL(boot_cpu_physical_apicid);
65
66 u8 boot_cpu_apic_version;
67
68 /*
69 * The highest APIC ID seen during enumeration.
70 */
71 static unsigned int max_physical_apicid;
72
73 /*
74 * Bitmask of physically existing CPUs:
75 */
76 physid_mask_t phys_cpu_present_map;
77
78 /*
79 * Processor to be disabled specified by kernel parameter
80 * disable_cpu_apicid=<int>, mostly used for the kdump 2nd kernel to
81 * avoid undefined behaviour caused by sending INIT from AP to BSP.
82 */
83 static unsigned int disabled_cpu_apicid __read_mostly = BAD_APICID;
84
85 /*
86 * This variable controls which CPUs receive external NMIs. By default,
87 * external NMIs are delivered only to the BSP.
88 */
89 static int apic_extnmi = APIC_EXTNMI_BSP;
90
91 /*
92 * Map cpu index to physical APIC ID
93 */
94 DEFINE_EARLY_PER_CPU_READ_MOSTLY(u16, x86_cpu_to_apicid, BAD_APICID);
95 DEFINE_EARLY_PER_CPU_READ_MOSTLY(u16, x86_bios_cpu_apicid, BAD_APICID);
96 DEFINE_EARLY_PER_CPU_READ_MOSTLY(u32, x86_cpu_to_acpiid, U32_MAX);
97 EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_apicid);
98 EXPORT_EARLY_PER_CPU_SYMBOL(x86_bios_cpu_apicid);
99 EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_acpiid);
100
101 #ifdef CONFIG_X86_32
102
103 /*
104 * On x86_32, the mapping between cpu and logical apicid may vary
105 * depending on apic in use. The following early percpu variable is
106 * used for the mapping. This is where the behaviors of x86_64 and 32
107 * actually diverge. Let's keep it ugly for now.
108 */
109 DEFINE_EARLY_PER_CPU_READ_MOSTLY(int, x86_cpu_to_logical_apicid, BAD_APICID);
110
111 /* Local APIC was disabled by the BIOS and enabled by the kernel */
112 static int enabled_via_apicbase;
113
114 /*
115 * Handle interrupt mode configuration register (IMCR).
116 * This register controls whether the interrupt signals
117 * that reach the BSP come from the master PIC or from the
118 * local APIC. Before entering Symmetric I/O Mode, either
119 * the BIOS or the operating system must switch out of
120 * PIC Mode by changing the IMCR.
121 */
122 static inline void imcr_pic_to_apic(void)
123 {
124 /* select IMCR register */
125 outb(0x70, 0x22);
126 /* NMI and 8259 INTR go through APIC */
127 outb(0x01, 0x23);
128 }
129
130 static inline void imcr_apic_to_pic(void)
131 {
132 /* select IMCR register */
133 outb(0x70, 0x22);
134 /* NMI and 8259 INTR go directly to BSP */
135 outb(0x00, 0x23);
136 }
137 #endif
138
139 /*
140 * Knob to control our willingness to enable the local APIC.
141 *
142 * +1=force-enable
143 */
144 static int force_enable_local_apic __initdata;
145
146 /*
147 * APIC command line parameters
148 */
149 static int __init parse_lapic(char *arg)
150 {
151 if (IS_ENABLED(CONFIG_X86_32) && !arg)
152 force_enable_local_apic = 1;
153 else if (arg && !strncmp(arg, "notscdeadline", 13))
154 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
155 return 0;
156 }
157 early_param("lapic", parse_lapic);
158
159 #ifdef CONFIG_X86_64
160 static int apic_calibrate_pmtmr __initdata;
161 static __init int setup_apicpmtimer(char *s)
162 {
163 apic_calibrate_pmtmr = 1;
164 notsc_setup(NULL);
165 return 0;
166 }
167 __setup("apicpmtimer", setup_apicpmtimer);
168 #endif
169
170 unsigned long mp_lapic_addr;
171 int disable_apic;
172 /* Disable local APIC timer from the kernel commandline or via dmi quirk */
173 static int disable_apic_timer __initdata;
174 /* Local APIC timer works in C2 */
175 int local_apic_timer_c2_ok;
176 EXPORT_SYMBOL_GPL(local_apic_timer_c2_ok);
177
178 int first_system_vector = FIRST_SYSTEM_VECTOR;
179
180 /*
181 * Debug level, exported for io_apic.c
182 */
183 unsigned int apic_verbosity;
184
185 int pic_mode;
186
187 /* Have we found an MP table */
188 int smp_found_config;
189
190 static struct resource lapic_resource = {
191 .name = "Local APIC",
192 .flags = IORESOURCE_MEM | IORESOURCE_BUSY,
193 };
194
195 unsigned int lapic_timer_frequency = 0;
196
197 static void apic_pm_activate(void);
198
199 static unsigned long apic_phys;
200
201 /*
202 * Get the LAPIC version
203 */
204 static inline int lapic_get_version(void)
205 {
206 return GET_APIC_VERSION(apic_read(APIC_LVR));
207 }
208
209 /*
210 * Check, if the APIC is integrated or a separate chip
211 */
212 static inline int lapic_is_integrated(void)
213 {
214 #ifdef CONFIG_X86_64
215 return 1;
216 #else
217 return APIC_INTEGRATED(lapic_get_version());
218 #endif
219 }
220
221 /*
222 * Check, whether this is a modern or a first generation APIC
223 */
224 static int modern_apic(void)
225 {
226 /* AMD systems use old APIC versions, so check the CPU */
227 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
228 boot_cpu_data.x86 >= 0xf)
229 return 1;
230 return lapic_get_version() >= 0x14;
231 }
232
233 /*
234 * right after this call apic become NOOP driven
235 * so apic->write/read doesn't do anything
236 */
237 static void __init apic_disable(void)
238 {
239 pr_info("APIC: switched to apic NOOP\n");
240 apic = &apic_noop;
241 }
242
243 void native_apic_wait_icr_idle(void)
244 {
245 while (apic_read(APIC_ICR) & APIC_ICR_BUSY)
246 cpu_relax();
247 }
248
249 u32 native_safe_apic_wait_icr_idle(void)
250 {
251 u32 send_status;
252 int timeout;
253
254 timeout = 0;
255 do {
256 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
257 if (!send_status)
258 break;
259 inc_irq_stat(icr_read_retry_count);
260 udelay(100);
261 } while (timeout++ < 1000);
262
263 return send_status;
264 }
265
266 void native_apic_icr_write(u32 low, u32 id)
267 {
268 unsigned long flags;
269
270 local_irq_save(flags);
271 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(id));
272 apic_write(APIC_ICR, low);
273 local_irq_restore(flags);
274 }
275
276 u64 native_apic_icr_read(void)
277 {
278 u32 icr1, icr2;
279
280 icr2 = apic_read(APIC_ICR2);
281 icr1 = apic_read(APIC_ICR);
282
283 return icr1 | ((u64)icr2 << 32);
284 }
285
286 #ifdef CONFIG_X86_32
287 /**
288 * get_physical_broadcast - Get number of physical broadcast IDs
289 */
290 int get_physical_broadcast(void)
291 {
292 return modern_apic() ? 0xff : 0xf;
293 }
294 #endif
295
296 /**
297 * lapic_get_maxlvt - get the maximum number of local vector table entries
298 */
299 int lapic_get_maxlvt(void)
300 {
301 unsigned int v;
302
303 v = apic_read(APIC_LVR);
304 /*
305 * - we always have APIC integrated on 64bit mode
306 * - 82489DXs do not report # of LVT entries
307 */
308 return APIC_INTEGRATED(GET_APIC_VERSION(v)) ? GET_APIC_MAXLVT(v) : 2;
309 }
310
311 /*
312 * Local APIC timer
313 */
314
315 /* Clock divisor */
316 #define APIC_DIVISOR 16
317 #define TSC_DIVISOR 8
318
319 /*
320 * This function sets up the local APIC timer, with a timeout of
321 * 'clocks' APIC bus clock. During calibration we actually call
322 * this function twice on the boot CPU, once with a bogus timeout
323 * value, second time for real. The other (noncalibrating) CPUs
324 * call this function only once, with the real, calibrated value.
325 *
326 * We do reads before writes even if unnecessary, to get around the
327 * P5 APIC double write bug.
328 */
329 static void __setup_APIC_LVTT(unsigned int clocks, int oneshot, int irqen)
330 {
331 unsigned int lvtt_value, tmp_value;
332
333 lvtt_value = LOCAL_TIMER_VECTOR;
334 if (!oneshot)
335 lvtt_value |= APIC_LVT_TIMER_PERIODIC;
336 else if (boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER))
337 lvtt_value |= APIC_LVT_TIMER_TSCDEADLINE;
338
339 if (!lapic_is_integrated())
340 lvtt_value |= SET_APIC_TIMER_BASE(APIC_TIMER_BASE_DIV);
341
342 if (!irqen)
343 lvtt_value |= APIC_LVT_MASKED;
344
345 apic_write(APIC_LVTT, lvtt_value);
346
347 if (lvtt_value & APIC_LVT_TIMER_TSCDEADLINE) {
348 /*
349 * See Intel SDM: TSC-Deadline Mode chapter. In xAPIC mode,
350 * writing to the APIC LVTT and TSC_DEADLINE MSR isn't serialized.
351 * According to Intel, MFENCE can do the serialization here.
352 */
353 asm volatile("mfence" : : : "memory");
354
355 printk_once(KERN_DEBUG "TSC deadline timer enabled\n");
356 return;
357 }
358
359 /*
360 * Divide PICLK by 16
361 */
362 tmp_value = apic_read(APIC_TDCR);
363 apic_write(APIC_TDCR,
364 (tmp_value & ~(APIC_TDR_DIV_1 | APIC_TDR_DIV_TMBASE)) |
365 APIC_TDR_DIV_16);
366
367 if (!oneshot)
368 apic_write(APIC_TMICT, clocks / APIC_DIVISOR);
369 }
370
371 /*
372 * Setup extended LVT, AMD specific
373 *
374 * Software should use the LVT offsets the BIOS provides. The offsets
375 * are determined by the subsystems using it like those for MCE
376 * threshold or IBS. On K8 only offset 0 (APIC500) and MCE interrupts
377 * are supported. Beginning with family 10h at least 4 offsets are
378 * available.
379 *
380 * Since the offsets must be consistent for all cores, we keep track
381 * of the LVT offsets in software and reserve the offset for the same
382 * vector also to be used on other cores. An offset is freed by
383 * setting the entry to APIC_EILVT_MASKED.
384 *
385 * If the BIOS is right, there should be no conflicts. Otherwise a
386 * "[Firmware Bug]: ..." error message is generated. However, if
387 * software does not properly determines the offsets, it is not
388 * necessarily a BIOS bug.
389 */
390
391 static atomic_t eilvt_offsets[APIC_EILVT_NR_MAX];
392
393 static inline int eilvt_entry_is_changeable(unsigned int old, unsigned int new)
394 {
395 return (old & APIC_EILVT_MASKED)
396 || (new == APIC_EILVT_MASKED)
397 || ((new & ~APIC_EILVT_MASKED) == old);
398 }
399
400 static unsigned int reserve_eilvt_offset(int offset, unsigned int new)
401 {
402 unsigned int rsvd, vector;
403
404 if (offset >= APIC_EILVT_NR_MAX)
405 return ~0;
406
407 rsvd = atomic_read(&eilvt_offsets[offset]);
408 do {
409 vector = rsvd & ~APIC_EILVT_MASKED; /* 0: unassigned */
410 if (vector && !eilvt_entry_is_changeable(vector, new))
411 /* may not change if vectors are different */
412 return rsvd;
413 rsvd = atomic_cmpxchg(&eilvt_offsets[offset], rsvd, new);
414 } while (rsvd != new);
415
416 rsvd &= ~APIC_EILVT_MASKED;
417 if (rsvd && rsvd != vector)
418 pr_info("LVT offset %d assigned for vector 0x%02x\n",
419 offset, rsvd);
420
421 return new;
422 }
423
424 /*
425 * If mask=1, the LVT entry does not generate interrupts while mask=0
426 * enables the vector. See also the BKDGs. Must be called with
427 * preemption disabled.
