]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kernel/apic/apic.c
Merge remote-tracking branches 'asoc/topic/rockchip', 'asoc/topic/rt5514', 'asoc...
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kernel / apic / apic.c
1 /*
2 * Local APIC handling, local APIC timers
3 *
4 * (c) 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
5 *
6 * Fixes
7 * Maciej W. Rozycki : Bits for genuine 82489DX APICs;
8 * thanks to Eric Gilmore
9 * and Rolf G. Tews
10 * for testing these extensively.
11 * Maciej W. Rozycki : Various updates and fixes.
12 * Mikael Pettersson : Power Management for UP-APIC.
13 * Pavel Machek and
14 * Mikael Pettersson : PM converted to driver model.
15 */
16
17 #include <linux/perf_event.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/mc146818rtc.h>
20 #include <linux/acpi_pmtmr.h>
21 #include <linux/clockchips.h>
22 #include <linux/interrupt.h>
23 #include <linux/bootmem.h>
24 #include <linux/ftrace.h>
25 #include <linux/ioport.h>
26 #include <linux/export.h>
27 #include <linux/syscore_ops.h>
28 #include <linux/delay.h>
29 #include <linux/timex.h>
30 #include <linux/i8253.h>
31 #include <linux/dmar.h>
32 #include <linux/init.h>
33 #include <linux/cpu.h>
34 #include <linux/dmi.h>
35 #include <linux/smp.h>
36 #include <linux/mm.h>
37
38 #include <asm/trace/irq_vectors.h>
39 #include <asm/irq_remapping.h>
40 #include <asm/perf_event.h>
41 #include <asm/x86_init.h>
42 #include <asm/pgalloc.h>
43 #include <linux/atomic.h>
44 #include <asm/mpspec.h>
45 #include <asm/i8259.h>
46 #include <asm/proto.h>
47 #include <asm/apic.h>
48 #include <asm/io_apic.h>
49 #include <asm/desc.h>
50 #include <asm/hpet.h>
51 #include <asm/mtrr.h>
52 #include <asm/time.h>
53 #include <asm/smp.h>
54 #include <asm/mce.h>
55 #include <asm/tsc.h>
56 #include <asm/hypervisor.h>
57
58 unsigned int num_processors;
59
60 unsigned disabled_cpus;
61
62 /* Processor that is doing the boot up */
63 unsigned int boot_cpu_physical_apicid = -1U;
64 EXPORT_SYMBOL_GPL(boot_cpu_physical_apicid);
65
66 u8 boot_cpu_apic_version;
67
68 /*
69 * The highest APIC ID seen during enumeration.
70 */
71 static unsigned int max_physical_apicid;
72
73 /*
74 * Bitmask of physically existing CPUs:
75 */
76 physid_mask_t phys_cpu_present_map;
77
78 /*
79 * Processor to be disabled specified by kernel parameter
80 * disable_cpu_apicid=<int>, mostly used for the kdump 2nd kernel to
81 * avoid undefined behaviour caused by sending INIT from AP to BSP.
82 */
83 static unsigned int disabled_cpu_apicid __read_mostly = BAD_APICID;
84
85 /*
86 * This variable controls which CPUs receive external NMIs. By default,
87 * external NMIs are delivered only to the BSP.
88 */
89 static int apic_extnmi = APIC_EXTNMI_BSP;
90
91 /*
92 * Map cpu index to physical APIC ID
93 */
94 DEFINE_EARLY_PER_CPU_READ_MOSTLY(u16, x86_cpu_to_apicid, BAD_APICID);
95 DEFINE_EARLY_PER_CPU_READ_MOSTLY(u16, x86_bios_cpu_apicid, BAD_APICID);
96 DEFINE_EARLY_PER_CPU_READ_MOSTLY(u32, x86_cpu_to_acpiid, U32_MAX);
97 EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_apicid);
98 EXPORT_EARLY_PER_CPU_SYMBOL(x86_bios_cpu_apicid);
99 EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_acpiid);
100
101 #ifdef CONFIG_X86_32
102
103 /*
104 * On x86_32, the mapping between cpu and logical apicid may vary
105 * depending on apic in use. The following early percpu variable is
106 * used for the mapping. This is where the behaviors of x86_64 and 32
107 * actually diverge. Let's keep it ugly for now.
108 */
109 DEFINE_EARLY_PER_CPU_READ_MOSTLY(int, x86_cpu_to_logical_apicid, BAD_APICID);
110
111 /* Local APIC was disabled by the BIOS and enabled by the kernel */
112 static int enabled_via_apicbase;
113
114 /*
115 * Handle interrupt mode configuration register (IMCR).
116 * This register controls whether the interrupt signals
117 * that reach the BSP come from the master PIC or from the
118 * local APIC. Before entering Symmetric I/O Mode, either
119 * the BIOS or the operating system must switch out of
120 * PIC Mode by changing the IMCR.
121 */
122 static inline void imcr_pic_to_apic(void)
123 {
124 /* select IMCR register */
125 outb(0x70, 0x22);
126 /* NMI and 8259 INTR go through APIC */
127 outb(0x01, 0x23);
128 }
129
130 static inline void imcr_apic_to_pic(void)
131 {
132 /* select IMCR register */
133 outb(0x70, 0x22);
134 /* NMI and 8259 INTR go directly to BSP */
135 outb(0x00, 0x23);
136 }
137 #endif
138
139 /*
140 * Knob to control our willingness to enable the local APIC.
141 *
142 * +1=force-enable
143 */
144 static int force_enable_local_apic __initdata;
145
146 /*
147 * APIC command line parameters
148 */
149 static int __init parse_lapic(char *arg)
150 {
151 if (IS_ENABLED(CONFIG_X86_32) && !arg)
152 force_enable_local_apic = 1;
153 else if (arg && !strncmp(arg, "notscdeadline", 13))
154 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
155 return 0;
156 }
157 early_param("lapic", parse_lapic);
158
159 #ifdef CONFIG_X86_64
160 static int apic_calibrate_pmtmr __initdata;
161 static __init int setup_apicpmtimer(char *s)
162 {
163 apic_calibrate_pmtmr = 1;
164 notsc_setup(NULL);
165 return 0;
166 }
167 __setup("apicpmtimer", setup_apicpmtimer);
168 #endif
169
170 unsigned long mp_lapic_addr;
171 int disable_apic;
172 /* Disable local APIC timer from the kernel commandline or via dmi quirk */
173 static int disable_apic_timer __initdata;
174 /* Local APIC timer works in C2 */
175 int local_apic_timer_c2_ok;
176 EXPORT_SYMBOL_GPL(local_apic_timer_c2_ok);
177
178 int first_system_vector = FIRST_SYSTEM_VECTOR;
179
180 /*
181 * Debug level, exported for io_apic.c
182 */
183 unsigned int apic_verbosity;
184
185 int pic_mode;
186
187 /* Have we found an MP table */
188 int smp_found_config;
189
190 static struct resource lapic_resource = {
191 .name = "Local APIC",
192 .flags = IORESOURCE_MEM | IORESOURCE_BUSY,
193 };
194
195 unsigned int lapic_timer_frequency = 0;
196
197 static void apic_pm_activate(void);
198
199 static unsigned long apic_phys;
200
201 /*
202 * Get the LAPIC version
203 */
204 static inline int lapic_get_version(void)
205 {
206 return GET_APIC_VERSION(apic_read(APIC_LVR));
207 }
208
209 /*
210 * Check, if the APIC is integrated or a separate chip
211 */
212 static inline int lapic_is_integrated(void)
213 {
214 #ifdef CONFIG_X86_64
215 return 1;
216 #else
217 return APIC_INTEGRATED(lapic_get_version());
218 #endif
219 }
220
221 /*
222 * Check, whether this is a modern or a first generation APIC
223 */
224 static int modern_apic(void)
225 {
226 /* AMD systems use old APIC versions, so check the CPU */
227 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
228 boot_cpu_data.x86 >= 0xf)
229 return 1;
230 return lapic_get_version() >= 0x14;
231 }
232
233 /*
234 * right after this call apic become NOOP driven
235 * so apic->write/read doesn't do anything
236 */
237 static void __init apic_disable(void)
238 {
239 pr_info("APIC: switched to apic NOOP\n");
240 apic = &apic_noop;
241 }
242
243 void native_apic_wait_icr_idle(void)
244 {
245 while (apic_read(APIC_ICR) & APIC_ICR_BUSY)
246 cpu_relax();
247 }
248
249 u32 native_safe_apic_wait_icr_idle(void)
250 {
251 u32 send_status;
252 int timeout;
253
254 timeout = 0;
255 do {
256 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
257 if (!send_status)
258 break;
259 inc_irq_stat(icr_read_retry_count);
260 udelay(100);
261 } while (timeout++ < 1000);
262
263 return send_status;
264 }
265
266 void native_apic_icr_write(u32 low, u32 id)
267 {
268 unsigned long flags;
269
270 local_irq_save(flags);
271 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(id));
272 apic_write(APIC_ICR, low);
273 local_irq_restore(flags);
274 }
275
276 u64 native_apic_icr_read(void)
277 {
278 u32 icr1, icr2;
279
280 icr2 = apic_read(APIC_ICR2);
281 icr1 = apic_read(APIC_ICR);
282
283 return icr1 | ((u64)icr2 << 32);
284 }
285
286 #ifdef CONFIG_X86_32
287 /**
288 * get_physical_broadcast - Get number of physical broadcast IDs
289 */
290 int get_physical_broadcast(void)
291 {
292 return modern_apic() ? 0xff : 0xf;
293 }
294 #endif
295
296 /**
297 * lapic_get_maxlvt - get the maximum number of local vector table entries
298 */
299 int lapic_get_maxlvt(void)
300 {
301 unsigned int v;
302
303 v = apic_read(APIC_LVR);
304 /*
305 * - we always have APIC integrated on 64bit mode
306 * - 82489DXs do not report # of LVT entries
307 */
308 return APIC_INTEGRATED(GET_APIC_VERSION(v)) ? GET_APIC_MAXLVT(v) : 2;
309 }
310
311 /*
312 * Local APIC timer
313 */
314
315 /* Clock divisor */
316 #define APIC_DIVISOR 16
317 #define TSC_DIVISOR 8
318
319 /*
320 * This function sets up the local APIC timer, with a timeout of
321 * 'clocks' APIC bus clock. During calibration we actually call
322 * this function twice on the boot CPU, once with a bogus timeout
323 * value, second time for real. The other (noncalibrating) CPUs
324 * call this function only once, with the real, calibrated value.
325 *
326 * We do reads before writes even if unnecessary, to get around the
327 * P5 APIC double write bug.
328 */
329 static void __setup_APIC_LVTT(unsigned int clocks, int oneshot, int irqen)
330 {
331 unsigned int lvtt_value, tmp_value;
332
333 lvtt_value = LOCAL_TIMER_VECTOR;
334 if (!oneshot)
335 lvtt_value |= APIC_LVT_TIMER_PERIODIC;
336 else if (boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER))
337 lvtt_value |= APIC_LVT_TIMER_TSCDEADLINE;
338
339 if (!lapic_is_integrated())
340 lvtt_value |= SET_APIC_TIMER_BASE(APIC_TIMER_BASE_DIV);
341
342 if (!irqen)
343 lvtt_value |= APIC_LVT_MASKED;
344
345 apic_write(APIC_LVTT, lvtt_value);
346
347 if (lvtt_value & APIC_LVT_TIMER_TSCDEADLINE) {
348 /*
349 * See Intel SDM: TSC-Deadline Mode chapter. In xAPIC mode,
350 * writing to the APIC LVTT and TSC_DEADLINE MSR isn't serialized.
351 * According to Intel, MFENCE can do the serialization here.
