]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/kernel/cpu/bugs.c
75ccea211696df445a40d9106241a4f72aab059d
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kernel / cpu / bugs.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1994 Linus Torvalds
4 *
5 * Cyrix stuff, June 1998 by:
6 * - Rafael R. Reilova (moved everything from head.S),
7 * <rreilova@ececs.uc.edu>
8 * - Channing Corn (tests & fixes),
9 * - Andrew D. Balsa (code cleanup).
10 */
11 #include <linux/init.h>
12 #include <linux/utsname.h>
13 #include <linux/cpu.h>
14 #include <linux/module.h>
15 #include <linux/nospec.h>
16 #include <linux/prctl.h>
17 #include <linux/sched/smt.h>
18 #include <linux/pgtable.h>
19 #include <linux/bpf.h>
20
21 #include <asm/spec-ctrl.h>
22 #include <asm/cmdline.h>
23 #include <asm/bugs.h>
24 #include <asm/processor.h>
25 #include <asm/processor-flags.h>
26 #include <asm/fpu/api.h>
27 #include <asm/msr.h>
28 #include <asm/vmx.h>
29 #include <asm/paravirt.h>
30 #include <asm/alternative.h>
31 #include <asm/set_memory.h>
32 #include <asm/intel-family.h>
33 #include <asm/e820/api.h>
34 #include <asm/hypervisor.h>
35 #include <asm/tlbflush.h>
36
37 #include "cpu.h"
38
39 static void __init spectre_v1_select_mitigation(void);
40 static void __init spectre_v2_select_mitigation(void);
41 static void __init ssb_select_mitigation(void);
42 static void __init l1tf_select_mitigation(void);
43 static void __init mds_select_mitigation(void);
44 static void __init md_clear_update_mitigation(void);
45 static void __init md_clear_select_mitigation(void);
46 static void __init taa_select_mitigation(void);
47 static void __init mmio_select_mitigation(void);
48 static void __init srbds_select_mitigation(void);
49 static void __init l1d_flush_select_mitigation(void);
50
51 /* The base value of the SPEC_CTRL MSR that always has to be preserved. */
52 u64 x86_spec_ctrl_base;
53 EXPORT_SYMBOL_GPL(x86_spec_ctrl_base);
54 static DEFINE_MUTEX(spec_ctrl_mutex);
55
56 /*
57 * The vendor and possibly platform specific bits which can be modified in
58 * x86_spec_ctrl_base.
59 */
60 static u64 __ro_after_init x86_spec_ctrl_mask = SPEC_CTRL_IBRS;
61
62 /*
63 * AMD specific MSR info for Speculative Store Bypass control.
64 * x86_amd_ls_cfg_ssbd_mask is initialized in identify_boot_cpu().
65 */
66 u64 __ro_after_init x86_amd_ls_cfg_base;
67 u64 __ro_after_init x86_amd_ls_cfg_ssbd_mask;
68
69 /* Control conditional STIBP in switch_to() */
70 DEFINE_STATIC_KEY_FALSE(switch_to_cond_stibp);
71 /* Control conditional IBPB in switch_mm() */
72 DEFINE_STATIC_KEY_FALSE(switch_mm_cond_ibpb);
73 /* Control unconditional IBPB in switch_mm() */
74 DEFINE_STATIC_KEY_FALSE(switch_mm_always_ibpb);
75
76 /* Control MDS CPU buffer clear before returning to user space */
77 DEFINE_STATIC_KEY_FALSE(mds_user_clear);
78 EXPORT_SYMBOL_GPL(mds_user_clear);
79 /* Control MDS CPU buffer clear before idling (halt, mwait) */
80 DEFINE_STATIC_KEY_FALSE(mds_idle_clear);
81 EXPORT_SYMBOL_GPL(mds_idle_clear);
82
83 /*
84 * Controls whether l1d flush based mitigations are enabled,
85 * based on hw features and admin setting via boot parameter
86 * defaults to false
87 */
88 DEFINE_STATIC_KEY_FALSE(switch_mm_cond_l1d_flush);
89
90 /* Controls CPU Fill buffer clear before KVM guest MMIO accesses */
91 DEFINE_STATIC_KEY_FALSE(mmio_stale_data_clear);
92 EXPORT_SYMBOL_GPL(mmio_stale_data_clear);
93
94 void __init check_bugs(void)
95 {
96 identify_boot_cpu();
97
98 /*
99 * identify_boot_cpu() initialized SMT support information, let the
100 * core code know.