428 */
429
430 int setup_APIC_eilvt(u8 offset, u8 vector, u8 msg_type, u8 mask)
431 {
432 unsigned long reg = APIC_EILVTn(offset);
433 unsigned int new, old, reserved;
434
435 new = (mask << 16) | (msg_type << 8) | vector;
436 old = apic_read(reg);
437 reserved = reserve_eilvt_offset(offset, new);
438
439 if (reserved != new) {
440 pr_err(FW_BUG "cpu %d, try to use APIC%lX (LVT offset %d) for "
441 "vector 0x%x, but the register is already in use for "
442 "vector 0x%x on another cpu\n",
443 smp_processor_id(), reg, offset, new, reserved);
444 return -EINVAL;
445 }
446
447 if (!eilvt_entry_is_changeable(old, new)) {
448 pr_err(FW_BUG "cpu %d, try to use APIC%lX (LVT offset %d) for "
449 "vector 0x%x, but the register is already in use for "
450 "vector 0x%x on this cpu\n",
451 smp_processor_id(), reg, offset, new, old);
452 return -EBUSY;
453 }
454
455 apic_write(reg, new);
456
457 return 0;
458 }
459 EXPORT_SYMBOL_GPL(setup_APIC_eilvt);
460
461 /*
462 * Program the next event, relative to now
463 */
464 static int lapic_next_event(unsigned long delta,
465 struct clock_event_device *evt)
466 {
467 apic_write(APIC_TMICT, delta);
468 return 0;
469 }
470
471 static int lapic_next_deadline(unsigned long delta,
472 struct clock_event_device *evt)
473 {
474 u64 tsc;
475
476 tsc = rdtsc();
477 wrmsrl(MSR_IA32_TSC_DEADLINE, tsc + (((u64) delta) * TSC_DIVISOR));
478 return 0;
479 }
480
481 static int lapic_timer_shutdown(struct clock_event_device *evt)
482 {
483 unsigned int v;
484
485 /* Lapic used as dummy for broadcast ? */
486 if (evt->features & CLOCK_EVT_FEAT_DUMMY)
487 return 0;
488
489 v = apic_read(APIC_LVTT);
490 v |= (APIC_LVT_MASKED | LOCAL_TIMER_VECTOR);
491 apic_write(APIC_LVTT, v);
492 apic_write(APIC_TMICT, 0);
493 return 0;
494 }
495
496 static inline int
497 lapic_timer_set_periodic_oneshot(struct clock_event_device *evt, bool oneshot)
498 {
499 /* Lapic used as dummy for broadcast ? */
500 if (evt->features & CLOCK_EVT_FEAT_DUMMY)
501 return 0;
502
503 __setup_APIC_LVTT(lapic_timer_frequency, oneshot, 1);
504 return 0;
505 }
506
507 static int lapic_timer_set_periodic(struct clock_event_device *evt)
508 {
509 return lapic_timer_set_periodic_oneshot(evt, false);
510 }
511
512 static int lapic_timer_set_oneshot(struct clock_event_device *evt)
513 {
514 return lapic_timer_set_periodic_oneshot(evt, true);
515 }
516
517 /*
518 * Local APIC timer broadcast function
519 */
520 static void lapic_timer_broadcast(const struct cpumask *mask)
521 {
522 #ifdef CONFIG_SMP
523 apic->send_IPI_mask(mask, LOCAL_TIMER_VECTOR);
524 #endif
525 }
526
527
528 /*
529 * The local apic timer can be used for any function which is CPU local.
530 */
531 static struct clock_event_device lapic_clockevent = {
532 .name = "lapic",
533 .features = CLOCK_EVT_FEAT_PERIODIC |
534 CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_C3STOP
535 | CLOCK_EVT_FEAT_DUMMY,
536 .shift = 32,
537 .set_state_shutdown = lapic_timer_shutdown,
538 .set_state_periodic = lapic_timer_set_periodic,
539 .set_state_oneshot = lapic_timer_set_oneshot,
540 .set_next_event = lapic_next_event,
541 .broadcast = lapic_timer_broadcast,
542 .rating = 100,
543 .irq = -1,
544 };
545 static DEFINE_PER_CPU(struct clock_event_device, lapic_events);
546
547 /*
548 * Setup the local APIC timer for this CPU. Copy the initialized values
549 * of the boot CPU and register the clock event in the framework.
550 */
551 static void setup_APIC_timer(void)
552 {
553 struct clock_event_device *levt = this_cpu_ptr(&lapic_events);
554
555 if (this_cpu_has(X86_FEATURE_ARAT)) {
556 lapic_clockevent.features &= ~CLOCK_EVT_FEAT_C3STOP;
557 /* Make LAPIC timer preferrable over percpu HPET */
558 lapic_clockevent.rating = 150;
559 }
560
561 memcpy(levt, &lapic_clockevent, sizeof(*levt));
562 levt->cpumask = cpumask_of(smp_processor_id());
563
564 if (this_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER)) {
565 levt->features &= ~(CLOCK_EVT_FEAT_PERIODIC |
566 CLOCK_EVT_FEAT_DUMMY);
567 levt->set_next_event = lapic_next_deadline;
568 clockevents_config_and_register(levt,
569 tsc_khz * (1000 / TSC_DIVISOR),
570 0xF, ~0UL);
571 } else
572 clockevents_register_device(levt);
573 }
574
575 /*
576 * Install the updated TSC frequency from recalibration at the TSC
577 * deadline clockevent devices.
578 */
579 static void __lapic_update_tsc_freq(void *info)
580 {
581 struct clock_event_device *levt = this_cpu_ptr(&lapic_events);
582
583 if (!this_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER))
584 return;
585
586 clockevents_update_freq(levt, tsc_khz * (1000 / TSC_DIVISOR));
587 }
588
589 void lapic_update_tsc_freq(void)
590 {
591 /*
592 * The clockevent device's ->mult and ->shift can both be
593 * changed. In order to avoid races, schedule the frequency
594 * update code on each CPU.
595 */
596 on_each_cpu(__lapic_update_tsc_freq, NULL, 0);
597 }
598
599 /*
600 * In this functions we calibrate APIC bus clocks to the external timer.
601 *
602 * We want to do the calibration only once since we want to have local timer
603 * irqs syncron. CPUs connected by the same APIC bus have the very same bus
604 * frequency.
605 *
606 * This was previously done by reading the PIT/HPET and waiting for a wrap
607 * around to find out, that a tick has elapsed. I have a box, where the PIT
608 * readout is broken, so it never gets out of the wait loop again. This was
609 * also reported by others.
610 *
611 * Monitoring the jiffies value is inaccurate and the clockevents
612 * infrastructure allows us to do a simple substitution of the interrupt
613 * handler.
614 *
615 * The calibration routine also uses the pm_timer when possible, as the PIT
616 * happens to run way too slow (factor 2.3 on my VAIO CoreDuo, which goes
617 * back to normal later in the boot process).
618 */
619
620 #define LAPIC_CAL_LOOPS (HZ/10)
621
622 static __initdata int lapic_cal_loops = -1;
623 static __initdata long lapic_cal_t1, lapic_cal_t2;
624 static __initdata unsigned long long lapic_cal_tsc1, lapic_cal_tsc2;
625 static __initdata unsigned long lapic_cal_pm1, lapic_cal_pm2;
626 static __initdata unsigned long lapic_cal_j1, lapic_cal_j2;
627
628 /*
629 * Temporary interrupt handler.
630 */
631 static void __init lapic_cal_handler(struct clock_event_device *dev)
632 {
633 unsigned long long tsc = 0;
634 long tapic = apic_read(APIC_TMCCT);
635 unsigned long pm = acpi_pm_read_early();
636
637 if (boot_cpu_has(X86_FEATURE_TSC))
638 tsc = rdtsc();
639
640 switch (lapic_cal_loops++) {
641 case 0:
642 lapic_cal_t1 = tapic;
643 lapic_cal_tsc1 = tsc;
644 lapic_cal_pm1 = pm;
645 lapic_cal_j1 = jiffies;
646 break;
647
648 case LAPIC_CAL_LOOPS:
649 lapic_cal_t2 = tapic;
650 lapic_cal_tsc2 = tsc;
651 if (pm < lapic_cal_pm1)
652 pm += ACPI_PM_OVRRUN;
653 lapic_cal_pm2 = pm;
654 lapic_cal_j2 = jiffies;
655 break;
656 }
657 }
658
659 static int __init
660 calibrate_by_pmtimer(long deltapm, long *delta, long *deltatsc)
661 {
662 const long pm_100ms = PMTMR_TICKS_PER_SEC / 10;
663 const long pm_thresh = pm_100ms / 100;
664 unsigned long mult;
665 u64 res;
666
667 #ifndef CONFIG_X86_PM_TIMER
668 return -1;
669 #endif
670
671 apic_printk(APIC_VERBOSE, "... PM-Timer delta = %ld\n", deltapm);
672
673 /* Check, if the PM timer is available */
674 if (!deltapm)
675 return -1;
676
677 mult = clocksource_hz2mult(PMTMR_TICKS_PER_SEC, 22);
678
679 if (deltapm > (pm_100ms - pm_thresh) &&
680 deltapm < (pm_100ms + pm_thresh)) {
681 apic_printk(APIC_VERBOSE, "... PM-Timer result ok\n");
682 return 0;
683 }
684
685 res = (((u64)deltapm) * mult) >> 22;
686 do_div(res, 1000000);
687 pr_warning("APIC calibration not consistent "
688 "with PM-Timer: %ldms instead of 100ms\n",(long)res);
689
690 /* Correct the lapic counter value */
691 res = (((u64)(*delta)) * pm_100ms);
692 do_div(res, deltapm);
693 pr_info("APIC delta adjusted to PM-Timer: "
694 "%lu (%ld)\n", (unsigned long)res, *delta);
695 *delta = (long)res;
696
697 /* Correct the tsc counter value */
698 if (boot_cpu_has(X86_FEATURE_TSC)) {
699 res = (((u64)(*deltatsc)) * pm_100ms);
700 do_div(res, deltapm);
701 apic_printk(APIC_VERBOSE, "TSC delta adjusted to "
702 "PM-Timer: %lu (%ld)\n",
703 (unsigned long)res, *deltatsc);
704 *deltatsc = (long)res;
705 }
706
707 return 0;
708 }
709
710 static int __init calibrate_APIC_clock(void)
711 {
712 struct clock_event_device *levt = this_cpu_ptr(&lapic_events);
713 void (*real_handler)(struct clock_event_device *dev);
714 unsigned long deltaj;
715 long delta, deltatsc;
716 int pm_referenced = 0;
717
718 /**
719 * check if lapic timer has already been calibrated by platform
720 * specific routine, such as tsc calibration code. if so, we just fill
721 * in the clockevent structure and return.
