]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kernel/apic/io_apic.c
x86: display extended apic registers with print_local_APIC and cpu_debug code
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / apic / io_apic.c
1 /*
2 * Intel IO-APIC support for multi-Pentium hosts.
3 *
4 * Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo
5 *
6 * Many thanks to Stig Venaas for trying out countless experimental
7 * patches and reporting/debugging problems patiently!
8 *
9 * (c) 1999, Multiple IO-APIC support, developed by
10 * Ken-ichi Yaku <yaku@css1.kbnes.nec.co.jp> and
11 * Hidemi Kishimoto <kisimoto@css1.kbnes.nec.co.jp>,
12 * further tested and cleaned up by Zach Brown <zab@redhat.com>
13 * and Ingo Molnar <mingo@redhat.com>
14 *
15 * Fixes
16 * Maciej W. Rozycki : Bits for genuine 82489DX APICs;
17 * thanks to Eric Gilmore
18 * and Rolf G. Tews
19 * for testing these extensively
20 * Paul Diefenbaugh : Added full ACPI support
21 */
22
23 #include <linux/mm.h>
24 #include <linux/interrupt.h>
25 #include <linux/init.h>
26 #include <linux/delay.h>
27 #include <linux/sched.h>
28 #include <linux/pci.h>
29 #include <linux/mc146818rtc.h>
30 #include <linux/compiler.h>
31 #include <linux/acpi.h>
32 #include <linux/module.h>
33 #include <linux/sysdev.h>
34 #include <linux/msi.h>
35 #include <linux/htirq.h>
36 #include <linux/freezer.h>
37 #include <linux/kthread.h>
38 #include <linux/jiffies.h> /* time_after() */
39 #ifdef CONFIG_ACPI
40 #include <acpi/acpi_bus.h>
41 #endif
42 #include <linux/bootmem.h>
43 #include <linux/dmar.h>
44 #include <linux/hpet.h>
45
46 #include <asm/idle.h>
47 #include <asm/io.h>
48 #include <asm/smp.h>
49 #include <asm/cpu.h>
50 #include <asm/desc.h>
51 #include <asm/proto.h>
52 #include <asm/acpi.h>
53 #include <asm/dma.h>
54 #include <asm/timer.h>
55 #include <asm/i8259.h>
56 #include <asm/nmi.h>
57 #include <asm/msidef.h>
58 #include <asm/hypertransport.h>
59 #include <asm/setup.h>
60 #include <asm/irq_remapping.h>
61 #include <asm/hpet.h>
62 #include <asm/uv/uv_hub.h>
63 #include <asm/uv/uv_irq.h>
64
65 #include <asm/apic.h>
66
67 #define __apicdebuginit(type) static type __init
68
69 /*
70 * Is the SiS APIC rmw bug present ?
71 * -1 = don't know, 0 = no, 1 = yes
72 */
73 int sis_apic_bug = -1;
74
75 static DEFINE_SPINLOCK(ioapic_lock);
76 static DEFINE_SPINLOCK(vector_lock);
77
78 /*
79 * # of IRQ routing registers
80 */
81 int nr_ioapic_registers[MAX_IO_APICS];
82
83 /* I/O APIC entries */
84 struct mpc_ioapic mp_ioapics[MAX_IO_APICS];
85 int nr_ioapics;
86
87 /* MP IRQ source entries */
88 struct mpc_intsrc mp_irqs[MAX_IRQ_SOURCES];
89
90 /* # of MP IRQ source entries */
91 int mp_irq_entries;
92
93 #if defined (CONFIG_MCA) || defined (CONFIG_EISA)
94 int mp_bus_id_to_type[MAX_MP_BUSSES];
95 #endif
96
97 DECLARE_BITMAP(mp_bus_not_pci, MAX_MP_BUSSES);
98
99 int skip_ioapic_setup;
100
101 void arch_disable_smp_support(void)
102 {
103 #ifdef CONFIG_PCI
104 noioapicquirk = 1;
105 noioapicreroute = -1;
106 #endif
107 skip_ioapic_setup = 1;
108 }
109
110 static int __init parse_noapic(char *str)
111 {
112 /* disable IO-APIC */
113 arch_disable_smp_support();
114 return 0;
115 }
116 early_param("noapic", parse_noapic);
117
118 struct irq_pin_list;
119
120 /*
121 * This is performance-critical, we want to do it O(1)
122 *
123 * the indexing order of this array favors 1:1 mappings
124 * between pins and IRQs.
125 */
126
127 struct irq_pin_list {
128 int apic, pin;
129 struct irq_pin_list *next;
130 };
131
132 static struct irq_pin_list *get_one_free_irq_2_pin(int cpu)
133 {
134 struct irq_pin_list *pin;
135 int node;
136
137 node = cpu_to_node(cpu);
138
139 pin = kzalloc_node(sizeof(*pin), GFP_ATOMIC, node);
140
141 return pin;
142 }
143
144 struct irq_cfg {
145 struct irq_pin_list *irq_2_pin;
146 cpumask_var_t domain;
147 cpumask_var_t old_domain;
148 unsigned move_cleanup_count;
149 u8 vector;
150 u8 move_in_progress : 1;
151 #ifdef CONFIG_NUMA_MIGRATE_IRQ_DESC
152 u8 move_desc_pending : 1;
153 #endif
154 };
155
156 /* irq_cfg is indexed by the sum of all RTEs in all I/O APICs. */
157 #ifdef CONFIG_SPARSE_IRQ
158 static struct irq_cfg irq_cfgx[] = {
159 #else
160 static struct irq_cfg irq_cfgx[NR_IRQS] = {
161 #endif
162 [0] = { .vector = IRQ0_VECTOR, },
163 [1] = { .vector = IRQ1_VECTOR, },
164 [2] = { .vector = IRQ2_VECTOR, },
165 [3] = { .vector = IRQ3_VECTOR, },
166 [4] = { .vector = IRQ4_VECTOR, },
167 [5] = { .vector = IRQ5_VECTOR, },
168 [6] = { .vector = IRQ6_VECTOR, },
169 [7] = { .vector = IRQ7_VECTOR, },
170 [8] = { .vector = IRQ8_VECTOR, },
171 [9] = { .vector = IRQ9_VECTOR, },
172 [10] = { .vector = IRQ10_VECTOR, },
173 [11] = { .vector = IRQ11_VECTOR, },
174 [12] = { .vector = IRQ12_VECTOR, },
175 [13] = { .vector = IRQ13_VECTOR, },
176 [14] = { .vector = IRQ14_VECTOR, },
177 [15] = { .vector = IRQ15_VECTOR, },
178 };
179
180 int __init arch_early_irq_init(void)
181 {
182 struct irq_cfg *cfg;
183 struct irq_desc *desc;
184 int count;
185 int i;
186
187 cfg = irq_cfgx;
188 count = ARRAY_SIZE(irq_cfgx);
189
190 for (i = 0; i < count; i++) {
191 desc = irq_to_desc(i);
192 desc->chip_data = &cfg[i];
193 alloc_bootmem_cpumask_var(&cfg[i].domain);
194 alloc_bootmem_cpumask_var(&cfg[i].old_domain);
195 if (i < NR_IRQS_LEGACY)
196 cpumask_setall(cfg[i].domain);
197 }
198
199 return 0;
200 }
201
202 #ifdef CONFIG_SPARSE_IRQ
203 static struct irq_cfg *irq_cfg(unsigned int irq)
204 {
205 struct irq_cfg *cfg = NULL;
206 struct irq_desc *desc;
207
208 desc = irq_to_desc(irq);
209 if (desc)
210 cfg = desc->chip_data;
211
212 return cfg;
213 }
214
215 static struct irq_cfg *get_one_free_irq_cfg(int cpu)
216 {
217 struct irq_cfg *cfg;
218 int node;
219
220 node = cpu_to_node(cpu);
221
222 cfg = kzalloc_node(sizeof(*cfg), GFP_ATOMIC, node);
223 if (cfg) {
224 if (!alloc_cpumask_var_node(&cfg->domain, GFP_ATOMIC, node)) {
225 kfree(cfg);
226 cfg = NULL;
227 } else if (!alloc_cpumask_var_node(&cfg->old_domain,
228 GFP_ATOMIC, node)) {
229 free_cpumask_var(cfg->domain);
230 kfree(cfg);
231 cfg = NULL;
232 } else {
233 cpumask_clear(cfg->domain);
234 cpumask_clear(cfg->old_domain);
235 }
236 }
237
238 return cfg;
239 }
240
241 int arch_init_chip_data(struct irq_desc *desc, int cpu)
242 {
243 struct irq_cfg *cfg;
244
245 cfg = desc->chip_data;
246 if (!cfg) {
247 desc->chip_data = get_one_free_irq_cfg(cpu);
248 if (!desc->chip_data) {
249 printk(KERN_ERR "can not alloc irq_cfg\n");
250 BUG_ON(1);
251 }
252 }
253
254 return 0;
255 }
256
257 #ifdef CONFIG_NUMA_MIGRATE_IRQ_DESC
258
259 static void
260 init_copy_irq_2_pin(struct irq_cfg *old_cfg, struct irq_cfg *cfg, int cpu)
261 {
262 struct irq_pin_list *old_entry, *head, *tail, *entry;
263
264 cfg->irq_2_pin = NULL;
265 old_entry = old_cfg->irq_2_pin;
266 if (!old_entry)
267 return;
268
269 entry = get_one_free_irq_2_pin(cpu);
270 if (!entry)
271 return;
272
273 entry->apic = old_entry->apic;
274 entry->pin = old_entry->pin;
275 head = entry;
276 tail = entry;
277 old_entry = old_entry->next;
278 while (old_entry) {
279 entry = get_one_free_irq_2_pin(cpu);
280 if (!entry) {
281 entry = head;
282 while (entry) {
283 head = entry->next;
284 kfree(entry);
285 entry = head;
286 }
287 /* still use the old one */
288 return;
289 }
290 entry->apic = old_entry->apic;
291 entry->pin = old_entry->pin;
292 tail->next = entry;
293 tail = entry;
294 old_entry = old_entry->next;
295 }
296
297 tail->next = NULL;
298 cfg->irq_2_pin = head;
299 }
300
301 static void free_irq_2_pin(struct irq_cfg *old_cfg, struct irq_cfg *cfg)
302 {
303 struct irq_pin_list *entry, *next;
304
305 if (old_cfg->irq_2_pin == cfg->irq_2_pin)
306 return;
307
308 entry = old_cfg->irq_2_pin;
309
310 while (entry) {
311 next = entry->next;
312 kfree(entry);
313 entry = next;
314 }
315 old_cfg->irq_2_pin = NULL;
316 }
317
318 void arch_init_copy_chip_data(struct irq_desc *old_desc,
319 struct irq_desc *desc, int cpu)
320 {
321 struct irq_cfg *cfg;
322 struct irq_cfg *old_cfg;
323
324 cfg = get_one_free_irq_cfg(cpu);
325
326 if (!cfg)
327 return;
328
329 desc->chip_data = cfg;
330
331 old_cfg = old_desc->chip_data;
332
333 memcpy(cfg, old_cfg, sizeof(struct irq_cfg));
334
335 init_copy_irq_2_pin(old_cfg, cfg, cpu);
336 }
337
338 static void free_irq_cfg(struct irq_cfg *old_cfg)
339 {
340 kfree(old_cfg);
341 }
342
343 void arch_free_chip_data(struct irq_desc *old_desc, struct irq_desc *desc)
344 {
345 struct irq_cfg *old_cfg, *cfg;
346
347 old_cfg = old_desc->chip_data;
348 cfg = desc->chip_data;
349
350 if (old_cfg == cfg)
351 return;
352
353 if (old_cfg) {
354 free_irq_2_pin(old_cfg, cfg);
355 free_irq_cfg(old_cfg);
356 old_desc->chip_data = NULL;
357 }
358 }
359
360 static void
361 set_extra_move_desc(struct irq_desc *desc, const struct cpumask *mask)
362 {
363 struct irq_cfg *cfg = desc->chip_data;
364
365 if (!cfg->move_in_progress) {
366 /* it means that domain is not changed */
367 if (!cpumask_intersects(desc->affinity, mask))
368 cfg->move_desc_pending = 1;
369 }
370 }
371 #endif
372
373 #else
374 static struct irq_cfg *irq_cfg(unsigned int irq)
375 {
376 return irq < nr_irqs ? irq_cfgx + irq : NULL;
377 }
378
379 #endif
380
381 #ifndef CONFIG_NUMA_MIGRATE_IRQ_DESC
382 static inline void
383 set_extra_move_desc(struct irq_desc *desc, const struct cpumask *mask)
384 {
385 }
386 #endif
387
388 struct io_apic {
389 unsigned int index;
390 unsigned int unused[3];
391 unsigned int data;
392 unsigned int unused2[11];
393 unsigned int eoi;
394 };
395
396 static __attribute_const__ struct io_apic __iomem *io_apic_base(int idx)
397 {
398 return (void __iomem *) __fix_to_virt(FIX_IO_APIC_BASE_0 + idx)
399 + (mp_ioapics[idx].apicaddr & ~PAGE_MASK);
400 }
401
402 static inline void io_apic_eoi(unsigned int apic, unsigned int vector)
403 {
404 struct io_apic __iomem *io_apic = io_apic_base(apic);
405 writel(vector, &io_apic->eoi);
406 }
407
408 static inline unsigned int io_apic_read(unsigned int apic, unsigned int reg)
409 {
410 struct io_apic __iomem *io_apic = io_apic_base(apic);
411 writel(reg, &io_apic->index);
412 return readl(&io_apic->data);
413 }
414
415 static inline void io_apic_write(unsigned int apic, unsigned int reg, unsigned int value)
416 {
417 struct io_apic __iomem *io_apic = io_apic_base(apic);
418 writel(reg, &io_apic->index);
419 writel(value, &io_apic->data);
420 }
421
422 /*
423 * Re-write a value: to be used for read-modify-write
424 * cycles where the read already set up the index register.
425 *
426 * Older SiS APIC requires we rewrite the index register
427 */
428 static inline void io_apic_modify(unsigned int apic, unsigned int reg, unsigned int value)
429 {
430 struct io_apic __iomem *io_apic = io_apic_base(apic);
431
432 if (sis_apic_bug)
433 writel(reg, &io_apic->index);
434 writel(value, &io_apic->data);
435 }
436
437 static bool io_apic_level_ack_pending(struct irq_cfg *cfg)
438 {
439 struct irq_pin_list *entry;
440 unsigned long flags;
441
442 spin_lock_irqsave(&ioapic_lock, flags);
443 entry = cfg->irq_2_pin;
444 for (;;) {
445 unsigned int reg;
446 int pin;
447
448 if (!entry)
449 break;
450 pin = entry->pin;
451 reg = io_apic_read(entry->apic, 0x10 + pin*2);
452 /* Is the remote IRR bit set? */
453 if (reg & IO_APIC_REDIR_REMOTE_IRR) {
454 spin_unlock_irqrestore(&ioapic_lock, flags);
455 return true;
456 }
457 if (!entry->next)
458 break;
459 entry = entry->next;
460 }
461 spin_unlock_irqrestore(&ioapic_lock, flags);
462
463 return false;
464 }
465
466 union entry_union {
467 struct { u32 w1, w2; };
468 struct IO_APIC_route_entry entry;
469 };
470
471 static struct IO_APIC_route_entry ioapic_read_entry(int apic, int pin)
472 {
473 union entry_union eu;
474 unsigned long flags;
475 spin_lock_irqsave(&ioapic_lock, flags);
476 eu.w1 = io_apic_read(apic, 0x10 + 2 * pin);
477 eu.w2 = io_apic_read(apic, 0x11 + 2 * pin);
478 spin_unlock_irqrestore(&ioapic_lock, flags);
479 return eu.entry;
480 }
481
482 /*
483 * When we write a new IO APIC routing entry, we need to write the high
484 * word first! If the mask bit in the low word is clear, we will enable
485 * the interrupt, and we need to make sure the entry is fully populated
486 * before that happens.
487 */
488 static void
489 __ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e)
490 {
491 union entry_union eu;
492 eu.entry = e;
493 io_apic_write(apic, 0x11 + 2*pin, eu.w2);
494 io_apic_write(apic, 0x10 + 2*pin, eu.w1);
495 }
496
497 void ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e)
498 {
499 unsigned long flags;
500 spin_lock_irqsave(&ioapic_lock, flags);
501 __ioapic_write_entry(apic, pin, e);
502 spin_unlock_irqrestore(&ioapic_lock, flags);
503 }
504
505 /*
506 * When we mask an IO APIC routing entry, we need to write the low
507 * word first, in order to set the mask bit before we change the
508 * high bits!
509 */
510 static void ioapic_mask_entry(int apic, int pin)
511 {
512 unsigned long flags;
513 union entry_union eu = { .entry.mask = 1 };
514
515 spin_lock_irqsave(&ioapic_lock, flags);
516 io_apic_write(apic, 0x10 + 2*pin, eu.w1);
517 io_apic_write(apic, 0x11 + 2*pin, eu.w2);
518 spin_unlock_irqrestore(&ioapic_lock, flags);
519 }
520
521 /*
522 * The common case is 1:1 IRQ<->pin mappings. Sometimes there are
523 * shared ISA-space IRQs, so we have to support them. We are super
524 * fast in the common case, and fast for shared ISA-space IRQs.
525 */
526 static void add_pin_to_irq_cpu(struct irq_cfg *cfg, int cpu, int apic, int pin)
527 {
528 struct irq_pin_list *entry;
529
530 entry = cfg->irq_2_pin;
531 if (!entry) {
532 entry = get_one_free_irq_2_pin(cpu);
533 if (!entry) {
534 printk(KERN_ERR "can not alloc irq_2_pin to add %d - %d\n",
535 apic, pin);
536 return;
537 }
538 cfg->irq_2_pin = entry;
539 entry->apic = apic;
540 entry->pin = pin;
541 return;
542 }
543
544 while (entry->next) {
545 /* not again, please */
546 if (entry->apic == apic && entry->pin == pin)
547 return;
548
549 entry = entry->next;
550 }
551
552 entry->next = get_one_free_irq_2_pin(cpu);
553 entry = entry->next;
554 entry->apic = apic;
555 entry->pin = pin;
556 }
557
558 /*
559 * Reroute an IRQ to a different pin.