101 */
102 cpu_smt_check_topology();
103
104 if (!IS_ENABLED(CONFIG_SMP)) {
105 pr_info("CPU: ");
106 print_cpu_info(&boot_cpu_data);
107 }
108
109 /*
110 * Read the SPEC_CTRL MSR to account for reserved bits which may
111 * have unknown values. AMD64_LS_CFG MSR is cached in the early AMD
112 * init code as it is not enumerated and depends on the family.
113 */
114 if (boot_cpu_has(X86_FEATURE_MSR_SPEC_CTRL))
115 rdmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base);
116
117 /* Allow STIBP in MSR_SPEC_CTRL if supported */
118 if (boot_cpu_has(X86_FEATURE_STIBP))
119 x86_spec_ctrl_mask |= SPEC_CTRL_STIBP;
120
121 /* Select the proper CPU mitigations before patching alternatives: */
122 spectre_v1_select_mitigation();
123 spectre_v2_select_mitigation();
124 ssb_select_mitigation();
125 l1tf_select_mitigation();
126 md_clear_select_mitigation();
127 srbds_select_mitigation();
128 l1d_flush_select_mitigation();
129
130 arch_smt_update();
131
132 #ifdef CONFIG_X86_32
133 /*
134 * Check whether we are able to run this kernel safely on SMP.
135 *
136 * - i386 is no longer supported.
137 * - In order to run on anything without a TSC, we need to be
138 * compiled for a i486.
139 */
140 if (boot_cpu_data.x86 < 4)
141 panic("Kernel requires i486+ for 'invlpg' and other features");
142
143 init_utsname()->machine[1] =
144 '0' + (boot_cpu_data.x86 > 6 ? 6 : boot_cpu_data.x86);
145 alternative_instructions();
146
147 fpu__init_check_bugs();
148 #else /* CONFIG_X86_64 */
149 alternative_instructions();
150
151 /*
152 * Make sure the first 2MB area is not mapped by huge pages
153 * There are typically fixed size MTRRs in there and overlapping
154 * MTRRs into large pages causes slow downs.
155 *
156 * Right now we don't do that with gbpages because there seems
157 * very little benefit for that case.
158 */
159 if (!direct_gbpages)
160 set_memory_4k((unsigned long)__va(0), 1);
161 #endif
162 }
163
164 void
165 x86_virt_spec_ctrl(u64 guest_spec_ctrl, u64 guest_virt_spec_ctrl, bool setguest)
166 {
167 u64 msrval, guestval, hostval = x86_spec_ctrl_base;
168 struct thread_info *ti = current_thread_info();
169
170 /* Is MSR_SPEC_CTRL implemented ? */
171 if (static_cpu_has(X86_FEATURE_MSR_SPEC_CTRL)) {
172 /*
173 * Restrict guest_spec_ctrl to supported values. Clear the
174 * modifiable bits in the host base value and or the
175 * modifiable bits from the guest value.
176 */
177 guestval = hostval & ~x86_spec_ctrl_mask;
178 guestval |= guest_spec_ctrl & x86_spec_ctrl_mask;
179
180 /* SSBD controlled in MSR_SPEC_CTRL */
181 if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
182 static_cpu_has(X86_FEATURE_AMD_SSBD))
183 hostval |= ssbd_tif_to_spec_ctrl(ti->flags);
184
185 /* Conditional STIBP enabled? */
186 if (static_branch_unlikely(&switch_to_cond_stibp))
187 hostval |= stibp_tif_to_spec_ctrl(ti->flags);
188
189 if (hostval != guestval) {
190 msrval = setguest ? guestval : hostval;
191 wrmsrl(MSR_IA32_SPEC_CTRL, msrval);
192 }
193 }
194
195 /*
196 * If SSBD is not handled in MSR_SPEC_CTRL on AMD, update
197 * MSR_AMD64_L2_CFG or MSR_VIRT_SPEC_CTRL if supported.