722 */
723
724 if (boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER)) {
725 return 0;
726 } else if (lapic_timer_frequency) {
727 apic_printk(APIC_VERBOSE, "lapic timer already calibrated %d\n",
728 lapic_timer_frequency);
729 lapic_clockevent.mult = div_sc(lapic_timer_frequency/APIC_DIVISOR,
730 TICK_NSEC, lapic_clockevent.shift);
731 lapic_clockevent.max_delta_ns =
732 clockevent_delta2ns(0x7FFFFF, &lapic_clockevent);
733 lapic_clockevent.min_delta_ns =
734 clockevent_delta2ns(0xF, &lapic_clockevent);
735 lapic_clockevent.features &= ~CLOCK_EVT_FEAT_DUMMY;
736 return 0;
737 }
738
739 apic_printk(APIC_VERBOSE, "Using local APIC timer interrupts.\n"
740 "calibrating APIC timer ...\n");
741
742 local_irq_disable();
743
744 /* Replace the global interrupt handler */
745 real_handler = global_clock_event->event_handler;
746 global_clock_event->event_handler = lapic_cal_handler;
747
748 /*
749 * Setup the APIC counter to maximum. There is no way the lapic
750 * can underflow in the 100ms detection time frame
751 */
752 __setup_APIC_LVTT(0xffffffff, 0, 0);
753
754 /* Let the interrupts run */
755 local_irq_enable();
756
757 while (lapic_cal_loops <= LAPIC_CAL_LOOPS)
758 cpu_relax();
759
760 local_irq_disable();
761
762 /* Restore the real event handler */
763 global_clock_event->event_handler = real_handler;
764
765 /* Build delta t1-t2 as apic timer counts down */
766 delta = lapic_cal_t1 - lapic_cal_t2;
767 apic_printk(APIC_VERBOSE, "... lapic delta = %ld\n", delta);
768
769 deltatsc = (long)(lapic_cal_tsc2 - lapic_cal_tsc1);
770
771 /* we trust the PM based calibration if possible */
772 pm_referenced = !calibrate_by_pmtimer(lapic_cal_pm2 - lapic_cal_pm1,
773 &delta, &deltatsc);
774
775 /* Calculate the scaled math multiplication factor */
776 lapic_clockevent.mult = div_sc(delta, TICK_NSEC * LAPIC_CAL_LOOPS,
777 lapic_clockevent.shift);
778 lapic_clockevent.max_delta_ns =
779 clockevent_delta2ns(0x7FFFFFFF, &lapic_clockevent);
780 lapic_clockevent.min_delta_ns =
781 clockevent_delta2ns(0xF, &lapic_clockevent);
782
783 lapic_timer_frequency = (delta * APIC_DIVISOR) / LAPIC_CAL_LOOPS;
784
785 apic_printk(APIC_VERBOSE, "..... delta %ld\n", delta);
786 apic_printk(APIC_VERBOSE, "..... mult: %u\n", lapic_clockevent.mult);
787 apic_printk(APIC_VERBOSE, "..... calibration result: %u\n",
788 lapic_timer_frequency);
789
790 if (boot_cpu_has(X86_FEATURE_TSC)) {
791 apic_printk(APIC_VERBOSE, "..... CPU clock speed is "
792 "%ld.%04ld MHz.\n",
793 (deltatsc / LAPIC_CAL_LOOPS) / (1000000 / HZ),
794 (deltatsc / LAPIC_CAL_LOOPS) % (1000000 / HZ));
795 }
796
797 apic_printk(APIC_VERBOSE, "..... host bus clock speed is "
798 "%u.%04u MHz.\n",
799 lapic_timer_frequency / (1000000 / HZ),
800 lapic_timer_frequency % (1000000 / HZ));
801
802 /*
803 * Do a sanity check on the APIC calibration result
804 */
805 if (lapic_timer_frequency < (1000000 / HZ)) {
806 local_irq_enable();
807 pr_warning("APIC frequency too slow, disabling apic timer\n");
808 return -1;
809 }
810
811 levt->features &= ~CLOCK_EVT_FEAT_DUMMY;
812
813 /*
814 * PM timer calibration failed or not turned on
815 * so lets try APIC timer based calibration
816 */
817 if (!pm_referenced) {
818 apic_printk(APIC_VERBOSE, "... verify APIC timer\n");
819
820 /*
821 * Setup the apic timer manually
822 */
823 levt->event_handler = lapic_cal_handler;
824 lapic_timer_set_periodic(levt);
825 lapic_cal_loops = -1;
826
827 /* Let the interrupts run */
828 local_irq_enable();
829
830 while (lapic_cal_loops <= LAPIC_CAL_LOOPS)
831 cpu_relax();
832
833 /* Stop the lapic timer */
834 local_irq_disable();
835 lapic_timer_shutdown(levt);
836
837 /* Jiffies delta */
838 deltaj = lapic_cal_j2 - lapic_cal_j1;
839 apic_printk(APIC_VERBOSE, "... jiffies delta = %lu\n", deltaj);
840
841 /* Check, if the jiffies result is consistent */
842 if (deltaj >= LAPIC_CAL_LOOPS-2 && deltaj <= LAPIC_CAL_LOOPS+2)
843 apic_printk(APIC_VERBOSE, "... jiffies result ok\n");
844 else
845 levt->features |= CLOCK_EVT_FEAT_DUMMY;
846 }
847 local_irq_enable();
848
849 if (levt->features & CLOCK_EVT_FEAT_DUMMY) {
850 pr_warning("APIC timer disabled due to verification failure\n");
851 return -1;
852 }
853
854 return 0;
855 }
856
857 /*
858 * Setup the boot APIC
859 *
860 * Calibrate and verify the result.
861 */
862 void __init setup_boot_APIC_clock(void)
863 {
864 /*
865 * The local apic timer can be disabled via the kernel
866 * commandline or from the CPU detection code. Register the lapic
867 * timer as a dummy clock event source on SMP systems, so the
868 * broadcast mechanism is used. On UP systems simply ignore it.
869 */
870 if (disable_apic_timer) {
871 pr_info("Disabling APIC timer\n");
872 /* No broadcast on UP ! */
873 if (num_possible_cpus() > 1) {
874 lapic_clockevent.mult = 1;
875 setup_APIC_timer();
876 }
877 return;
878 }
879
880 if (calibrate_APIC_clock()) {
881 /* No broadcast on UP ! */
882 if (num_possible_cpus() > 1)
883 setup_APIC_timer();
884 return;
885 }
886
887 /*
888 * If nmi_watchdog is set to IO_APIC, we need the
889 * PIT/HPET going. Otherwise register lapic as a dummy
890 * device.
891 */
892 lapic_clockevent.features &= ~CLOCK_EVT_FEAT_DUMMY;
893
894 /* Setup the lapic or request the broadcast */
895 setup_APIC_timer();
896 amd_e400_c1e_apic_setup();
897 }
898
899 void setup_secondary_APIC_clock(void)
900 {
901 setup_APIC_timer();
902 amd_e400_c1e_apic_setup();
903 }
904
905 /*
906 * The guts of the apic timer interrupt
907 */
908 static void local_apic_timer_interrupt(void)
909 {
910 int cpu = smp_processor_id();
911 struct clock_event_device *evt = &per_cpu(lapic_events, cpu);
912
913 /*
914 * Normally we should not be here till LAPIC has been initialized but
915 * in some cases like kdump, its possible that there is a pending LAPIC
916 * timer interrupt from previous kernel's context and is delivered in
917 * new kernel the moment interrupts are enabled.
918 *
919 * Interrupts are enabled early and LAPIC is setup much later, hence
920 * its possible that when we get here evt->event_handler is NULL.
921 * Check for event_handler being NULL and discard the interrupt as
922 * spurious.
923 */
924 if (!evt->event_handler) {
925 pr_warning("Spurious LAPIC timer interrupt on cpu %d\n", cpu);
926 /* Switch it off */
927 lapic_timer_shutdown(evt);
928 return;
929 }
930
931 /*
932 * the NMI deadlock-detector uses this.
933 */
934 inc_irq_stat(apic_timer_irqs);
935
936 evt->event_handler(evt);
937 }
938
939 /*
940 * Local APIC timer interrupt. This is the most natural way for doing
941 * local interrupts, but local timer interrupts can be emulated by
942 * broadcast interrupts too. [in case the hw doesn't support APIC timers]
943 *
944 * [ if a single-CPU system runs an SMP kernel then we call the local
945 * interrupt as well. Thus we cannot inline the local irq ... ]
946 */
947 __visible void __irq_entry smp_apic_timer_interrupt(struct pt_regs *regs)
948 {
949 struct pt_regs *old_regs = set_irq_regs(regs);
950
951 /*
952 * NOTE! We'd better ACK the irq immediately,
953 * because timer handling can be slow.
954 *
955 * update_process_times() expects us to have done irq_enter().
956 * Besides, if we don't timer interrupts ignore the global
957 * interrupt lock, which is the WrongThing (tm) to do.
958 */
959 entering_ack_irq();
960 local_apic_timer_interrupt();
961 exiting_irq();
962
963 set_irq_regs(old_regs);
964 }
965
966 __visible void __irq_entry smp_trace_apic_timer_interrupt(struct pt_regs *regs)
967 {
968 struct pt_regs *old_regs = set_irq_regs(regs);
969
970 /*
971 * NOTE! We'd better ACK the irq immediately,
972 * because timer handling can be slow.
973 *
974 * update_process_times() expects us to have done irq_enter().
975 * Besides, if we don't timer interrupts ignore the global
976 * interrupt lock, which is the WrongThing (tm) to do.
977 */
978 entering_ack_irq();
979 trace_local_timer_entry(LOCAL_TIMER_VECTOR);
980 local_apic_timer_interrupt();
981 trace_local_timer_exit(LOCAL_TIMER_VECTOR);
982 exiting_irq();
983
984 set_irq_regs(old_regs);
985 }
986
987 int setup_profiling_timer(unsigned int multiplier)
988 {
989 return -EINVAL;
990 }
991
992 /*
993 * Local APIC start and shutdown
994 */
995
996 /**
997 * clear_local_APIC - shutdown the local APIC
998 *
999 * This is called, when a CPU is disabled and before rebooting, so the state of
1000 * the local APIC has no dangling leftovers. Also used to cleanout any BIOS
1001 * leftovers during boot.
1002 */
1003 void clear_local_APIC(void)
1004 {
1005 int maxlvt;
1006 u32 v;
1007
1008 /* APIC hasn't been mapped yet */
1009 if (!x2apic_mode && !apic_phys)
1010 return;
1011
1012 maxlvt = lapic_get_maxlvt();
1013 /*
1014 * Masking an LVT entry can trigger a local APIC error
1015 * if the vector is zero. Mask LVTERR first to prevent this.
1016 */
1017 if (maxlvt >= 3) {
1018 v = ERROR_APIC_VECTOR; /* any non-zero vector will do */
1019 apic_write(APIC_LVTERR, v | APIC_LVT_MASKED);
1020 }
1021 /*
1022 * Careful: we have to set masks only first to deassert
1023 * any level-triggered sources.
1024 */
1025 v = apic_read(APIC_LVTT);
1026 apic_write(APIC_LVTT, v | APIC_LVT_MASKED);
1027 v = apic_read(APIC_LVT0);
1028 apic_write(APIC_LVT0, v | APIC_LVT_MASKED);
1029 v = apic_read(APIC_LVT1);
1030 apic_write(APIC_LVT1, v | APIC_LVT_MASKED);
1031 if (maxlvt >= 4) {
1032 v = apic_read(APIC_LVTPC);
1033 apic_write(APIC_LVTPC, v | APIC_LVT_MASKED);
1034 }
1035
1036 /* lets not touch this if we didn't frob it */
1037 #ifdef CONFIG_X86_THERMAL_VECTOR
1038 if (maxlvt >= 5) {
1039 v = apic_read(APIC_LVTTHMR);
1040 apic_write(APIC_LVTTHMR, v | APIC_LVT_MASKED);
1041 }
1042 #endif
1043 #ifdef CONFIG_X86_MCE_INTEL
1044 if (maxlvt >= 6) {
1045 v = apic_read(APIC_LVTCMCI);
1046 if (!(v & APIC_LVT_MASKED))
1047 apic_write(APIC_LVTCMCI, v | APIC_LVT_MASKED);
1048 }
1049 #endif
1050
1051 /*
1052 * Clean APIC state for other OSs:
1053 */
1054 apic_write(APIC_LVTT, APIC_LVT_MASKED);
1055 apic_write(APIC_LVT0, APIC_LVT_MASKED);
1056 apic_write(APIC_LVT1, APIC_LVT_MASKED);
1057 if (maxlvt >= 3)
1058 apic_write(APIC_LVTERR, APIC_LVT_MASKED);
1059 if (maxlvt >= 4)
1060 apic_write(APIC_LVTPC, APIC_LVT_MASKED);
1061
1062 /* Integrated APIC (!82489DX) ? */
1063 if (lapic_is_integrated()) {
1064 if (maxlvt > 3)
1065 /* Clear ESR due to Pentium errata 3AP and 11AP */
1066 apic_write(APIC_ESR, 0);
1067 apic_read(APIC_ESR);
1068 }
1069 }
1070
1071 /**
1072 * disable_local_APIC - clear and disable the local APIC
1073 */
1074 void disable_local_APIC(void)
1075 {
1076 unsigned int value;
1077
1078 /* APIC hasn't been mapped yet */
1079 if (!x2apic_mode && !apic_phys)
1080 return;
1081
1082 clear_local_APIC();
1083
1084 /*
1085 * Disable APIC (implies clearing of registers
1086 * for 82489DX!).