560 */
561 static void __init replace_pin_at_irq_cpu(struct irq_cfg *cfg, int cpu,
562 int oldapic, int oldpin,
563 int newapic, int newpin)
564 {
565 struct irq_pin_list *entry = cfg->irq_2_pin;
566 int replaced = 0;
567
568 while (entry) {
569 if (entry->apic == oldapic && entry->pin == oldpin) {
570 entry->apic = newapic;
571 entry->pin = newpin;
572 replaced = 1;
573 /* every one is different, right? */
574 break;
575 }
576 entry = entry->next;
577 }
578
579 /* why? call replace before add? */
580 if (!replaced)
581 add_pin_to_irq_cpu(cfg, cpu, newapic, newpin);
582 }
583
584 static inline void io_apic_modify_irq(struct irq_cfg *cfg,
585 int mask_and, int mask_or,
586 void (*final)(struct irq_pin_list *entry))
587 {
588 int pin;
589 struct irq_pin_list *entry;
590
591 for (entry = cfg->irq_2_pin; entry != NULL; entry = entry->next) {
592 unsigned int reg;
593 pin = entry->pin;
594 reg = io_apic_read(entry->apic, 0x10 + pin * 2);
595 reg &= mask_and;
596 reg |= mask_or;
597 io_apic_modify(entry->apic, 0x10 + pin * 2, reg);
598 if (final)
599 final(entry);
600 }
601 }
602
603 static void __unmask_IO_APIC_irq(struct irq_cfg *cfg)
604 {
605 io_apic_modify_irq(cfg, ~IO_APIC_REDIR_MASKED, 0, NULL);
606 }
607
608 #ifdef CONFIG_X86_64
609 static void io_apic_sync(struct irq_pin_list *entry)
610 {
611 /*
612 * Synchronize the IO-APIC and the CPU by doing
613 * a dummy read from the IO-APIC
614 */
615 struct io_apic __iomem *io_apic;
616 io_apic = io_apic_base(entry->apic);
617 readl(&io_apic->data);
618 }
619
620 static void __mask_IO_APIC_irq(struct irq_cfg *cfg)
621 {
622 io_apic_modify_irq(cfg, ~0, IO_APIC_REDIR_MASKED, &io_apic_sync);
623 }
624 #else /* CONFIG_X86_32 */
625 static void __mask_IO_APIC_irq(struct irq_cfg *cfg)
626 {
627 io_apic_modify_irq(cfg, ~0, IO_APIC_REDIR_MASKED, NULL);
628 }
629
630 static void __mask_and_edge_IO_APIC_irq(struct irq_cfg *cfg)
631 {
632 io_apic_modify_irq(cfg, ~IO_APIC_REDIR_LEVEL_TRIGGER,
633 IO_APIC_REDIR_MASKED, NULL);
634 }
635
636 static void __unmask_and_level_IO_APIC_irq(struct irq_cfg *cfg)
637 {
638 io_apic_modify_irq(cfg, ~IO_APIC_REDIR_MASKED,
639 IO_APIC_REDIR_LEVEL_TRIGGER, NULL);
640 }
641 #endif /* CONFIG_X86_32 */
642
643 static void mask_IO_APIC_irq_desc(struct irq_desc *desc)
644 {
645 struct irq_cfg *cfg = desc->chip_data;
646 unsigned long flags;
647
648 BUG_ON(!cfg);
649
650 spin_lock_irqsave(&ioapic_lock, flags);
651 __mask_IO_APIC_irq(cfg);
652 spin_unlock_irqrestore(&ioapic_lock, flags);
653 }
654
655 static void unmask_IO_APIC_irq_desc(struct irq_desc *desc)
656 {
657 struct irq_cfg *cfg = desc->chip_data;
658 unsigned long flags;
659
660 spin_lock_irqsave(&ioapic_lock, flags);
661 __unmask_IO_APIC_irq(cfg);
662 spin_unlock_irqrestore(&ioapic_lock, flags);
663 }
664
665 static void mask_IO_APIC_irq(unsigned int irq)
666 {
667 struct irq_desc *desc = irq_to_desc(irq);
668
669 mask_IO_APIC_irq_desc(desc);
670 }
671 static void unmask_IO_APIC_irq(unsigned int irq)
672 {
673 struct irq_desc *desc = irq_to_desc(irq);
674
675 unmask_IO_APIC_irq_desc(desc);
676 }
677
678 static void clear_IO_APIC_pin(unsigned int apic, unsigned int pin)
679 {
680 struct IO_APIC_route_entry entry;
681
682 /* Check delivery_mode to be sure we're not clearing an SMI pin */
683 entry = ioapic_read_entry(apic, pin);
684 if (entry.delivery_mode == dest_SMI)
685 return;
686 /*
687 * Disable it in the IO-APIC irq-routing table:
688 */
689 ioapic_mask_entry(apic, pin);
690 }
691
692 static void clear_IO_APIC (void)
693 {
694 int apic, pin;
695
696 for (apic = 0; apic < nr_ioapics; apic++)
697 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++)
698 clear_IO_APIC_pin(apic, pin);
699 }
700
701 #ifdef CONFIG_X86_32
702 /*
703 * support for broken MP BIOSs, enables hand-redirection of PIRQ0-7 to
704 * specific CPU-side IRQs.
705 */
706
707 #define MAX_PIRQS 8
708 static int pirq_entries[MAX_PIRQS] = {
709 [0 ... MAX_PIRQS - 1] = -1
710 };
711
712 static int __init ioapic_pirq_setup(char *str)
713 {
714 int i, max;
715 int ints[MAX_PIRQS+1];
716
717 get_options(str, ARRAY_SIZE(ints), ints);
718
719 apic_printk(APIC_VERBOSE, KERN_INFO
720 "PIRQ redirection, working around broken MP-BIOS.\n");
721 max = MAX_PIRQS;
722 if (ints[0] < MAX_PIRQS)
723 max = ints[0];
724
725 for (i = 0; i < max; i++) {
726 apic_printk(APIC_VERBOSE, KERN_DEBUG
727 "... PIRQ%d -> IRQ %d\n", i, ints[i+1]);
728 /*
729 * PIRQs are mapped upside down, usually.
730 */
731 pirq_entries[MAX_PIRQS-i-1] = ints[i+1];
732 }
733 return 1;
734 }
735
736 __setup("pirq=", ioapic_pirq_setup);
737 #endif /* CONFIG_X86_32 */
738
739 struct IO_APIC_route_entry **alloc_ioapic_entries(void)
740 {
741 int apic;
742 struct IO_APIC_route_entry **ioapic_entries;
743
744 ioapic_entries = kzalloc(sizeof(*ioapic_entries) * nr_ioapics,
745 GFP_ATOMIC);
746 if (!ioapic_entries)
747 return 0;
748
749 for (apic = 0; apic < nr_ioapics; apic++) {
750 ioapic_entries[apic] =
751 kzalloc(sizeof(struct IO_APIC_route_entry) *
752 nr_ioapic_registers[apic], GFP_ATOMIC);
753 if (!ioapic_entries[apic])
754 goto nomem;
755 }
756
757 return ioapic_entries;
758
759 nomem:
760 while (--apic >= 0)
761 kfree(ioapic_entries[apic]);
762 kfree(ioapic_entries);
763
764 return 0;
765 }
766
767 /*
768 * Saves all the IO-APIC RTE's
769 */
770 int save_IO_APIC_setup(struct IO_APIC_route_entry **ioapic_entries)
771 {
772 int apic, pin;
773
774 if (!ioapic_entries)
775 return -ENOMEM;
776
777 for (apic = 0; apic < nr_ioapics; apic++) {
778 if (!ioapic_entries[apic])
779 return -ENOMEM;
780
781 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++)
782 ioapic_entries[apic][pin] =
783 ioapic_read_entry(apic, pin);
784 }
785
786 return 0;
787 }
788
789 /*
790 * Mask all IO APIC entries.
791 */
792 void mask_IO_APIC_setup(struct IO_APIC_route_entry **ioapic_entries)
793 {
794 int apic, pin;
795
796 if (!ioapic_entries)
797 return;
798
799 for (apic = 0; apic < nr_ioapics; apic++) {
800 if (!ioapic_entries[apic])
801 break;
802
803 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
804 struct IO_APIC_route_entry entry;
805
806 entry = ioapic_entries[apic][pin];
807 if (!entry.mask) {
808 entry.mask = 1;
809 ioapic_write_entry(apic, pin, entry);
810 }
811 }
812 }
813 }
814
815 /*
816 * Restore IO APIC entries which was saved in ioapic_entries.
817 */
818 int restore_IO_APIC_setup(struct IO_APIC_route_entry **ioapic_entries)
819 {
820 int apic, pin;
821
822 if (!ioapic_entries)
823 return -ENOMEM;
824
825 for (apic = 0; apic < nr_ioapics; apic++) {
826 if (!ioapic_entries[apic])
827 return -ENOMEM;
828
829 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++)
830 ioapic_write_entry(apic, pin,
831 ioapic_entries[apic][pin]);
832 }
833 return 0;
834 }
835
836 void free_ioapic_entries(struct IO_APIC_route_entry **ioapic_entries)
837 {
838 int apic;
839
840 for (apic = 0; apic < nr_ioapics; apic++)
841 kfree(ioapic_entries[apic]);
842
843 kfree(ioapic_entries);
844 }
845
846 /*
847 * Find the IRQ entry number of a certain pin.
848 */
849 static int find_irq_entry(int apic, int pin, int type)
850 {
851 int i;
852
853 for (i = 0; i < mp_irq_entries; i++)
854 if (mp_irqs[i].irqtype == type &&
855 (mp_irqs[i].dstapic == mp_ioapics[apic].apicid ||
856 mp_irqs[i].dstapic == MP_APIC_ALL) &&
857 mp_irqs[i].dstirq == pin)
858 return i;
859
860 return -1;
861 }
862
863 /*
864 * Find the pin to which IRQ[irq] (ISA) is connected
865 */
866 static int __init find_isa_irq_pin(int irq, int type)
867 {
868 int i;
869
870 for (i = 0; i < mp_irq_entries; i++) {
871 int lbus = mp_irqs[i].srcbus;
872
873 if (test_bit(lbus, mp_bus_not_pci) &&
874 (mp_irqs[i].irqtype == type) &&
875 (mp_irqs[i].srcbusirq == irq))
876
877 return mp_irqs[i].dstirq;
878 }
879 return -1;
880 }
881
882 static int __init find_isa_irq_apic(int irq, int type)
883 {
884 int i;
885
886 for (i = 0; i < mp_irq_entries; i++) {
887 int lbus = mp_irqs[i].srcbus;
888
889 if (test_bit(lbus, mp_bus_not_pci) &&
890 (mp_irqs[i].irqtype == type) &&
891 (mp_irqs[i].srcbusirq == irq))
892 break;
893 }
894 if (i < mp_irq_entries) {
895 int apic;
896 for(apic = 0; apic < nr_ioapics; apic++) {
897 if (mp_ioapics[apic].apicid == mp_irqs[i].dstapic)
898 return apic;
899 }
900 }
901
902 return -1;
903 }
904
905 /*
906 * Find a specific PCI IRQ entry.
907 * Not an __init, possibly needed by modules
908 */
909 static int pin_2_irq(int idx, int apic, int pin);
910
911 int IO_APIC_get_PCI_irq_vector(int bus, int slot, int pin)
912 {
913 int apic, i, best_guess = -1;
914
915 apic_printk(APIC_DEBUG, "querying PCI -> IRQ mapping bus:%d, slot:%d, pin:%d.\n",
916 bus, slot, pin);
917 if (test_bit(bus, mp_bus_not_pci)) {
918 apic_printk(APIC_VERBOSE, "PCI BIOS passed nonexistent PCI bus %d!\n", bus);
919 return -1;
920 }
921 for (i = 0; i < mp_irq_entries; i++) {
922 int lbus = mp_irqs[i].srcbus;
923
924 for (apic = 0; apic < nr_ioapics; apic++)
925 if (mp_ioapics[apic].apicid == mp_irqs[i].dstapic ||
926 mp_irqs[i].dstapic == MP_APIC_ALL)
927 break;
928
929 if (!test_bit(lbus, mp_bus_not_pci) &&
930 !mp_irqs[i].irqtype &&
931 (bus == lbus) &&
932 (slot == ((mp_irqs[i].srcbusirq >> 2) & 0x1f))) {
933 int irq = pin_2_irq(i, apic, mp_irqs[i].dstirq);
934
935 if (!(apic || IO_APIC_IRQ(irq)))
936 continue;
937
938 if (pin == (mp_irqs[i].srcbusirq & 3))
939 return irq;
940 /*
941 * Use the first all-but-pin matching entry as a
942 * best-guess fuzzy result for broken mptables.
943 */
944 if (best_guess < 0)
945 best_guess = irq;
946 }
947 }
948 return best_guess;
949 }
950
951 EXPORT_SYMBOL(IO_APIC_get_PCI_irq_vector);
952
953 #if defined(CONFIG_EISA) || defined(CONFIG_MCA)
954 /*
955 * EISA Edge/Level control register, ELCR
956 */
957 static int EISA_ELCR(unsigned int irq)
958 {
959 if (irq < NR_IRQS_LEGACY) {
960 unsigned int port = 0x4d0 + (irq >> 3);
961 return (inb(port) >> (irq & 7)) & 1;
962 }
963 apic_printk(APIC_VERBOSE, KERN_INFO
964 "Broken MPtable reports ISA irq %d\n", irq);
965 return 0;
966 }
967
968 #endif
969
970 /* ISA interrupts are always polarity zero edge triggered,
971 * when listed as conforming in the MP table. */
972
973 #define default_ISA_trigger(idx) (0)
974 #define default_ISA_polarity(idx) (0)
975
976 /* EISA interrupts are always polarity zero and can be edge or level
977 * trigger depending on the ELCR value. If an interrupt is listed as
978 * EISA conforming in the MP table, that means its trigger type must
979 * be read in from the ELCR */
980
981 #define default_EISA_trigger(idx) (EISA_ELCR(mp_irqs[idx].srcbusirq))
982 #define default_EISA_polarity(idx) default_ISA_polarity(idx)
983
984 /* PCI interrupts are always polarity one level triggered,
985 * when listed as conforming in the MP table. */
986
987 #define default_PCI_trigger(idx) (1)
988 #define default_PCI_polarity(idx) (1)
989
990 /* MCA interrupts are always polarity zero level triggered,
991 * when listed as conforming in the MP table. */
992
993 #define default_MCA_trigger(idx) (1)
994 #define default_MCA_polarity(idx) default_ISA_polarity(idx)
995
996 static int MPBIOS_polarity(int idx)
997 {
998 int bus = mp_irqs[idx].srcbus;
999 int polarity;
1000
1001 /*
1002 * Determine IRQ line polarity (high active or low active):
1003 */
1004 switch (mp_irqs[idx].irqflag & 3)
1005 {
1006 case 0: /* conforms, ie. bus-type dependent polarity */
1007 if (test_bit(bus, mp_bus_not_pci))
1008 polarity = default_ISA_polarity(idx);
1009 else
1010 polarity = default_PCI_polarity(idx);
1011 break;
1012 case 1: /* high active */
1013 {
1014 polarity = 0;
1015 break;
1016 }
1017 case 2: /* reserved */
1018 {
1019 printk(KERN_WARNING "broken BIOS!!\n");
1020 polarity = 1;
1021 break;
1022 }
1023 case 3: /* low active */
1024 {
1025 polarity = 1;
1026 break;
1027 }
1028 default: /* invalid */
1029 {
1030 printk(KERN_WARNING "broken BIOS!!\n");
1031 polarity = 1;
1032 break;
1033 }
1034 }
1035 return polarity;
1036 }
1037
1038 static int MPBIOS_trigger(int idx)
1039 {
1040 int bus = mp_irqs[idx].srcbus;
1041 int trigger;
1042
1043 /*
1044 * Determine IRQ trigger mode (edge or level sensitive):
1045 */
1046 switch ((mp_irqs[idx].irqflag>>2) & 3)
1047 {
1048 case 0: /* conforms, ie. bus-type dependent */
1049 if (test_bit(bus, mp_bus_not_pci))
1050 trigger = default_ISA_trigger(idx);
1051 else
1052 trigger = default_PCI_trigger(idx);
1053 #if defined(CONFIG_EISA) || defined(CONFIG_MCA)
1054 switch (mp_bus_id_to_type[bus]) {
1055 case MP_BUS_ISA: /* ISA pin */
1056 {
1057 /* set before the switch */
1058 break;
1059 }
1060 case MP_BUS_EISA: /* EISA pin */
1061 {
1062 trigger = default_EISA_trigger(idx);
1063 break;
1064 }
1065 case MP_BUS_PCI: /* PCI pin */
1066 {
1067 /* set before the switch */
1068 break;
1069 }
1070 case MP_BUS_MCA: /* MCA pin */
1071 {
1072 trigger = default_MCA_trigger(idx);
1073 break;
1074 }
1075 default:
1076 {
1077 printk(KERN_WARNING "broken BIOS!!\n");
1078 trigger = 1;
1079 break;
1080 }
1081 }
1082 #endif
1083 break;
1084 case 1: /* edge */
1085 {
1086 trigger = 0;
1087 break;
1088 }
1089 case 2: /* reserved */
1090 {
1091 printk(KERN_WARNING "broken BIOS!!\n");
1092 trigger = 1;
1093 break;
1094 }
1095 case 3: /* level */
1096 {
1097 trigger = 1;
1098 break;
1099 }
1100 default: /* invalid */
1101 {
1102 printk(KERN_WARNING "broken BIOS!!\n");
1103 trigger = 0;
1104 break;
1105 }
1106 }
1107 return trigger;
1108 }
1109
1110 static inline int irq_polarity(int idx)
1111 {
1112 return MPBIOS_polarity(idx);
1113 }
1114
1115 static inline int irq_trigger(int idx)
1116 {
1117 return MPBIOS_trigger(idx);
1118 }
1119
1120 int (*ioapic_renumber_irq)(int ioapic, int irq);
1121 static int pin_2_irq(int idx, int apic, int pin)
1122 {
1123 int irq, i;
1124 int bus = mp_irqs[idx].srcbus;
1125
1126 /*
1127 * Debugging check, we are in big trouble if this message pops up!
1128 */
1129 if (mp_irqs[idx].dstirq != pin)
1130 printk(KERN_ERR "broken BIOS or MPTABLE parser, ayiee!!\n");
1131
1132 if (test_bit(bus, mp_bus_not_pci)) {
1133 irq = mp_irqs[idx].srcbusirq;
1134 } else {
1135 /*
1136 * PCI IRQs are mapped in order
1137 */
1138 i = irq = 0;
1139 while (i < apic)
1140 irq += nr_ioapic_registers[i++];
1141 irq += pin;
1142 /*
1143 * For MPS mode, so far only needed by ES7000 platform
1144 */
1145 if (ioapic_renumber_irq)
1146 irq = ioapic_renumber_irq(apic, irq);
1147 }
1148
1149 #ifdef CONFIG_X86_32
1150 /*
1151 * PCI IRQ command line redirection. Yes, limits are hardcoded.
1152 */
1153 if ((pin >= 16) && (pin <= 23)) {
1154 if (pirq_entries[pin-16] != -1) {
1155 if (!pirq_entries[pin-16]) {
1156 apic_printk(APIC_VERBOSE, KERN_DEBUG
1157 "disabling PIRQ%d\n", pin-16);
1158 } else {
1159 irq = pirq_entries[pin-16];
1160 apic_printk(APIC_VERBOSE, KERN_DEBUG
1161 "using PIRQ%d -> IRQ %d\n",
1162 pin-16, irq);
1163 }
1164 }
1165 }
1166 #endif
1167
1168 return irq;
1169 }
1170
1171 void lock_vector_lock(void)
1172 {
1173 /* Used to the online set of cpus does not change
1174 * during assign_irq_vector.