352 */
353 asm volatile("mfence" : : : "memory");
354
355 printk_once(KERN_DEBUG "TSC deadline timer enabled\n");
356 return;
357 }
358
359 /*
360 * Divide PICLK by 16
361 */
362 tmp_value = apic_read(APIC_TDCR);
363 apic_write(APIC_TDCR,
364 (tmp_value & ~(APIC_TDR_DIV_1 | APIC_TDR_DIV_TMBASE)) |
365 APIC_TDR_DIV_16);
366
367 if (!oneshot)
368 apic_write(APIC_TMICT, clocks / APIC_DIVISOR);
369 }
370
371 /*
372 * Setup extended LVT, AMD specific
373 *
374 * Software should use the LVT offsets the BIOS provides. The offsets
375 * are determined by the subsystems using it like those for MCE
376 * threshold or IBS. On K8 only offset 0 (APIC500) and MCE interrupts
377 * are supported. Beginning with family 10h at least 4 offsets are
378 * available.
379 *
380 * Since the offsets must be consistent for all cores, we keep track
381 * of the LVT offsets in software and reserve the offset for the same
382 * vector also to be used on other cores. An offset is freed by
383 * setting the entry to APIC_EILVT_MASKED.
384 *
385 * If the BIOS is right, there should be no conflicts. Otherwise a
386 * "[Firmware Bug]: ..." error message is generated. However, if
387 * software does not properly determines the offsets, it is not
388 * necessarily a BIOS bug.
389 */
390
391 static atomic_t eilvt_offsets[APIC_EILVT_NR_MAX];
392
393 static inline int eilvt_entry_is_changeable(unsigned int old, unsigned int new)
394 {
395 return (old & APIC_EILVT_MASKED)
396 || (new == APIC_EILVT_MASKED)
397 || ((new & ~APIC_EILVT_MASKED) == old);
398 }
399
400 static unsigned int reserve_eilvt_offset(int offset, unsigned int new)
401 {
402 unsigned int rsvd, vector;
403
404 if (offset >= APIC_EILVT_NR_MAX)
405 return ~0;
406
407 rsvd = atomic_read(&eilvt_offsets[offset]);
408 do {
409 vector = rsvd & ~APIC_EILVT_MASKED; /* 0: unassigned */
410 if (vector && !eilvt_entry_is_changeable(vector, new))
411 /* may not change if vectors are different */
412 return rsvd;
413 rsvd = atomic_cmpxchg(&eilvt_offsets[offset], rsvd, new);
414 } while (rsvd != new);
415
416 rsvd &= ~APIC_EILVT_MASKED;
417 if (rsvd && rsvd != vector)
418 pr_info("LVT offset %d assigned for vector 0x%02x\n",
419 offset, rsvd);
420
421 return new;
422 }
423
424 /*
425 * If mask=1, the LVT entry does not generate interrupts while mask=0
426 * enables the vector. See also the BKDGs. Must be called with
427 * preemption disabled.
428 */
429
430 int setup_APIC_eilvt(u8 offset, u8 vector, u8 msg_type, u8 mask)
431 {
432 unsigned long reg = APIC_EILVTn(offset);
433 unsigned int new, old, reserved;
434
435 new = (mask << 16) | (msg_type << 8) | vector;
436 old = apic_read(reg);
437 reserved = reserve_eilvt_offset(offset, new);
438
439 if (reserved != new) {
440 pr_err(FW_BUG "cpu %d, try to use APIC%lX (LVT offset %d) for "
441 "vector 0x%x, but the register is already in use for "
442 "vector 0x%x on another cpu\n",
443 smp_processor_id(), reg, offset, new, reserved);
444 return -EINVAL;
445 }
446
447 if (!eilvt_entry_is_changeable(old, new)) {
448 pr_err(FW_BUG "cpu %d, try to use APIC%lX (LVT offset %d) for "
449 "vector 0x%x, but the register is already in use for "
450 "vector 0x%x on this cpu\n",
451 smp_processor_id(), reg, offset, new, old);
452 return -EBUSY;
453 }
454
455 apic_write(reg, new);
456
457 return 0;
458 }
459 EXPORT_SYMBOL_GPL(setup_APIC_eilvt);
460
461 /*
462 * Program the next event, relative to now
463 */
464 static int lapic_next_event(unsigned long delta,
465 struct clock_event_device *evt)
466 {
467 apic_write(APIC_TMICT, delta);
468 return 0;
469 }
470
471 static int lapic_next_deadline(unsigned long delta,
472 struct clock_event_device *evt)
473 {
474 u64 tsc;
475
476 tsc = rdtsc();
477 wrmsrl(MSR_IA32_TSC_DEADLINE, tsc + (((u64) delta) * TSC_DIVISOR));
478 return 0;
479 }
480
481 static int lapic_timer_shutdown(struct clock_event_device *evt)
482 {
483 unsigned int v;
484
485 /* Lapic used as dummy for broadcast ? */
486 if (evt->features & CLOCK_EVT_FEAT_DUMMY)
487 return 0;
488
489 v = apic_read(APIC_LVTT);
490 v |= (APIC_LVT_MASKED | LOCAL_TIMER_VECTOR);
491 apic_write(APIC_LVTT, v);
492 apic_write(APIC_TMICT, 0);
493 return 0;
494 }
495
496 static inline int
497 lapic_timer_set_periodic_oneshot(struct clock_event_device *evt, bool oneshot)
498 {
499 /* Lapic used as dummy for broadcast ? */
500 if (evt->features & CLOCK_EVT_FEAT_DUMMY)
501 return 0;
502
503 __setup_APIC_LVTT(lapic_timer_frequency, oneshot, 1);
504 return 0;
505 }
506
507 static int lapic_timer_set_periodic(struct clock_event_device *evt)
508 {
509 return lapic_timer_set_periodic_oneshot(evt, false);
510 }
511
512 static int lapic_timer_set_oneshot(struct clock_event_device *evt)
513 {
514 return lapic_timer_set_periodic_oneshot(evt, true);
515 }
516
517 /*
518 * Local APIC timer broadcast function
519 */
520 static void lapic_timer_broadcast(const struct cpumask *mask)
521 {
522 #ifdef CONFIG_SMP
523 apic->send_IPI_mask(mask, LOCAL_TIMER_VECTOR);
524 #endif
525 }
526
527
528 /*
529 * The local apic timer can be used for any function which is CPU local.
530 */
531 static struct clock_event_device lapic_clockevent = {
532 .name = "lapic",
533 .features = CLOCK_EVT_FEAT_PERIODIC |
534 CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_C3STOP
535 | CLOCK_EVT_FEAT_DUMMY,
536 .shift = 32,
537 .set_state_shutdown = lapic_timer_shutdown,
538 .set_state_periodic = lapic_timer_set_periodic,
539 .set_state_oneshot = lapic_timer_set_oneshot,
540 .set_state_oneshot_stopped = lapic_timer_shutdown,
541 .set_next_event = lapic_next_event,
542 .broadcast = lapic_timer_broadcast,
543 .rating = 100,
544 .irq = -1,
545 };
546 static DEFINE_PER_CPU(struct clock_event_device, lapic_events);
547
548 /*
549 * Setup the local APIC timer for this CPU. Copy the initialized values
550 * of the boot CPU and register the clock event in the framework.
551 */
552 static void setup_APIC_timer(void)
553 {
554 struct clock_event_device *levt = this_cpu_ptr(&lapic_events);
555
556 if (this_cpu_has(X86_FEATURE_ARAT)) {
557 lapic_clockevent.features &= ~CLOCK_EVT_FEAT_C3STOP;
558 /* Make LAPIC timer preferrable over percpu HPET */
559 lapic_clockevent.rating = 150;
560 }
561
562 memcpy(levt, &lapic_clockevent, sizeof(*levt));
563 levt->cpumask = cpumask_of(smp_processor_id());
564
565 if (this_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER)) {
566 levt->features &= ~(CLOCK_EVT_FEAT_PERIODIC |
567 CLOCK_EVT_FEAT_DUMMY);
568 levt->set_next_event = lapic_next_deadline;
569 clockevents_config_and_register(levt,
570 tsc_khz * (1000 / TSC_DIVISOR),
571 0xF, ~0UL);
572 } else
573 clockevents_register_device(levt);
574 }
575
576 /*
577 * Install the updated TSC frequency from recalibration at the TSC
578 * deadline clockevent devices.
579 */
580 static void __lapic_update_tsc_freq(void *info)
581 {
582 struct clock_event_device *levt = this_cpu_ptr(&lapic_events);
583
584 if (!this_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER))
585 return;
586
587 clockevents_update_freq(levt, tsc_khz * (1000 / TSC_DIVISOR));
588 }
589
590 void lapic_update_tsc_freq(void)
591 {
592 /*
593 * The clockevent device's ->mult and ->shift can both be
594 * changed. In order to avoid races, schedule the frequency
595 * update code on each CPU.
596 */
597 on_each_cpu(__lapic_update_tsc_freq, NULL, 0);
598 }
599
600 /*
601 * In this functions we calibrate APIC bus clocks to the external timer.
602 *
603 * We want to do the calibration only once since we want to have local timer
604 * irqs syncron. CPUs connected by the same APIC bus have the very same bus
605 * frequency.
606 *
607 * This was previously done by reading the PIT/HPET and waiting for a wrap
608 * around to find out, that a tick has elapsed. I have a box, where the PIT
609 * readout is broken, so it never gets out of the wait loop again. This was
610 * also reported by others.
611 *
612 * Monitoring the jiffies value is inaccurate and the clockevents
613 * infrastructure allows us to do a simple substitution of the interrupt
614 * handler.
615 *
616 * The calibration routine also uses the pm_timer when possible, as the PIT
617 * happens to run way too slow (factor 2.3 on my VAIO CoreDuo, which goes
618 * back to normal later in the boot process).
619 */
620
621 #define LAPIC_CAL_LOOPS (HZ/10)
622
623 static __initdata int lapic_cal_loops = -1;
624 static __initdata long lapic_cal_t1, lapic_cal_t2;
625 static __initdata unsigned long long lapic_cal_tsc1, lapic_cal_tsc2;
626 static __initdata unsigned long lapic_cal_pm1, lapic_cal_pm2;
627 static __initdata unsigned long lapic_cal_j1, lapic_cal_j2;
628
629 /*
630 * Temporary interrupt handler.
631 */
632 static void __init lapic_cal_handler(struct clock_event_device *dev)
633 {
634 unsigned long long tsc = 0;
635 long tapic = apic_read(APIC_TMCCT);
636 unsigned long pm = acpi_pm_read_early();
637
638 if (boot_cpu_has(X86_FEATURE_TSC))
639 tsc = rdtsc();
640
641 switch (lapic_cal_loops++) {
642 case 0:
643 lapic_cal_t1 = tapic;
644 lapic_cal_tsc1 = tsc;
645 lapic_cal_pm1 = pm;
646 lapic_cal_j1 = jiffies;
647 break;
648
649 case LAPIC_CAL_LOOPS:
650 lapic_cal_t2 = tapic;
651 lapic_cal_tsc2 = tsc;
652 if (pm < lapic_cal_pm1)
653 pm += ACPI_PM_OVRRUN;
654 lapic_cal_pm2 = pm;
655 lapic_cal_j2 = jiffies;
656 break;
657 }
658 }
659
660 static int __init
661 calibrate_by_pmtimer(long deltapm, long *delta, long *deltatsc)
662 {
663 const long pm_100ms = PMTMR_TICKS_PER_SEC / 10;
664 const long pm_thresh = pm_100ms / 100;
665 unsigned long mult;
666 u64 res;
667
668 #ifndef CONFIG_X86_PM_TIMER
669 return -1;
670 #endif
671
672 apic_printk(APIC_VERBOSE, "... PM-Timer delta = %ld\n", deltapm);
673
674 /* Check, if the PM timer is available */
675 if (!deltapm)
676 return -1;
677
678 mult = clocksource_hz2mult(PMTMR_TICKS_PER_SEC, 22);
679
680 if (deltapm > (pm_100ms - pm_thresh) &&
681 deltapm < (pm_100ms + pm_thresh)) {
682 apic_printk(APIC_VERBOSE, "... PM-Timer result ok\n");
683 return 0;
684 }
685
686 res = (((u64)deltapm) * mult) >> 22;
687 do_div(res, 1000000);
688 pr_warning("APIC calibration not consistent "
689 "with PM-Timer: %ldms instead of 100ms\n",(long)res);
690
691 /* Correct the lapic counter value */
692 res = (((u64)(*delta)) * pm_100ms);
693 do_div(res, deltapm);
694 pr_info("APIC delta adjusted to PM-Timer: "
695 "%lu (%ld)\n", (unsigned long)res, *delta);
696 *delta = (long)res;
697
698 /* Correct the tsc counter value */
699 if (boot_cpu_has(X86_FEATURE_TSC)) {
700 res = (((u64)(*deltatsc)) * pm_100ms);
701 do_div(res, deltapm);
702 apic_printk(APIC_VERBOSE, "TSC delta adjusted to "
703 "PM-Timer: %lu (%ld)\n",
704 (unsigned long)res, *deltatsc);
705 *deltatsc = (long)res;
706 }
707
708 return 0;
709 }
710
711 static int __init calibrate_APIC_clock(void)
712 {
713 struct clock_event_device *levt = this_cpu_ptr(&lapic_events);
714 void (*real_handler)(struct clock_event_device *dev);
715 unsigned long deltaj;
716 long delta, deltatsc;
717 int pm_referenced = 0;
718
719 /**
720 * check if lapic timer has already been calibrated by platform
721 * specific routine, such as tsc calibration code. if so, we just fill
722 * in the clockevent structure and return.