1087 */
1088 value = apic_read(APIC_SPIV);
1089 value &= ~APIC_SPIV_APIC_ENABLED;
1090 apic_write(APIC_SPIV, value);
1091
1092 #ifdef CONFIG_X86_32
1093 /*
1094 * When LAPIC was disabled by the BIOS and enabled by the kernel,
1095 * restore the disabled state.
1096 */
1097 if (enabled_via_apicbase) {
1098 unsigned int l, h;
1099
1100 rdmsr(MSR_IA32_APICBASE, l, h);
1101 l &= ~MSR_IA32_APICBASE_ENABLE;
1102 wrmsr(MSR_IA32_APICBASE, l, h);
1103 }
1104 #endif
1105 }
1106
1107 /*
1108 * If Linux enabled the LAPIC against the BIOS default disable it down before
1109 * re-entering the BIOS on shutdown. Otherwise the BIOS may get confused and
1110 * not power-off. Additionally clear all LVT entries before disable_local_APIC
1111 * for the case where Linux didn't enable the LAPIC.
1112 */
1113 void lapic_shutdown(void)
1114 {
1115 unsigned long flags;
1116
1117 if (!boot_cpu_has(X86_FEATURE_APIC) && !apic_from_smp_config())
1118 return;
1119
1120 local_irq_save(flags);
1121
1122 #ifdef CONFIG_X86_32
1123 if (!enabled_via_apicbase)
1124 clear_local_APIC();
1125 else
1126 #endif
1127 disable_local_APIC();
1128
1129
1130 local_irq_restore(flags);
1131 }
1132
1133 /**
1134 * sync_Arb_IDs - synchronize APIC bus arbitration IDs
1135 */
1136 void __init sync_Arb_IDs(void)
1137 {
1138 /*
1139 * Unsupported on P4 - see Intel Dev. Manual Vol. 3, Ch. 8.6.1 And not
1140 * needed on AMD.
1141 */
1142 if (modern_apic() || boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
1143 return;
1144
1145 /*
1146 * Wait for idle.
1147 */
1148 apic_wait_icr_idle();
1149
1150 apic_printk(APIC_DEBUG, "Synchronizing Arb IDs.\n");
1151 apic_write(APIC_ICR, APIC_DEST_ALLINC |
1152 APIC_INT_LEVELTRIG | APIC_DM_INIT);
1153 }
1154
1155 /*
1156 * An initial setup of the virtual wire mode.
1157 */
1158 void __init init_bsp_APIC(void)
1159 {
1160 unsigned int value;
1161
1162 /*
1163 * Don't do the setup now if we have a SMP BIOS as the
1164 * through-I/O-APIC virtual wire mode might be active.
1165 */
1166 if (smp_found_config || !boot_cpu_has(X86_FEATURE_APIC))
1167 return;
1168
1169 /*
1170 * Do not trust the local APIC being empty at bootup.
1171 */
1172 clear_local_APIC();
1173
1174 /*
1175 * Enable APIC.
1176 */
1177 value = apic_read(APIC_SPIV);
1178 value &= ~APIC_VECTOR_MASK;
1179 value |= APIC_SPIV_APIC_ENABLED;
1180
1181 #ifdef CONFIG_X86_32
1182 /* This bit is reserved on P4/Xeon and should be cleared */
1183 if ((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) &&
1184 (boot_cpu_data.x86 == 15))
1185 value &= ~APIC_SPIV_FOCUS_DISABLED;
1186 else
1187 #endif
1188 value |= APIC_SPIV_FOCUS_DISABLED;
1189 value |= SPURIOUS_APIC_VECTOR;
1190 apic_write(APIC_SPIV, value);
1191
1192 /*
1193 * Set up the virtual wire mode.
1194 */
1195 apic_write(APIC_LVT0, APIC_DM_EXTINT);
1196 value = APIC_DM_NMI;
1197 if (!lapic_is_integrated()) /* 82489DX */
1198 value |= APIC_LVT_LEVEL_TRIGGER;
1199 if (apic_extnmi == APIC_EXTNMI_NONE)
1200 value |= APIC_LVT_MASKED;
1201 apic_write(APIC_LVT1, value);
1202 }
1203
1204 static void lapic_setup_esr(void)
1205 {
1206 unsigned int oldvalue, value, maxlvt;
1207
1208 if (!lapic_is_integrated()) {
1209 pr_info("No ESR for 82489DX.\n");
1210 return;
1211 }
1212
1213 if (apic->disable_esr) {
1214 /*
1215 * Something untraceable is creating bad interrupts on
1216 * secondary quads ... for the moment, just leave the
1217 * ESR disabled - we can't do anything useful with the
1218 * errors anyway - mbligh
1219 */
1220 pr_info("Leaving ESR disabled.\n");
1221 return;
1222 }
1223
1224 maxlvt = lapic_get_maxlvt();
1225 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
1226 apic_write(APIC_ESR, 0);
1227 oldvalue = apic_read(APIC_ESR);
1228
1229 /* enables sending errors */
1230 value = ERROR_APIC_VECTOR;
1231 apic_write(APIC_LVTERR, value);
1232
1233 /*
1234 * spec says clear errors after enabling vector.
1235 */
1236 if (maxlvt > 3)
1237 apic_write(APIC_ESR, 0);
1238 value = apic_read(APIC_ESR);
1239 if (value != oldvalue)
1240 apic_printk(APIC_VERBOSE, "ESR value before enabling "
1241 "vector: 0x%08x after: 0x%08x\n",
1242 oldvalue, value);
1243 }
1244
1245 /**
1246 * setup_local_APIC - setup the local APIC
1247 *
1248 * Used to setup local APIC while initializing BSP or bringin up APs.
1249 * Always called with preemption disabled.
1250 */
1251 void setup_local_APIC(void)
1252 {
1253 int cpu = smp_processor_id();
1254 unsigned int value, queued;
1255 int i, j, acked = 0;
1256 unsigned long long tsc = 0, ntsc;
1257 long long max_loops = cpu_khz ? cpu_khz : 1000000;
1258
1259 if (boot_cpu_has(X86_FEATURE_TSC))
1260 tsc = rdtsc();
1261
1262 if (disable_apic) {
1263 disable_ioapic_support();
1264 return;
1265 }
1266
1267 #ifdef CONFIG_X86_32
1268 /* Pound the ESR really hard over the head with a big hammer - mbligh */
1269 if (lapic_is_integrated() && apic->disable_esr) {
1270 apic_write(APIC_ESR, 0);
1271 apic_write(APIC_ESR, 0);
1272 apic_write(APIC_ESR, 0);
1273 apic_write(APIC_ESR, 0);
1274 }
1275 #endif
1276 perf_events_lapic_init();
1277
1278 /*
1279 * Double-check whether this APIC is really registered.
1280 * This is meaningless in clustered apic mode, so we skip it.
1281 */
1282 BUG_ON(!apic->apic_id_registered());
1283
1284 /*
1285 * Intel recommends to set DFR, LDR and TPR before enabling
1286 * an APIC. See e.g. "AP-388 82489DX User's Manual" (Intel
1287 * document number 292116). So here it goes...
1288 */
1289 apic->init_apic_ldr();
1290
1291 #ifdef CONFIG_X86_32
1292 /*
1293 * APIC LDR is initialized. If logical_apicid mapping was
1294 * initialized during get_smp_config(), make sure it matches the
1295 * actual value.
1296 */
1297 i = early_per_cpu(x86_cpu_to_logical_apicid, cpu);
1298 WARN_ON(i != BAD_APICID && i != logical_smp_processor_id());
1299 /* always use the value from LDR */
1300 early_per_cpu(x86_cpu_to_logical_apicid, cpu) =
1301 logical_smp_processor_id();
1302 #endif
1303
1304 /*
1305 * Set Task Priority to 'accept all'. We never change this
1306 * later on.
1307 */
1308 value = apic_read(APIC_TASKPRI);
1309 value &= ~APIC_TPRI_MASK;
1310 apic_write(APIC_TASKPRI, value);
1311
1312 /*
1313 * After a crash, we no longer service the interrupts and a pending
1314 * interrupt from previous kernel might still have ISR bit set.
1315 *
1316 * Most probably by now CPU has serviced that pending interrupt and
1317 * it might not have done the ack_APIC_irq() because it thought,
1318 * interrupt came from i8259 as ExtInt. LAPIC did not get EOI so it
1319 * does not clear the ISR bit and cpu thinks it has already serivced
1320 * the interrupt. Hence a vector might get locked. It was noticed
1321 * for timer irq (vector 0x31). Issue an extra EOI to clear ISR.
1322 */
1323 do {
1324 queued = 0;
1325 for (i = APIC_ISR_NR - 1; i >= 0; i--)
1326 queued |= apic_read(APIC_IRR + i*0x10);
1327
1328 for (i = APIC_ISR_NR - 1; i >= 0; i--) {
1329 value = apic_read(APIC_ISR + i*0x10);
1330 for (j = 31; j >= 0; j--) {
1331 if (value & (1<<j)) {
1332 ack_APIC_irq();
1333 acked++;
1334 }
1335 }
1336 }
1337 if (acked > 256) {
1338 printk(KERN_ERR "LAPIC pending interrupts after %d EOI\n",
1339 acked);
1340 break;
1341 }
1342 if (queued) {
1343 if (boot_cpu_has(X86_FEATURE_TSC) && cpu_khz) {
1344 ntsc = rdtsc();
1345 max_loops = (cpu_khz << 10) - (ntsc - tsc);
1346 } else
1347 max_loops--;
1348 }
1349 } while (queued && max_loops > 0);
1350 WARN_ON(max_loops <= 0);
1351
1352 /*
1353 * Now that we are all set up, enable the APIC
1354 */
1355 value = apic_read(APIC_SPIV);
1356 value &= ~APIC_VECTOR_MASK;
1357 /*
1358 * Enable APIC
1359 */
1360 value |= APIC_SPIV_APIC_ENABLED;
1361
1362 #ifdef CONFIG_X86_32
1363 /*
1364 * Some unknown Intel IO/APIC (or APIC) errata is biting us with
1365 * certain networking cards. If high frequency interrupts are
1366 * happening on a particular IOAPIC pin, plus the IOAPIC routing
1367 * entry is masked/unmasked at a high rate as well then sooner or
1368 * later IOAPIC line gets 'stuck', no more interrupts are received
1369 * from the device. If focus CPU is disabled then the hang goes
1370 * away, oh well :-(
1371 *
1372 * [ This bug can be reproduced easily with a level-triggered
1373 * PCI Ne2000 networking cards and PII/PIII processors, dual
1374 * BX chipset. ]
1375 */
1376 /*
1377 * Actually disabling the focus CPU check just makes the hang less
1378 * frequent as it makes the interrupt distributon model be more
1379 * like LRU than MRU (the short-term load is more even across CPUs).