198 */
199 if (!static_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
200 !static_cpu_has(X86_FEATURE_VIRT_SSBD))
201 return;
202
203 /*
204 * If the host has SSBD mitigation enabled, force it in the host's
205 * virtual MSR value. If its not permanently enabled, evaluate
206 * current's TIF_SSBD thread flag.
207 */
208 if (static_cpu_has(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE))
209 hostval = SPEC_CTRL_SSBD;
210 else
211 hostval = ssbd_tif_to_spec_ctrl(ti->flags);
212
213 /* Sanitize the guest value */
214 guestval = guest_virt_spec_ctrl & SPEC_CTRL_SSBD;
215
216 if (hostval != guestval) {
217 unsigned long tif;
218
219 tif = setguest ? ssbd_spec_ctrl_to_tif(guestval) :
220 ssbd_spec_ctrl_to_tif(hostval);
221
222 speculation_ctrl_update(tif);
223 }
224 }
225 EXPORT_SYMBOL_GPL(x86_virt_spec_ctrl);
226
227 static void x86_amd_ssb_disable(void)
228 {
229 u64 msrval = x86_amd_ls_cfg_base | x86_amd_ls_cfg_ssbd_mask;
230
231 if (boot_cpu_has(X86_FEATURE_VIRT_SSBD))
232 wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, SPEC_CTRL_SSBD);
233 else if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD))
234 wrmsrl(MSR_AMD64_LS_CFG, msrval);
235 }
236
237 #undef pr_fmt
238 #define pr_fmt(fmt) "MDS: " fmt
239
240 /* Default mitigation for MDS-affected CPUs */
241 static enum mds_mitigations mds_mitigation __ro_after_init = MDS_MITIGATION_FULL;
242 static bool mds_nosmt __ro_after_init = false;
243
244 static const char * const mds_strings[] = {
245 [MDS_MITIGATION_OFF] = "Vulnerable",
246 [MDS_MITIGATION_FULL] = "Mitigation: Clear CPU buffers",
247 [MDS_MITIGATION_VMWERV] = "Vulnerable: Clear CPU buffers attempted, no microcode",
248 };
249
250 static void __init mds_select_mitigation(void)
251 {
252 if (!boot_cpu_has_bug(X86_BUG_MDS) || cpu_mitigations_off()) {
253 mds_mitigation = MDS_MITIGATION_OFF;
254 return;
255 }
256
257 if (mds_mitigation == MDS_MITIGATION_FULL) {
258 if (!boot_cpu_has(X86_FEATURE_MD_CLEAR))
259 mds_mitigation = MDS_MITIGATION_VMWERV;
260
261 static_branch_enable(&mds_user_clear);
262
263 if (!boot_cpu_has(X86_BUG_MSBDS_ONLY) &&
264 (mds_nosmt || cpu_mitigations_auto_nosmt()))
265 cpu_smt_disable(false);
266 }
267 }
268
269 static int __init mds_cmdline(char *str)
270 {
271 if (!boot_cpu_has_bug(X86_BUG_MDS))
272 return 0;
273
274 if (!str)
275 return -EINVAL;
276
277 if (!strcmp(str, "off"))
278 mds_mitigation = MDS_MITIGATION_OFF;
279 else if (!strcmp(str, "full"))
280 mds_mitigation = MDS_MITIGATION_FULL;
281 else if (!strcmp(str, "full,nosmt")) {