723 */
724
725 if (boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER)) {
726 return 0;
727 } else if (lapic_timer_frequency) {
728 apic_printk(APIC_VERBOSE, "lapic timer already calibrated %d\n",
729 lapic_timer_frequency);
730 lapic_clockevent.mult = div_sc(lapic_timer_frequency/APIC_DIVISOR,
731 TICK_NSEC, lapic_clockevent.shift);
732 lapic_clockevent.max_delta_ns =
733 clockevent_delta2ns(0x7FFFFF, &lapic_clockevent);
734 lapic_clockevent.min_delta_ns =
735 clockevent_delta2ns(0xF, &lapic_clockevent);
736 lapic_clockevent.features &= ~CLOCK_EVT_FEAT_DUMMY;
737 return 0;
738 }
739
740 apic_printk(APIC_VERBOSE, "Using local APIC timer interrupts.\n"
741 "calibrating APIC timer ...\n");
742
743 local_irq_disable();
744
745 /* Replace the global interrupt handler */
746 real_handler = global_clock_event->event_handler;
747 global_clock_event->event_handler = lapic_cal_handler;
748
749 /*
750 * Setup the APIC counter to maximum. There is no way the lapic
751 * can underflow in the 100ms detection time frame
752 */
753 __setup_APIC_LVTT(0xffffffff, 0, 0);
754
755 /* Let the interrupts run */
756 local_irq_enable();
757
758 while (lapic_cal_loops <= LAPIC_CAL_LOOPS)
759 cpu_relax();
760
761 local_irq_disable();
762
763 /* Restore the real event handler */
764 global_clock_event->event_handler = real_handler;
765
766 /* Build delta t1-t2 as apic timer counts down */
767 delta = lapic_cal_t1 - lapic_cal_t2;
768 apic_printk(APIC_VERBOSE, "... lapic delta = %ld\n", delta);
769
770 deltatsc = (long)(lapic_cal_tsc2 - lapic_cal_tsc1);
771
772 /* we trust the PM based calibration if possible */
773 pm_referenced = !calibrate_by_pmtimer(lapic_cal_pm2 - lapic_cal_pm1,
774 &delta, &deltatsc);
775
776 /* Calculate the scaled math multiplication factor */
777 lapic_clockevent.mult = div_sc(delta, TICK_NSEC * LAPIC_CAL_LOOPS,
778 lapic_clockevent.shift);
779 lapic_clockevent.max_delta_ns =
780 clockevent_delta2ns(0x7FFFFFFF, &lapic_clockevent);
781 lapic_clockevent.min_delta_ns =
782 clockevent_delta2ns(0xF, &lapic_clockevent);
783
784 lapic_timer_frequency = (delta * APIC_DIVISOR) / LAPIC_CAL_LOOPS;
785
786 apic_printk(APIC_VERBOSE, "..... delta %ld\n", delta);
787 apic_printk(APIC_VERBOSE, "..... mult: %u\n", lapic_clockevent.mult);
788 apic_printk(APIC_VERBOSE, "..... calibration result: %u\n",
789 lapic_timer_frequency);
790
791 if (boot_cpu_has(X86_FEATURE_TSC)) {
792 apic_printk(APIC_VERBOSE, "..... CPU clock speed is "
793 "%ld.%04ld MHz.\n",
794 (deltatsc / LAPIC_CAL_LOOPS) / (1000000 / HZ),
795 (deltatsc / LAPIC_CAL_LOOPS) % (1000000 / HZ));
796 }
797
798 apic_printk(APIC_VERBOSE, "..... host bus clock speed is "
799 "%u.%04u MHz.\n",
800 lapic_timer_frequency / (1000000 / HZ),
801 lapic_timer_frequency % (1000000 / HZ));
802
803 /*
804 * Do a sanity check on the APIC calibration result
805 */
806 if (lapic_timer_frequency < (1000000 / HZ)) {
807 local_irq_enable();
808 pr_warning("APIC frequency too slow, disabling apic timer\n");
809 return -1;
810 }
811
812 levt->features &= ~CLOCK_EVT_FEAT_DUMMY;
813
814 /*
815 * PM timer calibration failed or not turned on
816 * so lets try APIC timer based calibration
817 */
818 if (!pm_referenced) {
819 apic_printk(APIC_VERBOSE, "... verify APIC timer\n");
820
821 /*
822 * Setup the apic timer manually
823 */
824 levt->event_handler = lapic_cal_handler;
825 lapic_timer_set_periodic(levt);
826 lapic_cal_loops = -1;
827
828 /* Let the interrupts run */
829 local_irq_enable();
830
831 while (lapic_cal_loops <= LAPIC_CAL_LOOPS)
832 cpu_relax();
833
834 /* Stop the lapic timer */
835 local_irq_disable();
836 lapic_timer_shutdown(levt);
837
838 /* Jiffies delta */
839 deltaj = lapic_cal_j2 - lapic_cal_j1;
840 apic_printk(APIC_VERBOSE, "... jiffies delta = %lu\n", deltaj);
841
842 /* Check, if the jiffies result is consistent */
843 if (deltaj >= LAPIC_CAL_LOOPS-2 && deltaj <= LAPIC_CAL_LOOPS+2)
844 apic_printk(APIC_VERBOSE, "... jiffies result ok\n");
845 else
846 levt->features |= CLOCK_EVT_FEAT_DUMMY;
847 }
848 local_irq_enable();
849
850 if (levt->features & CLOCK_EVT_FEAT_DUMMY) {
851 pr_warning("APIC timer disabled due to verification failure\n");
852 return -1;
853 }
854
855 return 0;
856 }
857
858 /*
859 * Setup the boot APIC
860 *
861 * Calibrate and verify the result.
862 */
863 void __init setup_boot_APIC_clock(void)
864 {
865 /*
866 * The local apic timer can be disabled via the kernel
867 * commandline or from the CPU detection code. Register the lapic
868 * timer as a dummy clock event source on SMP systems, so the
869 * broadcast mechanism is used. On UP systems simply ignore it.
870 */
871 if (disable_apic_timer) {
872 pr_info("Disabling APIC timer\n");
873 /* No broadcast on UP ! */
874 if (num_possible_cpus() > 1) {
875 lapic_clockevent.mult = 1;
876 setup_APIC_timer();
877 }
878 return;
879 }
880
881 if (calibrate_APIC_clock()) {
882 /* No broadcast on UP ! */
883 if (num_possible_cpus() > 1)
884 setup_APIC_timer();
885 return;
886 }
887
888 /*
889 * If nmi_watchdog is set to IO_APIC, we need the
890 * PIT/HPET going. Otherwise register lapic as a dummy
891 * device.
892 */
893 lapic_clockevent.features &= ~CLOCK_EVT_FEAT_DUMMY;
894
895 /* Setup the lapic or request the broadcast */
896 setup_APIC_timer();
897 amd_e400_c1e_apic_setup();
898 }
899
900 void setup_secondary_APIC_clock(void)
901 {
902 setup_APIC_timer();
903 amd_e400_c1e_apic_setup();
904 }
905
906 /*
907 * The guts of the apic timer interrupt
908 */
909 static void local_apic_timer_interrupt(void)
910 {
911 int cpu = smp_processor_id();
912 struct clock_event_device *evt = &per_cpu(lapic_events, cpu);
913
914 /*
915 * Normally we should not be here till LAPIC has been initialized but
916 * in some cases like kdump, its possible that there is a pending LAPIC
917 * timer interrupt from previous kernel's context and is delivered in
918 * new kernel the moment interrupts are enabled.
919 *
920 * Interrupts are enabled early and LAPIC is setup much later, hence
921 * its possible that when we get here evt->event_handler is NULL.
922 * Check for event_handler being NULL and discard the interrupt as
923 * spurious.
924 */
925 if (!evt->event_handler) {
926 pr_warning("Spurious LAPIC timer interrupt on cpu %d\n", cpu);
927 /* Switch it off */
928 lapic_timer_shutdown(evt);
929 return;
930 }
931
932 /*
933 * the NMI deadlock-detector uses this.
934 */
935 inc_irq_stat(apic_timer_irqs);
936
937 evt->event_handler(evt);
938 }
939
940 /*
941 * Local APIC timer interrupt. This is the most natural way for doing
942 * local interrupts, but local timer interrupts can be emulated by
943 * broadcast interrupts too. [in case the hw doesn't support APIC timers]
944 *
945 * [ if a single-CPU system runs an SMP kernel then we call the local
946 * interrupt as well. Thus we cannot inline the local irq ... ]
947 */
948 __visible void __irq_entry smp_apic_timer_interrupt(struct pt_regs *regs)
949 {
950 struct pt_regs *old_regs = set_irq_regs(regs);
951
952 /*
953 * NOTE! We'd better ACK the irq immediately,
954 * because timer handling can be slow.
955 *
956 * update_process_times() expects us to have done irq_enter().
957 * Besides, if we don't timer interrupts ignore the global
958 * interrupt lock, which is the WrongThing (tm) to do.
959 */
960 entering_ack_irq();
961 local_apic_timer_interrupt();
962 exiting_irq();
963
964 set_irq_regs(old_regs);
965 }
966
967 __visible void __irq_entry smp_trace_apic_timer_interrupt(struct pt_regs *regs)
968 {
969 struct pt_regs *old_regs = set_irq_regs(regs);
970
971 /*
972 * NOTE! We'd better ACK the irq immediately,
973 * because timer handling can be slow.
974 *
975 * update_process_times() expects us to have done irq_enter().
976 * Besides, if we don't timer interrupts ignore the global
977 * interrupt lock, which is the WrongThing (tm) to do.
978 */
979 entering_ack_irq();
980 trace_local_timer_entry(LOCAL_TIMER_VECTOR);
981 local_apic_timer_interrupt();
982 trace_local_timer_exit(LOCAL_TIMER_VECTOR);
983 exiting_irq();
984
985 set_irq_regs(old_regs);
986 }
987
988 int setup_profiling_timer(unsigned int multiplier)
989 {
990 return -EINVAL;
991 }
992
993 /*
994 * Local APIC start and shutdown
995 */
996
997 /**
998 * clear_local_APIC - shutdown the local APIC
999 *
1000 * This is called, when a CPU is disabled and before rebooting, so the state of
1001 * the local APIC has no dangling leftovers. Also used to cleanout any BIOS
1002 * leftovers during boot.
1003 */
1004 void clear_local_APIC(void)
1005 {
1006 int maxlvt;
1007 u32 v;
1008
1009 /* APIC hasn't been mapped yet */
1010 if (!x2apic_mode && !apic_phys)
1011 return;
1012
1013 maxlvt = lapic_get_maxlvt();
1014 /*
1015 * Masking an LVT entry can trigger a local APIC error
1016 * if the vector is zero. Mask LVTERR first to prevent this.
1017 */
1018 if (maxlvt >= 3) {
1019 v = ERROR_APIC_VECTOR; /* any non-zero vector will do */
1020 apic_write(APIC_LVTERR, v | APIC_LVT_MASKED);
1021 }
1022 /*
1023 * Careful: we have to set masks only first to deassert
1024 * any level-triggered sources.