1380 */
1381
1382 /*
1383 * - enable focus processor (bit==0)
1384 * - 64bit mode always use processor focus
1385 * so no need to set it
1386 */
1387 value &= ~APIC_SPIV_FOCUS_DISABLED;
1388 #endif
1389
1390 /*
1391 * Set spurious IRQ vector
1392 */
1393 value |= SPURIOUS_APIC_VECTOR;
1394 apic_write(APIC_SPIV, value);
1395
1396 /*
1397 * Set up LVT0, LVT1:
1398 *
1399 * set up through-local-APIC on the BP's LINT0. This is not
1400 * strictly necessary in pure symmetric-IO mode, but sometimes
1401 * we delegate interrupts to the 8259A.
1402 */
1403 /*
1404 * TODO: set up through-local-APIC from through-I/O-APIC? --macro
1405 */
1406 value = apic_read(APIC_LVT0) & APIC_LVT_MASKED;
1407 if (!cpu && (pic_mode || !value)) {
1408 value = APIC_DM_EXTINT;
1409 apic_printk(APIC_VERBOSE, "enabled ExtINT on CPU#%d\n", cpu);
1410 } else {
1411 value = APIC_DM_EXTINT | APIC_LVT_MASKED;
1412 apic_printk(APIC_VERBOSE, "masked ExtINT on CPU#%d\n", cpu);
1413 }
1414 apic_write(APIC_LVT0, value);
1415
1416 /*
1417 * Only the BSP sees the LINT1 NMI signal by default. This can be
1418 * modified by apic_extnmi= boot option.
1419 */
1420 if ((!cpu && apic_extnmi != APIC_EXTNMI_NONE) ||
1421 apic_extnmi == APIC_EXTNMI_ALL)
1422 value = APIC_DM_NMI;
1423 else
1424 value = APIC_DM_NMI | APIC_LVT_MASKED;
1425 if (!lapic_is_integrated()) /* 82489DX */
1426 value |= APIC_LVT_LEVEL_TRIGGER;
1427 apic_write(APIC_LVT1, value);
1428
1429 #ifdef CONFIG_X86_MCE_INTEL
1430 /* Recheck CMCI information after local APIC is up on CPU #0 */
1431 if (!cpu)
1432 cmci_recheck();
1433 #endif
1434 }
1435
1436 static void end_local_APIC_setup(void)
1437 {
1438 lapic_setup_esr();
1439
1440 #ifdef CONFIG_X86_32
1441 {
1442 unsigned int value;
1443 /* Disable the local apic timer */
1444 value = apic_read(APIC_LVTT);
1445 value |= (APIC_LVT_MASKED | LOCAL_TIMER_VECTOR);
1446 apic_write(APIC_LVTT, value);
1447 }
1448 #endif
1449
1450 apic_pm_activate();
1451 }
1452
1453 /*
1454 * APIC setup function for application processors. Called from smpboot.c
1455 */
1456 void apic_ap_setup(void)
1457 {
1458 setup_local_APIC();
1459 end_local_APIC_setup();
1460 }
1461
1462 #ifdef CONFIG_X86_X2APIC
1463 int x2apic_mode;
1464
1465 enum {
1466 X2APIC_OFF,
1467 X2APIC_ON,
1468 X2APIC_DISABLED,
1469 };
1470 static int x2apic_state;
1471
1472 static void __x2apic_disable(void)
1473 {
1474 u64 msr;
1475
1476 if (!boot_cpu_has(X86_FEATURE_APIC))
1477 return;
1478
1479 rdmsrl(MSR_IA32_APICBASE, msr);
1480 if (!(msr & X2APIC_ENABLE))
1481 return;
1482 /* Disable xapic and x2apic first and then reenable xapic mode */
1483 wrmsrl(MSR_IA32_APICBASE, msr & ~(X2APIC_ENABLE | XAPIC_ENABLE));
1484 wrmsrl(MSR_IA32_APICBASE, msr & ~X2APIC_ENABLE);
1485 printk_once(KERN_INFO "x2apic disabled\n");
1486 }
1487
1488 static void __x2apic_enable(void)
1489 {
1490 u64 msr;
1491
1492 rdmsrl(MSR_IA32_APICBASE, msr);
1493 if (msr & X2APIC_ENABLE)
1494 return;
1495 wrmsrl(MSR_IA32_APICBASE, msr | X2APIC_ENABLE);
1496 printk_once(KERN_INFO "x2apic enabled\n");
1497 }
1498
1499 static int __init setup_nox2apic(char *str)
1500 {
1501 if (x2apic_enabled()) {
1502 int apicid = native_apic_msr_read(APIC_ID);
1503
1504 if (apicid >= 255) {
1505 pr_warning("Apicid: %08x, cannot enforce nox2apic\n",
1506 apicid);
1507 return 0;
1508 }
1509 pr_warning("x2apic already enabled.\n");
1510 __x2apic_disable();
1511 }
1512 setup_clear_cpu_cap(X86_FEATURE_X2APIC);
1513 x2apic_state = X2APIC_DISABLED;
1514 x2apic_mode = 0;
1515 return 0;
1516 }
1517 early_param("nox2apic", setup_nox2apic);
1518
1519 /* Called from cpu_init() to enable x2apic on (secondary) cpus */
1520 void x2apic_setup(void)
1521 {
1522 /*
1523 * If x2apic is not in ON state, disable it if already enabled
1524 * from BIOS.
1525 */
1526 if (x2apic_state != X2APIC_ON) {
1527 __x2apic_disable();
1528 return;
1529 }
1530 __x2apic_enable();
1531 }
1532
1533 static __init void x2apic_disable(void)
1534 {
1535 u32 x2apic_id, state = x2apic_state;
1536
1537 x2apic_mode = 0;
1538 x2apic_state = X2APIC_DISABLED;
1539
1540 if (state != X2APIC_ON)
1541 return;
1542
1543 x2apic_id = read_apic_id();
1544 if (x2apic_id >= 255)
1545 panic("Cannot disable x2apic, id: %08x\n", x2apic_id);
1546
1547 __x2apic_disable();
1548 register_lapic_address(mp_lapic_addr);
1549 }
1550
1551 static __init void x2apic_enable(void)
1552 {
1553 if (x2apic_state != X2APIC_OFF)
1554 return;
1555
1556 x2apic_mode = 1;
1557 x2apic_state = X2APIC_ON;
1558 __x2apic_enable();
1559 }
1560
1561 static __init void try_to_enable_x2apic(int remap_mode)
1562 {
1563 if (x2apic_state == X2APIC_DISABLED)
1564 return;
1565
1566 if (remap_mode != IRQ_REMAP_X2APIC_MODE) {
1567 /* IR is required if there is APIC ID > 255 even when running
1568 * under KVM
1569 */
1570 if (max_physical_apicid > 255 ||
1571 !hypervisor_x2apic_available()) {
1572 pr_info("x2apic: IRQ remapping doesn't support X2APIC mode\n");
1573 x2apic_disable();
1574 return;
1575 }
1576
1577 /*
1578 * without IR all CPUs can be addressed by IOAPIC/MSI
1579 * only in physical mode
1580 */
1581 x2apic_phys = 1;
1582 }
1583 x2apic_enable();
1584 }
1585
1586 void __init check_x2apic(void)
1587 {
1588 if (x2apic_enabled()) {
1589 pr_info("x2apic: enabled by BIOS, switching to x2apic ops\n");
1590 x2apic_mode = 1;
1591 x2apic_state = X2APIC_ON;
1592 } else if (!boot_cpu_has(X86_FEATURE_X2APIC)) {
1593 x2apic_state = X2APIC_DISABLED;
1594 }
1595 }
1596 #else /* CONFIG_X86_X2APIC */
1597 static int __init validate_x2apic(void)
1598 {
1599 if (!apic_is_x2apic_enabled())
1600 return 0;
1601 /*
1602 * Checkme: Can we simply turn off x2apic here instead of panic?
1603 */
1604 panic("BIOS has enabled x2apic but kernel doesn't support x2apic, please disable x2apic in BIOS.\n");
1605 }
1606 early_initcall(validate_x2apic);
1607
1608 static inline void try_to_enable_x2apic(int remap_mode) { }
1609 static inline void __x2apic_enable(void) { }
1610 #endif /* !CONFIG_X86_X2APIC */
1611
1612 static int __init try_to_enable_IR(void)
1613 {
1614 #ifdef CONFIG_X86_IO_APIC
1615 if (!x2apic_enabled() && skip_ioapic_setup) {
1616 pr_info("Not enabling interrupt remapping due to skipped IO-APIC setup\n");
1617 return -1;
1618 }
1619 #endif
1620 return irq_remapping_enable();
1621 }
1622
1623 void __init enable_IR_x2apic(void)
1624 {
1625 unsigned long flags;
1626 int ret, ir_stat;
1627
1628 if (skip_ioapic_setup)
1629 return;
1630
1631 ir_stat = irq_remapping_prepare();
1632 if (ir_stat < 0 && !x2apic_supported())
1633 return;
1634
1635 ret = save_ioapic_entries();
1636 if (ret) {
1637 pr_info("Saving IO-APIC state failed: %d\n", ret);
1638 return;
1639 }
1640
1641 local_irq_save(flags);
1642 legacy_pic->mask_all();
1643 mask_ioapic_entries();
1644
1645 /* If irq_remapping_prepare() succeeded, try to enable it */
1646 if (ir_stat >= 0)
1647 ir_stat = try_to_enable_IR();
1648 /* ir_stat contains the remap mode or an error code */
1649 try_to_enable_x2apic(ir_stat);
1650
1651 if (ir_stat < 0)
1652 restore_ioapic_entries();
1653 legacy_pic->restore_mask();
1654 local_irq_restore(flags);
1655 }
1656
1657 #ifdef CONFIG_X86_64
1658 /*
1659 * Detect and enable local APICs on non-SMP boards.
1660 * Original code written by Keir Fraser.
1661 * On AMD64 we trust the BIOS - if it says no APIC it is likely
1662 * not correctly set up (usually the APIC timer won't work etc.)
1663 */
1664 static int __init detect_init_APIC(void)
1665 {
1666 if (!boot_cpu_has(X86_FEATURE_APIC)) {
1667 pr_info("No local APIC present\n");
1668 return -1;
1669 }
1670
1671 mp_lapic_addr = APIC_DEFAULT_PHYS_BASE;
1672 return 0;
1673 }
1674 #else
1675
1676 static int __init apic_verify(void)
1677 {
1678 u32 features, h, l;
1679
1680 /*
1681 * The APIC feature bit should now be enabled
1682 * in `cpuid'
1683 */
1684 features = cpuid_edx(1);
1685 if (!(features & (1 << X86_FEATURE_APIC))) {
1686 pr_warning("Could not enable APIC!\n");
1687 return -1;
1688 }
1689 set_cpu_cap(&boot_cpu_data, X86_FEATURE_APIC);
1690 mp_lapic_addr = APIC_DEFAULT_PHYS_BASE;
1691
1692 /* The BIOS may have set up the APIC at some other address */
1693 if (boot_cpu_data.x86 >= 6) {
1694 rdmsr(MSR_IA32_APICBASE, l, h);
1695 if (l & MSR_IA32_APICBASE_ENABLE)
1696 mp_lapic_addr = l & MSR_IA32_APICBASE_BASE;
1697 }
1698
1699 pr_info("Found and enabled local APIC!\n");
1700 return 0;
1701 }
1702
1703 int __init apic_force_enable(unsigned long addr)
1704 {
1705 u32 h, l;
1706
1707 if (disable_apic)
1708 return -1;
1709
1710 /*
1711 * Some BIOSes disable the local APIC in the APIC_BASE
1712 * MSR. This can only be done in software for Intel P6 or later
1713 * and AMD K7 (Model > 1) or later.