1175 */
1176 spin_lock(&vector_lock);
1177 }
1178
1179 void unlock_vector_lock(void)
1180 {
1181 spin_unlock(&vector_lock);
1182 }
1183
1184 static int
1185 __assign_irq_vector(int irq, struct irq_cfg *cfg, const struct cpumask *mask)
1186 {
1187 /*
1188 * NOTE! The local APIC isn't very good at handling
1189 * multiple interrupts at the same interrupt level.
1190 * As the interrupt level is determined by taking the
1191 * vector number and shifting that right by 4, we
1192 * want to spread these out a bit so that they don't
1193 * all fall in the same interrupt level.
1194 *
1195 * Also, we've got to be careful not to trash gate
1196 * 0x80, because int 0x80 is hm, kind of importantish. ;)
1197 */
1198 static int current_vector = FIRST_DEVICE_VECTOR, current_offset = 0;
1199 unsigned int old_vector;
1200 int cpu, err;
1201 cpumask_var_t tmp_mask;
1202
1203 if ((cfg->move_in_progress) || cfg->move_cleanup_count)
1204 return -EBUSY;
1205
1206 if (!alloc_cpumask_var(&tmp_mask, GFP_ATOMIC))
1207 return -ENOMEM;
1208
1209 old_vector = cfg->vector;
1210 if (old_vector) {
1211 cpumask_and(tmp_mask, mask, cpu_online_mask);
1212 cpumask_and(tmp_mask, cfg->domain, tmp_mask);
1213 if (!cpumask_empty(tmp_mask)) {
1214 free_cpumask_var(tmp_mask);
1215 return 0;
1216 }
1217 }
1218
1219 /* Only try and allocate irqs on cpus that are present */
1220 err = -ENOSPC;
1221 for_each_cpu_and(cpu, mask, cpu_online_mask) {
1222 int new_cpu;
1223 int vector, offset;
1224
1225 apic->vector_allocation_domain(cpu, tmp_mask);
1226
1227 vector = current_vector;
1228 offset = current_offset;
1229 next:
1230 vector += 8;
1231 if (vector >= first_system_vector) {
1232 /* If out of vectors on large boxen, must share them. */
1233 offset = (offset + 1) % 8;
1234 vector = FIRST_DEVICE_VECTOR + offset;
1235 }
1236 if (unlikely(current_vector == vector))
1237 continue;
1238
1239 if (test_bit(vector, used_vectors))
1240 goto next;
1241
1242 for_each_cpu_and(new_cpu, tmp_mask, cpu_online_mask)
1243 if (per_cpu(vector_irq, new_cpu)[vector] != -1)
1244 goto next;
1245 /* Found one! */
1246 current_vector = vector;
1247 current_offset = offset;
1248 if (old_vector) {
1249 cfg->move_in_progress = 1;
1250 cpumask_copy(cfg->old_domain, cfg->domain);
1251 }
1252 for_each_cpu_and(new_cpu, tmp_mask, cpu_online_mask)
1253 per_cpu(vector_irq, new_cpu)[vector] = irq;
1254 cfg->vector = vector;
1255 cpumask_copy(cfg->domain, tmp_mask);
1256 err = 0;
1257 break;
1258 }
1259 free_cpumask_var(tmp_mask);
1260 return err;
1261 }
1262
1263 static int
1264 assign_irq_vector(int irq, struct irq_cfg *cfg, const struct cpumask *mask)
1265 {
1266 int err;
1267 unsigned long flags;
1268
1269 spin_lock_irqsave(&vector_lock, flags);
1270 err = __assign_irq_vector(irq, cfg, mask);
1271 spin_unlock_irqrestore(&vector_lock, flags);
1272 return err;
1273 }
1274
1275 static void __clear_irq_vector(int irq, struct irq_cfg *cfg)
1276 {
1277 int cpu, vector;
1278
1279 BUG_ON(!cfg->vector);
1280
1281 vector = cfg->vector;
1282 for_each_cpu_and(cpu, cfg->domain, cpu_online_mask)
1283 per_cpu(vector_irq, cpu)[vector] = -1;
1284
1285 cfg->vector = 0;
1286 cpumask_clear(cfg->domain);
1287
1288 if (likely(!cfg->move_in_progress))
1289 return;
1290 for_each_cpu_and(cpu, cfg->old_domain, cpu_online_mask) {
1291 for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS;
1292 vector++) {
1293 if (per_cpu(vector_irq, cpu)[vector] != irq)
1294 continue;
1295 per_cpu(vector_irq, cpu)[vector] = -1;
1296 break;
1297 }
1298 }
1299 cfg->move_in_progress = 0;
1300 }
1301
1302 void __setup_vector_irq(int cpu)
1303 {
1304 /* Initialize vector_irq on a new cpu */
1305 /* This function must be called with vector_lock held */
1306 int irq, vector;
1307 struct irq_cfg *cfg;
1308 struct irq_desc *desc;
1309
1310 /* Mark the inuse vectors */
1311 for_each_irq_desc(irq, desc) {
1312 cfg = desc->chip_data;
1313 if (!cpumask_test_cpu(cpu, cfg->domain))
1314 continue;
1315 vector = cfg->vector;
1316 per_cpu(vector_irq, cpu)[vector] = irq;
1317 }
1318 /* Mark the free vectors */
1319 for (vector = 0; vector < NR_VECTORS; ++vector) {
1320 irq = per_cpu(vector_irq, cpu)[vector];
1321 if (irq < 0)
1322 continue;
1323
1324 cfg = irq_cfg(irq);
1325 if (!cpumask_test_cpu(cpu, cfg->domain))
1326 per_cpu(vector_irq, cpu)[vector] = -1;
1327 }
1328 }
1329
1330 static struct irq_chip ioapic_chip;
1331 static struct irq_chip ir_ioapic_chip;
1332
1333 #define IOAPIC_AUTO -1
1334 #define IOAPIC_EDGE 0
1335 #define IOAPIC_LEVEL 1
1336
1337 #ifdef CONFIG_X86_32
1338 static inline int IO_APIC_irq_trigger(int irq)
1339 {
1340 int apic, idx, pin;
1341
1342 for (apic = 0; apic < nr_ioapics; apic++) {
1343 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
1344 idx = find_irq_entry(apic, pin, mp_INT);
1345 if ((idx != -1) && (irq == pin_2_irq(idx, apic, pin)))
1346 return irq_trigger(idx);
1347 }
1348 }
1349 /*
1350 * nonexistent IRQs are edge default
1351 */
1352 return 0;
1353 }
1354 #else
1355 static inline int IO_APIC_irq_trigger(int irq)
1356 {
1357 return 1;
1358 }
1359 #endif
1360
1361 static void ioapic_register_intr(int irq, struct irq_desc *desc, unsigned long trigger)
1362 {
1363
1364 if ((trigger == IOAPIC_AUTO && IO_APIC_irq_trigger(irq)) ||
1365 trigger == IOAPIC_LEVEL)
1366 desc->status |= IRQ_LEVEL;
1367 else
1368 desc->status &= ~IRQ_LEVEL;
1369
1370 if (irq_remapped(irq)) {
1371 desc->status |= IRQ_MOVE_PCNTXT;
1372 if (trigger)
1373 set_irq_chip_and_handler_name(irq, &ir_ioapic_chip,
1374 handle_fasteoi_irq,
1375 "fasteoi");
1376 else
1377 set_irq_chip_and_handler_name(irq, &ir_ioapic_chip,
1378 handle_edge_irq, "edge");
1379 return;
1380 }
1381
1382 if ((trigger == IOAPIC_AUTO && IO_APIC_irq_trigger(irq)) ||
1383 trigger == IOAPIC_LEVEL)
1384 set_irq_chip_and_handler_name(irq, &ioapic_chip,
1385 handle_fasteoi_irq,
1386 "fasteoi");
1387 else
1388 set_irq_chip_and_handler_name(irq, &ioapic_chip,
1389 handle_edge_irq, "edge");
1390 }
1391
1392 int setup_ioapic_entry(int apic_id, int irq,
1393 struct IO_APIC_route_entry *entry,
1394 unsigned int destination, int trigger,
1395 int polarity, int vector, int pin)
1396 {
1397 /*
1398 * add it to the IO-APIC irq-routing table:
1399 */
1400 memset(entry,0,sizeof(*entry));
1401
1402 if (intr_remapping_enabled) {
1403 struct intel_iommu *iommu = map_ioapic_to_ir(apic_id);
1404 struct irte irte;
1405 struct IR_IO_APIC_route_entry *ir_entry =
1406 (struct IR_IO_APIC_route_entry *) entry;
1407 int index;
1408
1409 if (!iommu)
1410 panic("No mapping iommu for ioapic %d\n", apic_id);
1411
1412 index = alloc_irte(iommu, irq, 1);
1413 if (index < 0)
1414 panic("Failed to allocate IRTE for ioapic %d\n", apic_id);
1415
1416 memset(&irte, 0, sizeof(irte));
1417
1418 irte.present = 1;
1419 irte.dst_mode = apic->irq_dest_mode;
1420 /*
1421 * Trigger mode in the IRTE will always be edge, and the
1422 * actual level or edge trigger will be setup in the IO-APIC
1423 * RTE. This will help simplify level triggered irq migration.
1424 * For more details, see the comments above explainig IO-APIC
1425 * irq migration in the presence of interrupt-remapping.
1426 */
1427 irte.trigger_mode = 0;
1428 irte.dlvry_mode = apic->irq_delivery_mode;
1429 irte.vector = vector;
1430 irte.dest_id = IRTE_DEST(destination);
1431
1432 modify_irte(irq, &irte);
1433
1434 ir_entry->index2 = (index >> 15) & 0x1;
1435 ir_entry->zero = 0;
1436 ir_entry->format = 1;
1437 ir_entry->index = (index & 0x7fff);
1438 /*
1439 * IO-APIC RTE will be configured with virtual vector.
1440 * irq handler will do the explicit EOI to the io-apic.
1441 */
1442 ir_entry->vector = pin;
1443 } else {
1444 entry->delivery_mode = apic->irq_delivery_mode;
1445 entry->dest_mode = apic->irq_dest_mode;
1446 entry->dest = destination;
1447 entry->vector = vector;
1448 }
1449
1450 entry->mask = 0; /* enable IRQ */
1451 entry->trigger = trigger;
1452 entry->polarity = polarity;
1453
1454 /* Mask level triggered irqs.
1455 * Use IRQ_DELAYED_DISABLE for edge triggered irqs.
1456 */
1457 if (trigger)
1458 entry->mask = 1;
1459 return 0;
1460 }
1461
1462 static void setup_IO_APIC_irq(int apic_id, int pin, unsigned int irq, struct irq_desc *desc,
1463 int trigger, int polarity)
1464 {
1465 struct irq_cfg *cfg;
1466 struct IO_APIC_route_entry entry;
1467 unsigned int dest;
1468
1469 if (!IO_APIC_IRQ(irq))
1470 return;
1471
1472 cfg = desc->chip_data;
1473
1474 if (assign_irq_vector(irq, cfg, apic->target_cpus()))
1475 return;
1476
1477 dest = apic->cpu_mask_to_apicid_and(cfg->domain, apic->target_cpus());
1478
1479 apic_printk(APIC_VERBOSE,KERN_DEBUG
1480 "IOAPIC[%d]: Set routing entry (%d-%d -> 0x%x -> "
1481 "IRQ %d Mode:%i Active:%i)\n",
1482 apic_id, mp_ioapics[apic_id].apicid, pin, cfg->vector,
1483 irq, trigger, polarity);
1484
1485
1486 if (setup_ioapic_entry(mp_ioapics[apic_id].apicid, irq, &entry,
1487 dest, trigger, polarity, cfg->vector, pin)) {
1488 printk("Failed to setup ioapic entry for ioapic %d, pin %d\n",
1489 mp_ioapics[apic_id].apicid, pin);
1490 __clear_irq_vector(irq, cfg);
1491 return;
1492 }
1493
1494 ioapic_register_intr(irq, desc, trigger);
1495 if (irq < NR_IRQS_LEGACY)
1496 disable_8259A_irq(irq);
1497
1498 ioapic_write_entry(apic_id, pin, entry);
1499 }
1500
1501 static void __init setup_IO_APIC_irqs(void)
1502 {
1503 int apic_id, pin, idx, irq;
1504 int notcon = 0;
1505 struct irq_desc *desc;
1506 struct irq_cfg *cfg;
1507 int cpu = boot_cpu_id;
1508
1509 apic_printk(APIC_VERBOSE, KERN_DEBUG "init IO_APIC IRQs\n");
1510
1511 for (apic_id = 0; apic_id < nr_ioapics; apic_id++) {
1512 for (pin = 0; pin < nr_ioapic_registers[apic_id]; pin++) {
1513
1514 idx = find_irq_entry(apic_id, pin, mp_INT);
1515 if (idx == -1) {
1516 if (!notcon) {
1517 notcon = 1;
1518 apic_printk(APIC_VERBOSE,
1519 KERN_DEBUG " %d-%d",
1520 mp_ioapics[apic_id].apicid, pin);
1521 } else
1522 apic_printk(APIC_VERBOSE, " %d-%d",
1523 mp_ioapics[apic_id].apicid, pin);
1524 continue;
1525 }
1526 if (notcon) {
1527 apic_printk(APIC_VERBOSE,
1528 " (apicid-pin) not connected\n");
1529 notcon = 0;
1530 }
1531
1532 irq = pin_2_irq(idx, apic_id, pin);
1533
1534 /*
1535 * Skip the timer IRQ if there's a quirk handler
1536 * installed and if it returns 1:
1537 */
1538 if (apic->multi_timer_check &&
1539 apic->multi_timer_check(apic_id, irq))
1540 continue;
1541
1542 desc = irq_to_desc_alloc_cpu(irq, cpu);
1543 if (!desc) {
1544 printk(KERN_INFO "can not get irq_desc for %d\n", irq);
1545 continue;
1546 }
1547 cfg = desc->chip_data;
1548 add_pin_to_irq_cpu(cfg, cpu, apic_id, pin);
1549
1550 setup_IO_APIC_irq(apic_id, pin, irq, desc,
1551 irq_trigger(idx), irq_polarity(idx));
1552 }
1553 }
1554
1555 if (notcon)
1556 apic_printk(APIC_VERBOSE,
1557 " (apicid-pin) not connected\n");
1558 }
1559
1560 /*
1561 * Set up the timer pin, possibly with the 8259A-master behind.
1562 */
1563 static void __init setup_timer_IRQ0_pin(unsigned int apic_id, unsigned int pin,
1564 int vector)
1565 {
1566 struct IO_APIC_route_entry entry;
1567
1568 if (intr_remapping_enabled)
1569 return;
1570
1571 memset(&entry, 0, sizeof(entry));
1572
1573 /*
1574 * We use logical delivery to get the timer IRQ
1575 * to the first CPU.
1576 */
1577 entry.dest_mode = apic->irq_dest_mode;
1578 entry.mask = 0; /* don't mask IRQ for edge */
1579 entry.dest = apic->cpu_mask_to_apicid(apic->target_cpus());
1580 entry.delivery_mode = apic->irq_delivery_mode;
1581 entry.polarity = 0;
1582 entry.trigger = 0;
1583 entry.vector = vector;
1584
1585 /*
1586 * The timer IRQ doesn't have to know that behind the
1587 * scene we may have a 8259A-master in AEOI mode ...
1588 */
1589 set_irq_chip_and_handler_name(0, &ioapic_chip, handle_edge_irq, "edge");
1590
1591 /*
1592 * Add it to the IO-APIC irq-routing table:
1593 */
1594 ioapic_write_entry(apic_id, pin, entry);
1595 }
1596
1597
1598 __apicdebuginit(void) print_IO_APIC(void)
1599 {
1600 int apic, i;
1601 union IO_APIC_reg_00 reg_00;
1602 union IO_APIC_reg_01 reg_01;
1603 union IO_APIC_reg_02 reg_02;
1604 union IO_APIC_reg_03 reg_03;
1605 unsigned long flags;
1606 struct irq_cfg *cfg;
1607 struct irq_desc *desc;
1608 unsigned int irq;
1609
1610 if (apic_verbosity == APIC_QUIET)
1611 return;
1612
1613 printk(KERN_DEBUG "number of MP IRQ sources: %d.\n", mp_irq_entries);
1614 for (i = 0; i < nr_ioapics; i++)
1615 printk(KERN_DEBUG "number of IO-APIC #%d registers: %d.\n",
1616 mp_ioapics[i].apicid, nr_ioapic_registers[i]);
1617
1618 /*
1619 * We are a bit conservative about what we expect. We have to
1620 * know about every hardware change ASAP.
1621 */
1622 printk(KERN_INFO "testing the IO APIC.......................\n");
1623
1624 for (apic = 0; apic < nr_ioapics; apic++) {
1625
1626 spin_lock_irqsave(&ioapic_lock, flags);
1627 reg_00.raw = io_apic_read(apic, 0);
1628 reg_01.raw = io_apic_read(apic, 1);
1629 if (reg_01.bits.version >= 0x10)
1630 reg_02.raw = io_apic_read(apic, 2);
1631 if (reg_01.bits.version >= 0x20)
1632 reg_03.raw = io_apic_read(apic, 3);
1633 spin_unlock_irqrestore(&ioapic_lock, flags);
1634
1635 printk("\n");
1636 printk(KERN_DEBUG "IO APIC #%d......\n", mp_ioapics[apic].apicid);
1637 printk(KERN_DEBUG ".... register #00: %08X\n", reg_00.raw);
1638 printk(KERN_DEBUG "....... : physical APIC id: %02X\n", reg_00.bits.ID);
1639 printk(KERN_DEBUG "....... : Delivery Type: %X\n", reg_00.bits.delivery_type);
1640 printk(KERN_DEBUG "....... : LTS : %X\n", reg_00.bits.LTS);
1641
1642 printk(KERN_DEBUG ".... register #01: %08X\n", *(int *)&reg_01);
1643 printk(KERN_DEBUG "....... : max redirection entries: %04X\n", reg_01.bits.entries);
1644
1645 printk(KERN_DEBUG "....... : PRQ implemented: %X\n", reg_01.bits.PRQ);
1646 printk(KERN_DEBUG "....... : IO APIC version: %04X\n", reg_01.bits.version);
1647
1648 /*
1649 * Some Intel chipsets with IO APIC VERSION of 0x1? don't have reg_02,
1650 * but the value of reg_02 is read as the previous read register
1651 * value, so ignore it if reg_02 == reg_01.
1652 */
1653 if (reg_01.bits.version >= 0x10 && reg_02.raw != reg_01.raw) {
1654 printk(KERN_DEBUG ".... register #02: %08X\n", reg_02.raw);
1655 printk(KERN_DEBUG "....... : arbitration: %02X\n", reg_02.bits.arbitration);
1656 }
1657
1658 /*
1659 * Some Intel chipsets with IO APIC VERSION of 0x2? don't have reg_02
1660 * or reg_03, but the value of reg_0[23] is read as the previous read
1661 * register value, so ignore it if reg_03 == reg_0[12].