1025 */
1026 v = apic_read(APIC_LVTT);
1027 apic_write(APIC_LVTT, v | APIC_LVT_MASKED);
1028 v = apic_read(APIC_LVT0);
1029 apic_write(APIC_LVT0, v | APIC_LVT_MASKED);
1030 v = apic_read(APIC_LVT1);
1031 apic_write(APIC_LVT1, v | APIC_LVT_MASKED);
1032 if (maxlvt >= 4) {
1033 v = apic_read(APIC_LVTPC);
1034 apic_write(APIC_LVTPC, v | APIC_LVT_MASKED);
1035 }
1036
1037 /* lets not touch this if we didn't frob it */
1038 #ifdef CONFIG_X86_THERMAL_VECTOR
1039 if (maxlvt >= 5) {
1040 v = apic_read(APIC_LVTTHMR);
1041 apic_write(APIC_LVTTHMR, v | APIC_LVT_MASKED);
1042 }
1043 #endif
1044 #ifdef CONFIG_X86_MCE_INTEL
1045 if (maxlvt >= 6) {
1046 v = apic_read(APIC_LVTCMCI);
1047 if (!(v & APIC_LVT_MASKED))
1048 apic_write(APIC_LVTCMCI, v | APIC_LVT_MASKED);
1049 }
1050 #endif
1051
1052 /*
1053 * Clean APIC state for other OSs:
1054 */
1055 apic_write(APIC_LVTT, APIC_LVT_MASKED);
1056 apic_write(APIC_LVT0, APIC_LVT_MASKED);
1057 apic_write(APIC_LVT1, APIC_LVT_MASKED);
1058 if (maxlvt >= 3)
1059 apic_write(APIC_LVTERR, APIC_LVT_MASKED);
1060 if (maxlvt >= 4)
1061 apic_write(APIC_LVTPC, APIC_LVT_MASKED);
1062
1063 /* Integrated APIC (!82489DX) ? */
1064 if (lapic_is_integrated()) {
1065 if (maxlvt > 3)
1066 /* Clear ESR due to Pentium errata 3AP and 11AP */
1067 apic_write(APIC_ESR, 0);
1068 apic_read(APIC_ESR);
1069 }
1070 }
1071
1072 /**
1073 * disable_local_APIC - clear and disable the local APIC
1074 */
1075 void disable_local_APIC(void)
1076 {
1077 unsigned int value;
1078
1079 /* APIC hasn't been mapped yet */
1080 if (!x2apic_mode && !apic_phys)
1081 return;
1082
1083 clear_local_APIC();
1084
1085 /*
1086 * Disable APIC (implies clearing of registers
1087 * for 82489DX!).
1088 */
1089 value = apic_read(APIC_SPIV);
1090 value &= ~APIC_SPIV_APIC_ENABLED;
1091 apic_write(APIC_SPIV, value);
1092
1093 #ifdef CONFIG_X86_32
1094 /*
1095 * When LAPIC was disabled by the BIOS and enabled by the kernel,
1096 * restore the disabled state.
1097 */
1098 if (enabled_via_apicbase) {
1099 unsigned int l, h;
1100
1101 rdmsr(MSR_IA32_APICBASE, l, h);
1102 l &= ~MSR_IA32_APICBASE_ENABLE;
1103 wrmsr(MSR_IA32_APICBASE, l, h);
1104 }
1105 #endif
1106 }
1107
1108 /*
1109 * If Linux enabled the LAPIC against the BIOS default disable it down before
1110 * re-entering the BIOS on shutdown. Otherwise the BIOS may get confused and
1111 * not power-off. Additionally clear all LVT entries before disable_local_APIC
1112 * for the case where Linux didn't enable the LAPIC.
1113 */
1114 void lapic_shutdown(void)
1115 {
1116 unsigned long flags;
1117
1118 if (!boot_cpu_has(X86_FEATURE_APIC) && !apic_from_smp_config())
1119 return;
1120
1121 local_irq_save(flags);
1122
1123 #ifdef CONFIG_X86_32
1124 if (!enabled_via_apicbase)
1125 clear_local_APIC();
1126 else
1127 #endif
1128 disable_local_APIC();
1129
1130
1131 local_irq_restore(flags);
1132 }
1133
1134 /**
1135 * sync_Arb_IDs - synchronize APIC bus arbitration IDs
1136 */
1137 void __init sync_Arb_IDs(void)
1138 {
1139 /*
1140 * Unsupported on P4 - see Intel Dev. Manual Vol. 3, Ch. 8.6.1 And not
1141 * needed on AMD.
1142 */
1143 if (modern_apic() || boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
1144 return;
1145
1146 /*
1147 * Wait for idle.
1148 */
1149 apic_wait_icr_idle();
1150
1151 apic_printk(APIC_DEBUG, "Synchronizing Arb IDs.\n");
1152 apic_write(APIC_ICR, APIC_DEST_ALLINC |
1153 APIC_INT_LEVELTRIG | APIC_DM_INIT);
1154 }
1155
1156 /*
1157 * An initial setup of the virtual wire mode.
1158 */
1159 void __init init_bsp_APIC(void)
1160 {
1161 unsigned int value;
1162
1163 /*
1164 * Don't do the setup now if we have a SMP BIOS as the
1165 * through-I/O-APIC virtual wire mode might be active.
1166 */
1167 if (smp_found_config || !boot_cpu_has(X86_FEATURE_APIC))
1168 return;
1169
1170 /*
1171 * Do not trust the local APIC being empty at bootup.
1172 */
1173 clear_local_APIC();
1174
1175 /*
1176 * Enable APIC.
1177 */
1178 value = apic_read(APIC_SPIV);
1179 value &= ~APIC_VECTOR_MASK;
1180 value |= APIC_SPIV_APIC_ENABLED;
1181
1182 #ifdef CONFIG_X86_32
1183 /* This bit is reserved on P4/Xeon and should be cleared */
1184 if ((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) &&
1185 (boot_cpu_data.x86 == 15))
1186 value &= ~APIC_SPIV_FOCUS_DISABLED;
1187 else
1188 #endif
1189 value |= APIC_SPIV_FOCUS_DISABLED;
1190 value |= SPURIOUS_APIC_VECTOR;
1191 apic_write(APIC_SPIV, value);
1192
1193 /*
1194 * Set up the virtual wire mode.
1195 */
1196 apic_write(APIC_LVT0, APIC_DM_EXTINT);
1197 value = APIC_DM_NMI;
1198 if (!lapic_is_integrated()) /* 82489DX */
1199 value |= APIC_LVT_LEVEL_TRIGGER;
1200 if (apic_extnmi == APIC_EXTNMI_NONE)
1201 value |= APIC_LVT_MASKED;
1202 apic_write(APIC_LVT1, value);
1203 }
1204
1205 static void lapic_setup_esr(void)
1206 {
1207 unsigned int oldvalue, value, maxlvt;
1208
1209 if (!lapic_is_integrated()) {
1210 pr_info("No ESR for 82489DX.\n");
1211 return;
1212 }
1213
1214 if (apic->disable_esr) {
1215 /*
1216 * Something untraceable is creating bad interrupts on
1217 * secondary quads ... for the moment, just leave the
1218 * ESR disabled - we can't do anything useful with the
1219 * errors anyway - mbligh
1220 */
1221 pr_info("Leaving ESR disabled.\n");
1222 return;
1223 }
1224
1225 maxlvt = lapic_get_maxlvt();
1226 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
1227 apic_write(APIC_ESR, 0);
1228 oldvalue = apic_read(APIC_ESR);
1229
1230 /* enables sending errors */
1231 value = ERROR_APIC_VECTOR;
1232 apic_write(APIC_LVTERR, value);
1233
1234 /*
1235 * spec says clear errors after enabling vector.
1236 */
1237 if (maxlvt > 3)
1238 apic_write(APIC_ESR, 0);
1239 value = apic_read(APIC_ESR);
1240 if (value != oldvalue)
1241 apic_printk(APIC_VERBOSE, "ESR value before enabling "
1242 "vector: 0x%08x after: 0x%08x\n",
1243 oldvalue, value);
1244 }
1245
1246 /**
1247 * setup_local_APIC - setup the local APIC
1248 *
1249 * Used to setup local APIC while initializing BSP or bringing up APs.
1250 * Always called with preemption disabled.
1251 */
1252 void setup_local_APIC(void)
1253 {
1254 int cpu = smp_processor_id();
1255 unsigned int value, queued;
1256 int i, j, acked = 0;
1257 unsigned long long tsc = 0, ntsc;
1258 long long max_loops = cpu_khz ? cpu_khz : 1000000;
1259
1260 if (boot_cpu_has(X86_FEATURE_TSC))
1261 tsc = rdtsc();
1262
1263 if (disable_apic) {
1264 disable_ioapic_support();
1265 return;
1266 }
1267
1268 #ifdef CONFIG_X86_32
1269 /* Pound the ESR really hard over the head with a big hammer - mbligh */
1270 if (lapic_is_integrated() && apic->disable_esr) {
1271 apic_write(APIC_ESR, 0);
1272 apic_write(APIC_ESR, 0);
1273 apic_write(APIC_ESR, 0);
1274 apic_write(APIC_ESR, 0);
1275 }
1276 #endif
1277 perf_events_lapic_init();
1278
1279 /*
1280 * Double-check whether this APIC is really registered.
1281 * This is meaningless in clustered apic mode, so we skip it.
1282 */
1283 BUG_ON(!apic->apic_id_registered());
1284
1285 /*
1286 * Intel recommends to set DFR, LDR and TPR before enabling
1287 * an APIC. See e.g. "AP-388 82489DX User's Manual" (Intel
1288 * document number 292116). So here it goes...
1289 */
1290 apic->init_apic_ldr();
1291
1292 #ifdef CONFIG_X86_32
1293 /*
1294 * APIC LDR is initialized. If logical_apicid mapping was
1295 * initialized during get_smp_config(), make sure it matches the
1296 * actual value.
1297 */
1298 i = early_per_cpu(x86_cpu_to_logical_apicid, cpu);
1299 WARN_ON(i != BAD_APICID && i != logical_smp_processor_id());
1300 /* always use the value from LDR */
1301 early_per_cpu(x86_cpu_to_logical_apicid, cpu) =
1302 logical_smp_processor_id();
1303 #endif
1304
1305 /*
1306 * Set Task Priority to 'accept all'. We never change this
1307 * later on.
1308 */
1309 value = apic_read(APIC_TASKPRI);
1310 value &= ~APIC_TPRI_MASK;
1311 apic_write(APIC_TASKPRI, value);
1312
1313 /*
1314 * After a crash, we no longer service the interrupts and a pending
1315 * interrupt from previous kernel might still have ISR bit set.
1316 *
1317 * Most probably by now CPU has serviced that pending interrupt and
1318 * it might not have done the ack_APIC_irq() because it thought,
1319 * interrupt came from i8259 as ExtInt. LAPIC did not get EOI so it
1320 * does not clear the ISR bit and cpu thinks it has already serivced
1321 * the interrupt. Hence a vector might get locked. It was noticed
1322 * for timer irq (vector 0x31). Issue an extra EOI to clear ISR.