1714 */
1715 if (boot_cpu_data.x86 >= 6) {
1716 rdmsr(MSR_IA32_APICBASE, l, h);
1717 if (!(l & MSR_IA32_APICBASE_ENABLE)) {
1718 pr_info("Local APIC disabled by BIOS -- reenabling.\n");
1719 l &= ~MSR_IA32_APICBASE_BASE;
1720 l |= MSR_IA32_APICBASE_ENABLE | addr;
1721 wrmsr(MSR_IA32_APICBASE, l, h);
1722 enabled_via_apicbase = 1;
1723 }
1724 }
1725 return apic_verify();
1726 }
1727
1728 /*
1729 * Detect and initialize APIC
1730 */
1731 static int __init detect_init_APIC(void)
1732 {
1733 /* Disabled by kernel option? */
1734 if (disable_apic)
1735 return -1;
1736
1737 switch (boot_cpu_data.x86_vendor) {
1738 case X86_VENDOR_AMD:
1739 if ((boot_cpu_data.x86 == 6 && boot_cpu_data.x86_model > 1) ||
1740 (boot_cpu_data.x86 >= 15))
1741 break;
1742 goto no_apic;
1743 case X86_VENDOR_INTEL:
1744 if (boot_cpu_data.x86 == 6 || boot_cpu_data.x86 == 15 ||
1745 (boot_cpu_data.x86 == 5 && boot_cpu_has(X86_FEATURE_APIC)))
1746 break;
1747 goto no_apic;
1748 default:
1749 goto no_apic;
1750 }
1751
1752 if (!boot_cpu_has(X86_FEATURE_APIC)) {
1753 /*
1754 * Over-ride BIOS and try to enable the local APIC only if
1755 * "lapic" specified.
1756 */
1757 if (!force_enable_local_apic) {
1758 pr_info("Local APIC disabled by BIOS -- "
1759 "you can enable it with \"lapic\"\n");
1760 return -1;
1761 }
1762 if (apic_force_enable(APIC_DEFAULT_PHYS_BASE))
1763 return -1;
1764 } else {
1765 if (apic_verify())
1766 return -1;
1767 }
1768
1769 apic_pm_activate();
1770
1771 return 0;
1772
1773 no_apic:
1774 pr_info("No local APIC present or hardware disabled\n");
1775 return -1;
1776 }
1777 #endif
1778
1779 /**
1780 * init_apic_mappings - initialize APIC mappings
1781 */
1782 void __init init_apic_mappings(void)
1783 {
1784 unsigned int new_apicid;
1785
1786 if (x2apic_mode) {
1787 boot_cpu_physical_apicid = read_apic_id();
1788 return;
1789 }
1790
1791 /* If no local APIC can be found return early */
1792 if (!smp_found_config && detect_init_APIC()) {
1793 /* lets NOP'ify apic operations */
1794 pr_info("APIC: disable apic facility\n");
1795 apic_disable();
1796 } else {
1797 apic_phys = mp_lapic_addr;
1798
1799 /*
1800 * acpi lapic path already maps that address in
1801 * acpi_register_lapic_address()
1802 */
1803 if (!acpi_lapic && !smp_found_config)
1804 register_lapic_address(apic_phys);
1805 }
1806
1807 /*
1808 * Fetch the APIC ID of the BSP in case we have a
1809 * default configuration (or the MP table is broken).
1810 */
1811 new_apicid = read_apic_id();
1812 if (boot_cpu_physical_apicid != new_apicid) {
1813 boot_cpu_physical_apicid = new_apicid;
1814 /*
1815 * yeah -- we lie about apic_version
1816 * in case if apic was disabled via boot option
1817 * but it's not a problem for SMP compiled kernel
1818 * since smp_sanity_check is prepared for such a case
1819 * and disable smp mode
1820 */
1821 boot_cpu_apic_version = GET_APIC_VERSION(apic_read(APIC_LVR));
1822 }
1823 }
1824
1825 void __init register_lapic_address(unsigned long address)
1826 {
1827 mp_lapic_addr = address;
1828
1829 if (!x2apic_mode) {
1830 set_fixmap_nocache(FIX_APIC_BASE, address);
1831 apic_printk(APIC_VERBOSE, "mapped APIC to %16lx (%16lx)\n",
1832 APIC_BASE, address);
1833 }
1834 if (boot_cpu_physical_apicid == -1U) {
1835 boot_cpu_physical_apicid = read_apic_id();
1836 boot_cpu_apic_version = GET_APIC_VERSION(apic_read(APIC_LVR));
1837 }
1838 }
1839
1840 /*
1841 * Local APIC interrupts
1842 */
1843
1844 /*
1845 * This interrupt should _never_ happen with our APIC/SMP architecture
1846 */
1847 static void __smp_spurious_interrupt(u8 vector)
1848 {
1849 u32 v;
1850
1851 /*
1852 * Check if this really is a spurious interrupt and ACK it
1853 * if it is a vectored one. Just in case...
1854 * Spurious interrupts should not be ACKed.
1855 */
1856 v = apic_read(APIC_ISR + ((vector & ~0x1f) >> 1));
1857 if (v & (1 << (vector & 0x1f)))
1858 ack_APIC_irq();
1859
1860 inc_irq_stat(irq_spurious_count);
1861
1862 /* see sw-dev-man vol 3, chapter 7.4.13.5 */
1863 pr_info("spurious APIC interrupt through vector %02x on CPU#%d, "
1864 "should never happen.\n", vector, smp_processor_id());
1865 }
1866
1867 __visible void smp_spurious_interrupt(struct pt_regs *regs)
1868 {
1869 entering_irq();
1870 __smp_spurious_interrupt(~regs->orig_ax);
1871 exiting_irq();
1872 }
1873
1874 __visible void smp_trace_spurious_interrupt(struct pt_regs *regs)
1875 {
1876 u8 vector = ~regs->orig_ax;
1877
1878 entering_irq();
1879 trace_spurious_apic_entry(vector);
1880 __smp_spurious_interrupt(vector);
1881 trace_spurious_apic_exit(vector);
1882 exiting_irq();
1883 }
1884
1885 /*
1886 * This interrupt should never happen with our APIC/SMP architecture
1887 */
1888 static void __smp_error_interrupt(struct pt_regs *regs)
1889 {
1890 u32 v;
1891 u32 i = 0;
1892 static const char * const error_interrupt_reason[] = {
1893 "Send CS error", /* APIC Error Bit 0 */
1894 "Receive CS error", /* APIC Error Bit 1 */
1895 "Send accept error", /* APIC Error Bit 2 */
1896 "Receive accept error", /* APIC Error Bit 3 */
1897 "Redirectable IPI", /* APIC Error Bit 4 */
1898 "Send illegal vector", /* APIC Error Bit 5 */
1899 "Received illegal vector", /* APIC Error Bit 6 */
1900 "Illegal register address", /* APIC Error Bit 7 */
1901 };
1902
1903 /* First tickle the hardware, only then report what went on. -- REW */
1904 if (lapic_get_maxlvt() > 3) /* Due to the Pentium erratum 3AP. */
1905 apic_write(APIC_ESR, 0);
1906 v = apic_read(APIC_ESR);
1907 ack_APIC_irq();
1908 atomic_inc(&irq_err_count);
1909
1910 apic_printk(APIC_DEBUG, KERN_DEBUG "APIC error on CPU%d: %02x",
1911 smp_processor_id(), v);
1912
1913 v &= 0xff;
1914 while (v) {
1915 if (v & 0x1)
1916 apic_printk(APIC_DEBUG, KERN_CONT " : %s", error_interrupt_reason[i]);
1917 i++;
1918 v >>= 1;
1919 }
1920
1921 apic_printk(APIC_DEBUG, KERN_CONT "\n");
1922
1923 }
1924
1925 __visible void smp_error_interrupt(struct pt_regs *regs)
1926 {
1927 entering_irq();
1928 __smp_error_interrupt(regs);
1929 exiting_irq();
1930 }
1931
1932 __visible void smp_trace_error_interrupt(struct pt_regs *regs)
1933 {
1934 entering_irq();
1935 trace_error_apic_entry(ERROR_APIC_VECTOR);
1936 __smp_error_interrupt(regs);
1937 trace_error_apic_exit(ERROR_APIC_VECTOR);
1938 exiting_irq();
1939 }
1940
1941 /**
1942 * connect_bsp_APIC - attach the APIC to the interrupt system
1943 */
1944 static void __init connect_bsp_APIC(void)
1945 {
1946 #ifdef CONFIG_X86_32
1947 if (pic_mode) {
1948 /*
1949 * Do not trust the local APIC being empty at bootup.
1950 */
1951 clear_local_APIC();
1952 /*
1953 * PIC mode, enable APIC mode in the IMCR, i.e. connect BSP's
1954 * local APIC to INT and NMI lines.
1955 */
1956 apic_printk(APIC_VERBOSE, "leaving PIC mode, "
1957 "enabling APIC mode.\n");
1958 imcr_pic_to_apic();
1959 }
1960 #endif
1961 }
1962
1963 /**
1964 * disconnect_bsp_APIC - detach the APIC from the interrupt system
1965 * @virt_wire_setup: indicates, whether virtual wire mode is selected
1966 *
1967 * Virtual wire mode is necessary to deliver legacy interrupts even when the
1968 * APIC is disabled.
1969 */
1970 void disconnect_bsp_APIC(int virt_wire_setup)
1971 {
1972 unsigned int value;
1973
1974 #ifdef CONFIG_X86_32
1975 if (pic_mode) {
1976 /*
1977 * Put the board back into PIC mode (has an effect only on
1978 * certain older boards). Note that APIC interrupts, including
1979 * IPIs, won't work beyond this point! The only exception are
1980 * INIT IPIs.
1981 */
1982 apic_printk(APIC_VERBOSE, "disabling APIC mode, "
1983 "entering PIC mode.\n");
1984 imcr_apic_to_pic();
1985 return;
1986 }
1987 #endif
1988
1989 /* Go back to Virtual Wire compatibility mode */
1990
1991 /* For the spurious interrupt use vector F, and enable it */
1992 value = apic_read(APIC_SPIV);
1993 value &= ~APIC_VECTOR_MASK;
1994 value |= APIC_SPIV_APIC_ENABLED;
1995 value |= 0xf;
1996 apic_write(APIC_SPIV, value);
1997
1998 if (!virt_wire_setup) {
1999 /*
2000 * For LVT0 make it edge triggered, active high,
2001 * external and enabled
2002 */
2003 value = apic_read(APIC_LVT0);
2004 value &= ~(APIC_MODE_MASK | APIC_SEND_PENDING |
2005 APIC_INPUT_POLARITY | APIC_LVT_REMOTE_IRR |
2006 APIC_LVT_LEVEL_TRIGGER | APIC_LVT_MASKED);
2007 value |= APIC_LVT_REMOTE_IRR | APIC_SEND_PENDING;
2008 value = SET_APIC_DELIVERY_MODE(value, APIC_MODE_EXTINT);
2009 apic_write(APIC_LVT0, value);
2010 } else {
2011 /* Disable LVT0 */
2012 apic_write(APIC_LVT0, APIC_LVT_MASKED);
2013 }
2014
2015 /*
2016 * For LVT1 make it edge triggered, active high,
2017 * nmi and enabled
2018 */
2019 value = apic_read(APIC_LVT1);
2020 value &= ~(APIC_MODE_MASK | APIC_SEND_PENDING |
2021 APIC_INPUT_POLARITY | APIC_LVT_REMOTE_IRR |
2022 APIC_LVT_LEVEL_TRIGGER | APIC_LVT_MASKED);
2023 value |= APIC_LVT_REMOTE_IRR | APIC_SEND_PENDING;
2024 value = SET_APIC_DELIVERY_MODE(value, APIC_MODE_NMI);
2025 apic_write(APIC_LVT1, value);
2026 }
2027
2028 /*
2029 * The number of allocated logical CPU IDs. Since logical CPU IDs are allocated
2030 * contiguously, it equals to current allocated max logical CPU ID plus 1.