1662 */
1663 if (reg_01.bits.version >= 0x20 && reg_03.raw != reg_02.raw &&
1664 reg_03.raw != reg_01.raw) {
1665 printk(KERN_DEBUG ".... register #03: %08X\n", reg_03.raw);
1666 printk(KERN_DEBUG "....... : Boot DT : %X\n", reg_03.bits.boot_DT);
1667 }
1668
1669 printk(KERN_DEBUG ".... IRQ redirection table:\n");
1670
1671 printk(KERN_DEBUG " NR Dst Mask Trig IRR Pol"
1672 " Stat Dmod Deli Vect: \n");
1673
1674 for (i = 0; i <= reg_01.bits.entries; i++) {
1675 struct IO_APIC_route_entry entry;
1676
1677 entry = ioapic_read_entry(apic, i);
1678
1679 printk(KERN_DEBUG " %02x %03X ",
1680 i,
1681 entry.dest
1682 );
1683
1684 printk("%1d %1d %1d %1d %1d %1d %1d %02X\n",
1685 entry.mask,
1686 entry.trigger,
1687 entry.irr,
1688 entry.polarity,
1689 entry.delivery_status,
1690 entry.dest_mode,
1691 entry.delivery_mode,
1692 entry.vector
1693 );
1694 }
1695 }
1696 printk(KERN_DEBUG "IRQ to pin mappings:\n");
1697 for_each_irq_desc(irq, desc) {
1698 struct irq_pin_list *entry;
1699
1700 cfg = desc->chip_data;
1701 entry = cfg->irq_2_pin;
1702 if (!entry)
1703 continue;
1704 printk(KERN_DEBUG "IRQ%d ", irq);
1705 for (;;) {
1706 printk("-> %d:%d", entry->apic, entry->pin);
1707 if (!entry->next)
1708 break;
1709 entry = entry->next;
1710 }
1711 printk("\n");
1712 }
1713
1714 printk(KERN_INFO ".................................... done.\n");
1715
1716 return;
1717 }
1718
1719 __apicdebuginit(void) print_APIC_bitfield(int base)
1720 {
1721 unsigned int v;
1722 int i, j;
1723
1724 if (apic_verbosity == APIC_QUIET)
1725 return;
1726
1727 printk(KERN_DEBUG "0123456789abcdef0123456789abcdef\n" KERN_DEBUG);
1728 for (i = 0; i < 8; i++) {
1729 v = apic_read(base + i*0x10);
1730 for (j = 0; j < 32; j++) {
1731 if (v & (1<<j))
1732 printk("1");
1733 else
1734 printk("0");
1735 }
1736 printk("\n");
1737 }
1738 }
1739
1740 __apicdebuginit(void) print_local_APIC(void *dummy)
1741 {
1742 unsigned int i, v, ver, maxlvt;
1743 u64 icr;
1744
1745 if (apic_verbosity == APIC_QUIET)
1746 return;
1747
1748 printk("\n" KERN_DEBUG "printing local APIC contents on CPU#%d/%d:\n",
1749 smp_processor_id(), hard_smp_processor_id());
1750 v = apic_read(APIC_ID);
1751 printk(KERN_INFO "... APIC ID: %08x (%01x)\n", v, read_apic_id());
1752 v = apic_read(APIC_LVR);
1753 printk(KERN_INFO "... APIC VERSION: %08x\n", v);
1754 ver = GET_APIC_VERSION(v);
1755 maxlvt = lapic_get_maxlvt();
1756
1757 v = apic_read(APIC_TASKPRI);
1758 printk(KERN_DEBUG "... APIC TASKPRI: %08x (%02x)\n", v, v & APIC_TPRI_MASK);
1759
1760 if (APIC_INTEGRATED(ver)) { /* !82489DX */
1761 if (!APIC_XAPIC(ver)) {
1762 v = apic_read(APIC_ARBPRI);
1763 printk(KERN_DEBUG "... APIC ARBPRI: %08x (%02x)\n", v,
1764 v & APIC_ARBPRI_MASK);
1765 }
1766 v = apic_read(APIC_PROCPRI);
1767 printk(KERN_DEBUG "... APIC PROCPRI: %08x\n", v);
1768 }
1769
1770 /*
1771 * Remote read supported only in the 82489DX and local APIC for
1772 * Pentium processors.
1773 */
1774 if (!APIC_INTEGRATED(ver) || maxlvt == 3) {
1775 v = apic_read(APIC_RRR);
1776 printk(KERN_DEBUG "... APIC RRR: %08x\n", v);
1777 }
1778
1779 v = apic_read(APIC_LDR);
1780 printk(KERN_DEBUG "... APIC LDR: %08x\n", v);
1781 if (!x2apic_enabled()) {
1782 v = apic_read(APIC_DFR);
1783 printk(KERN_DEBUG "... APIC DFR: %08x\n", v);
1784 }
1785 v = apic_read(APIC_SPIV);
1786 printk(KERN_DEBUG "... APIC SPIV: %08x\n", v);
1787
1788 printk(KERN_DEBUG "... APIC ISR field:\n");
1789 print_APIC_bitfield(APIC_ISR);
1790 printk(KERN_DEBUG "... APIC TMR field:\n");
1791 print_APIC_bitfield(APIC_TMR);
1792 printk(KERN_DEBUG "... APIC IRR field:\n");
1793 print_APIC_bitfield(APIC_IRR);
1794
1795 if (APIC_INTEGRATED(ver)) { /* !82489DX */
1796 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
1797 apic_write(APIC_ESR, 0);
1798
1799 v = apic_read(APIC_ESR);
1800 printk(KERN_DEBUG "... APIC ESR: %08x\n", v);
1801 }
1802
1803 icr = apic_icr_read();
1804 printk(KERN_DEBUG "... APIC ICR: %08x\n", (u32)icr);
1805 printk(KERN_DEBUG "... APIC ICR2: %08x\n", (u32)(icr >> 32));
1806
1807 v = apic_read(APIC_LVTT);
1808 printk(KERN_DEBUG "... APIC LVTT: %08x\n", v);
1809
1810 if (maxlvt > 3) { /* PC is LVT#4. */
1811 v = apic_read(APIC_LVTPC);
1812 printk(KERN_DEBUG "... APIC LVTPC: %08x\n", v);
1813 }
1814 v = apic_read(APIC_LVT0);
1815 printk(KERN_DEBUG "... APIC LVT0: %08x\n", v);
1816 v = apic_read(APIC_LVT1);
1817 printk(KERN_DEBUG "... APIC LVT1: %08x\n", v);
1818
1819 if (maxlvt > 2) { /* ERR is LVT#3. */
1820 v = apic_read(APIC_LVTERR);
1821 printk(KERN_DEBUG "... APIC LVTERR: %08x\n", v);
1822 }
1823
1824 v = apic_read(APIC_TMICT);
1825 printk(KERN_DEBUG "... APIC TMICT: %08x\n", v);
1826 v = apic_read(APIC_TMCCT);
1827 printk(KERN_DEBUG "... APIC TMCCT: %08x\n", v);
1828 v = apic_read(APIC_TDCR);
1829 printk(KERN_DEBUG "... APIC TDCR: %08x\n", v);
1830
1831 if (boot_cpu_has(X86_FEATURE_EXTAPIC)) {
1832 v = apic_read(APIC_EFEAT);
1833 maxlvt = (v >> 16) & 0xff;
1834 printk(KERN_DEBUG "... APIC EFEAT: %08x\n", v);
1835 v = apic_read(APIC_ECTRL);
1836 printk(KERN_DEBUG "... APIC ECTRL: %08x\n", v);
1837 for (i = 0; i < maxlvt; i++) {
1838 v = apic_read(APIC_EILVTn(i));
1839 printk(KERN_DEBUG "... APIC EILVT%d: %08x\n", i, v);
1840 }
1841 }
1842 printk("\n");
1843 }
1844
1845 __apicdebuginit(void) print_all_local_APICs(void)
1846 {
1847 int cpu;
1848
1849 preempt_disable();
1850 for_each_online_cpu(cpu)
1851 smp_call_function_single(cpu, print_local_APIC, NULL, 1);
1852 preempt_enable();
1853 }
1854
1855 __apicdebuginit(void) print_PIC(void)
1856 {
1857 unsigned int v;
1858 unsigned long flags;
1859
1860 if (apic_verbosity == APIC_QUIET)
1861 return;
1862
1863 printk(KERN_DEBUG "\nprinting PIC contents\n");
1864
1865 spin_lock_irqsave(&i8259A_lock, flags);
1866
1867 v = inb(0xa1) << 8 | inb(0x21);
1868 printk(KERN_DEBUG "... PIC IMR: %04x\n", v);
1869
1870 v = inb(0xa0) << 8 | inb(0x20);
1871 printk(KERN_DEBUG "... PIC IRR: %04x\n", v);
1872
1873 outb(0x0b,0xa0);
1874 outb(0x0b,0x20);
1875 v = inb(0xa0) << 8 | inb(0x20);
1876 outb(0x0a,0xa0);
1877 outb(0x0a,0x20);
1878
1879 spin_unlock_irqrestore(&i8259A_lock, flags);
1880
1881 printk(KERN_DEBUG "... PIC ISR: %04x\n", v);
1882
1883 v = inb(0x4d1) << 8 | inb(0x4d0);
1884 printk(KERN_DEBUG "... PIC ELCR: %04x\n", v);
1885 }
1886
1887 __apicdebuginit(int) print_all_ICs(void)
1888 {
1889 print_PIC();
1890 print_all_local_APICs();
1891 print_IO_APIC();
1892
1893 return 0;
1894 }
1895
1896 fs_initcall(print_all_ICs);
1897
1898
1899 /* Where if anywhere is the i8259 connect in external int mode */
1900 static struct { int pin, apic; } ioapic_i8259 = { -1, -1 };
1901
1902 void __init enable_IO_APIC(void)
1903 {
1904 union IO_APIC_reg_01 reg_01;
1905 int i8259_apic, i8259_pin;
1906 int apic;
1907 unsigned long flags;
1908
1909 /*
1910 * The number of IO-APIC IRQ registers (== #pins):
1911 */
1912 for (apic = 0; apic < nr_ioapics; apic++) {
1913 spin_lock_irqsave(&ioapic_lock, flags);
1914 reg_01.raw = io_apic_read(apic, 1);
1915 spin_unlock_irqrestore(&ioapic_lock, flags);
1916 nr_ioapic_registers[apic] = reg_01.bits.entries+1;
1917 }
1918 for(apic = 0; apic < nr_ioapics; apic++) {
1919 int pin;
1920 /* See if any of the pins is in ExtINT mode */
1921 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
1922 struct IO_APIC_route_entry entry;
1923 entry = ioapic_read_entry(apic, pin);
1924
1925 /* If the interrupt line is enabled and in ExtInt mode
1926 * I have found the pin where the i8259 is connected.
1927 */
1928 if ((entry.mask == 0) && (entry.delivery_mode == dest_ExtINT)) {
1929 ioapic_i8259.apic = apic;
1930 ioapic_i8259.pin = pin;
1931 goto found_i8259;
1932 }
1933 }
1934 }
1935 found_i8259:
1936 /* Look to see what if the MP table has reported the ExtINT */
1937 /* If we could not find the appropriate pin by looking at the ioapic
1938 * the i8259 probably is not connected the ioapic but give the
1939 * mptable a chance anyway.
1940 */
1941 i8259_pin = find_isa_irq_pin(0, mp_ExtINT);
1942 i8259_apic = find_isa_irq_apic(0, mp_ExtINT);
1943 /* Trust the MP table if nothing is setup in the hardware */
1944 if ((ioapic_i8259.pin == -1) && (i8259_pin >= 0)) {
1945 printk(KERN_WARNING "ExtINT not setup in hardware but reported by MP table\n");
1946 ioapic_i8259.pin = i8259_pin;
1947 ioapic_i8259.apic = i8259_apic;
1948 }
1949 /* Complain if the MP table and the hardware disagree */
1950 if (((ioapic_i8259.apic != i8259_apic) || (ioapic_i8259.pin != i8259_pin)) &&
1951 (i8259_pin >= 0) && (ioapic_i8259.pin >= 0))
1952 {
1953 printk(KERN_WARNING "ExtINT in hardware and MP table differ\n");
1954 }
1955
1956 /*
1957 * Do not trust the IO-APIC being empty at bootup
1958 */
1959 clear_IO_APIC();
1960 }
1961
1962 /*
1963 * Not an __init, needed by the reboot code
1964 */
1965 void disable_IO_APIC(void)
1966 {
1967 /*
1968 * Clear the IO-APIC before rebooting:
1969 */
1970 clear_IO_APIC();
1971
1972 /*
1973 * If the i8259 is routed through an IOAPIC
1974 * Put that IOAPIC in virtual wire mode
1975 * so legacy interrupts can be delivered.
1976 *
1977 * With interrupt-remapping, for now we will use virtual wire A mode,
1978 * as virtual wire B is little complex (need to configure both
1979 * IOAPIC RTE aswell as interrupt-remapping table entry).
1980 * As this gets called during crash dump, keep this simple for now.
1981 */
1982 if (ioapic_i8259.pin != -1 && !intr_remapping_enabled) {
1983 struct IO_APIC_route_entry entry;
1984
1985 memset(&entry, 0, sizeof(entry));
1986 entry.mask = 0; /* Enabled */
1987 entry.trigger = 0; /* Edge */
1988 entry.irr = 0;
1989 entry.polarity = 0; /* High */
1990 entry.delivery_status = 0;
1991 entry.dest_mode = 0; /* Physical */
1992 entry.delivery_mode = dest_ExtINT; /* ExtInt */
1993 entry.vector = 0;
1994 entry.dest = read_apic_id();
1995
1996 /*
1997 * Add it to the IO-APIC irq-routing table:
1998 */
1999 ioapic_write_entry(ioapic_i8259.apic, ioapic_i8259.pin, entry);
2000 }
2001
2002 /*
2003 * Use virtual wire A mode when interrupt remapping is enabled.
2004 */
2005 disconnect_bsp_APIC(!intr_remapping_enabled && ioapic_i8259.pin != -1);
2006 }
2007
2008 #ifdef CONFIG_X86_32
2009 /*
2010 * function to set the IO-APIC physical IDs based on the
2011 * values stored in the MPC table.
2012 *
2013 * by Matt Domsch <Matt_Domsch@dell.com> Tue Dec 21 12:25:05 CST 1999
2014 */
2015
2016 static void __init setup_ioapic_ids_from_mpc(void)
2017 {
2018 union IO_APIC_reg_00 reg_00;
2019 physid_mask_t phys_id_present_map;
2020 int apic_id;
2021 int i;
2022 unsigned char old_id;
2023 unsigned long flags;
2024
2025 if (x86_quirks->setup_ioapic_ids && x86_quirks->setup_ioapic_ids())
2026 return;
2027
2028 /*
2029 * Don't check I/O APIC IDs for xAPIC systems. They have
2030 * no meaning without the serial APIC bus.
2031 */
2032 if (!(boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2033 || APIC_XAPIC(apic_version[boot_cpu_physical_apicid]))
2034 return;
2035 /*
2036 * This is broken; anything with a real cpu count has to
2037 * circumvent this idiocy regardless.
2038 */
2039 phys_id_present_map = apic->ioapic_phys_id_map(phys_cpu_present_map);
2040
2041 /*
2042 * Set the IOAPIC ID to the value stored in the MPC table.
2043 */
2044 for (apic_id = 0; apic_id < nr_ioapics; apic_id++) {
2045
2046 /* Read the register 0 value */
2047 spin_lock_irqsave(&ioapic_lock, flags);
2048 reg_00.raw = io_apic_read(apic_id, 0);
2049 spin_unlock_irqrestore(&ioapic_lock, flags);
2050
2051 old_id = mp_ioapics[apic_id].apicid;
2052
2053 if (mp_ioapics[apic_id].apicid >= get_physical_broadcast()) {
2054 printk(KERN_ERR "BIOS bug, IO-APIC#%d ID is %d in the MPC table!...\n",
2055 apic_id, mp_ioapics[apic_id].apicid);
2056 printk(KERN_ERR "... fixing up to %d. (tell your hw vendor)\n",
2057 reg_00.bits.ID);
2058 mp_ioapics[apic_id].apicid = reg_00.bits.ID;
2059 }
2060
2061 /*
2062 * Sanity check, is the ID really free? Every APIC in a
2063 * system must have a unique ID or we get lots of nice
2064 * 'stuck on smp_invalidate_needed IPI wait' messages.
2065 */
2066 if (apic->check_apicid_used(phys_id_present_map,
2067 mp_ioapics[apic_id].apicid)) {
2068 printk(KERN_ERR "BIOS bug, IO-APIC#%d ID %d is already used!...\n",
2069 apic_id, mp_ioapics[apic_id].apicid);
2070 for (i = 0; i < get_physical_broadcast(); i++)
2071 if (!physid_isset(i, phys_id_present_map))
2072 break;
2073 if (i >= get_physical_broadcast())
2074 panic("Max APIC ID exceeded!\n");
2075 printk(KERN_ERR "... fixing up to %d. (tell your hw vendor)\n",
2076 i);
2077 physid_set(i, phys_id_present_map);
2078 mp_ioapics[apic_id].apicid = i;
2079 } else {
2080 physid_mask_t tmp;
2081 tmp = apic->apicid_to_cpu_present(mp_ioapics[apic_id].apicid);
2082 apic_printk(APIC_VERBOSE, "Setting %d in the "
2083 "phys_id_present_map\n",
2084 mp_ioapics[apic_id].apicid);
2085 physids_or(phys_id_present_map, phys_id_present_map, tmp);
2086 }
2087
2088
2089 /*
2090 * We need to adjust the IRQ routing table
2091 * if the ID changed.
2092 */
2093 if (old_id != mp_ioapics[apic_id].apicid)
2094 for (i = 0; i < mp_irq_entries; i++)
2095 if (mp_irqs[i].dstapic == old_id)
2096 mp_irqs[i].dstapic
2097 = mp_ioapics[apic_id].apicid;
2098
2099 /*
2100 * Read the right value from the MPC table and
2101 * write it into the ID register.