1323 */
1324 do {
1325 queued = 0;
1326 for (i = APIC_ISR_NR - 1; i >= 0; i--)
1327 queued |= apic_read(APIC_IRR + i*0x10);
1328
1329 for (i = APIC_ISR_NR - 1; i >= 0; i--) {
1330 value = apic_read(APIC_ISR + i*0x10);
1331 for (j = 31; j >= 0; j--) {
1332 if (value & (1<<j)) {
1333 ack_APIC_irq();
1334 acked++;
1335 }
1336 }
1337 }
1338 if (acked > 256) {
1339 printk(KERN_ERR "LAPIC pending interrupts after %d EOI\n",
1340 acked);
1341 break;
1342 }
1343 if (queued) {
1344 if (boot_cpu_has(X86_FEATURE_TSC) && cpu_khz) {
1345 ntsc = rdtsc();
1346 max_loops = (cpu_khz << 10) - (ntsc - tsc);
1347 } else
1348 max_loops--;
1349 }
1350 } while (queued && max_loops > 0);
1351 WARN_ON(max_loops <= 0);
1352
1353 /*
1354 * Now that we are all set up, enable the APIC
1355 */
1356 value = apic_read(APIC_SPIV);
1357 value &= ~APIC_VECTOR_MASK;
1358 /*
1359 * Enable APIC
1360 */
1361 value |= APIC_SPIV_APIC_ENABLED;
1362
1363 #ifdef CONFIG_X86_32
1364 /*
1365 * Some unknown Intel IO/APIC (or APIC) errata is biting us with
1366 * certain networking cards. If high frequency interrupts are
1367 * happening on a particular IOAPIC pin, plus the IOAPIC routing
1368 * entry is masked/unmasked at a high rate as well then sooner or
1369 * later IOAPIC line gets 'stuck', no more interrupts are received
1370 * from the device. If focus CPU is disabled then the hang goes
1371 * away, oh well :-(
1372 *
1373 * [ This bug can be reproduced easily with a level-triggered
1374 * PCI Ne2000 networking cards and PII/PIII processors, dual
1375 * BX chipset. ]
1376 */
1377 /*
1378 * Actually disabling the focus CPU check just makes the hang less
1379 * frequent as it makes the interrupt distributon model be more
1380 * like LRU than MRU (the short-term load is more even across CPUs).
1381 */
1382
1383 /*
1384 * - enable focus processor (bit==0)
1385 * - 64bit mode always use processor focus
1386 * so no need to set it
1387 */
1388 value &= ~APIC_SPIV_FOCUS_DISABLED;
1389 #endif
1390
1391 /*
1392 * Set spurious IRQ vector
1393 */
1394 value |= SPURIOUS_APIC_VECTOR;
1395 apic_write(APIC_SPIV, value);
1396
1397 /*
1398 * Set up LVT0, LVT1:
1399 *
1400 * set up through-local-APIC on the BP's LINT0. This is not
1401 * strictly necessary in pure symmetric-IO mode, but sometimes
1402 * we delegate interrupts to the 8259A.
1403 */
1404 /*
1405 * TODO: set up through-local-APIC from through-I/O-APIC? --macro
1406 */
1407 value = apic_read(APIC_LVT0) & APIC_LVT_MASKED;
1408 if (!cpu && (pic_mode || !value)) {
1409 value = APIC_DM_EXTINT;
1410 apic_printk(APIC_VERBOSE, "enabled ExtINT on CPU#%d\n", cpu);
1411 } else {
1412 value = APIC_DM_EXTINT | APIC_LVT_MASKED;
1413 apic_printk(APIC_VERBOSE, "masked ExtINT on CPU#%d\n", cpu);
1414 }
1415 apic_write(APIC_LVT0, value);
1416
1417 /*
1418 * Only the BSP sees the LINT1 NMI signal by default. This can be
1419 * modified by apic_extnmi= boot option.
1420 */
1421 if ((!cpu && apic_extnmi != APIC_EXTNMI_NONE) ||
1422 apic_extnmi == APIC_EXTNMI_ALL)
1423 value = APIC_DM_NMI;
1424 else
1425 value = APIC_DM_NMI | APIC_LVT_MASKED;
1426 if (!lapic_is_integrated()) /* 82489DX */
1427 value |= APIC_LVT_LEVEL_TRIGGER;
1428 apic_write(APIC_LVT1, value);
1429
1430 #ifdef CONFIG_X86_MCE_INTEL
1431 /* Recheck CMCI information after local APIC is up on CPU #0 */
1432 if (!cpu)
1433 cmci_recheck();
1434 #endif
1435 }
1436
1437 static void end_local_APIC_setup(void)
1438 {
1439 lapic_setup_esr();
1440
1441 #ifdef CONFIG_X86_32
1442 {
1443 unsigned int value;
1444 /* Disable the local apic timer */
1445 value = apic_read(APIC_LVTT);
1446 value |= (APIC_LVT_MASKED | LOCAL_TIMER_VECTOR);
1447 apic_write(APIC_LVTT, value);
1448 }
1449 #endif
1450
1451 apic_pm_activate();
1452 }
1453
1454 /*
1455 * APIC setup function for application processors. Called from smpboot.c
1456 */
1457 void apic_ap_setup(void)
1458 {
1459 setup_local_APIC();
1460 end_local_APIC_setup();
1461 }
1462
1463 #ifdef CONFIG_X86_X2APIC
1464 int x2apic_mode;
1465
1466 enum {
1467 X2APIC_OFF,
1468 X2APIC_ON,
1469 X2APIC_DISABLED,
1470 };
1471 static int x2apic_state;
1472
1473 static void __x2apic_disable(void)
1474 {
1475 u64 msr;
1476
1477 if (!boot_cpu_has(X86_FEATURE_APIC))
1478 return;
1479
1480 rdmsrl(MSR_IA32_APICBASE, msr);
1481 if (!(msr & X2APIC_ENABLE))
1482 return;
1483 /* Disable xapic and x2apic first and then reenable xapic mode */
1484 wrmsrl(MSR_IA32_APICBASE, msr & ~(X2APIC_ENABLE | XAPIC_ENABLE));
1485 wrmsrl(MSR_IA32_APICBASE, msr & ~X2APIC_ENABLE);
1486 printk_once(KERN_INFO "x2apic disabled\n");
1487 }
1488
1489 static void __x2apic_enable(void)
1490 {
1491 u64 msr;
1492
1493 rdmsrl(MSR_IA32_APICBASE, msr);
1494 if (msr & X2APIC_ENABLE)
1495 return;
1496 wrmsrl(MSR_IA32_APICBASE, msr | X2APIC_ENABLE);
1497 printk_once(KERN_INFO "x2apic enabled\n");
1498 }
1499
1500 static int __init setup_nox2apic(char *str)
1501 {
1502 if (x2apic_enabled()) {
1503 int apicid = native_apic_msr_read(APIC_ID);
1504
1505 if (apicid >= 255) {
1506 pr_warning("Apicid: %08x, cannot enforce nox2apic\n",
1507 apicid);
1508 return 0;
1509 }
1510 pr_warning("x2apic already enabled.\n");
1511 __x2apic_disable();
1512 }
1513 setup_clear_cpu_cap(X86_FEATURE_X2APIC);
1514 x2apic_state = X2APIC_DISABLED;
1515 x2apic_mode = 0;
1516 return 0;
1517 }
1518 early_param("nox2apic", setup_nox2apic);
1519
1520 /* Called from cpu_init() to enable x2apic on (secondary) cpus */
1521 void x2apic_setup(void)
1522 {
1523 /*
1524 * If x2apic is not in ON state, disable it if already enabled
1525 * from BIOS.
1526 */
1527 if (x2apic_state != X2APIC_ON) {
1528 __x2apic_disable();
1529 return;
1530 }
1531 __x2apic_enable();
1532 }
1533
1534 static __init void x2apic_disable(void)
1535 {
1536 u32 x2apic_id, state = x2apic_state;
1537
1538 x2apic_mode = 0;
1539 x2apic_state = X2APIC_DISABLED;
1540
1541 if (state != X2APIC_ON)
1542 return;
1543
1544 x2apic_id = read_apic_id();
1545 if (x2apic_id >= 255)
1546 panic("Cannot disable x2apic, id: %08x\n", x2apic_id);
1547
1548 __x2apic_disable();
1549 register_lapic_address(mp_lapic_addr);
1550 }
1551
1552 static __init void x2apic_enable(void)
1553 {
1554 if (x2apic_state != X2APIC_OFF)
1555 return;
1556
1557 x2apic_mode = 1;
1558 x2apic_state = X2APIC_ON;
1559 __x2apic_enable();
1560 }
1561
1562 static __init void try_to_enable_x2apic(int remap_mode)
1563 {
1564 if (x2apic_state == X2APIC_DISABLED)
1565 return;
1566
1567 if (remap_mode != IRQ_REMAP_X2APIC_MODE) {
1568 /* IR is required if there is APIC ID > 255 even when running
1569 * under KVM
1570 */
1571 if (max_physical_apicid > 255 ||
1572 !hypervisor_x2apic_available()) {
1573 pr_info("x2apic: IRQ remapping doesn't support X2APIC mode\n");
1574 x2apic_disable();
1575 return;
1576 }
1577
1578 /*
1579 * without IR all CPUs can be addressed by IOAPIC/MSI
1580 * only in physical mode
1581 */
1582 x2apic_phys = 1;
1583 }
1584 x2apic_enable();
1585 }
1586
1587 void __init check_x2apic(void)
1588 {
1589 if (x2apic_enabled()) {
1590 pr_info("x2apic: enabled by BIOS, switching to x2apic ops\n");
1591 x2apic_mode = 1;
1592 x2apic_state = X2APIC_ON;
1593 } else if (!boot_cpu_has(X86_FEATURE_X2APIC)) {
1594 x2apic_state = X2APIC_DISABLED;
1595 }
1596 }
1597 #else /* CONFIG_X86_X2APIC */
1598 static int __init validate_x2apic(void)
1599 {
1600 if (!apic_is_x2apic_enabled())
1601 return 0;
1602 /*
1603 * Checkme: Can we simply turn off x2apic here instead of panic?
1604 */
1605 panic("BIOS has enabled x2apic but kernel doesn't support x2apic, please disable x2apic in BIOS.\n");
1606 }
1607 early_initcall(validate_x2apic);
1608
1609 static inline void try_to_enable_x2apic(int remap_mode) { }
1610 static inline void __x2apic_enable(void) { }
1611 #endif /* !CONFIG_X86_X2APIC */
1612
1613 void __init enable_IR_x2apic(void)
1614 {
1615 unsigned long flags;
1616 int ret, ir_stat;
1617
1618 if (skip_ioapic_setup) {
1619 pr_info("Not enabling interrupt remapping due to skipped IO-APIC setup\n");
1620 return;
1621 }
1622
1623 ir_stat = irq_remapping_prepare();
1624 if (ir_stat < 0 && !x2apic_supported())
1625 return;
1626
1627 ret = save_ioapic_entries();
1628 if (ret) {
1629 pr_info("Saving IO-APIC state failed: %d\n", ret);
1630 return;
1631 }
1632
1633 local_irq_save(flags);
1634 legacy_pic->mask_all();
1635 mask_ioapic_entries();
1636
1637 /* If irq_remapping_prepare() succeeded, try to enable it */
1638 if (ir_stat >= 0)
1639 ir_stat = irq_remapping_enable();
1640 /* ir_stat contains the remap mode or an error code */
1641 try_to_enable_x2apic(ir_stat);
1642
1643 if (ir_stat < 0)
1644 restore_ioapic_entries();
1645 legacy_pic->restore_mask();
1646 local_irq_restore(flags);
1647 }
1648
1649 #ifdef CONFIG_X86_64
1650 /*
1651 * Detect and enable local APICs on non-SMP boards.
1652 * Original code written by Keir Fraser.
1653 * On AMD64 we trust the BIOS - if it says no APIC it is likely
1654 * not correctly set up (usually the APIC timer won't work etc.)
1655 */
1656 static int __init detect_init_APIC(void)
1657 {
1658 if (!boot_cpu_has(X86_FEATURE_APIC)) {
1659 pr_info("No local APIC present\n");
1660 return -1;
1661 }
1662
1663 mp_lapic_addr = APIC_DEFAULT_PHYS_BASE;
1664 return 0;
1665 }
1666 #else
1667
1668 static int __init apic_verify(void)
1669 {
1670 u32 features, h, l;
1671
1672 /*
1673 * The APIC feature bit should now be enabled
1674 * in `cpuid'
1675 */
1676 features = cpuid_edx(1);
1677 if (!(features & (1 << X86_FEATURE_APIC))) {
1678 pr_warning("Could not enable APIC!\n");
1679 return -1;
1680 }
1681 set_cpu_cap(&boot_cpu_data, X86_FEATURE_APIC);
1682 mp_lapic_addr = APIC_DEFAULT_PHYS_BASE;
1683
1684 /* The BIOS may have set up the APIC at some other address */
1685 if (boot_cpu_data.x86 >= 6) {
1686 rdmsr(MSR_IA32_APICBASE, l, h);
1687 if (l & MSR_IA32_APICBASE_ENABLE)
1688 mp_lapic_addr = l & MSR_IA32_APICBASE_BASE;
1689 }
1690
1691 pr_info("Found and enabled local APIC!\n");
1692 return 0;
1693 }
1694
1695 int __init apic_force_enable(unsigned long addr)
1696 {
1697 u32 h, l;
1698
1699 if (disable_apic)
1700 return -1;
1701
1702 /*
1703 * Some BIOSes disable the local APIC in the APIC_BASE
1704 * MSR. This can only be done in software for Intel P6 or later
1705 * and AMD K7 (Model > 1) or later.