282 mds_mitigation = MDS_MITIGATION_FULL;
283 mds_nosmt = true;
284 }
285
286 return 0;
287 }
288 early_param("mds", mds_cmdline);
289
290 #undef pr_fmt
291 #define pr_fmt(fmt) "TAA: " fmt
292
293 enum taa_mitigations {
294 TAA_MITIGATION_OFF,
295 TAA_MITIGATION_UCODE_NEEDED,
296 TAA_MITIGATION_VERW,
297 TAA_MITIGATION_TSX_DISABLED,
298 };
299
300 /* Default mitigation for TAA-affected CPUs */
301 static enum taa_mitigations taa_mitigation __ro_after_init = TAA_MITIGATION_VERW;
302 static bool taa_nosmt __ro_after_init;
303
304 static const char * const taa_strings[] = {
305 [TAA_MITIGATION_OFF] = "Vulnerable",
306 [TAA_MITIGATION_UCODE_NEEDED] = "Vulnerable: Clear CPU buffers attempted, no microcode",
307 [TAA_MITIGATION_VERW] = "Mitigation: Clear CPU buffers",
308 [TAA_MITIGATION_TSX_DISABLED] = "Mitigation: TSX disabled",
309 };
310
311 static void __init taa_select_mitigation(void)
312 {
313 u64 ia32_cap;
314
315 if (!boot_cpu_has_bug(X86_BUG_TAA)) {
316 taa_mitigation = TAA_MITIGATION_OFF;
317 return;
318 }
319
320 /* TSX previously disabled by tsx=off */
321 if (!boot_cpu_has(X86_FEATURE_RTM)) {
322 taa_mitigation = TAA_MITIGATION_TSX_DISABLED;
323 return;
324 }
325
326 if (cpu_mitigations_off()) {
327 taa_mitigation = TAA_MITIGATION_OFF;
328 return;
329 }
330
331 /*
332 * TAA mitigation via VERW is turned off if both
333 * tsx_async_abort=off and mds=off are specified.
334 */
335 if (taa_mitigation == TAA_MITIGATION_OFF &&
336 mds_mitigation == MDS_MITIGATION_OFF)
337 return;
338
339 if (boot_cpu_has(X86_FEATURE_MD_CLEAR))
340 taa_mitigation = TAA_MITIGATION_VERW;
341 else
342 taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
343
344 /*
345 * VERW doesn't clear the CPU buffers when MD_CLEAR=1 and MDS_NO=1.
346 * A microcode update fixes this behavior to clear CPU buffers. It also
347 * adds support for MSR_IA32_TSX_CTRL which is enumerated by the
348 * ARCH_CAP_TSX_CTRL_MSR bit.
349 *
350 * On MDS_NO=1 CPUs if ARCH_CAP_TSX_CTRL_MSR is not set, microcode
351 * update is required.
352 */
353 ia32_cap = x86_read_arch_cap_msr();
354 if ( (ia32_cap & ARCH_CAP_MDS_NO) &&
355 !(ia32_cap & ARCH_CAP_TSX_CTRL_MSR))
356 taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
357
358 /*
359 * TSX is enabled, select alternate mitigation for TAA which is
360 * the same as MDS. Enable MDS static branch to clear CPU buffers.
361 *
362 * For guests that can't determine whether the correct microcode is
363 * present on host, enable the mitigation for UCODE_NEEDED as well.