2102 */
2103 apic_printk(APIC_VERBOSE, KERN_INFO
2104 "...changing IO-APIC physical APIC ID to %d ...",
2105 mp_ioapics[apic_id].apicid);
2106
2107 reg_00.bits.ID = mp_ioapics[apic_id].apicid;
2108 spin_lock_irqsave(&ioapic_lock, flags);
2109 io_apic_write(apic_id, 0, reg_00.raw);
2110 spin_unlock_irqrestore(&ioapic_lock, flags);
2111
2112 /*
2113 * Sanity check
2114 */
2115 spin_lock_irqsave(&ioapic_lock, flags);
2116 reg_00.raw = io_apic_read(apic_id, 0);
2117 spin_unlock_irqrestore(&ioapic_lock, flags);
2118 if (reg_00.bits.ID != mp_ioapics[apic_id].apicid)
2119 printk("could not set ID!\n");
2120 else
2121 apic_printk(APIC_VERBOSE, " ok.\n");
2122 }
2123 }
2124 #endif
2125
2126 int no_timer_check __initdata;
2127
2128 static int __init notimercheck(char *s)
2129 {
2130 no_timer_check = 1;
2131 return 1;
2132 }
2133 __setup("no_timer_check", notimercheck);
2134
2135 /*
2136 * There is a nasty bug in some older SMP boards, their mptable lies
2137 * about the timer IRQ. We do the following to work around the situation:
2138 *
2139 * - timer IRQ defaults to IO-APIC IRQ
2140 * - if this function detects that timer IRQs are defunct, then we fall
2141 * back to ISA timer IRQs
2142 */
2143 static int __init timer_irq_works(void)
2144 {
2145 unsigned long t1 = jiffies;
2146 unsigned long flags;
2147
2148 if (no_timer_check)
2149 return 1;
2150
2151 local_save_flags(flags);
2152 local_irq_enable();
2153 /* Let ten ticks pass... */
2154 mdelay((10 * 1000) / HZ);
2155 local_irq_restore(flags);
2156
2157 /*
2158 * Expect a few ticks at least, to be sure some possible
2159 * glue logic does not lock up after one or two first
2160 * ticks in a non-ExtINT mode. Also the local APIC
2161 * might have cached one ExtINT interrupt. Finally, at
2162 * least one tick may be lost due to delays.
2163 */
2164
2165 /* jiffies wrap? */
2166 if (time_after(jiffies, t1 + 4))
2167 return 1;
2168 return 0;
2169 }
2170
2171 /*
2172 * In the SMP+IOAPIC case it might happen that there are an unspecified
2173 * number of pending IRQ events unhandled. These cases are very rare,
2174 * so we 'resend' these IRQs via IPIs, to the same CPU. It's much
2175 * better to do it this way as thus we do not have to be aware of
2176 * 'pending' interrupts in the IRQ path, except at this point.
2177 */
2178 /*
2179 * Edge triggered needs to resend any interrupt
2180 * that was delayed but this is now handled in the device
2181 * independent code.
2182 */
2183
2184 /*
2185 * Starting up a edge-triggered IO-APIC interrupt is
2186 * nasty - we need to make sure that we get the edge.
2187 * If it is already asserted for some reason, we need
2188 * return 1 to indicate that is was pending.
2189 *
2190 * This is not complete - we should be able to fake
2191 * an edge even if it isn't on the 8259A...
2192 */
2193
2194 static unsigned int startup_ioapic_irq(unsigned int irq)
2195 {
2196 int was_pending = 0;
2197 unsigned long flags;
2198 struct irq_cfg *cfg;
2199
2200 spin_lock_irqsave(&ioapic_lock, flags);
2201 if (irq < NR_IRQS_LEGACY) {
2202 disable_8259A_irq(irq);
2203 if (i8259A_irq_pending(irq))
2204 was_pending = 1;
2205 }
2206 cfg = irq_cfg(irq);
2207 __unmask_IO_APIC_irq(cfg);
2208 spin_unlock_irqrestore(&ioapic_lock, flags);
2209
2210 return was_pending;
2211 }
2212
2213 #ifdef CONFIG_X86_64
2214 static int ioapic_retrigger_irq(unsigned int irq)
2215 {
2216
2217 struct irq_cfg *cfg = irq_cfg(irq);
2218 unsigned long flags;
2219
2220 spin_lock_irqsave(&vector_lock, flags);
2221 apic->send_IPI_mask(cpumask_of(cpumask_first(cfg->domain)), cfg->vector);
2222 spin_unlock_irqrestore(&vector_lock, flags);
2223
2224 return 1;
2225 }
2226 #else
2227 static int ioapic_retrigger_irq(unsigned int irq)
2228 {
2229 apic->send_IPI_self(irq_cfg(irq)->vector);
2230
2231 return 1;
2232 }
2233 #endif
2234
2235 /*
2236 * Level and edge triggered IO-APIC interrupts need different handling,
2237 * so we use two separate IRQ descriptors. Edge triggered IRQs can be
2238 * handled with the level-triggered descriptor, but that one has slightly
2239 * more overhead. Level-triggered interrupts cannot be handled with the
2240 * edge-triggered handler, without risking IRQ storms and other ugly
2241 * races.
2242 */
2243
2244 #ifdef CONFIG_SMP
2245 static void send_cleanup_vector(struct irq_cfg *cfg)
2246 {
2247 cpumask_var_t cleanup_mask;
2248
2249 if (unlikely(!alloc_cpumask_var(&cleanup_mask, GFP_ATOMIC))) {
2250 unsigned int i;
2251 cfg->move_cleanup_count = 0;
2252 for_each_cpu_and(i, cfg->old_domain, cpu_online_mask)
2253 cfg->move_cleanup_count++;
2254 for_each_cpu_and(i, cfg->old_domain, cpu_online_mask)
2255 apic->send_IPI_mask(cpumask_of(i), IRQ_MOVE_CLEANUP_VECTOR);
2256 } else {
2257 cpumask_and(cleanup_mask, cfg->old_domain, cpu_online_mask);
2258 cfg->move_cleanup_count = cpumask_weight(cleanup_mask);
2259 apic->send_IPI_mask(cleanup_mask, IRQ_MOVE_CLEANUP_VECTOR);
2260 free_cpumask_var(cleanup_mask);
2261 }
2262 cfg->move_in_progress = 0;
2263 }
2264
2265 static void
2266 __target_IO_APIC_irq(unsigned int irq, unsigned int dest, struct irq_cfg *cfg)
2267 {
2268 int apic, pin;
2269 struct irq_pin_list *entry;
2270 u8 vector = cfg->vector;
2271
2272 entry = cfg->irq_2_pin;
2273 for (;;) {
2274 unsigned int reg;
2275
2276 if (!entry)
2277 break;
2278
2279 apic = entry->apic;
2280 pin = entry->pin;
2281 /*
2282 * With interrupt-remapping, destination information comes
2283 * from interrupt-remapping table entry.
2284 */
2285 if (!irq_remapped(irq))
2286 io_apic_write(apic, 0x11 + pin*2, dest);
2287 reg = io_apic_read(apic, 0x10 + pin*2);
2288 reg &= ~IO_APIC_REDIR_VECTOR_MASK;
2289 reg |= vector;
2290 io_apic_modify(apic, 0x10 + pin*2, reg);
2291 if (!entry->next)
2292 break;
2293 entry = entry->next;
2294 }
2295 }
2296
2297 /*
2298 * Either sets desc->affinity to a valid value, and returns
2299 * ->cpu_mask_to_apicid of that, or returns BAD_APICID and
2300 * leaves desc->affinity untouched.
2301 */
2302 static unsigned int
2303 set_desc_affinity(struct irq_desc *desc, const struct cpumask *mask)
2304 {
2305 struct irq_cfg *cfg;
2306 unsigned int irq;
2307
2308 if (!cpumask_intersects(mask, cpu_online_mask))
2309 return BAD_APICID;
2310
2311 irq = desc->irq;
2312 cfg = desc->chip_data;
2313 if (assign_irq_vector(irq, cfg, mask))
2314 return BAD_APICID;
2315
2316 /* check that before desc->addinity get updated */
2317 set_extra_move_desc(desc, mask);
2318
2319 cpumask_copy(desc->affinity, mask);
2320
2321 return apic->cpu_mask_to_apicid_and(desc->affinity, cfg->domain);
2322 }
2323
2324 static void
2325 set_ioapic_affinity_irq_desc(struct irq_desc *desc, const struct cpumask *mask)
2326 {
2327 struct irq_cfg *cfg;
2328 unsigned long flags;
2329 unsigned int dest;
2330 unsigned int irq;
2331
2332 irq = desc->irq;
2333 cfg = desc->chip_data;
2334
2335 spin_lock_irqsave(&ioapic_lock, flags);
2336 dest = set_desc_affinity(desc, mask);
2337 if (dest != BAD_APICID) {
2338 /* Only the high 8 bits are valid. */
2339 dest = SET_APIC_LOGICAL_ID(dest);
2340 __target_IO_APIC_irq(irq, dest, cfg);
2341 }
2342 spin_unlock_irqrestore(&ioapic_lock, flags);
2343 }
2344
2345 static void
2346 set_ioapic_affinity_irq(unsigned int irq, const struct cpumask *mask)
2347 {
2348 struct irq_desc *desc;
2349
2350 desc = irq_to_desc(irq);
2351
2352 set_ioapic_affinity_irq_desc(desc, mask);
2353 }
2354
2355 #ifdef CONFIG_INTR_REMAP
2356
2357 /*
2358 * Migrate the IO-APIC irq in the presence of intr-remapping.
2359 *
2360 * For both level and edge triggered, irq migration is a simple atomic
2361 * update(of vector and cpu destination) of IRTE and flush the hardware cache.
2362 *
2363 * For level triggered, we eliminate the io-apic RTE modification (with the
2364 * updated vector information), by using a virtual vector (io-apic pin number).
2365 * Real vector that is used for interrupting cpu will be coming from
2366 * the interrupt-remapping table entry.
2367 */
2368 static void
2369 migrate_ioapic_irq_desc(struct irq_desc *desc, const struct cpumask *mask)
2370 {
2371 struct irq_cfg *cfg;
2372 struct irte irte;
2373 unsigned int dest;
2374 unsigned int irq;
2375
2376 if (!cpumask_intersects(mask, cpu_online_mask))
2377 return;
2378
2379 irq = desc->irq;
2380 if (get_irte(irq, &irte))
2381 return;
2382
2383 cfg = desc->chip_data;
2384 if (assign_irq_vector(irq, cfg, mask))
2385 return;
2386
2387 set_extra_move_desc(desc, mask);
2388
2389 dest = apic->cpu_mask_to_apicid_and(cfg->domain, mask);
2390
2391 irte.vector = cfg->vector;
2392 irte.dest_id = IRTE_DEST(dest);
2393
2394 /*
2395 * Modified the IRTE and flushes the Interrupt entry cache.
2396 */
2397 modify_irte(irq, &irte);
2398
2399 if (cfg->move_in_progress)
2400 send_cleanup_vector(cfg);
2401
2402 cpumask_copy(desc->affinity, mask);
2403 }
2404
2405 /*
2406 * Migrates the IRQ destination in the process context.
2407 */
2408 static void set_ir_ioapic_affinity_irq_desc(struct irq_desc *desc,
2409 const struct cpumask *mask)
2410 {
2411 migrate_ioapic_irq_desc(desc, mask);
2412 }
2413 static void set_ir_ioapic_affinity_irq(unsigned int irq,
2414 const struct cpumask *mask)
2415 {
2416 struct irq_desc *desc = irq_to_desc(irq);
2417
2418 set_ir_ioapic_affinity_irq_desc(desc, mask);
2419 }
2420 #else
2421 static inline void set_ir_ioapic_affinity_irq_desc(struct irq_desc *desc,
2422 const struct cpumask *mask)
2423 {
2424 }
2425 #endif
2426
2427 asmlinkage void smp_irq_move_cleanup_interrupt(void)
2428 {
2429 unsigned vector, me;
2430
2431 ack_APIC_irq();
2432 exit_idle();
2433 irq_enter();
2434
2435 me = smp_processor_id();
2436 for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
2437 unsigned int irq;
2438 unsigned int irr;
2439 struct irq_desc *desc;
2440 struct irq_cfg *cfg;
2441 irq = __get_cpu_var(vector_irq)[vector];
2442
2443 if (irq == -1)
2444 continue;
2445
2446 desc = irq_to_desc(irq);
2447 if (!desc)
2448 continue;
2449
2450 cfg = irq_cfg(irq);
2451 spin_lock(&desc->lock);
2452 if (!cfg->move_cleanup_count)
2453 goto unlock;
2454
2455 if (vector == cfg->vector && cpumask_test_cpu(me, cfg->domain))
2456 goto unlock;
2457
2458 irr = apic_read(APIC_IRR + (vector / 32 * 0x10));
2459 /*
2460 * Check if the vector that needs to be cleanedup is
2461 * registered at the cpu's IRR. If so, then this is not
2462 * the best time to clean it up. Lets clean it up in the
2463 * next attempt by sending another IRQ_MOVE_CLEANUP_VECTOR
2464 * to myself.
2465 */
2466 if (irr & (1 << (vector % 32))) {
2467 apic->send_IPI_self(IRQ_MOVE_CLEANUP_VECTOR);
2468 goto unlock;
2469 }
2470 __get_cpu_var(vector_irq)[vector] = -1;
2471 cfg->move_cleanup_count--;
2472 unlock:
2473 spin_unlock(&desc->lock);
2474 }
2475
2476 irq_exit();
2477 }
2478
2479 static void irq_complete_move(struct irq_desc **descp)
2480 {
2481 struct irq_desc *desc = *descp;
2482 struct irq_cfg *cfg = desc->chip_data;
2483 unsigned vector, me;
2484
2485 if (likely(!cfg->move_in_progress)) {
2486 #ifdef CONFIG_NUMA_MIGRATE_IRQ_DESC
2487 if (likely(!cfg->move_desc_pending))
2488 return;
2489
2490 /* domain has not changed, but affinity did */
2491 me = smp_processor_id();
2492 if (cpumask_test_cpu(me, desc->affinity)) {
2493 *descp = desc = move_irq_desc(desc, me);
2494 /* get the new one */
2495 cfg = desc->chip_data;
2496 cfg->move_desc_pending = 0;
2497 }
2498 #endif
2499 return;
2500 }
2501
2502 vector = ~get_irq_regs()->orig_ax;
2503 me = smp_processor_id();
2504
2505 if (vector == cfg->vector && cpumask_test_cpu(me, cfg->domain)) {
2506 #ifdef CONFIG_NUMA_MIGRATE_IRQ_DESC
2507 *descp = desc = move_irq_desc(desc, me);
2508 /* get the new one */
2509 cfg = desc->chip_data;
2510 #endif
2511 send_cleanup_vector(cfg);
2512 }
2513 }
2514 #else
2515 static inline void irq_complete_move(struct irq_desc **descp) {}
2516 #endif
2517
2518 static void ack_apic_edge(unsigned int irq)
2519 {
2520 struct irq_desc *desc = irq_to_desc(irq);
2521
2522 irq_complete_move(&desc);
2523 move_native_irq(irq);
2524 ack_APIC_irq();
2525 }
2526
2527 atomic_t irq_mis_count;
2528
2529 static void ack_apic_level(unsigned int irq)
2530 {
2531 struct irq_desc *desc = irq_to_desc(irq);
2532
2533 #ifdef CONFIG_X86_32
2534 unsigned long v;
2535 int i;
2536 #endif
2537 struct irq_cfg *cfg;
2538 int do_unmask_irq = 0;
2539
2540 irq_complete_move(&desc);
2541 #ifdef CONFIG_GENERIC_PENDING_IRQ
2542 /* If we are moving the irq we need to mask it */
2543 if (unlikely(desc->status & IRQ_MOVE_PENDING)) {
2544 do_unmask_irq = 1;
2545 mask_IO_APIC_irq_desc(desc);
2546 }
2547 #endif
2548
2549 #ifdef CONFIG_X86_32
2550 /*
2551 * It appears there is an erratum which affects at least version 0x11
2552 * of I/O APIC (that's the 82093AA and cores integrated into various
2553 * chipsets). Under certain conditions a level-triggered interrupt is
2554 * erroneously delivered as edge-triggered one but the respective IRR
2555 * bit gets set nevertheless. As a result the I/O unit expects an EOI
2556 * message but it will never arrive and further interrupts are blocked
2557 * from the source. The exact reason is so far unknown, but the
2558 * phenomenon was observed when two consecutive interrupt requests
2559 * from a given source get delivered to the same CPU and the source is
2560 * temporarily disabled in between.
2561 *
2562 * A workaround is to simulate an EOI message manually. We achieve it
2563 * by setting the trigger mode to edge and then to level when the edge
2564 * trigger mode gets detected in the TMR of a local APIC for a
2565 * level-triggered interrupt. We mask the source for the time of the
2566 * operation to prevent an edge-triggered interrupt escaping meanwhile.
2567 * The idea is from Manfred Spraul. --macro
2568 */
2569 cfg = desc->chip_data;
2570 i = cfg->vector;
2571
2572 v = apic_read(APIC_TMR + ((i & ~0x1f) >> 1));
2573 #endif
2574
2575 /*
2576 * We must acknowledge the irq before we move it or the acknowledge will
2577 * not propagate properly.
2578 */
2579 ack_APIC_irq();
2580
2581 /* Now we can move and renable the irq */
2582 if (unlikely(do_unmask_irq)) {
2583 /* Only migrate the irq if the ack has been received.
2584 *
2585 * On rare occasions the broadcast level triggered ack gets
2586 * delayed going to ioapics, and if we reprogram the
2587 * vector while Remote IRR is still set the irq will never
2588 * fire again.
2589 *
2590 * To prevent this scenario we read the Remote IRR bit
2591 * of the ioapic. This has two effects.
2592 * - On any sane system the read of the ioapic will
2593 * flush writes (and acks) going to the ioapic from
2594 * this cpu.
2595 * - We get to see if the ACK has actually been delivered.
2596 *
2597 * Based on failed experiments of reprogramming the
2598 * ioapic entry from outside of irq context starting
2599 * with masking the ioapic entry and then polling until
2600 * Remote IRR was clear before reprogramming the
2601 * ioapic I don't trust the Remote IRR bit to be
2602 * completey accurate.
2603 *
2604 * However there appears to be no other way to plug
2605 * this race, so if the Remote IRR bit is not
2606 * accurate and is causing problems then it is a hardware bug
2607 * and you can go talk to the chipset vendor about it.