2031 * All allocated CPU ID should be in [0, nr_logical_cpuidi), so the maximum of
2032 * nr_logical_cpuids is nr_cpu_ids.
2033 *
2034 * NOTE: Reserve 0 for BSP.
2035 */
2036 static int nr_logical_cpuids = 1;
2037
2038 /*
2039 * Used to store mapping between logical CPU IDs and APIC IDs.
2040 */
2041 static int cpuid_to_apicid[] = {
2042 [0 ... NR_CPUS - 1] = -1,
2043 };
2044
2045 /*
2046 * Should use this API to allocate logical CPU IDs to keep nr_logical_cpuids
2047 * and cpuid_to_apicid[] synchronized.
2048 */
2049 static int allocate_logical_cpuid(int apicid)
2050 {
2051 int i;
2052
2053 /*
2054 * cpuid <-> apicid mapping is persistent, so when a cpu is up,
2055 * check if the kernel has allocated a cpuid for it.
2056 */
2057 for (i = 0; i < nr_logical_cpuids; i++) {
2058 if (cpuid_to_apicid[i] == apicid)
2059 return i;
2060 }
2061
2062 /* Allocate a new cpuid. */
2063 if (nr_logical_cpuids >= nr_cpu_ids) {
2064 WARN_ONCE(1, "Only %d processors supported."
2065 "Processor %d/0x%x and the rest are ignored.\n",
2066 nr_cpu_ids - 1, nr_logical_cpuids, apicid);
2067 return -1;
2068 }
2069
2070 cpuid_to_apicid[nr_logical_cpuids] = apicid;
2071 return nr_logical_cpuids++;
2072 }
2073
2074 int __generic_processor_info(int apicid, int version, bool enabled)
2075 {
2076 int cpu, max = nr_cpu_ids;
2077 bool boot_cpu_detected = physid_isset(boot_cpu_physical_apicid,
2078 phys_cpu_present_map);
2079
2080 /*
2081 * boot_cpu_physical_apicid is designed to have the apicid
2082 * returned by read_apic_id(), i.e, the apicid of the
2083 * currently booting-up processor. However, on some platforms,
2084 * it is temporarily modified by the apicid reported as BSP
2085 * through MP table. Concretely:
2086 *
2087 * - arch/x86/kernel/mpparse.c: MP_processor_info()
2088 * - arch/x86/mm/amdtopology.c: amd_numa_init()
2089 *
2090 * This function is executed with the modified
2091 * boot_cpu_physical_apicid. So, disabled_cpu_apicid kernel
2092 * parameter doesn't work to disable APs on kdump 2nd kernel.
2093 *
2094 * Since fixing handling of boot_cpu_physical_apicid requires
2095 * another discussion and tests on each platform, we leave it
2096 * for now and here we use read_apic_id() directly in this
2097 * function, generic_processor_info().
2098 */
2099 if (disabled_cpu_apicid != BAD_APICID &&
2100 disabled_cpu_apicid != read_apic_id() &&
2101 disabled_cpu_apicid == apicid) {
2102 int thiscpu = num_processors + disabled_cpus;
2103
2104 pr_warning("APIC: Disabling requested cpu."
2105 " Processor %d/0x%x ignored.\n",
2106 thiscpu, apicid);
2107
2108 disabled_cpus++;
2109 return -ENODEV;
2110 }
2111
2112 /*
2113 * If boot cpu has not been detected yet, then only allow upto
2114 * nr_cpu_ids - 1 processors and keep one slot free for boot cpu
2115 */
2116 if (!boot_cpu_detected && num_processors >= nr_cpu_ids - 1 &&
2117 apicid != boot_cpu_physical_apicid) {
2118 int thiscpu = max + disabled_cpus - 1;
2119
2120 pr_warning(
2121 "APIC: NR_CPUS/possible_cpus limit of %i almost"
2122 " reached. Keeping one slot for boot cpu."
2123 " Processor %d/0x%x ignored.\n", max, thiscpu, apicid);
2124
2125 disabled_cpus++;
2126 return -ENODEV;
2127 }
2128
2129 if (num_processors >= nr_cpu_ids) {
2130 int thiscpu = max + disabled_cpus;
2131
2132 if (enabled) {
2133 pr_warning("APIC: NR_CPUS/possible_cpus limit of %i "
2134 "reached. Processor %d/0x%x ignored.\n",
2135 max, thiscpu, apicid);
2136 }
2137
2138 disabled_cpus++;
2139 return -EINVAL;
2140 }
2141
2142 if (apicid == boot_cpu_physical_apicid) {
2143 /*
2144 * x86_bios_cpu_apicid is required to have processors listed
2145 * in same order as logical cpu numbers. Hence the first
2146 * entry is BSP, and so on.
2147 * boot_cpu_init() already hold bit 0 in cpu_present_mask
2148 * for BSP.
2149 */
2150 cpu = 0;
2151
2152 /* Logical cpuid 0 is reserved for BSP. */
2153 cpuid_to_apicid[0] = apicid;
2154 } else {
2155 cpu = allocate_logical_cpuid(apicid);
2156 if (cpu < 0) {
2157 disabled_cpus++;
2158 return -EINVAL;
2159 }
2160 }
2161
2162 /*
2163 * Validate version
2164 */
2165 if (version == 0x0) {
2166 pr_warning("BIOS bug: APIC version is 0 for CPU %d/0x%x, fixing up to 0x10\n",
2167 cpu, apicid);
2168 version = 0x10;
2169 }
2170
2171 if (version != boot_cpu_apic_version) {
2172 pr_warning("BIOS bug: APIC version mismatch, boot CPU: %x, CPU %d: version %x\n",
2173 boot_cpu_apic_version, cpu, version);
2174 }
2175
2176 if (apicid > max_physical_apicid)
2177 max_physical_apicid = apicid;
2178
2179 #if defined(CONFIG_SMP) || defined(CONFIG_X86_64)
2180 early_per_cpu(x86_cpu_to_apicid, cpu) = apicid;
2181 early_per_cpu(x86_bios_cpu_apicid, cpu) = apicid;
2182 #endif
2183 #ifdef CONFIG_X86_32
2184 early_per_cpu(x86_cpu_to_logical_apicid, cpu) =
2185 apic->x86_32_early_logical_apicid(cpu);
2186 #endif
2187 set_cpu_possible(cpu, true);
2188
2189 if (enabled) {
2190 num_processors++;
2191 physid_set(apicid, phys_cpu_present_map);
2192 set_cpu_present(cpu, true);
2193 } else {
2194 disabled_cpus++;
2195 }
2196
2197 return cpu;
2198 }
2199
2200 int generic_processor_info(int apicid, int version)
2201 {
2202 return __generic_processor_info(apicid, version, true);
2203 }
2204
2205 int hard_smp_processor_id(void)
2206 {
2207 return read_apic_id();
2208 }
2209
2210 void default_init_apic_ldr(void)
2211 {
2212 unsigned long val;
2213
2214 apic_write(APIC_DFR, APIC_DFR_VALUE);
2215 val = apic_read(APIC_LDR) & ~APIC_LDR_MASK;
2216 val |= SET_APIC_LOGICAL_ID(1UL << smp_processor_id());
2217 apic_write(APIC_LDR, val);
2218 }
2219
2220 int default_cpu_mask_to_apicid_and(const struct cpumask *cpumask,
2221 const struct cpumask *andmask,
2222 unsigned int *apicid)
2223 {
2224 unsigned int cpu;
2225
2226 for_each_cpu_and(cpu, cpumask, andmask) {
2227 if (cpumask_test_cpu(cpu, cpu_online_mask))
2228 break;
2229 }
2230
2231 if (likely(cpu < nr_cpu_ids)) {
2232 *apicid = per_cpu(x86_cpu_to_apicid, cpu);
2233 return 0;
2234 }
2235
2236 return -EINVAL;
2237 }
2238
2239 /*
2240 * Override the generic EOI implementation with an optimized version.
2241 * Only called during early boot when only one CPU is active and with
2242 * interrupts disabled, so we know this does not race with actual APIC driver
2243 * use.
2244 */
2245 void __init apic_set_eoi_write(void (*eoi_write)(u32 reg, u32 v))
2246 {
2247 struct apic **drv;
2248
2249 for (drv = __apicdrivers; drv < __apicdrivers_end; drv++) {
2250 /* Should happen once for each apic */
2251 WARN_ON((*drv)->eoi_write == eoi_write);
2252 (*drv)->native_eoi_write = (*drv)->eoi_write;
2253 (*drv)->eoi_write = eoi_write;
2254 }
2255 }
2256
2257 static void __init apic_bsp_up_setup(void)
2258 {
2259 #ifdef CONFIG_X86_64
2260 apic_write(APIC_ID, SET_APIC_ID(boot_cpu_physical_apicid));
2261 #else
2262 /*
2263 * Hack: In case of kdump, after a crash, kernel might be booting
2264 * on a cpu with non-zero lapic id. But boot_cpu_physical_apicid
2265 * might be zero if read from MP tables. Get it from LAPIC.
2266 */
2267 # ifdef CONFIG_CRASH_DUMP
2268 boot_cpu_physical_apicid = read_apic_id();
2269 # endif
2270 #endif
2271 physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
2272 }
2273
2274 /**
2275 * apic_bsp_setup - Setup function for local apic and io-apic
2276 * @upmode: Force UP mode (for APIC_init_uniprocessor)
2277 *
2278 * Returns:
2279 * apic_id of BSP APIC
2280 */
2281 int __init apic_bsp_setup(bool upmode)
2282 {
2283 int id;
2284
2285 connect_bsp_APIC();
2286 if (upmode)
2287 apic_bsp_up_setup();
2288 setup_local_APIC();
2289
2290 if (x2apic_mode)
2291 id = apic_read(APIC_LDR);
2292 else
2293 id = GET_APIC_LOGICAL_ID(apic_read(APIC_LDR));
2294
2295 enable_IO_APIC();
2296 end_local_APIC_setup();
2297 irq_remap_enable_fault_handling();
2298 setup_IO_APIC();
2299 /* Setup local timer */
2300 x86_init.timers.setup_percpu_clockev();
2301 return id;
2302 }
2303
2304 /*
2305 * This initializes the IO-APIC and APIC hardware if this is
2306 * a UP kernel.
2307 */
2308 int __init APIC_init_uniprocessor(void)
2309 {
2310 if (disable_apic) {
2311 pr_info("Apic disabled\n");
2312 return -1;
2313 }
2314 #ifdef CONFIG_X86_64
2315 if (!boot_cpu_has(X86_FEATURE_APIC)) {
2316 disable_apic = 1;
2317 pr_info("Apic disabled by BIOS\n");
2318 return -1;
2319 }
2320 #else
2321 if (!smp_found_config && !boot_cpu_has(X86_FEATURE_APIC))
2322 return -1;
2323
2324 /*
2325 * Complain if the BIOS pretends there is one.