364 */
365 static_branch_enable(&mds_user_clear);
366
367 if (taa_nosmt || cpu_mitigations_auto_nosmt())
368 cpu_smt_disable(false);
369 }
370
371 static int __init tsx_async_abort_parse_cmdline(char *str)
372 {
373 if (!boot_cpu_has_bug(X86_BUG_TAA))
374 return 0;
375
376 if (!str)
377 return -EINVAL;
378
379 if (!strcmp(str, "off")) {
380 taa_mitigation = TAA_MITIGATION_OFF;
381 } else if (!strcmp(str, "full")) {
382 taa_mitigation = TAA_MITIGATION_VERW;
383 } else if (!strcmp(str, "full,nosmt")) {
384 taa_mitigation = TAA_MITIGATION_VERW;
385 taa_nosmt = true;
386 }
387
388 return 0;
389 }
390 early_param("tsx_async_abort", tsx_async_abort_parse_cmdline);
391
392 #undef pr_fmt
393 #define pr_fmt(fmt) "MMIO Stale Data: " fmt
394
395 enum mmio_mitigations {
396 MMIO_MITIGATION_OFF,
397 MMIO_MITIGATION_UCODE_NEEDED,
398 MMIO_MITIGATION_VERW,
399 };
400
401 /* Default mitigation for Processor MMIO Stale Data vulnerabilities */
402 static enum mmio_mitigations mmio_mitigation __ro_after_init = MMIO_MITIGATION_VERW;
403 static bool mmio_nosmt __ro_after_init = false;
404
405 static const char * const mmio_strings[] = {
406 [MMIO_MITIGATION_OFF] = "Vulnerable",
407 [MMIO_MITIGATION_UCODE_NEEDED] = "Vulnerable: Clear CPU buffers attempted, no microcode",
408 [MMIO_MITIGATION_VERW] = "Mitigation: Clear CPU buffers",
409 };
410
411 static void __init mmio_select_mitigation(void)
412 {
413 u64 ia32_cap;
414
415 if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA) ||
416 cpu_mitigations_off()) {
417 mmio_mitigation = MMIO_MITIGATION_OFF;
418 return;
419 }
420
421 if (mmio_mitigation == MMIO_MITIGATION_OFF)
422 return;
423
424 ia32_cap = x86_read_arch_cap_msr();
425
426 /*
427 * Enable CPU buffer clear mitigation for host and VMM, if also affected
428 * by MDS or TAA. Otherwise, enable mitigation for VMM only.
429 */
430 if (boot_cpu_has_bug(X86_BUG_MDS) || (boot_cpu_has_bug(X86_BUG_TAA) &&
431 boot_cpu_has(X86_FEATURE_RTM)))
432 static_branch_enable(&mds_user_clear);
433 else
434 static_branch_enable(&mmio_stale_data_clear);
435
436 /*
437 * If Processor-MMIO-Stale-Data bug is present and Fill Buffer data can
438 * be propagated to uncore buffers, clearing the Fill buffers on idle
439 * is required irrespective of SMT state.
440 */
441 if (!(ia32_cap & ARCH_CAP_FBSDP_NO))
442 static_branch_enable(&mds_idle_clear);
443
444 /*
445 * Check if the system has the right microcode.
446 *
447 * CPU Fill buffer clear mitigation is enumerated by either an explicit
448 * FB_CLEAR or by the presence of both MD_CLEAR and L1D_FLUSH on MDS
449 * affected systems.
450 */
451 if ((ia32_cap & ARCH_CAP_FB_CLEAR) ||
452 (boot_cpu_has(X86_FEATURE_MD_CLEAR) &&
453 boot_cpu_has(X86_FEATURE_FLUSH_L1D) &&
454 !(ia32_cap & ARCH_CAP_MDS_NO)))
455 mmio_mitigation = MMIO_MITIGATION_VERW;
456 else
457 mmio_mitigation = MMIO_MITIGATION_UCODE_NEEDED;
458
459 if (mmio_nosmt || cpu_mitigations_auto_nosmt())
460 cpu_smt_disable(false);
461 }
462
463 static int __init mmio_stale_data_parse_cmdline(char *str)
464 {
465 if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
466 return 0;
467
468 if (!str)
469 return -EINVAL;
470
471 if (!strcmp(str, "off")) {
472 mmio_mitigation = MMIO_MITIGATION_OFF;
473 } else if (!strcmp(str, "full")) {
474 mmio_mitigation = MMIO_MITIGATION_VERW;
475 } else if (!strcmp(str, "full,nosmt")) {
476 mmio_mitigation = MMIO_MITIGATION_VERW;
477 mmio_nosmt = true;
478 }
479
480 return 0;
481 }
482 early_param("mmio_stale_data", mmio_stale_data_parse_cmdline);
483
484 #undef pr_fmt
485 #define pr_fmt(fmt) "" fmt
486
487 static void __init md_clear_update_mitigation(void)
488 {
489 if (cpu_mitigations_off())
490 return;
491
492 if (!static_key_enabled(&mds_user_clear))
493 goto out;
494
495 /*
496 * mds_user_clear is now enabled. Update MDS, TAA and MMIO Stale Data
497 * mitigation, if necessary.