2608 */
2609 cfg = desc->chip_data;
2610 if (!io_apic_level_ack_pending(cfg))
2611 move_masked_irq(irq);
2612 unmask_IO_APIC_irq_desc(desc);
2613 }
2614
2615 #ifdef CONFIG_X86_32
2616 if (!(v & (1 << (i & 0x1f)))) {
2617 atomic_inc(&irq_mis_count);
2618 spin_lock(&ioapic_lock);
2619 __mask_and_edge_IO_APIC_irq(cfg);
2620 __unmask_and_level_IO_APIC_irq(cfg);
2621 spin_unlock(&ioapic_lock);
2622 }
2623 #endif
2624 }
2625
2626 #ifdef CONFIG_INTR_REMAP
2627 static void __eoi_ioapic_irq(unsigned int irq, struct irq_cfg *cfg)
2628 {
2629 int apic, pin;
2630 struct irq_pin_list *entry;
2631
2632 entry = cfg->irq_2_pin;
2633 for (;;) {
2634
2635 if (!entry)
2636 break;
2637
2638 apic = entry->apic;
2639 pin = entry->pin;
2640 io_apic_eoi(apic, pin);
2641 entry = entry->next;
2642 }
2643 }
2644
2645 static void
2646 eoi_ioapic_irq(struct irq_desc *desc)
2647 {
2648 struct irq_cfg *cfg;
2649 unsigned long flags;
2650 unsigned int irq;
2651
2652 irq = desc->irq;
2653 cfg = desc->chip_data;
2654
2655 spin_lock_irqsave(&ioapic_lock, flags);
2656 __eoi_ioapic_irq(irq, cfg);
2657 spin_unlock_irqrestore(&ioapic_lock, flags);
2658 }
2659
2660 static void ir_ack_apic_edge(unsigned int irq)
2661 {
2662 ack_APIC_irq();
2663 }
2664
2665 static void ir_ack_apic_level(unsigned int irq)
2666 {
2667 struct irq_desc *desc = irq_to_desc(irq);
2668
2669 ack_APIC_irq();
2670 eoi_ioapic_irq(desc);
2671 }
2672 #endif /* CONFIG_INTR_REMAP */
2673
2674 static struct irq_chip ioapic_chip __read_mostly = {
2675 .name = "IO-APIC",
2676 .startup = startup_ioapic_irq,
2677 .mask = mask_IO_APIC_irq,
2678 .unmask = unmask_IO_APIC_irq,
2679 .ack = ack_apic_edge,
2680 .eoi = ack_apic_level,
2681 #ifdef CONFIG_SMP
2682 .set_affinity = set_ioapic_affinity_irq,
2683 #endif
2684 .retrigger = ioapic_retrigger_irq,
2685 };
2686
2687 static struct irq_chip ir_ioapic_chip __read_mostly = {
2688 .name = "IR-IO-APIC",
2689 .startup = startup_ioapic_irq,
2690 .mask = mask_IO_APIC_irq,
2691 .unmask = unmask_IO_APIC_irq,
2692 #ifdef CONFIG_INTR_REMAP
2693 .ack = ir_ack_apic_edge,
2694 .eoi = ir_ack_apic_level,
2695 #ifdef CONFIG_SMP
2696 .set_affinity = set_ir_ioapic_affinity_irq,
2697 #endif
2698 #endif
2699 .retrigger = ioapic_retrigger_irq,
2700 };
2701
2702 static inline void init_IO_APIC_traps(void)
2703 {
2704 int irq;
2705 struct irq_desc *desc;
2706 struct irq_cfg *cfg;
2707
2708 /*
2709 * NOTE! The local APIC isn't very good at handling
2710 * multiple interrupts at the same interrupt level.
2711 * As the interrupt level is determined by taking the
2712 * vector number and shifting that right by 4, we
2713 * want to spread these out a bit so that they don't
2714 * all fall in the same interrupt level.
2715 *
2716 * Also, we've got to be careful not to trash gate
2717 * 0x80, because int 0x80 is hm, kind of importantish. ;)
2718 */
2719 for_each_irq_desc(irq, desc) {
2720 cfg = desc->chip_data;
2721 if (IO_APIC_IRQ(irq) && cfg && !cfg->vector) {
2722 /*
2723 * Hmm.. We don't have an entry for this,
2724 * so default to an old-fashioned 8259
2725 * interrupt if we can..
2726 */
2727 if (irq < NR_IRQS_LEGACY)
2728 make_8259A_irq(irq);
2729 else
2730 /* Strange. Oh, well.. */
2731 desc->chip = &no_irq_chip;
2732 }
2733 }
2734 }
2735
2736 /*
2737 * The local APIC irq-chip implementation:
2738 */
2739
2740 static void mask_lapic_irq(unsigned int irq)
2741 {
2742 unsigned long v;
2743
2744 v = apic_read(APIC_LVT0);
2745 apic_write(APIC_LVT0, v | APIC_LVT_MASKED);
2746 }
2747
2748 static void unmask_lapic_irq(unsigned int irq)
2749 {
2750 unsigned long v;
2751
2752 v = apic_read(APIC_LVT0);
2753 apic_write(APIC_LVT0, v & ~APIC_LVT_MASKED);
2754 }
2755
2756 static void ack_lapic_irq(unsigned int irq)
2757 {
2758 ack_APIC_irq();
2759 }
2760
2761 static struct irq_chip lapic_chip __read_mostly = {
2762 .name = "local-APIC",
2763 .mask = mask_lapic_irq,
2764 .unmask = unmask_lapic_irq,
2765 .ack = ack_lapic_irq,
2766 };
2767
2768 static void lapic_register_intr(int irq, struct irq_desc *desc)
2769 {
2770 desc->status &= ~IRQ_LEVEL;
2771 set_irq_chip_and_handler_name(irq, &lapic_chip, handle_edge_irq,
2772 "edge");
2773 }
2774
2775 static void __init setup_nmi(void)
2776 {
2777 /*
2778 * Dirty trick to enable the NMI watchdog ...
2779 * We put the 8259A master into AEOI mode and
2780 * unmask on all local APICs LVT0 as NMI.
2781 *
2782 * The idea to use the 8259A in AEOI mode ('8259A Virtual Wire')
2783 * is from Maciej W. Rozycki - so we do not have to EOI from
2784 * the NMI handler or the timer interrupt.
2785 */
2786 apic_printk(APIC_VERBOSE, KERN_INFO "activating NMI Watchdog ...");
2787
2788 enable_NMI_through_LVT0();
2789
2790 apic_printk(APIC_VERBOSE, " done.\n");
2791 }
2792
2793 /*
2794 * This looks a bit hackish but it's about the only one way of sending
2795 * a few INTA cycles to 8259As and any associated glue logic. ICR does
2796 * not support the ExtINT mode, unfortunately. We need to send these
2797 * cycles as some i82489DX-based boards have glue logic that keeps the
2798 * 8259A interrupt line asserted until INTA. --macro
2799 */
2800 static inline void __init unlock_ExtINT_logic(void)
2801 {
2802 int apic, pin, i;
2803 struct IO_APIC_route_entry entry0, entry1;
2804 unsigned char save_control, save_freq_select;
2805
2806 pin = find_isa_irq_pin(8, mp_INT);
2807 if (pin == -1) {
2808 WARN_ON_ONCE(1);
2809 return;
2810 }
2811 apic = find_isa_irq_apic(8, mp_INT);
2812 if (apic == -1) {
2813 WARN_ON_ONCE(1);
2814 return;
2815 }
2816
2817 entry0 = ioapic_read_entry(apic, pin);
2818 clear_IO_APIC_pin(apic, pin);
2819
2820 memset(&entry1, 0, sizeof(entry1));
2821
2822 entry1.dest_mode = 0; /* physical delivery */
2823 entry1.mask = 0; /* unmask IRQ now */
2824 entry1.dest = hard_smp_processor_id();
2825 entry1.delivery_mode = dest_ExtINT;
2826 entry1.polarity = entry0.polarity;
2827 entry1.trigger = 0;
2828 entry1.vector = 0;
2829
2830 ioapic_write_entry(apic, pin, entry1);
2831
2832 save_control = CMOS_READ(RTC_CONTROL);
2833 save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
2834 CMOS_WRITE((save_freq_select & ~RTC_RATE_SELECT) | 0x6,
2835 RTC_FREQ_SELECT);
2836 CMOS_WRITE(save_control | RTC_PIE, RTC_CONTROL);
2837
2838 i = 100;
2839 while (i-- > 0) {
2840 mdelay(10);
2841 if ((CMOS_READ(RTC_INTR_FLAGS) & RTC_PF) == RTC_PF)
2842 i -= 10;
2843 }
2844
2845 CMOS_WRITE(save_control, RTC_CONTROL);
2846 CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
2847 clear_IO_APIC_pin(apic, pin);
2848
2849 ioapic_write_entry(apic, pin, entry0);
2850 }
2851
2852 static int disable_timer_pin_1 __initdata;
2853 /* Actually the next is obsolete, but keep it for paranoid reasons -AK */
2854 static int __init disable_timer_pin_setup(char *arg)
2855 {
2856 disable_timer_pin_1 = 1;
2857 return 0;
2858 }
2859 early_param("disable_timer_pin_1", disable_timer_pin_setup);
2860
2861 int timer_through_8259 __initdata;
2862
2863 /*
2864 * This code may look a bit paranoid, but it's supposed to cooperate with
2865 * a wide range of boards and BIOS bugs. Fortunately only the timer IRQ
2866 * is so screwy. Thanks to Brian Perkins for testing/hacking this beast
2867 * fanatically on his truly buggy board.
2868 *
2869 * FIXME: really need to revamp this for all platforms.
2870 */
2871 static inline void __init check_timer(void)
2872 {
2873 struct irq_desc *desc = irq_to_desc(0);
2874 struct irq_cfg *cfg = desc->chip_data;
2875 int cpu = boot_cpu_id;
2876 int apic1, pin1, apic2, pin2;
2877 unsigned long flags;
2878 int no_pin1 = 0;
2879
2880 local_irq_save(flags);
2881
2882 /*
2883 * get/set the timer IRQ vector:
2884 */
2885 disable_8259A_irq(0);
2886 assign_irq_vector(0, cfg, apic->target_cpus());
2887
2888 /*
2889 * As IRQ0 is to be enabled in the 8259A, the virtual
2890 * wire has to be disabled in the local APIC. Also
2891 * timer interrupts need to be acknowledged manually in
2892 * the 8259A for the i82489DX when using the NMI
2893 * watchdog as that APIC treats NMIs as level-triggered.
2894 * The AEOI mode will finish them in the 8259A
2895 * automatically.
2896 */
2897 apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_EXTINT);
2898 init_8259A(1);
2899 #ifdef CONFIG_X86_32
2900 {
2901 unsigned int ver;
2902
2903 ver = apic_read(APIC_LVR);
2904 ver = GET_APIC_VERSION(ver);
2905 timer_ack = (nmi_watchdog == NMI_IO_APIC && !APIC_INTEGRATED(ver));
2906 }
2907 #endif
2908
2909 pin1 = find_isa_irq_pin(0, mp_INT);
2910 apic1 = find_isa_irq_apic(0, mp_INT);
2911 pin2 = ioapic_i8259.pin;
2912 apic2 = ioapic_i8259.apic;
2913
2914 apic_printk(APIC_QUIET, KERN_INFO "..TIMER: vector=0x%02X "
2915 "apic1=%d pin1=%d apic2=%d pin2=%d\n",
2916 cfg->vector, apic1, pin1, apic2, pin2);
2917
2918 /*
2919 * Some BIOS writers are clueless and report the ExtINTA
2920 * I/O APIC input from the cascaded 8259A as the timer
2921 * interrupt input. So just in case, if only one pin
2922 * was found above, try it both directly and through the
2923 * 8259A.
2924 */
2925 if (pin1 == -1) {
2926 if (intr_remapping_enabled)
2927 panic("BIOS bug: timer not connected to IO-APIC");
2928 pin1 = pin2;
2929 apic1 = apic2;
2930 no_pin1 = 1;
2931 } else if (pin2 == -1) {
2932 pin2 = pin1;
2933 apic2 = apic1;
2934 }
2935
2936 if (pin1 != -1) {
2937 /*
2938 * Ok, does IRQ0 through the IOAPIC work?
2939 */
2940 if (no_pin1) {
2941 add_pin_to_irq_cpu(cfg, cpu, apic1, pin1);
2942 setup_timer_IRQ0_pin(apic1, pin1, cfg->vector);
2943 } else {
2944 /* for edge trigger, setup_IO_APIC_irq already
2945 * leave it unmasked.
2946 * so only need to unmask if it is level-trigger
2947 * do we really have level trigger timer?
2948 */
2949 int idx;
2950 idx = find_irq_entry(apic1, pin1, mp_INT);
2951 if (idx != -1 && irq_trigger(idx))
2952 unmask_IO_APIC_irq_desc(desc);
2953 }
2954 if (timer_irq_works()) {
2955 if (nmi_watchdog == NMI_IO_APIC) {
2956 setup_nmi();
2957 enable_8259A_irq(0);
2958 }
2959 if (disable_timer_pin_1 > 0)
2960 clear_IO_APIC_pin(0, pin1);
2961 goto out;
2962 }
2963 if (intr_remapping_enabled)
2964 panic("timer doesn't work through Interrupt-remapped IO-APIC");
2965 local_irq_disable();
2966 clear_IO_APIC_pin(apic1, pin1);
2967 if (!no_pin1)
2968 apic_printk(APIC_QUIET, KERN_ERR "..MP-BIOS bug: "
2969 "8254 timer not connected to IO-APIC\n");
2970
2971 apic_printk(APIC_QUIET, KERN_INFO "...trying to set up timer "
2972 "(IRQ0) through the 8259A ...\n");
2973 apic_printk(APIC_QUIET, KERN_INFO
2974 "..... (found apic %d pin %d) ...\n", apic2, pin2);
2975 /*
2976 * legacy devices should be connected to IO APIC #0
2977 */
2978 replace_pin_at_irq_cpu(cfg, cpu, apic1, pin1, apic2, pin2);
2979 setup_timer_IRQ0_pin(apic2, pin2, cfg->vector);
2980 enable_8259A_irq(0);
2981 if (timer_irq_works()) {
2982 apic_printk(APIC_QUIET, KERN_INFO "....... works.\n");
2983 timer_through_8259 = 1;
2984 if (nmi_watchdog == NMI_IO_APIC) {
2985 disable_8259A_irq(0);
2986 setup_nmi();
2987 enable_8259A_irq(0);
2988 }
2989 goto out;
2990 }
2991 /*
2992 * Cleanup, just in case ...
2993 */
2994 local_irq_disable();
2995 disable_8259A_irq(0);
2996 clear_IO_APIC_pin(apic2, pin2);
2997 apic_printk(APIC_QUIET, KERN_INFO "....... failed.\n");
2998 }
2999
3000 if (nmi_watchdog == NMI_IO_APIC) {
3001 apic_printk(APIC_QUIET, KERN_WARNING "timer doesn't work "
3002 "through the IO-APIC - disabling NMI Watchdog!\n");
3003 nmi_watchdog = NMI_NONE;
3004 }
3005 #ifdef CONFIG_X86_32
3006 timer_ack = 0;
3007 #endif
3008
3009 apic_printk(APIC_QUIET, KERN_INFO
3010 "...trying to set up timer as Virtual Wire IRQ...\n");
3011
3012 lapic_register_intr(0, desc);
3013 apic_write(APIC_LVT0, APIC_DM_FIXED | cfg->vector); /* Fixed mode */
3014 enable_8259A_irq(0);
3015
3016 if (timer_irq_works()) {
3017 apic_printk(APIC_QUIET, KERN_INFO "..... works.\n");
3018 goto out;
3019 }
3020 local_irq_disable();
3021 disable_8259A_irq(0);
3022 apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_FIXED | cfg->vector);
3023 apic_printk(APIC_QUIET, KERN_INFO "..... failed.\n");
3024
3025 apic_printk(APIC_QUIET, KERN_INFO
3026 "...trying to set up timer as ExtINT IRQ...\n");
3027
3028 init_8259A(0);
3029 make_8259A_irq(0);
3030 apic_write(APIC_LVT0, APIC_DM_EXTINT);
3031
3032 unlock_ExtINT_logic();
3033
3034 if (timer_irq_works()) {
3035 apic_printk(APIC_QUIET, KERN_INFO "..... works.\n");
3036 goto out;
3037 }
3038 local_irq_disable();
3039 apic_printk(APIC_QUIET, KERN_INFO "..... failed :(.\n");
3040 panic("IO-APIC + timer doesn't work! Boot with apic=debug and send a "
3041 "report. Then try booting with the 'noapic' option.\n");
3042 out:
3043 local_irq_restore(flags);
3044 }
3045
3046 /*
3047 * Traditionally ISA IRQ2 is the cascade IRQ, and is not available
3048 * to devices. However there may be an I/O APIC pin available for
3049 * this interrupt regardless. The pin may be left unconnected, but
3050 * typically it will be reused as an ExtINT cascade interrupt for
3051 * the master 8259A. In the MPS case such a pin will normally be
3052 * reported as an ExtINT interrupt in the MP table. With ACPI
3053 * there is no provision for ExtINT interrupts, and in the absence
3054 * of an override it would be treated as an ordinary ISA I/O APIC
3055 * interrupt, that is edge-triggered and unmasked by default. We
3056 * used to do this, but it caused problems on some systems because
3057 * of the NMI watchdog and sometimes IRQ0 of the 8254 timer using
3058 * the same ExtINT cascade interrupt to drive the local APIC of the
3059 * bootstrap processor. Therefore we refrain from routing IRQ2 to
3060 * the I/O APIC in all cases now. No actual device should request
3061 * it anyway. --macro
3062 */
3063 #define PIC_IRQS (1 << PIC_CASCADE_IR)
3064
3065 void __init setup_IO_APIC(void)
3066 {
3067
3068 /*
3069 * calling enable_IO_APIC() is moved to setup_local_APIC for BP
3070 */
3071
3072 io_apic_irqs = ~PIC_IRQS;
3073
3074 apic_printk(APIC_VERBOSE, "ENABLING IO-APIC IRQs\n");
3075 /*
3076 * Set up IO-APIC IRQ routing.