1706 */
1707 if (boot_cpu_data.x86 >= 6) {
1708 rdmsr(MSR_IA32_APICBASE, l, h);
1709 if (!(l & MSR_IA32_APICBASE_ENABLE)) {
1710 pr_info("Local APIC disabled by BIOS -- reenabling.\n");
1711 l &= ~MSR_IA32_APICBASE_BASE;
1712 l |= MSR_IA32_APICBASE_ENABLE | addr;
1713 wrmsr(MSR_IA32_APICBASE, l, h);
1714 enabled_via_apicbase = 1;
1715 }
1716 }
1717 return apic_verify();
1718 }
1719
1720 /*
1721 * Detect and initialize APIC
1722 */
1723 static int __init detect_init_APIC(void)
1724 {
1725 /* Disabled by kernel option? */
1726 if (disable_apic)
1727 return -1;
1728
1729 switch (boot_cpu_data.x86_vendor) {
1730 case X86_VENDOR_AMD:
1731 if ((boot_cpu_data.x86 == 6 && boot_cpu_data.x86_model > 1) ||
1732 (boot_cpu_data.x86 >= 15))
1733 break;
1734 goto no_apic;
1735 case X86_VENDOR_INTEL:
1736 if (boot_cpu_data.x86 == 6 || boot_cpu_data.x86 == 15 ||
1737 (boot_cpu_data.x86 == 5 && boot_cpu_has(X86_FEATURE_APIC)))
1738 break;
1739 goto no_apic;
1740 default:
1741 goto no_apic;
1742 }
1743
1744 if (!boot_cpu_has(X86_FEATURE_APIC)) {
1745 /*
1746 * Over-ride BIOS and try to enable the local APIC only if
1747 * "lapic" specified.
1748 */
1749 if (!force_enable_local_apic) {
1750 pr_info("Local APIC disabled by BIOS -- "
1751 "you can enable it with \"lapic\"\n");
1752 return -1;
1753 }
1754 if (apic_force_enable(APIC_DEFAULT_PHYS_BASE))
1755 return -1;
1756 } else {
1757 if (apic_verify())
1758 return -1;
1759 }
1760
1761 apic_pm_activate();
1762
1763 return 0;
1764
1765 no_apic:
1766 pr_info("No local APIC present or hardware disabled\n");
1767 return -1;
1768 }
1769 #endif
1770
1771 /**
1772 * init_apic_mappings - initialize APIC mappings
1773 */
1774 void __init init_apic_mappings(void)
1775 {
1776 unsigned int new_apicid;
1777
1778 if (x2apic_mode) {
1779 boot_cpu_physical_apicid = read_apic_id();
1780 return;
1781 }
1782
1783 /* If no local APIC can be found return early */
1784 if (!smp_found_config && detect_init_APIC()) {
1785 /* lets NOP'ify apic operations */
1786 pr_info("APIC: disable apic facility\n");
1787 apic_disable();
1788 } else {
1789 apic_phys = mp_lapic_addr;
1790
1791 /*
1792 * acpi lapic path already maps that address in
1793 * acpi_register_lapic_address()
1794 */
1795 if (!acpi_lapic && !smp_found_config)
1796 register_lapic_address(apic_phys);
1797 }
1798
1799 /*
1800 * Fetch the APIC ID of the BSP in case we have a
1801 * default configuration (or the MP table is broken).
1802 */
1803 new_apicid = read_apic_id();
1804 if (boot_cpu_physical_apicid != new_apicid) {
1805 boot_cpu_physical_apicid = new_apicid;
1806 /*
1807 * yeah -- we lie about apic_version
1808 * in case if apic was disabled via boot option
1809 * but it's not a problem for SMP compiled kernel
1810 * since smp_sanity_check is prepared for such a case
1811 * and disable smp mode
1812 */
1813 boot_cpu_apic_version = GET_APIC_VERSION(apic_read(APIC_LVR));
1814 }
1815 }
1816
1817 void __init register_lapic_address(unsigned long address)
1818 {
1819 mp_lapic_addr = address;
1820
1821 if (!x2apic_mode) {
1822 set_fixmap_nocache(FIX_APIC_BASE, address);
1823 apic_printk(APIC_VERBOSE, "mapped APIC to %16lx (%16lx)\n",
1824 APIC_BASE, address);
1825 }
1826 if (boot_cpu_physical_apicid == -1U) {
1827 boot_cpu_physical_apicid = read_apic_id();
1828 boot_cpu_apic_version = GET_APIC_VERSION(apic_read(APIC_LVR));
1829 }
1830 }
1831
1832 /*
1833 * Local APIC interrupts
1834 */
1835
1836 /*
1837 * This interrupt should _never_ happen with our APIC/SMP architecture
1838 */
1839 static void __smp_spurious_interrupt(u8 vector)
1840 {
1841 u32 v;
1842
1843 /*
1844 * Check if this really is a spurious interrupt and ACK it
1845 * if it is a vectored one. Just in case...
1846 * Spurious interrupts should not be ACKed.
1847 */
1848 v = apic_read(APIC_ISR + ((vector & ~0x1f) >> 1));
1849 if (v & (1 << (vector & 0x1f)))
1850 ack_APIC_irq();
1851
1852 inc_irq_stat(irq_spurious_count);
1853
1854 /* see sw-dev-man vol 3, chapter 7.4.13.5 */
1855 pr_info("spurious APIC interrupt through vector %02x on CPU#%d, "
1856 "should never happen.\n", vector, smp_processor_id());
1857 }
1858
1859 __visible void __irq_entry smp_spurious_interrupt(struct pt_regs *regs)
1860 {
1861 entering_irq();
1862 __smp_spurious_interrupt(~regs->orig_ax);
1863 exiting_irq();
1864 }
1865
1866 __visible void __irq_entry smp_trace_spurious_interrupt(struct pt_regs *regs)
1867 {
1868 u8 vector = ~regs->orig_ax;
1869
1870 entering_irq();
1871 trace_spurious_apic_entry(vector);
1872 __smp_spurious_interrupt(vector);
1873 trace_spurious_apic_exit(vector);
1874 exiting_irq();
1875 }
1876
1877 /*
1878 * This interrupt should never happen with our APIC/SMP architecture
1879 */
1880 static void __smp_error_interrupt(struct pt_regs *regs)
1881 {
1882 u32 v;
1883 u32 i = 0;
1884 static const char * const error_interrupt_reason[] = {
1885 "Send CS error", /* APIC Error Bit 0 */
1886 "Receive CS error", /* APIC Error Bit 1 */
1887 "Send accept error", /* APIC Error Bit 2 */
1888 "Receive accept error", /* APIC Error Bit 3 */
1889 "Redirectable IPI", /* APIC Error Bit 4 */
1890 "Send illegal vector", /* APIC Error Bit 5 */
1891 "Received illegal vector", /* APIC Error Bit 6 */
1892 "Illegal register address", /* APIC Error Bit 7 */
1893 };
1894
1895 /* First tickle the hardware, only then report what went on. -- REW */
1896 if (lapic_get_maxlvt() > 3) /* Due to the Pentium erratum 3AP. */
1897 apic_write(APIC_ESR, 0);
1898 v = apic_read(APIC_ESR);
1899 ack_APIC_irq();
1900 atomic_inc(&irq_err_count);
1901
1902 apic_printk(APIC_DEBUG, KERN_DEBUG "APIC error on CPU%d: %02x",
1903 smp_processor_id(), v);
1904
1905 v &= 0xff;
1906 while (v) {
1907 if (v & 0x1)
1908 apic_printk(APIC_DEBUG, KERN_CONT " : %s", error_interrupt_reason[i]);
1909 i++;
1910 v >>= 1;
1911 }
1912
1913 apic_printk(APIC_DEBUG, KERN_CONT "\n");
1914
1915 }
1916
1917 __visible void __irq_entry smp_error_interrupt(struct pt_regs *regs)
1918 {
1919 entering_irq();
1920 __smp_error_interrupt(regs);
1921 exiting_irq();
1922 }
1923
1924 __visible void __irq_entry smp_trace_error_interrupt(struct pt_regs *regs)
1925 {
1926 entering_irq();
1927 trace_error_apic_entry(ERROR_APIC_VECTOR);
1928 __smp_error_interrupt(regs);
1929 trace_error_apic_exit(ERROR_APIC_VECTOR);
1930 exiting_irq();
1931 }
1932
1933 /**
1934 * connect_bsp_APIC - attach the APIC to the interrupt system
1935 */
1936 static void __init connect_bsp_APIC(void)
1937 {
1938 #ifdef CONFIG_X86_32
1939 if (pic_mode) {
1940 /*
1941 * Do not trust the local APIC being empty at bootup.
1942 */
1943 clear_local_APIC();
1944 /*
1945 * PIC mode, enable APIC mode in the IMCR, i.e. connect BSP's
1946 * local APIC to INT and NMI lines.
1947 */
1948 apic_printk(APIC_VERBOSE, "leaving PIC mode, "
1949 "enabling APIC mode.\n");
1950 imcr_pic_to_apic();
1951 }
1952 #endif
1953 }
1954
1955 /**
1956 * disconnect_bsp_APIC - detach the APIC from the interrupt system
1957 * @virt_wire_setup: indicates, whether virtual wire mode is selected
1958 *
1959 * Virtual wire mode is necessary to deliver legacy interrupts even when the
1960 * APIC is disabled.
1961 */
1962 void disconnect_bsp_APIC(int virt_wire_setup)
1963 {
1964 unsigned int value;
1965
1966 #ifdef CONFIG_X86_32
1967 if (pic_mode) {
1968 /*
1969 * Put the board back into PIC mode (has an effect only on
1970 * certain older boards). Note that APIC interrupts, including
1971 * IPIs, won't work beyond this point! The only exception are
1972 * INIT IPIs.
1973 */
1974 apic_printk(APIC_VERBOSE, "disabling APIC mode, "
1975 "entering PIC mode.\n");
1976 imcr_apic_to_pic();
1977 return;
1978 }
1979 #endif
1980
1981 /* Go back to Virtual Wire compatibility mode */
1982
1983 /* For the spurious interrupt use vector F, and enable it */
1984 value = apic_read(APIC_SPIV);
1985 value &= ~APIC_VECTOR_MASK;
1986 value |= APIC_SPIV_APIC_ENABLED;
1987 value |= 0xf;
1988 apic_write(APIC_SPIV, value);
1989
1990 if (!virt_wire_setup) {
1991 /*
1992 * For LVT0 make it edge triggered, active high,
1993 * external and enabled
1994 */
1995 value = apic_read(APIC_LVT0);
1996 value &= ~(APIC_MODE_MASK | APIC_SEND_PENDING |
1997 APIC_INPUT_POLARITY | APIC_LVT_REMOTE_IRR |
1998 APIC_LVT_LEVEL_TRIGGER | APIC_LVT_MASKED);
1999 value |= APIC_LVT_REMOTE_IRR | APIC_SEND_PENDING;
2000 value = SET_APIC_DELIVERY_MODE(value, APIC_MODE_EXTINT);
2001 apic_write(APIC_LVT0, value);
2002 } else {
2003 /* Disable LVT0 */
2004 apic_write(APIC_LVT0, APIC_LVT_MASKED);
2005 }
2006
2007 /*
2008 * For LVT1 make it edge triggered, active high,
2009 * nmi and enabled
2010 */
2011 value = apic_read(APIC_LVT1);
2012 value &= ~(APIC_MODE_MASK | APIC_SEND_PENDING |
2013 APIC_INPUT_POLARITY | APIC_LVT_REMOTE_IRR |
2014 APIC_LVT_LEVEL_TRIGGER | APIC_LVT_MASKED);
2015 value |= APIC_LVT_REMOTE_IRR | APIC_SEND_PENDING;
2016 value = SET_APIC_DELIVERY_MODE(value, APIC_MODE_NMI);
2017 apic_write(APIC_LVT1, value);
2018 }
2019
2020 /*
2021 * The number of allocated logical CPU IDs. Since logical CPU IDs are allocated
2022 * contiguously, it equals to current allocated max logical CPU ID plus 1.