498 */
499 if (mds_mitigation == MDS_MITIGATION_OFF &&
500 boot_cpu_has_bug(X86_BUG_MDS)) {
501 mds_mitigation = MDS_MITIGATION_FULL;
502 mds_select_mitigation();
503 }
504 if (taa_mitigation == TAA_MITIGATION_OFF &&
505 boot_cpu_has_bug(X86_BUG_TAA)) {
506 taa_mitigation = TAA_MITIGATION_VERW;
507 taa_select_mitigation();
508 }
509 if (mmio_mitigation == MMIO_MITIGATION_OFF &&
510 boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA)) {
511 mmio_mitigation = MMIO_MITIGATION_VERW;
512 mmio_select_mitigation();
513 }
514 out:
515 if (boot_cpu_has_bug(X86_BUG_MDS))
516 pr_info("MDS: %s\n", mds_strings[mds_mitigation]);
517 if (boot_cpu_has_bug(X86_BUG_TAA))
518 pr_info("TAA: %s\n", taa_strings[taa_mitigation]);
519 if (boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
520 pr_info("MMIO Stale Data: %s\n", mmio_strings[mmio_mitigation]);
521 }
522
523 static void __init md_clear_select_mitigation(void)
524 {
525 mds_select_mitigation();
526 taa_select_mitigation();
527 mmio_select_mitigation();
528
529 /*
530 * As MDS, TAA and MMIO Stale Data mitigations are inter-related, update
531 * and print their mitigation after MDS, TAA and MMIO Stale Data
532 * mitigation selection is done.
533 */
534 md_clear_update_mitigation();
535 }
536
537 #undef pr_fmt
538 #define pr_fmt(fmt) "SRBDS: " fmt
539
540 enum srbds_mitigations {
541 SRBDS_MITIGATION_OFF,
542 SRBDS_MITIGATION_UCODE_NEEDED,
543 SRBDS_MITIGATION_FULL,
544 SRBDS_MITIGATION_TSX_OFF,
545 SRBDS_MITIGATION_HYPERVISOR,
546 };
547
548 static enum srbds_mitigations srbds_mitigation __ro_after_init = SRBDS_MITIGATION_FULL;
549
550 static const char * const srbds_strings[] = {
551 [SRBDS_MITIGATION_OFF] = "Vulnerable",
552 [SRBDS_MITIGATION_UCODE_NEEDED] = "Vulnerable: No microcode",
553 [SRBDS_MITIGATION_FULL] = "Mitigation: Microcode",
554 [SRBDS_MITIGATION_TSX_OFF] = "Mitigation: TSX disabled",
555 [SRBDS_MITIGATION_HYPERVISOR] = "Unknown: Dependent on hypervisor status",
556 };
557
558 static bool srbds_off;
559
560 void update_srbds_msr(void)
561 {
562 u64 mcu_ctrl;
563
564 if (!boot_cpu_has_bug(X86_BUG_SRBDS))
565 return;
566
567 if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
568 return;
569
570 if (srbds_mitigation == SRBDS_MITIGATION_UCODE_NEEDED)
571 return;
572
573 rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
574
575 switch (srbds_mitigation) {
576 case SRBDS_MITIGATION_OFF:
577 case SRBDS_MITIGATION_TSX_OFF:
578 mcu_ctrl |= RNGDS_MITG_DIS;
579 break;
580 case SRBDS_MITIGATION_FULL:
581 mcu_ctrl &= ~RNGDS_MITG_DIS;
582 break;
583 default:
584 break;
585 }
586
587 wrmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
588 }
589
590 static void __init srbds_select_mitigation(void)
591 {
592 u64 ia32_cap;
593
594 if (!boot_cpu_has_bug(X86_BUG_SRBDS))
595 return;
596
597 /*
598 * Check to see if this is one of the MDS_NO systems supporting TSX that
599 * are only exposed to SRBDS when TSX is enabled or when CPU is affected
600 * by Processor MMIO Stale Data vulnerability.