3077 */
3078 #ifdef CONFIG_X86_32
3079 if (!acpi_ioapic)
3080 setup_ioapic_ids_from_mpc();
3081 #endif
3082 sync_Arb_IDs();
3083 setup_IO_APIC_irqs();
3084 init_IO_APIC_traps();
3085 check_timer();
3086 }
3087
3088 /*
3089 * Called after all the initialization is done. If we didnt find any
3090 * APIC bugs then we can allow the modify fast path
3091 */
3092
3093 static int __init io_apic_bug_finalize(void)
3094 {
3095 if (sis_apic_bug == -1)
3096 sis_apic_bug = 0;
3097 return 0;
3098 }
3099
3100 late_initcall(io_apic_bug_finalize);
3101
3102 struct sysfs_ioapic_data {
3103 struct sys_device dev;
3104 struct IO_APIC_route_entry entry[0];
3105 };
3106 static struct sysfs_ioapic_data * mp_ioapic_data[MAX_IO_APICS];
3107
3108 static int ioapic_suspend(struct sys_device *dev, pm_message_t state)
3109 {
3110 struct IO_APIC_route_entry *entry;
3111 struct sysfs_ioapic_data *data;
3112 int i;
3113
3114 data = container_of(dev, struct sysfs_ioapic_data, dev);
3115 entry = data->entry;
3116 for (i = 0; i < nr_ioapic_registers[dev->id]; i ++, entry ++ )
3117 *entry = ioapic_read_entry(dev->id, i);
3118
3119 return 0;
3120 }
3121
3122 static int ioapic_resume(struct sys_device *dev)
3123 {
3124 struct IO_APIC_route_entry *entry;
3125 struct sysfs_ioapic_data *data;
3126 unsigned long flags;
3127 union IO_APIC_reg_00 reg_00;
3128 int i;
3129
3130 data = container_of(dev, struct sysfs_ioapic_data, dev);
3131 entry = data->entry;
3132
3133 spin_lock_irqsave(&ioapic_lock, flags);
3134 reg_00.raw = io_apic_read(dev->id, 0);
3135 if (reg_00.bits.ID != mp_ioapics[dev->id].apicid) {
3136 reg_00.bits.ID = mp_ioapics[dev->id].apicid;
3137 io_apic_write(dev->id, 0, reg_00.raw);
3138 }
3139 spin_unlock_irqrestore(&ioapic_lock, flags);
3140 for (i = 0; i < nr_ioapic_registers[dev->id]; i++)
3141 ioapic_write_entry(dev->id, i, entry[i]);
3142
3143 return 0;
3144 }
3145
3146 static struct sysdev_class ioapic_sysdev_class = {
3147 .name = "ioapic",
3148 .suspend = ioapic_suspend,
3149 .resume = ioapic_resume,
3150 };
3151
3152 static int __init ioapic_init_sysfs(void)
3153 {
3154 struct sys_device * dev;
3155 int i, size, error;
3156
3157 error = sysdev_class_register(&ioapic_sysdev_class);
3158 if (error)
3159 return error;
3160
3161 for (i = 0; i < nr_ioapics; i++ ) {
3162 size = sizeof(struct sys_device) + nr_ioapic_registers[i]
3163 * sizeof(struct IO_APIC_route_entry);
3164 mp_ioapic_data[i] = kzalloc(size, GFP_KERNEL);
3165 if (!mp_ioapic_data[i]) {
3166 printk(KERN_ERR "Can't suspend/resume IOAPIC %d\n", i);
3167 continue;
3168 }
3169 dev = &mp_ioapic_data[i]->dev;
3170 dev->id = i;
3171 dev->cls = &ioapic_sysdev_class;
3172 error = sysdev_register(dev);
3173 if (error) {
3174 kfree(mp_ioapic_data[i]);
3175 mp_ioapic_data[i] = NULL;
3176 printk(KERN_ERR "Can't suspend/resume IOAPIC %d\n", i);
3177 continue;
3178 }
3179 }
3180
3181 return 0;
3182 }
3183
3184 device_initcall(ioapic_init_sysfs);
3185
3186 static int nr_irqs_gsi = NR_IRQS_LEGACY;
3187 /*
3188 * Dynamic irq allocate and deallocation
3189 */
3190 unsigned int create_irq_nr(unsigned int irq_want)
3191 {
3192 /* Allocate an unused irq */
3193 unsigned int irq;
3194 unsigned int new;
3195 unsigned long flags;
3196 struct irq_cfg *cfg_new = NULL;
3197 int cpu = boot_cpu_id;
3198 struct irq_desc *desc_new = NULL;
3199
3200 irq = 0;
3201 if (irq_want < nr_irqs_gsi)
3202 irq_want = nr_irqs_gsi;
3203
3204 spin_lock_irqsave(&vector_lock, flags);
3205 for (new = irq_want; new < nr_irqs; new++) {
3206 desc_new = irq_to_desc_alloc_cpu(new, cpu);
3207 if (!desc_new) {
3208 printk(KERN_INFO "can not get irq_desc for %d\n", new);
3209 continue;
3210 }
3211 cfg_new = desc_new->chip_data;
3212
3213 if (cfg_new->vector != 0)
3214 continue;
3215 if (__assign_irq_vector(new, cfg_new, apic->target_cpus()) == 0)
3216 irq = new;
3217 break;
3218 }
3219 spin_unlock_irqrestore(&vector_lock, flags);
3220
3221 if (irq > 0) {
3222 dynamic_irq_init(irq);
3223 /* restore it, in case dynamic_irq_init clear it */
3224 if (desc_new)
3225 desc_new->chip_data = cfg_new;
3226 }
3227 return irq;
3228 }
3229
3230 int create_irq(void)
3231 {
3232 unsigned int irq_want;
3233 int irq;
3234
3235 irq_want = nr_irqs_gsi;
3236 irq = create_irq_nr(irq_want);
3237
3238 if (irq == 0)
3239 irq = -1;
3240
3241 return irq;
3242 }
3243
3244 void destroy_irq(unsigned int irq)
3245 {
3246 unsigned long flags;
3247 struct irq_cfg *cfg;
3248 struct irq_desc *desc;
3249
3250 /* store it, in case dynamic_irq_cleanup clear it */
3251 desc = irq_to_desc(irq);
3252 cfg = desc->chip_data;
3253 dynamic_irq_cleanup(irq);
3254 /* connect back irq_cfg */
3255 if (desc)
3256 desc->chip_data = cfg;
3257
3258 free_irte(irq);
3259 spin_lock_irqsave(&vector_lock, flags);
3260 __clear_irq_vector(irq, cfg);
3261 spin_unlock_irqrestore(&vector_lock, flags);
3262 }
3263
3264 /*
3265 * MSI message composition
3266 */
3267 #ifdef CONFIG_PCI_MSI
3268 static int msi_compose_msg(struct pci_dev *pdev, unsigned int irq, struct msi_msg *msg)
3269 {
3270 struct irq_cfg *cfg;
3271 int err;
3272 unsigned dest;
3273
3274 if (disable_apic)
3275 return -ENXIO;
3276
3277 cfg = irq_cfg(irq);
3278 err = assign_irq_vector(irq, cfg, apic->target_cpus());
3279 if (err)
3280 return err;
3281
3282 dest = apic->cpu_mask_to_apicid_and(cfg->domain, apic->target_cpus());
3283
3284 if (irq_remapped(irq)) {
3285 struct irte irte;
3286 int ir_index;
3287 u16 sub_handle;
3288
3289 ir_index = map_irq_to_irte_handle(irq, &sub_handle);
3290 BUG_ON(ir_index == -1);
3291
3292 memset (&irte, 0, sizeof(irte));
3293
3294 irte.present = 1;
3295 irte.dst_mode = apic->irq_dest_mode;
3296 irte.trigger_mode = 0; /* edge */
3297 irte.dlvry_mode = apic->irq_delivery_mode;
3298 irte.vector = cfg->vector;
3299 irte.dest_id = IRTE_DEST(dest);
3300
3301 modify_irte(irq, &irte);
3302
3303 msg->address_hi = MSI_ADDR_BASE_HI;
3304 msg->data = sub_handle;
3305 msg->address_lo = MSI_ADDR_BASE_LO | MSI_ADDR_IR_EXT_INT |
3306 MSI_ADDR_IR_SHV |
3307 MSI_ADDR_IR_INDEX1(ir_index) |
3308 MSI_ADDR_IR_INDEX2(ir_index);
3309 } else {
3310 if (x2apic_enabled())
3311 msg->address_hi = MSI_ADDR_BASE_HI |
3312 MSI_ADDR_EXT_DEST_ID(dest);
3313 else
3314 msg->address_hi = MSI_ADDR_BASE_HI;
3315
3316 msg->address_lo =
3317 MSI_ADDR_BASE_LO |
3318 ((apic->irq_dest_mode == 0) ?
3319 MSI_ADDR_DEST_MODE_PHYSICAL:
3320 MSI_ADDR_DEST_MODE_LOGICAL) |
3321 ((apic->irq_delivery_mode != dest_LowestPrio) ?
3322 MSI_ADDR_REDIRECTION_CPU:
3323 MSI_ADDR_REDIRECTION_LOWPRI) |
3324 MSI_ADDR_DEST_ID(dest);
3325
3326 msg->data =
3327 MSI_DATA_TRIGGER_EDGE |
3328 MSI_DATA_LEVEL_ASSERT |
3329 ((apic->irq_delivery_mode != dest_LowestPrio) ?
3330 MSI_DATA_DELIVERY_FIXED:
3331 MSI_DATA_DELIVERY_LOWPRI) |
3332 MSI_DATA_VECTOR(cfg->vector);
3333 }
3334 return err;
3335 }
3336
3337 #ifdef CONFIG_SMP
3338 static void set_msi_irq_affinity(unsigned int irq, const struct cpumask *mask)
3339 {
3340 struct irq_desc *desc = irq_to_desc(irq);
3341 struct irq_cfg *cfg;
3342 struct msi_msg msg;
3343 unsigned int dest;
3344
3345 dest = set_desc_affinity(desc, mask);
3346 if (dest == BAD_APICID)
3347 return;
3348
3349 cfg = desc->chip_data;
3350
3351 read_msi_msg_desc(desc, &msg);
3352
3353 msg.data &= ~MSI_DATA_VECTOR_MASK;
3354 msg.data |= MSI_DATA_VECTOR(cfg->vector);
3355 msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
3356 msg.address_lo |= MSI_ADDR_DEST_ID(dest);
3357
3358 write_msi_msg_desc(desc, &msg);
3359 }
3360 #ifdef CONFIG_INTR_REMAP
3361 /*
3362 * Migrate the MSI irq to another cpumask. This migration is
3363 * done in the process context using interrupt-remapping hardware.
3364 */
3365 static void
3366 ir_set_msi_irq_affinity(unsigned int irq, const struct cpumask *mask)
3367 {
3368 struct irq_desc *desc = irq_to_desc(irq);
3369 struct irq_cfg *cfg = desc->chip_data;
3370 unsigned int dest;
3371 struct irte irte;
3372
3373 if (get_irte(irq, &irte))
3374 return;
3375
3376 dest = set_desc_affinity(desc, mask);
3377 if (dest == BAD_APICID)
3378 return;
3379
3380 irte.vector = cfg->vector;
3381 irte.dest_id = IRTE_DEST(dest);
3382
3383 /*
3384 * atomically update the IRTE with the new destination and vector.
3385 */
3386 modify_irte(irq, &irte);
3387
3388 /*
3389 * After this point, all the interrupts will start arriving
3390 * at the new destination. So, time to cleanup the previous
3391 * vector allocation.
3392 */
3393 if (cfg->move_in_progress)
3394 send_cleanup_vector(cfg);
3395 }
3396
3397 #endif
3398 #endif /* CONFIG_SMP */
3399
3400 /*
3401 * IRQ Chip for MSI PCI/PCI-X/PCI-Express Devices,
3402 * which implement the MSI or MSI-X Capability Structure.
3403 */
3404 static struct irq_chip msi_chip = {
3405 .name = "PCI-MSI",
3406 .unmask = unmask_msi_irq,
3407 .mask = mask_msi_irq,
3408 .ack = ack_apic_edge,
3409 #ifdef CONFIG_SMP
3410 .set_affinity = set_msi_irq_affinity,
3411 #endif
3412 .retrigger = ioapic_retrigger_irq,
3413 };
3414
3415 static struct irq_chip msi_ir_chip = {
3416 .name = "IR-PCI-MSI",
3417 .unmask = unmask_msi_irq,
3418 .mask = mask_msi_irq,
3419 #ifdef CONFIG_INTR_REMAP
3420 .ack = ir_ack_apic_edge,
3421 #ifdef CONFIG_SMP
3422 .set_affinity = ir_set_msi_irq_affinity,
3423 #endif
3424 #endif
3425 .retrigger = ioapic_retrigger_irq,
3426 };
3427
3428 /*
3429 * Map the PCI dev to the corresponding remapping hardware unit
3430 * and allocate 'nvec' consecutive interrupt-remapping table entries
3431 * in it.
3432 */
3433 static int msi_alloc_irte(struct pci_dev *dev, int irq, int nvec)
3434 {
3435 struct intel_iommu *iommu;
3436 int index;
3437
3438 iommu = map_dev_to_ir(dev);
3439 if (!iommu) {
3440 printk(KERN_ERR
3441 "Unable to map PCI %s to iommu\n", pci_name(dev));
3442 return -ENOENT;
3443 }
3444
3445 index = alloc_irte(iommu, irq, nvec);
3446 if (index < 0) {
3447 printk(KERN_ERR
3448 "Unable to allocate %d IRTE for PCI %s\n", nvec,
3449 pci_name(dev));
3450 return -ENOSPC;
3451 }
3452 return index;
3453 }
3454
3455 static int setup_msi_irq(struct pci_dev *dev, struct msi_desc *msidesc, int irq)
3456 {
3457 int ret;
3458 struct msi_msg msg;
3459
3460 ret = msi_compose_msg(dev, irq, &msg);
3461 if (ret < 0)
3462 return ret;
3463
3464 set_irq_msi(irq, msidesc);
3465 write_msi_msg(irq, &msg);
3466
3467 if (irq_remapped(irq)) {
3468 struct irq_desc *desc = irq_to_desc(irq);
3469 /*
3470 * irq migration in process context
3471 */
3472 desc->status |= IRQ_MOVE_PCNTXT;
3473 set_irq_chip_and_handler_name(irq, &msi_ir_chip, handle_edge_irq, "edge");
3474 } else
3475 set_irq_chip_and_handler_name(irq, &msi_chip, handle_edge_irq, "edge");
3476
3477 dev_printk(KERN_DEBUG, &dev->dev, "irq %d for MSI/MSI-X\n", irq);
3478
3479 return 0;
3480 }
3481
3482 int arch_setup_msi_irqs(struct pci_dev *dev, int nvec, int type)
3483 {
3484 unsigned int irq;
3485 int ret, sub_handle;
3486 struct msi_desc *msidesc;
3487 unsigned int irq_want;
3488 struct intel_iommu *iommu = NULL;
3489 int index = 0;
3490
3491 /* x86 doesn't support multiple MSI yet */
3492 if (type == PCI_CAP_ID_MSI && nvec > 1)
3493 return 1;
3494
3495 irq_want = nr_irqs_gsi;
3496 sub_handle = 0;
3497 list_for_each_entry(msidesc, &dev->msi_list, list) {
3498 irq = create_irq_nr(irq_want);
3499 if (irq == 0)
3500 return -1;
3501 irq_want = irq + 1;
3502 if (!intr_remapping_enabled)
3503 goto no_ir;
3504
3505 if (!sub_handle) {
3506 /*
3507 * allocate the consecutive block of IRTE's
3508 * for 'nvec'
3509 */
3510 index = msi_alloc_irte(dev, irq, nvec);
3511 if (index < 0) {
3512 ret = index;
3513 goto error;
3514 }
3515 } else {
3516 iommu = map_dev_to_ir(dev);
3517 if (!iommu) {
3518 ret = -ENOENT;
3519 goto error;
3520 }
3521 /*
3522 * setup the mapping between the irq and the IRTE
3523 * base index, the sub_handle pointing to the
3524 * appropriate interrupt remap table entry.
3525 */
3526 set_irte_irq(irq, iommu, index, sub_handle);
3527 }
3528 no_ir:
3529 ret = setup_msi_irq(dev, msidesc, irq);
3530 if (ret < 0)
3531 goto error;
3532 sub_handle++;
3533 }
3534 return 0;
3535
3536 error:
3537 destroy_irq(irq);
3538 return ret;
3539 }
3540
3541 void arch_teardown_msi_irq(unsigned int irq)
3542 {
3543 destroy_irq(irq);
3544 }
3545
3546 #if defined (CONFIG_DMAR) || defined (CONFIG_INTR_REMAP)
3547 #ifdef CONFIG_SMP
3548 static void dmar_msi_set_affinity(unsigned int irq, const struct cpumask *mask)
3549 {
3550 struct irq_desc *desc = irq_to_desc(irq);
3551 struct irq_cfg *cfg;
3552 struct msi_msg msg;
3553 unsigned int dest;
3554
3555 dest = set_desc_affinity(desc, mask);
3556 if (dest == BAD_APICID)
3557 return;
3558
3559 cfg = desc->chip_data;
3560
3561 dmar_msi_read(irq, &msg);
3562
3563 msg.data &= ~MSI_DATA_VECTOR_MASK;
3564 msg.data |= MSI_DATA_VECTOR(cfg->vector);
3565 msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
3566 msg.address_lo |= MSI_ADDR_DEST_ID(dest);
3567
3568 dmar_msi_write(irq, &msg);
3569 }
3570
3571 #endif /* CONFIG_SMP */
3572
3573 struct irq_chip dmar_msi_type = {
3574 .name = "DMAR_MSI",
3575 .unmask = dmar_msi_unmask,
3576 .mask = dmar_msi_mask,
3577 .ack = ack_apic_edge,
3578 #ifdef CONFIG_SMP
3579 .set_affinity = dmar_msi_set_affinity,
3580 #endif
3581 .retrigger = ioapic_retrigger_irq,
3582 };
3583
3584 int arch_setup_dmar_msi(unsigned int irq)
3585 {
3586 int ret;
3587 struct msi_msg msg;
3588
3589 ret = msi_compose_msg(NULL, irq, &msg);
3590 if (ret < 0)
3591 return ret;
3592 dmar_msi_write(irq, &msg);
3593 set_irq_chip_and_handler_name(irq, &dmar_msi_type, handle_edge_irq,
3594 "edge");
3595 return 0;
3596 }
3597 #endif
3598
3599 #ifdef CONFIG_HPET_TIMER
3600
3601 #ifdef CONFIG_SMP
3602 static void hpet_msi_set_affinity(unsigned int irq, const struct cpumask *mask)
3603 {
3604 struct irq_desc *desc = irq_to_desc(irq);
3605 struct irq_cfg *cfg;
3606 struct msi_msg msg;
3607 unsigned int dest;
3608
3609 dest = set_desc_affinity(desc, mask);
3610 if (dest == BAD_APICID)
3611 return;
3612
3613 cfg = desc->chip_data;
3614
3615 hpet_msi_read(irq, &msg);
3616
3617 msg.data &= ~MSI_DATA_VECTOR_MASK;
3618 msg.data |= MSI_DATA_VECTOR(cfg->vector);
3619 msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
3620 msg.address_lo |= MSI_ADDR_DEST_ID(dest);
3621
3622 hpet_msi_write(irq, &msg);
3623 }
3624
3625 #endif /* CONFIG_SMP */
3626
3627 static struct irq_chip hpet_msi_type = {
3628 .name = "HPET_MSI",
3629 .unmask = hpet_msi_unmask,
3630 .mask = hpet_msi_mask,
3631 .ack = ack_apic_edge,
3632 #ifdef CONFIG_SMP
3633 .set_affinity = hpet_msi_set_affinity,
3634 #endif
3635 .retrigger = ioapic_retrigger_irq,
3636 };
3637
3638 int arch_setup_hpet_msi(unsigned int irq)
3639 {
3640 int ret;
3641 struct msi_msg msg;
3642 struct irq_desc *desc = irq_to_desc(irq);
3643
3644 ret = msi_compose_msg(NULL, irq, &msg);
3645 if (ret < 0)
3646 return ret;
3647
3648 hpet_msi_write(irq, &msg);
3649 desc->status |= IRQ_MOVE_PCNTXT;
3650 set_irq_chip_and_handler_name(irq, &hpet_msi_type, handle_edge_irq,
3651 "edge");
3652
3653 return 0;
3654 }
3655 #endif
3656
3657 #endif /* CONFIG_PCI_MSI */
3658 /*
3659 * Hypertransport interrupt support
3660 */
3661 #ifdef CONFIG_HT_IRQ
3662
3663 #ifdef CONFIG_SMP
3664
3665 static void target_ht_irq(unsigned int irq, unsigned int dest, u8 vector)
3666 {
3667 struct ht_irq_msg msg;
3668 fetch_ht_irq_msg(irq, &msg);
3669
3670 msg.address_lo &= ~(HT_IRQ_LOW_VECTOR_MASK | HT_IRQ_LOW_DEST_ID_MASK);
3671 msg.address_hi &= ~(HT_IRQ_HIGH_DEST_ID_MASK);
3672
3673 msg.address_lo |= HT_IRQ_LOW_VECTOR(vector) | HT_IRQ_LOW_DEST_ID(dest);
3674 msg.address_hi |= HT_IRQ_HIGH_DEST_ID(dest);
3675
3676 write_ht_irq_msg(irq, &msg);
3677 }
3678
3679 static void set_ht_irq_affinity(unsigned int irq, const struct cpumask *mask)
3680 {
3681 struct irq_desc *desc = irq_to_desc(irq);
3682 struct irq_cfg *cfg;
3683 unsigned int dest;
3684
3685 dest = set_desc_affinity(desc, mask);
3686 if (dest == BAD_APICID)
3687 return;
3688
3689 cfg = desc->chip_data;
3690
3691 target_ht_irq(irq, dest, cfg->vector);
3692 }
3693
3694 #endif
3695
3696 static struct irq_chip ht_irq_chip = {
3697 .name = "PCI-HT",
3698 .mask = mask_ht_irq,
3699 .unmask = unmask_ht_irq,
3700 .ack = ack_apic_edge,
3701 #ifdef CONFIG_SMP
3702 .set_affinity = set_ht_irq_affinity,
3703 #endif
3704 .retrigger = ioapic_retrigger_irq,
3705 };
3706
3707 int arch_setup_ht_irq(unsigned int irq, struct pci_dev *dev)
3708 {
3709 struct irq_cfg *cfg;
3710 int err;
3711
3712 if (disable_apic)
3713 return -ENXIO;
3714
3715 cfg = irq_cfg(irq);
3716 err = assign_irq_vector(irq, cfg, apic->target_cpus());
3717 if (!err) {
3718 struct ht_irq_msg msg;
3719 unsigned dest;
3720
3721 dest = apic->cpu_mask_to_apicid_and(cfg->domain,
3722 apic->target_cpus());
3723
3724 msg.address_hi = HT_IRQ_HIGH_DEST_ID(dest);
3725
3726 msg.address_lo =
3727 HT_IRQ_LOW_BASE |
3728 HT_IRQ_LOW_DEST_ID(dest) |
3729 HT_IRQ_LOW_VECTOR(cfg->vector) |
3730 ((apic->irq_dest_mode == 0) ?