2023 * All allocated CPU IDs should be in the [0, nr_logical_cpuids) range,
2024 * so the maximum of nr_logical_cpuids is nr_cpu_ids.
2025 *
2026 * NOTE: Reserve 0 for BSP.
2027 */
2028 static int nr_logical_cpuids = 1;
2029
2030 /*
2031 * Used to store mapping between logical CPU IDs and APIC IDs.
2032 */
2033 static int cpuid_to_apicid[] = {
2034 [0 ... NR_CPUS - 1] = -1,
2035 };
2036
2037 /*
2038 * Should use this API to allocate logical CPU IDs to keep nr_logical_cpuids
2039 * and cpuid_to_apicid[] synchronized.
2040 */
2041 static int allocate_logical_cpuid(int apicid)
2042 {
2043 int i;
2044
2045 /*
2046 * cpuid <-> apicid mapping is persistent, so when a cpu is up,
2047 * check if the kernel has allocated a cpuid for it.
2048 */
2049 for (i = 0; i < nr_logical_cpuids; i++) {
2050 if (cpuid_to_apicid[i] == apicid)
2051 return i;
2052 }
2053
2054 /* Allocate a new cpuid. */
2055 if (nr_logical_cpuids >= nr_cpu_ids) {
2056 WARN_ONCE(1, "APIC: NR_CPUS/possible_cpus limit of %i reached. "
2057 "Processor %d/0x%x and the rest are ignored.\n",
2058 nr_cpu_ids, nr_logical_cpuids, apicid);
2059 return -EINVAL;
2060 }
2061
2062 cpuid_to_apicid[nr_logical_cpuids] = apicid;
2063 return nr_logical_cpuids++;
2064 }
2065
2066 int generic_processor_info(int apicid, int version)
2067 {
2068 int cpu, max = nr_cpu_ids;
2069 bool boot_cpu_detected = physid_isset(boot_cpu_physical_apicid,
2070 phys_cpu_present_map);
2071
2072 /*
2073 * boot_cpu_physical_apicid is designed to have the apicid
2074 * returned by read_apic_id(), i.e, the apicid of the
2075 * currently booting-up processor. However, on some platforms,
2076 * it is temporarily modified by the apicid reported as BSP
2077 * through MP table. Concretely:
2078 *
2079 * - arch/x86/kernel/mpparse.c: MP_processor_info()
2080 * - arch/x86/mm/amdtopology.c: amd_numa_init()
2081 *
2082 * This function is executed with the modified
2083 * boot_cpu_physical_apicid. So, disabled_cpu_apicid kernel
2084 * parameter doesn't work to disable APs on kdump 2nd kernel.
2085 *
2086 * Since fixing handling of boot_cpu_physical_apicid requires
2087 * another discussion and tests on each platform, we leave it
2088 * for now and here we use read_apic_id() directly in this
2089 * function, __generic_processor_info().
2090 */
2091 if (disabled_cpu_apicid != BAD_APICID &&
2092 disabled_cpu_apicid != read_apic_id() &&
2093 disabled_cpu_apicid == apicid) {
2094 int thiscpu = num_processors + disabled_cpus;
2095
2096 pr_warning("APIC: Disabling requested cpu."
2097 " Processor %d/0x%x ignored.\n",
2098 thiscpu, apicid);
2099
2100 disabled_cpus++;
2101 return -ENODEV;
2102 }
2103
2104 /*
2105 * If boot cpu has not been detected yet, then only allow upto
2106 * nr_cpu_ids - 1 processors and keep one slot free for boot cpu
2107 */
2108 if (!boot_cpu_detected && num_processors >= nr_cpu_ids - 1 &&
2109 apicid != boot_cpu_physical_apicid) {
2110 int thiscpu = max + disabled_cpus - 1;
2111
2112 pr_warning(
2113 "APIC: NR_CPUS/possible_cpus limit of %i almost"
2114 " reached. Keeping one slot for boot cpu."
2115 " Processor %d/0x%x ignored.\n", max, thiscpu, apicid);
2116
2117 disabled_cpus++;
2118 return -ENODEV;
2119 }
2120
2121 if (num_processors >= nr_cpu_ids) {
2122 int thiscpu = max + disabled_cpus;
2123
2124 pr_warning("APIC: NR_CPUS/possible_cpus limit of %i "
2125 "reached. Processor %d/0x%x ignored.\n",
2126 max, thiscpu, apicid);
2127
2128 disabled_cpus++;
2129 return -EINVAL;
2130 }
2131
2132 if (apicid == boot_cpu_physical_apicid) {
2133 /*
2134 * x86_bios_cpu_apicid is required to have processors listed
2135 * in same order as logical cpu numbers. Hence the first
2136 * entry is BSP, and so on.
2137 * boot_cpu_init() already hold bit 0 in cpu_present_mask
2138 * for BSP.
2139 */
2140 cpu = 0;
2141
2142 /* Logical cpuid 0 is reserved for BSP. */
2143 cpuid_to_apicid[0] = apicid;
2144 } else {
2145 cpu = allocate_logical_cpuid(apicid);
2146 if (cpu < 0) {
2147 disabled_cpus++;
2148 return -EINVAL;
2149 }
2150 }
2151
2152 /*
2153 * Validate version
2154 */
2155 if (version == 0x0) {
2156 pr_warning("BIOS bug: APIC version is 0 for CPU %d/0x%x, fixing up to 0x10\n",
2157 cpu, apicid);
2158 version = 0x10;
2159 }
2160
2161 if (version != boot_cpu_apic_version) {
2162 pr_warning("BIOS bug: APIC version mismatch, boot CPU: %x, CPU %d: version %x\n",
2163 boot_cpu_apic_version, cpu, version);
2164 }
2165
2166 if (apicid > max_physical_apicid)
2167 max_physical_apicid = apicid;
2168
2169 #if defined(CONFIG_SMP) || defined(CONFIG_X86_64)
2170 early_per_cpu(x86_cpu_to_apicid, cpu) = apicid;
2171 early_per_cpu(x86_bios_cpu_apicid, cpu) = apicid;
2172 #endif
2173 #ifdef CONFIG_X86_32
2174 early_per_cpu(x86_cpu_to_logical_apicid, cpu) =
2175 apic->x86_32_early_logical_apicid(cpu);
2176 #endif
2177 set_cpu_possible(cpu, true);
2178 physid_set(apicid, phys_cpu_present_map);
2179 set_cpu_present(cpu, true);
2180 num_processors++;
2181
2182 return cpu;
2183 }
2184
2185 int hard_smp_processor_id(void)
2186 {
2187 return read_apic_id();
2188 }
2189
2190 void default_init_apic_ldr(void)
2191 {
2192 unsigned long val;
2193
2194 apic_write(APIC_DFR, APIC_DFR_VALUE);
2195 val = apic_read(APIC_LDR) & ~APIC_LDR_MASK;
2196 val |= SET_APIC_LOGICAL_ID(1UL << smp_processor_id());
2197 apic_write(APIC_LDR, val);
2198 }
2199
2200 int default_cpu_mask_to_apicid_and(const struct cpumask *cpumask,
2201 const struct cpumask *andmask,
2202 unsigned int *apicid)
2203 {
2204 unsigned int cpu;
2205
2206 for_each_cpu_and(cpu, cpumask, andmask) {
2207 if (cpumask_test_cpu(cpu, cpu_online_mask))
2208 break;
2209 }
2210
2211 if (likely(cpu < nr_cpu_ids)) {
2212 *apicid = per_cpu(x86_cpu_to_apicid, cpu);
2213 return 0;
2214 }
2215
2216 return -EINVAL;
2217 }
2218
2219 /*
2220 * Override the generic EOI implementation with an optimized version.
2221 * Only called during early boot when only one CPU is active and with
2222 * interrupts disabled, so we know this does not race with actual APIC driver
2223 * use.
2224 */
2225 void __init apic_set_eoi_write(void (*eoi_write)(u32 reg, u32 v))
2226 {
2227 struct apic **drv;
2228
2229 for (drv = __apicdrivers; drv < __apicdrivers_end; drv++) {
2230 /* Should happen once for each apic */
2231 WARN_ON((*drv)->eoi_write == eoi_write);
2232 (*drv)->native_eoi_write = (*drv)->eoi_write;
2233 (*drv)->eoi_write = eoi_write;
2234 }
2235 }
2236
2237 static void __init apic_bsp_up_setup(void)
2238 {
2239 #ifdef CONFIG_X86_64
2240 apic_write(APIC_ID, SET_APIC_ID(boot_cpu_physical_apicid));
2241 #else
2242 /*
2243 * Hack: In case of kdump, after a crash, kernel might be booting
2244 * on a cpu with non-zero lapic id. But boot_cpu_physical_apicid
2245 * might be zero if read from MP tables. Get it from LAPIC.
2246 */
2247 # ifdef CONFIG_CRASH_DUMP
2248 boot_cpu_physical_apicid = read_apic_id();
2249 # endif
2250 #endif
2251 physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
2252 }
2253
2254 /**
2255 * apic_bsp_setup - Setup function for local apic and io-apic
2256 * @upmode: Force UP mode (for APIC_init_uniprocessor)
2257 *
2258 * Returns:
2259 * apic_id of BSP APIC
2260 */
2261 int __init apic_bsp_setup(bool upmode)
2262 {
2263 int id;
2264
2265 connect_bsp_APIC();
2266 if (upmode)
2267 apic_bsp_up_setup();
2268 setup_local_APIC();
2269
2270 if (x2apic_mode)
2271 id = apic_read(APIC_LDR);
2272 else
2273 id = GET_APIC_LOGICAL_ID(apic_read(APIC_LDR));
2274
2275 enable_IO_APIC();
2276 end_local_APIC_setup();
2277 irq_remap_enable_fault_handling();
2278 setup_IO_APIC();
2279 /* Setup local timer */
2280 x86_init.timers.setup_percpu_clockev();
2281 return id;
2282 }
2283
2284 /*
2285 * This initializes the IO-APIC and APIC hardware if this is
2286 * a UP kernel.
2287 */
2288 int __init APIC_init_uniprocessor(void)
2289 {
2290 if (disable_apic) {
2291 pr_info("Apic disabled\n");
2292 return -1;
2293 }
2294 #ifdef CONFIG_X86_64
2295 if (!boot_cpu_has(X86_FEATURE_APIC)) {
2296 disable_apic = 1;
2297 pr_info("Apic disabled by BIOS\n");
2298 return -1;
2299 }
2300 #else
2301 if (!smp_found_config && !boot_cpu_has(X86_FEATURE_APIC))
2302 return -1;
2303
2304 /*
2305 * Complain if the BIOS pretends there is one.