601 */
602 ia32_cap = x86_read_arch_cap_msr();
603 if ((ia32_cap & ARCH_CAP_MDS_NO) && !boot_cpu_has(X86_FEATURE_RTM) &&
604 !boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
605 srbds_mitigation = SRBDS_MITIGATION_TSX_OFF;
606 else if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
607 srbds_mitigation = SRBDS_MITIGATION_HYPERVISOR;
608 else if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL))
609 srbds_mitigation = SRBDS_MITIGATION_UCODE_NEEDED;
610 else if (cpu_mitigations_off() || srbds_off)
611 srbds_mitigation = SRBDS_MITIGATION_OFF;
612
613 update_srbds_msr();
614 pr_info("%s\n", srbds_strings[srbds_mitigation]);
615 }
616
617 static int __init srbds_parse_cmdline(char *str)
618 {
619 if (!str)
620 return -EINVAL;
621
622 if (!boot_cpu_has_bug(X86_BUG_SRBDS))
623 return 0;
624
625 srbds_off = !strcmp(str, "off");
626 return 0;
627 }
628 early_param("srbds", srbds_parse_cmdline);
629
630 #undef pr_fmt
631 #define pr_fmt(fmt) "L1D Flush : " fmt
632
633 enum l1d_flush_mitigations {
634 L1D_FLUSH_OFF = 0,
635 L1D_FLUSH_ON,
636 };
637
638 static enum l1d_flush_mitigations l1d_flush_mitigation __initdata = L1D_FLUSH_OFF;
639
640 static void __init l1d_flush_select_mitigation(void)
641 {
642 if (!l1d_flush_mitigation || !boot_cpu_has(X86_FEATURE_FLUSH_L1D))
643 return;
644
645 static_branch_enable(&switch_mm_cond_l1d_flush);
646 pr_info("Conditional flush on switch_mm() enabled\n");
647 }
648
649 static int __init l1d_flush_parse_cmdline(char *str)
650 {
651 if (!strcmp(str, "on"))
652 l1d_flush_mitigation = L1D_FLUSH_ON;
653
654 return 0;
655 }
656 early_param("l1d_flush", l1d_flush_parse_cmdline);
657
658 #undef pr_fmt
659 #define pr_fmt(fmt) "Spectre V1 : " fmt
660
661 enum spectre_v1_mitigation {
662 SPECTRE_V1_MITIGATION_NONE,
663 SPECTRE_V1_MITIGATION_AUTO,
664 };
665
666 static enum spectre_v1_mitigation spectre_v1_mitigation __ro_after_init =
667 SPECTRE_V1_MITIGATION_AUTO;
668
669 static const char * const spectre_v1_strings[] = {
670 [SPECTRE_V1_MITIGATION_NONE] = "Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers",
671 [SPECTRE_V1_MITIGATION_AUTO] = "Mitigation: usercopy/swapgs barriers and __user pointer sanitization",
672 };
673
674 /*
675 * Does SMAP provide full mitigation against speculative kernel access to
676 * userspace?
677 */
678 static bool smap_works_speculatively(void)
679 {
680 if (!boot_cpu_has(X86_FEATURE_SMAP))
681 return false;
682
683 /*
684 * On CPUs which are vulnerable to Meltdown, SMAP does not
685 * prevent speculative access to user data in the L1 cache.