3731 HT_IRQ_LOW_DM_PHYSICAL :
3732 HT_IRQ_LOW_DM_LOGICAL) |
3733 HT_IRQ_LOW_RQEOI_EDGE |
3734 ((apic->irq_delivery_mode != dest_LowestPrio) ?
3735 HT_IRQ_LOW_MT_FIXED :
3736 HT_IRQ_LOW_MT_ARBITRATED) |
3737 HT_IRQ_LOW_IRQ_MASKED;
3738
3739 write_ht_irq_msg(irq, &msg);
3740
3741 set_irq_chip_and_handler_name(irq, &ht_irq_chip,
3742 handle_edge_irq, "edge");
3743
3744 dev_printk(KERN_DEBUG, &dev->dev, "irq %d for HT\n", irq);
3745 }
3746 return err;
3747 }
3748 #endif /* CONFIG_HT_IRQ */
3749
3750 #ifdef CONFIG_X86_UV
3751 /*
3752 * Re-target the irq to the specified CPU and enable the specified MMR located
3753 * on the specified blade to allow the sending of MSIs to the specified CPU.
3754 */
3755 int arch_enable_uv_irq(char *irq_name, unsigned int irq, int cpu, int mmr_blade,
3756 unsigned long mmr_offset)
3757 {
3758 const struct cpumask *eligible_cpu = cpumask_of(cpu);
3759 struct irq_cfg *cfg;
3760 int mmr_pnode;
3761 unsigned long mmr_value;
3762 struct uv_IO_APIC_route_entry *entry;
3763 unsigned long flags;
3764 int err;
3765
3766 BUILD_BUG_ON(sizeof(struct uv_IO_APIC_route_entry) != sizeof(unsigned long));
3767
3768 cfg = irq_cfg(irq);
3769
3770 err = assign_irq_vector(irq, cfg, eligible_cpu);
3771 if (err != 0)
3772 return err;
3773
3774 spin_lock_irqsave(&vector_lock, flags);
3775 set_irq_chip_and_handler_name(irq, &uv_irq_chip, handle_percpu_irq,
3776 irq_name);
3777 spin_unlock_irqrestore(&vector_lock, flags);
3778
3779 mmr_value = 0;
3780 entry = (struct uv_IO_APIC_route_entry *)&mmr_value;
3781 entry->vector = cfg->vector;
3782 entry->delivery_mode = apic->irq_delivery_mode;
3783 entry->dest_mode = apic->irq_dest_mode;
3784 entry->polarity = 0;
3785 entry->trigger = 0;
3786 entry->mask = 0;
3787 entry->dest = apic->cpu_mask_to_apicid(eligible_cpu);
3788
3789 mmr_pnode = uv_blade_to_pnode(mmr_blade);
3790 uv_write_global_mmr64(mmr_pnode, mmr_offset, mmr_value);
3791
3792 return irq;
3793 }
3794
3795 /*
3796 * Disable the specified MMR located on the specified blade so that MSIs are
3797 * longer allowed to be sent.
3798 */
3799 void arch_disable_uv_irq(int mmr_blade, unsigned long mmr_offset)
3800 {
3801 unsigned long mmr_value;
3802 struct uv_IO_APIC_route_entry *entry;
3803 int mmr_pnode;
3804
3805 BUILD_BUG_ON(sizeof(struct uv_IO_APIC_route_entry) != sizeof(unsigned long));
3806
3807 mmr_value = 0;
3808 entry = (struct uv_IO_APIC_route_entry *)&mmr_value;
3809 entry->mask = 1;
3810
3811 mmr_pnode = uv_blade_to_pnode(mmr_blade);
3812 uv_write_global_mmr64(mmr_pnode, mmr_offset, mmr_value);
3813 }
3814 #endif /* CONFIG_X86_64 */
3815
3816 int __init io_apic_get_redir_entries (int ioapic)
3817 {
3818 union IO_APIC_reg_01 reg_01;
3819 unsigned long flags;
3820
3821 spin_lock_irqsave(&ioapic_lock, flags);
3822 reg_01.raw = io_apic_read(ioapic, 1);
3823 spin_unlock_irqrestore(&ioapic_lock, flags);
3824
3825 return reg_01.bits.entries;
3826 }
3827
3828 void __init probe_nr_irqs_gsi(void)
3829 {
3830 int nr = 0;
3831
3832 nr = acpi_probe_gsi();
3833 if (nr > nr_irqs_gsi) {
3834 nr_irqs_gsi = nr;
3835 } else {
3836 /* for acpi=off or acpi is not compiled in */
3837 int idx;
3838
3839 nr = 0;
3840 for (idx = 0; idx < nr_ioapics; idx++)
3841 nr += io_apic_get_redir_entries(idx) + 1;
3842
3843 if (nr > nr_irqs_gsi)
3844 nr_irqs_gsi = nr;
3845 }
3846
3847 printk(KERN_DEBUG "nr_irqs_gsi: %d\n", nr_irqs_gsi);
3848 }
3849
3850 #ifdef CONFIG_SPARSE_IRQ
3851 int __init arch_probe_nr_irqs(void)
3852 {
3853 int nr;
3854
3855 if (nr_irqs > (NR_VECTORS * nr_cpu_ids))
3856 nr_irqs = NR_VECTORS * nr_cpu_ids;
3857
3858 nr = nr_irqs_gsi + 8 * nr_cpu_ids;
3859 #if defined(CONFIG_PCI_MSI) || defined(CONFIG_HT_IRQ)
3860 /*
3861 * for MSI and HT dyn irq
3862 */
3863 nr += nr_irqs_gsi * 16;
3864 #endif
3865 if (nr < nr_irqs)
3866 nr_irqs = nr;
3867
3868 return 0;
3869 }
3870 #endif
3871
3872 /* --------------------------------------------------------------------------
3873 ACPI-based IOAPIC Configuration
3874 -------------------------------------------------------------------------- */
3875
3876 #ifdef CONFIG_ACPI
3877
3878 #ifdef CONFIG_X86_32
3879 int __init io_apic_get_unique_id(int ioapic, int apic_id)
3880 {
3881 union IO_APIC_reg_00 reg_00;
3882 static physid_mask_t apic_id_map = PHYSID_MASK_NONE;
3883 physid_mask_t tmp;
3884 unsigned long flags;
3885 int i = 0;
3886
3887 /*
3888 * The P4 platform supports up to 256 APIC IDs on two separate APIC
3889 * buses (one for LAPICs, one for IOAPICs), where predecessors only
3890 * supports up to 16 on one shared APIC bus.
3891 *
3892 * TBD: Expand LAPIC/IOAPIC support on P4-class systems to take full
3893 * advantage of new APIC bus architecture.
3894 */
3895
3896 if (physids_empty(apic_id_map))
3897 apic_id_map = apic->ioapic_phys_id_map(phys_cpu_present_map);
3898
3899 spin_lock_irqsave(&ioapic_lock, flags);
3900 reg_00.raw = io_apic_read(ioapic, 0);
3901 spin_unlock_irqrestore(&ioapic_lock, flags);
3902
3903 if (apic_id >= get_physical_broadcast()) {
3904 printk(KERN_WARNING "IOAPIC[%d]: Invalid apic_id %d, trying "
3905 "%d\n", ioapic, apic_id, reg_00.bits.ID);
3906 apic_id = reg_00.bits.ID;
3907 }
3908
3909 /*
3910 * Every APIC in a system must have a unique ID or we get lots of nice
3911 * 'stuck on smp_invalidate_needed IPI wait' messages.
3912 */
3913 if (apic->check_apicid_used(apic_id_map, apic_id)) {
3914
3915 for (i = 0; i < get_physical_broadcast(); i++) {
3916 if (!apic->check_apicid_used(apic_id_map, i))
3917 break;
3918 }
3919
3920 if (i == get_physical_broadcast())
3921 panic("Max apic_id exceeded!\n");
3922
3923 printk(KERN_WARNING "IOAPIC[%d]: apic_id %d already used, "
3924 "trying %d\n", ioapic, apic_id, i);
3925
3926 apic_id = i;
3927 }
3928
3929 tmp = apic->apicid_to_cpu_present(apic_id);
3930 physids_or(apic_id_map, apic_id_map, tmp);
3931
3932 if (reg_00.bits.ID != apic_id) {
3933 reg_00.bits.ID = apic_id;
3934
3935 spin_lock_irqsave(&ioapic_lock, flags);
3936 io_apic_write(ioapic, 0, reg_00.raw);
3937 reg_00.raw = io_apic_read(ioapic, 0);
3938 spin_unlock_irqrestore(&ioapic_lock, flags);
3939
3940 /* Sanity check */
3941 if (reg_00.bits.ID != apic_id) {
3942 printk("IOAPIC[%d]: Unable to change apic_id!\n", ioapic);
3943 return -1;
3944 }
3945 }
3946
3947 apic_printk(APIC_VERBOSE, KERN_INFO
3948 "IOAPIC[%d]: Assigned apic_id %d\n", ioapic, apic_id);
3949
3950 return apic_id;
3951 }
3952
3953 int __init io_apic_get_version(int ioapic)
3954 {
3955 union IO_APIC_reg_01 reg_01;
3956 unsigned long flags;
3957
3958 spin_lock_irqsave(&ioapic_lock, flags);
3959 reg_01.raw = io_apic_read(ioapic, 1);
3960 spin_unlock_irqrestore(&ioapic_lock, flags);
3961
3962 return reg_01.bits.version;
3963 }
3964 #endif
3965
3966 int io_apic_set_pci_routing (int ioapic, int pin, int irq, int triggering, int polarity)
3967 {
3968 struct irq_desc *desc;
3969 struct irq_cfg *cfg;
3970 int cpu = boot_cpu_id;
3971
3972 if (!IO_APIC_IRQ(irq)) {
3973 apic_printk(APIC_QUIET,KERN_ERR "IOAPIC[%d]: Invalid reference to IRQ 0\n",
3974 ioapic);
3975 return -EINVAL;
3976 }
3977
3978 desc = irq_to_desc_alloc_cpu(irq, cpu);
3979 if (!desc) {
3980 printk(KERN_INFO "can not get irq_desc %d\n", irq);
3981 return 0;
3982 }
3983
3984 /*
3985 * IRQs < 16 are already in the irq_2_pin[] map
3986 */
3987 if (irq >= NR_IRQS_LEGACY) {
3988 cfg = desc->chip_data;
3989 add_pin_to_irq_cpu(cfg, cpu, ioapic, pin);
3990 }
3991
3992 setup_IO_APIC_irq(ioapic, pin, irq, desc, triggering, polarity);
3993
3994 return 0;
3995 }
3996
3997
3998 int acpi_get_override_irq(int bus_irq, int *trigger, int *polarity)
3999 {
4000 int i;
4001
4002 if (skip_ioapic_setup)
4003 return -1;
4004
4005 for (i = 0; i < mp_irq_entries; i++)
4006 if (mp_irqs[i].irqtype == mp_INT &&
4007 mp_irqs[i].srcbusirq == bus_irq)
4008 break;
4009 if (i >= mp_irq_entries)
4010 return -1;
4011
4012 *trigger = irq_trigger(i);
4013 *polarity = irq_polarity(i);
4014 return 0;
4015 }
4016
4017 #endif /* CONFIG_ACPI */
4018
4019 /*
4020 * This function currently is only a helper for the i386 smp boot process where
4021 * we need to reprogram the ioredtbls to cater for the cpus which have come online
4022 * so mask in all cases should simply be apic->target_cpus()
4023 */
4024 #ifdef CONFIG_SMP
4025 void __init setup_ioapic_dest(void)
4026 {
4027 int pin, ioapic, irq, irq_entry;
4028 struct irq_desc *desc;
4029 struct irq_cfg *cfg;
4030 const struct cpumask *mask;
4031
4032 if (skip_ioapic_setup == 1)
4033 return;
4034
4035 for (ioapic = 0; ioapic < nr_ioapics; ioapic++) {
4036 for (pin = 0; pin < nr_ioapic_registers[ioapic]; pin++) {
4037 irq_entry = find_irq_entry(ioapic, pin, mp_INT);
4038 if (irq_entry == -1)
4039 continue;
4040 irq = pin_2_irq(irq_entry, ioapic, pin);
4041
4042 /* setup_IO_APIC_irqs could fail to get vector for some device
4043 * when you have too many devices, because at that time only boot
4044 * cpu is online.
4045 */
4046 desc = irq_to_desc(irq);
4047 cfg = desc->chip_data;
4048 if (!cfg->vector) {
4049 setup_IO_APIC_irq(ioapic, pin, irq, desc,
4050 irq_trigger(irq_entry),
4051 irq_polarity(irq_entry));
4052 continue;
4053
4054 }
4055
4056 /*
4057 * Honour affinities which have been set in early boot
4058 */
4059 if (desc->status &
4060 (IRQ_NO_BALANCING | IRQ_AFFINITY_SET))
4061 mask = desc->affinity;
4062 else
4063 mask = apic->target_cpus();
4064
4065 if (intr_remapping_enabled)
4066 set_ir_ioapic_affinity_irq_desc(desc, mask);
4067 else
4068 set_ioapic_affinity_irq_desc(desc, mask);
4069 }
4070
4071 }
4072 }
4073 #endif
4074
4075 #define IOAPIC_RESOURCE_NAME_SIZE 11
4076
4077 static struct resource *ioapic_resources;
4078
4079 static struct resource * __init ioapic_setup_resources(void)
4080 {
4081 unsigned long n;
4082 struct resource *res;
4083 char *mem;
4084 int i;
4085
4086 if (nr_ioapics <= 0)
4087 return NULL;
4088
4089 n = IOAPIC_RESOURCE_NAME_SIZE + sizeof(struct resource);
4090 n *= nr_ioapics;
4091
4092 mem = alloc_bootmem(n);
4093 res = (void *)mem;
4094
4095 if (mem != NULL) {
4096 mem += sizeof(struct resource) * nr_ioapics;
4097
4098 for (i = 0; i < nr_ioapics; i++) {
4099 res[i].name = mem;
4100 res[i].flags = IORESOURCE_MEM | IORESOURCE_BUSY;
4101 sprintf(mem, "IOAPIC %u", i);
4102 mem += IOAPIC_RESOURCE_NAME_SIZE;
4103 }
4104 }
4105
4106 ioapic_resources = res;
4107
4108 return res;
4109 }
4110
4111 void __init ioapic_init_mappings(void)
4112 {
4113 unsigned long ioapic_phys, idx = FIX_IO_APIC_BASE_0;
4114 struct resource *ioapic_res;
4115 int i;
4116
4117 ioapic_res = ioapic_setup_resources();
4118 for (i = 0; i < nr_ioapics; i++) {
4119 if (smp_found_config) {
4120 ioapic_phys = mp_ioapics[i].apicaddr;
4121 #ifdef CONFIG_X86_32
4122 if (!ioapic_phys) {
4123 printk(KERN_ERR
4124 "WARNING: bogus zero IO-APIC "
4125 "address found in MPTABLE, "
4126 "disabling IO/APIC support!\n");
4127 smp_found_config = 0;
4128 skip_ioapic_setup = 1;
4129 goto fake_ioapic_page;
4130 }
4131 #endif
4132 } else {
4133 #ifdef CONFIG_X86_32
4134 fake_ioapic_page:
4135 #endif
4136 ioapic_phys = (unsigned long)
4137 alloc_bootmem_pages(PAGE_SIZE);
4138 ioapic_phys = __pa(ioapic_phys);
4139 }
4140 set_fixmap_nocache(idx, ioapic_phys);
4141 apic_printk(APIC_VERBOSE,
4142 "mapped IOAPIC to %08lx (%08lx)\n",
4143 __fix_to_virt(idx), ioapic_phys);
4144 idx++;
4145
4146 if (ioapic_res != NULL) {
4147 ioapic_res->start = ioapic_phys;
4148 ioapic_res->end = ioapic_phys + (4 * 1024) - 1;
4149 ioapic_res++;
4150 }
4151 }
4152 }
4153
4154 static int __init ioapic_insert_resources(void)
4155 {
4156 int i;
4157 struct resource *r = ioapic_resources;
4158
4159 if (!r) {
4160 if (nr_ioapics > 0) {
4161 printk(KERN_ERR
4162 "IO APIC resources couldn't be allocated.\n");
4163 return -1;
4164 }
4165 return 0;
4166 }
4167
4168 for (i = 0; i < nr_ioapics; i++) {
4169 insert_resource(&iomem_resource, r);
4170 r++;
4171 }
4172
4173 return 0;
4174 }
4175
4176 /* Insert the IO APIC resources after PCI initialization has occured to handle
4177 * IO APICS that are mapped in on a BAR in PCI space. */
4178 late_initcall(ioapic_insert_resources);