2306 */
2307 if (!boot_cpu_has(X86_FEATURE_APIC) &&
2308 APIC_INTEGRATED(boot_cpu_apic_version)) {
2309 pr_err("BIOS bug, local APIC 0x%x not detected!...\n",
2310 boot_cpu_physical_apicid);
2311 return -1;
2312 }
2313 #endif
2314
2315 if (!smp_found_config)
2316 disable_ioapic_support();
2317
2318 default_setup_apic_routing();
2319 apic_bsp_setup(true);
2320 return 0;
2321 }
2322
2323 #ifdef CONFIG_UP_LATE_INIT
2324 void __init up_late_init(void)
2325 {
2326 APIC_init_uniprocessor();
2327 }
2328 #endif
2329
2330 /*
2331 * Power management
2332 */
2333 #ifdef CONFIG_PM
2334
2335 static struct {
2336 /*
2337 * 'active' is true if the local APIC was enabled by us and
2338 * not the BIOS; this signifies that we are also responsible
2339 * for disabling it before entering apm/acpi suspend
2340 */
2341 int active;
2342 /* r/w apic fields */
2343 unsigned int apic_id;
2344 unsigned int apic_taskpri;
2345 unsigned int apic_ldr;
2346 unsigned int apic_dfr;
2347 unsigned int apic_spiv;
2348 unsigned int apic_lvtt;
2349 unsigned int apic_lvtpc;
2350 unsigned int apic_lvt0;
2351 unsigned int apic_lvt1;
2352 unsigned int apic_lvterr;
2353 unsigned int apic_tmict;
2354 unsigned int apic_tdcr;
2355 unsigned int apic_thmr;
2356 unsigned int apic_cmci;
2357 } apic_pm_state;
2358
2359 static int lapic_suspend(void)
2360 {
2361 unsigned long flags;
2362 int maxlvt;
2363
2364 if (!apic_pm_state.active)
2365 return 0;
2366
2367 maxlvt = lapic_get_maxlvt();
2368
2369 apic_pm_state.apic_id = apic_read(APIC_ID);
2370 apic_pm_state.apic_taskpri = apic_read(APIC_TASKPRI);
2371 apic_pm_state.apic_ldr = apic_read(APIC_LDR);
2372 apic_pm_state.apic_dfr = apic_read(APIC_DFR);
2373 apic_pm_state.apic_spiv = apic_read(APIC_SPIV);
2374 apic_pm_state.apic_lvtt = apic_read(APIC_LVTT);
2375 if (maxlvt >= 4)
2376 apic_pm_state.apic_lvtpc = apic_read(APIC_LVTPC);
2377 apic_pm_state.apic_lvt0 = apic_read(APIC_LVT0);
2378 apic_pm_state.apic_lvt1 = apic_read(APIC_LVT1);
2379 apic_pm_state.apic_lvterr = apic_read(APIC_LVTERR);
2380 apic_pm_state.apic_tmict = apic_read(APIC_TMICT);
2381 apic_pm_state.apic_tdcr = apic_read(APIC_TDCR);
2382 #ifdef CONFIG_X86_THERMAL_VECTOR
2383 if (maxlvt >= 5)
2384 apic_pm_state.apic_thmr = apic_read(APIC_LVTTHMR);
2385 #endif
2386 #ifdef CONFIG_X86_MCE_INTEL
2387 if (maxlvt >= 6)
2388 apic_pm_state.apic_cmci = apic_read(APIC_LVTCMCI);
2389 #endif
2390
2391 local_irq_save(flags);
2392 disable_local_APIC();
2393
2394 irq_remapping_disable();
2395
2396 local_irq_restore(flags);
2397 return 0;
2398 }
2399
2400 static void lapic_resume(void)
2401 {
2402 unsigned int l, h;
2403 unsigned long flags;
2404 int maxlvt;
2405
2406 if (!apic_pm_state.active)
2407 return;
2408
2409 local_irq_save(flags);
2410
2411 /*
2412 * IO-APIC and PIC have their own resume routines.
2413 * We just mask them here to make sure the interrupt
2414 * subsystem is completely quiet while we enable x2apic
2415 * and interrupt-remapping.
2416 */
2417 mask_ioapic_entries();
2418 legacy_pic->mask_all();
2419
2420 if (x2apic_mode) {
2421 __x2apic_enable();
2422 } else {
2423 /*
2424 * Make sure the APICBASE points to the right address
2425 *
2426 * FIXME! This will be wrong if we ever support suspend on
2427 * SMP! We'll need to do this as part of the CPU restore!
2428 */
2429 if (boot_cpu_data.x86 >= 6) {
2430 rdmsr(MSR_IA32_APICBASE, l, h);
2431 l &= ~MSR_IA32_APICBASE_BASE;
2432 l |= MSR_IA32_APICBASE_ENABLE | mp_lapic_addr;
2433 wrmsr(MSR_IA32_APICBASE, l, h);
2434 }
2435 }
2436
2437 maxlvt = lapic_get_maxlvt();
2438 apic_write(APIC_LVTERR, ERROR_APIC_VECTOR | APIC_LVT_MASKED);
2439 apic_write(APIC_ID, apic_pm_state.apic_id);
2440 apic_write(APIC_DFR, apic_pm_state.apic_dfr);
2441 apic_write(APIC_LDR, apic_pm_state.apic_ldr);
2442 apic_write(APIC_TASKPRI, apic_pm_state.apic_taskpri);
2443 apic_write(APIC_SPIV, apic_pm_state.apic_spiv);
2444 apic_write(APIC_LVT0, apic_pm_state.apic_lvt0);
2445 apic_write(APIC_LVT1, apic_pm_state.apic_lvt1);
2446 #ifdef CONFIG_X86_THERMAL_VECTOR
2447 if (maxlvt >= 5)
2448 apic_write(APIC_LVTTHMR, apic_pm_state.apic_thmr);
2449 #endif
2450 #ifdef CONFIG_X86_MCE_INTEL
2451 if (maxlvt >= 6)
2452 apic_write(APIC_LVTCMCI, apic_pm_state.apic_cmci);
2453 #endif
2454 if (maxlvt >= 4)
2455 apic_write(APIC_LVTPC, apic_pm_state.apic_lvtpc);
2456 apic_write(APIC_LVTT, apic_pm_state.apic_lvtt);
2457 apic_write(APIC_TDCR, apic_pm_state.apic_tdcr);
2458 apic_write(APIC_TMICT, apic_pm_state.apic_tmict);
2459 apic_write(APIC_ESR, 0);
2460 apic_read(APIC_ESR);
2461 apic_write(APIC_LVTERR, apic_pm_state.apic_lvterr);
2462 apic_write(APIC_ESR, 0);
2463 apic_read(APIC_ESR);
2464
2465 irq_remapping_reenable(x2apic_mode);
2466
2467 local_irq_restore(flags);
2468 }
2469
2470 /*
2471 * This device has no shutdown method - fully functioning local APICs
2472 * are needed on every CPU up until machine_halt/restart/poweroff.
2473 */
2474
2475 static struct syscore_ops lapic_syscore_ops = {
2476 .resume = lapic_resume,
2477 .suspend = lapic_suspend,
2478 };
2479
2480 static void apic_pm_activate(void)
2481 {
2482 apic_pm_state.active = 1;
2483 }
2484
2485 static int __init init_lapic_sysfs(void)
2486 {
2487 /* XXX: remove suspend/resume procs if !apic_pm_state.active? */
2488 if (boot_cpu_has(X86_FEATURE_APIC))
2489 register_syscore_ops(&lapic_syscore_ops);
2490
2491 return 0;
2492 }
2493
2494 /* local apic needs to resume before other devices access its registers. */
2495 core_initcall(init_lapic_sysfs);
2496
2497 #else /* CONFIG_PM */
2498
2499 static void apic_pm_activate(void) { }
2500
2501 #endif /* CONFIG_PM */
2502
2503 #ifdef CONFIG_X86_64
2504
2505 static int multi_checked;
2506 static int multi;
2507
2508 static int set_multi(const struct dmi_system_id *d)
2509 {
2510 if (multi)
2511 return 0;
2512 pr_info("APIC: %s detected, Multi Chassis\n", d->ident);
2513 multi = 1;
2514 return 0;
2515 }
2516
2517 static const struct dmi_system_id multi_dmi_table[] = {
2518 {
2519 .callback = set_multi,
2520 .ident = "IBM System Summit2",
2521 .matches = {
2522 DMI_MATCH(DMI_SYS_VENDOR, "IBM"),
2523 DMI_MATCH(DMI_PRODUCT_NAME, "Summit2"),
2524 },
2525 },
2526 {}
2527 };
2528
2529 static void dmi_check_multi(void)
2530 {
2531 if (multi_checked)
2532 return;
2533
2534 dmi_check_system(multi_dmi_table);
2535 multi_checked = 1;
2536 }
2537
2538 /*
2539 * apic_is_clustered_box() -- Check if we can expect good TSC
2540 *
2541 * Thus far, the major user of this is IBM's Summit2 series:
2542 * Clustered boxes may have unsynced TSC problems if they are
2543 * multi-chassis.
2544 * Use DMI to check them
2545 */
2546 int apic_is_clustered_box(void)
2547 {
2548 dmi_check_multi();
2549 return multi;
2550 }
2551 #endif
2552
2553 /*
2554 * APIC command line parameters
2555 */
2556 static int __init setup_disableapic(char *arg)
2557 {
2558 disable_apic = 1;
2559 setup_clear_cpu_cap(X86_FEATURE_APIC);
2560 return 0;
2561 }
2562 early_param("disableapic", setup_disableapic);
2563
2564 /* same as disableapic, for compatibility */
2565 static int __init setup_nolapic(char *arg)
2566 {
2567 return setup_disableapic(arg);
2568 }
2569 early_param("nolapic", setup_nolapic);
2570
2571 static int __init parse_lapic_timer_c2_ok(char *arg)
2572 {
2573 local_apic_timer_c2_ok = 1;
2574 return 0;
2575 }
2576 early_param("lapic_timer_c2_ok", parse_lapic_timer_c2_ok);
2577
2578 static int __init parse_disable_apic_timer(char *arg)
2579 {
2580 disable_apic_timer = 1;
2581 return 0;
2582 }
2583 early_param("noapictimer", parse_disable_apic_timer);
2584
2585 static int __init parse_nolapic_timer(char *arg)
2586 {
2587 disable_apic_timer = 1;
2588 return 0;
2589 }
2590 early_param("nolapic_timer", parse_nolapic_timer);
2591
2592 static int __init apic_set_verbosity(char *arg)
2593 {
2594 if (!arg) {
2595 #ifdef CONFIG_X86_64
2596 skip_ioapic_setup = 0;
2597 return 0;
2598 #endif
2599 return -EINVAL;
2600 }
2601
2602 if (strcmp("debug", arg) == 0)
2603 apic_verbosity = APIC_DEBUG;
2604 else if (strcmp("verbose", arg) == 0)
2605 apic_verbosity = APIC_VERBOSE;
2606 else {
2607 pr_warning("APIC Verbosity level %s not recognised"
2608 " use apic=verbose or apic=debug\n", arg);
2609 return -EINVAL;
2610 }
2611
2612 return 0;
2613 }
2614 early_param("apic", apic_set_verbosity);
2615
2616 static int __init lapic_insert_resource(void)
2617 {
2618 if (!apic_phys)
2619 return -1;
2620
2621 /* Put local APIC into the resource map. */
2622 lapic_resource.start = apic_phys;
2623 lapic_resource.end = lapic_resource.start + PAGE_SIZE - 1;
2624 insert_resource(&iomem_resource, &lapic_resource);
2625
2626 return 0;
2627 }
2628
2629 /*
2630 * need call insert after e820_reserve_resources()
2631 * that is using request_resource
2632 */
2633 late_initcall(lapic_insert_resource);
2634
2635 static int __init apic_set_disabled_cpu_apicid(char *arg)
2636 {
2637 if (!arg || !get_option(&arg, &disabled_cpu_apicid))
2638 return -EINVAL;
2639
2640 return 0;
2641 }
2642 early_param("disable_cpu_apicid", apic_set_disabled_cpu_apicid);
2643
2644 static int __init apic_set_extnmi(char *arg)
2645 {
2646 if (!arg)
2647 return -EINVAL;
2648
2649 if (!strncmp("all", arg, 3))
2650 apic_extnmi = APIC_EXTNMI_ALL;
2651 else if (!strncmp("none", arg, 4))
2652 apic_extnmi = APIC_EXTNMI_NONE;
2653 else if (!strncmp("bsp", arg, 3))
2654 apic_extnmi = APIC_EXTNMI_BSP;
2655 else {
2656 pr_warn("Unknown external NMI delivery mode `%s' ignored\n", arg);
2657 return -EINVAL;
2658 }
2659
2660 return 0;
2661 }
2662 early_param("apic_extnmi", apic_set_extnmi);