2326 */
2327 if (!boot_cpu_has(X86_FEATURE_APIC) &&
2328 APIC_INTEGRATED(boot_cpu_apic_version)) {
2329 pr_err("BIOS bug, local APIC 0x%x not detected!...\n",
2330 boot_cpu_physical_apicid);
2331 return -1;
2332 }
2333 #endif
2334
2335 if (!smp_found_config)
2336 disable_ioapic_support();
2337
2338 default_setup_apic_routing();
2339 apic_bsp_setup(true);
2340 return 0;
2341 }
2342
2343 #ifdef CONFIG_UP_LATE_INIT
2344 void __init up_late_init(void)
2345 {
2346 APIC_init_uniprocessor();
2347 }
2348 #endif
2349
2350 /*
2351 * Power management
2352 */
2353 #ifdef CONFIG_PM
2354
2355 static struct {
2356 /*
2357 * 'active' is true if the local APIC was enabled by us and
2358 * not the BIOS; this signifies that we are also responsible
2359 * for disabling it before entering apm/acpi suspend
2360 */
2361 int active;
2362 /* r/w apic fields */
2363 unsigned int apic_id;
2364 unsigned int apic_taskpri;
2365 unsigned int apic_ldr;
2366 unsigned int apic_dfr;
2367 unsigned int apic_spiv;
2368 unsigned int apic_lvtt;
2369 unsigned int apic_lvtpc;
2370 unsigned int apic_lvt0;
2371 unsigned int apic_lvt1;
2372 unsigned int apic_lvterr;
2373 unsigned int apic_tmict;
2374 unsigned int apic_tdcr;
2375 unsigned int apic_thmr;
2376 unsigned int apic_cmci;
2377 } apic_pm_state;
2378
2379 static int lapic_suspend(void)
2380 {
2381 unsigned long flags;
2382 int maxlvt;
2383
2384 if (!apic_pm_state.active)
2385 return 0;
2386
2387 maxlvt = lapic_get_maxlvt();
2388
2389 apic_pm_state.apic_id = apic_read(APIC_ID);
2390 apic_pm_state.apic_taskpri = apic_read(APIC_TASKPRI);
2391 apic_pm_state.apic_ldr = apic_read(APIC_LDR);
2392 apic_pm_state.apic_dfr = apic_read(APIC_DFR);
2393 apic_pm_state.apic_spiv = apic_read(APIC_SPIV);
2394 apic_pm_state.apic_lvtt = apic_read(APIC_LVTT);
2395 if (maxlvt >= 4)
2396 apic_pm_state.apic_lvtpc = apic_read(APIC_LVTPC);
2397 apic_pm_state.apic_lvt0 = apic_read(APIC_LVT0);
2398 apic_pm_state.apic_lvt1 = apic_read(APIC_LVT1);
2399 apic_pm_state.apic_lvterr = apic_read(APIC_LVTERR);
2400 apic_pm_state.apic_tmict = apic_read(APIC_TMICT);
2401 apic_pm_state.apic_tdcr = apic_read(APIC_TDCR);
2402 #ifdef CONFIG_X86_THERMAL_VECTOR
2403 if (maxlvt >= 5)
2404 apic_pm_state.apic_thmr = apic_read(APIC_LVTTHMR);
2405 #endif
2406 #ifdef CONFIG_X86_MCE_INTEL
2407 if (maxlvt >= 6)
2408 apic_pm_state.apic_cmci = apic_read(APIC_LVTCMCI);
2409 #endif
2410
2411 local_irq_save(flags);
2412 disable_local_APIC();
2413
2414 irq_remapping_disable();
2415
2416 local_irq_restore(flags);
2417 return 0;
2418 }
2419
2420 static void lapic_resume(void)
2421 {
2422 unsigned int l, h;
2423 unsigned long flags;
2424 int maxlvt;
2425
2426 if (!apic_pm_state.active)
2427 return;
2428
2429 local_irq_save(flags);
2430
2431 /*
2432 * IO-APIC and PIC have their own resume routines.
2433 * We just mask them here to make sure the interrupt
2434 * subsystem is completely quiet while we enable x2apic
2435 * and interrupt-remapping.
2436 */
2437 mask_ioapic_entries();
2438 legacy_pic->mask_all();
2439
2440 if (x2apic_mode) {
2441 __x2apic_enable();
2442 } else {
2443 /*
2444 * Make sure the APICBASE points to the right address
2445 *
2446 * FIXME! This will be wrong if we ever support suspend on
2447 * SMP! We'll need to do this as part of the CPU restore!
2448 */
2449 if (boot_cpu_data.x86 >= 6) {
2450 rdmsr(MSR_IA32_APICBASE, l, h);
2451 l &= ~MSR_IA32_APICBASE_BASE;
2452 l |= MSR_IA32_APICBASE_ENABLE | mp_lapic_addr;
2453 wrmsr(MSR_IA32_APICBASE, l, h);
2454 }
2455 }
2456
2457 maxlvt = lapic_get_maxlvt();
2458 apic_write(APIC_LVTERR, ERROR_APIC_VECTOR | APIC_LVT_MASKED);
2459 apic_write(APIC_ID, apic_pm_state.apic_id);
2460 apic_write(APIC_DFR, apic_pm_state.apic_dfr);
2461 apic_write(APIC_LDR, apic_pm_state.apic_ldr);
2462 apic_write(APIC_TASKPRI, apic_pm_state.apic_taskpri);
2463 apic_write(APIC_SPIV, apic_pm_state.apic_spiv);
2464 apic_write(APIC_LVT0, apic_pm_state.apic_lvt0);
2465 apic_write(APIC_LVT1, apic_pm_state.apic_lvt1);
2466 #ifdef CONFIG_X86_THERMAL_VECTOR
2467 if (maxlvt >= 5)
2468 apic_write(APIC_LVTTHMR, apic_pm_state.apic_thmr);
2469 #endif
2470 #ifdef CONFIG_X86_MCE_INTEL
2471 if (maxlvt >= 6)
2472 apic_write(APIC_LVTCMCI, apic_pm_state.apic_cmci);
2473 #endif
2474 if (maxlvt >= 4)
2475 apic_write(APIC_LVTPC, apic_pm_state.apic_lvtpc);
2476 apic_write(APIC_LVTT, apic_pm_state.apic_lvtt);
2477 apic_write(APIC_TDCR, apic_pm_state.apic_tdcr);
2478 apic_write(APIC_TMICT, apic_pm_state.apic_tmict);
2479 apic_write(APIC_ESR, 0);
2480 apic_read(APIC_ESR);
2481 apic_write(APIC_LVTERR, apic_pm_state.apic_lvterr);
2482 apic_write(APIC_ESR, 0);
2483 apic_read(APIC_ESR);
2484
2485 irq_remapping_reenable(x2apic_mode);
2486
2487 local_irq_restore(flags);
2488 }
2489
2490 /*
2491 * This device has no shutdown method - fully functioning local APICs
2492 * are needed on every CPU up until machine_halt/restart/poweroff.
2493 */
2494
2495 static struct syscore_ops lapic_syscore_ops = {
2496 .resume = lapic_resume,
2497 .suspend = lapic_suspend,
2498 };
2499
2500 static void apic_pm_activate(void)
2501 {
2502 apic_pm_state.active = 1;
2503 }
2504
2505 static int __init init_lapic_sysfs(void)
2506 {
2507 /* XXX: remove suspend/resume procs if !apic_pm_state.active? */
2508 if (boot_cpu_has(X86_FEATURE_APIC))
2509 register_syscore_ops(&lapic_syscore_ops);
2510
2511 return 0;
2512 }
2513
2514 /* local apic needs to resume before other devices access its registers. */
2515 core_initcall(init_lapic_sysfs);
2516
2517 #else /* CONFIG_PM */
2518
2519 static void apic_pm_activate(void) { }
2520
2521 #endif /* CONFIG_PM */
2522
2523 #ifdef CONFIG_X86_64
2524
2525 static int multi_checked;
2526 static int multi;
2527
2528 static int set_multi(const struct dmi_system_id *d)
2529 {
2530 if (multi)
2531 return 0;
2532 pr_info("APIC: %s detected, Multi Chassis\n", d->ident);
2533 multi = 1;
2534 return 0;
2535 }
2536
2537 static const struct dmi_system_id multi_dmi_table[] = {
2538 {
2539 .callback = set_multi,
2540 .ident = "IBM System Summit2",
2541 .matches = {
2542 DMI_MATCH(DMI_SYS_VENDOR, "IBM"),
2543 DMI_MATCH(DMI_PRODUCT_NAME, "Summit2"),
2544 },
2545 },
2546 {}
2547 };
2548
2549 static void dmi_check_multi(void)
2550 {
2551 if (multi_checked)
2552 return;
2553
2554 dmi_check_system(multi_dmi_table);
2555 multi_checked = 1;
2556 }
2557
2558 /*
2559 * apic_is_clustered_box() -- Check if we can expect good TSC
2560 *
2561 * Thus far, the major user of this is IBM's Summit2 series:
2562 * Clustered boxes may have unsynced TSC problems if they are
2563 * multi-chassis.
2564 * Use DMI to check them
2565 */
2566 int apic_is_clustered_box(void)
2567 {
2568 dmi_check_multi();
2569 return multi;
2570 }
2571 #endif
2572
2573 /*
2574 * APIC command line parameters
2575 */
2576 static int __init setup_disableapic(char *arg)
2577 {
2578 disable_apic = 1;
2579 setup_clear_cpu_cap(X86_FEATURE_APIC);
2580 return 0;
2581 }
2582 early_param("disableapic", setup_disableapic);
2583
2584 /* same as disableapic, for compatibility */
2585 static int __init setup_nolapic(char *arg)
2586 {
2587 return setup_disableapic(arg);
2588 }
2589 early_param("nolapic", setup_nolapic);
2590
2591 static int __init parse_lapic_timer_c2_ok(char *arg)
2592 {
2593 local_apic_timer_c2_ok = 1;
2594 return 0;
2595 }
2596 early_param("lapic_timer_c2_ok", parse_lapic_timer_c2_ok);
2597
2598 static int __init parse_disable_apic_timer(char *arg)
2599 {
2600 disable_apic_timer = 1;
2601 return 0;
2602 }
2603 early_param("noapictimer", parse_disable_apic_timer);
2604
2605 static int __init parse_nolapic_timer(char *arg)
2606 {
2607 disable_apic_timer = 1;
2608 return 0;
2609 }
2610 early_param("nolapic_timer", parse_nolapic_timer);
2611
2612 static int __init apic_set_verbosity(char *arg)
2613 {
2614 if (!arg) {
2615 #ifdef CONFIG_X86_64
2616 skip_ioapic_setup = 0;
2617 return 0;
2618 #endif
2619 return -EINVAL;
2620 }
2621
2622 if (strcmp("debug", arg) == 0)
2623 apic_verbosity = APIC_DEBUG;
2624 else if (strcmp("verbose", arg) == 0)
2625 apic_verbosity = APIC_VERBOSE;
2626 else {
2627 pr_warning("APIC Verbosity level %s not recognised"
2628 " use apic=verbose or apic=debug\n", arg);
2629 return -EINVAL;
2630 }
2631
2632 return 0;
2633 }
2634 early_param("apic", apic_set_verbosity);
2635
2636 static int __init lapic_insert_resource(void)
2637 {
2638 if (!apic_phys)
2639 return -1;
2640
2641 /* Put local APIC into the resource map. */
2642 lapic_resource.start = apic_phys;
2643 lapic_resource.end = lapic_resource.start + PAGE_SIZE - 1;
2644 insert_resource(&iomem_resource, &lapic_resource);
2645
2646 return 0;
2647 }
2648
2649 /*
2650 * need call insert after e820_reserve_resources()
2651 * that is using request_resource
2652 */
2653 late_initcall(lapic_insert_resource);
2654
2655 static int __init apic_set_disabled_cpu_apicid(char *arg)
2656 {
2657 if (!arg || !get_option(&arg, &disabled_cpu_apicid))
2658 return -EINVAL;
2659
2660 return 0;
2661 }
2662 early_param("disable_cpu_apicid", apic_set_disabled_cpu_apicid);
2663
2664 static int __init apic_set_extnmi(char *arg)
2665 {
2666 if (!arg)
2667 return -EINVAL;
2668
2669 if (!strncmp("all", arg, 3))
2670 apic_extnmi = APIC_EXTNMI_ALL;
2671 else if (!strncmp("none", arg, 4))
2672 apic_extnmi = APIC_EXTNMI_NONE;
2673 else if (!strncmp("bsp", arg, 3))
2674 apic_extnmi = APIC_EXTNMI_BSP;
2675 else {
2676 pr_warn("Unknown external NMI delivery mode `%s' ignored\n", arg);
2677 return -EINVAL;
2678 }
2679
2680 return 0;
2681 }
2682 early_param("apic_extnmi", apic_set_extnmi);