686 * Consider SMAP to be non-functional as a mitigation on these
687 * CPUs.
688 */
689 if (boot_cpu_has(X86_BUG_CPU_MELTDOWN))
690 return false;
691
692 return true;
693 }
694
695 static void __init spectre_v1_select_mitigation(void)
696 {
697 if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V1) || cpu_mitigations_off()) {
698 spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
699 return;
700 }
701
702 if (spectre_v1_mitigation == SPECTRE_V1_MITIGATION_AUTO) {
703 /*
704 * With Spectre v1, a user can speculatively control either
705 * path of a conditional swapgs with a user-controlled GS
706 * value. The mitigation is to add lfences to both code paths.
707 *
708 * If FSGSBASE is enabled, the user can put a kernel address in
709 * GS, in which case SMAP provides no protection.
710 *
711 * If FSGSBASE is disabled, the user can only put a user space
712 * address in GS. That makes an attack harder, but still
713 * possible if there's no SMAP protection.
714 */
715 if (boot_cpu_has(X86_FEATURE_FSGSBASE) ||
716 !smap_works_speculatively()) {
717 /*
718 * Mitigation can be provided from SWAPGS itself or
719 * PTI as the CR3 write in the Meltdown mitigation
720 * is serializing.
721 *
722 * If neither is there, mitigate with an LFENCE to
723 * stop speculation through swapgs.
724 */
725 if (boot_cpu_has_bug(X86_BUG_SWAPGS) &&
726 !boot_cpu_has(X86_FEATURE_PTI))
727 setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_USER);
728
729 /*
730 * Enable lfences in the kernel entry (non-swapgs)
731 * paths, to prevent user entry from speculatively
732 * skipping swapgs.
733 */
734 setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_KERNEL);
735 }
736 }
737
738 pr_info("%s\n", spectre_v1_strings[spectre_v1_mitigation]);
739 }
740
741 static int __init nospectre_v1_cmdline(char *str)
742 {
743 spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
744 return 0;
745 }
746 early_param("nospectre_v1", nospectre_v1_cmdline);
747
748 #undef pr_fmt
749 #define pr_fmt(fmt) "Spectre V2 : " fmt
750
751 static enum spectre_v2_mitigation spectre_v2_enabled __ro_after_init =
752 SPECTRE_V2_NONE;
753
754 static enum spectre_v2_user_mitigation spectre_v2_user_stibp __ro_after_init =
755 SPECTRE_V2_USER_NONE;
756 static enum spectre_v2_user_mitigation spectre_v2_user_ibpb __ro_after_init =
757 SPECTRE_V2_USER_NONE;
758
759 #ifdef CONFIG_RETPOLINE
760 static bool spectre_v2_bad_module;
761
762 bool retpoline_module_ok(bool has_retpoline)
763 {
764 if (spectre_v2_enabled == SPECTRE_V2_NONE || has_retpoline)
765 return true;
766
767 pr_err("System may be vulnerable to spectre v2\n");
768 spectre_v2_bad_module = true;
769 return false;
770 }
771
772 static inline const char *spectre_v2_module_string(void)
773 {
774 return spectre_v2_bad_module ? " - vulnerable module loaded" : "";
775 }
776 #else
777 static inline const char *spectre_v2_module_string(void) { return ""; }
778 #endif
779
780 #define SPECTRE_V2_LFENCE_MSG "WARNING: LFENCE mitigation is not recommended for this CPU, data leaks possible!\n"
781 #define SPECTRE_V2_EIBRS_EBPF_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS on, data leaks possible via Spectre v2 BHB attacks!\n"
782 #define SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS+LFENCE mitigation and SMT, data leaks possible via Spectre v2 BHB attacks!\n"
783
784 #ifdef CONFIG_BPF_SYSCALL
785 void unpriv_ebpf_notify(int new_state)
786 {
787 if (new_state)
788 return;
789
790 /* Unprivileged eBPF is enabled */
791
792 switch (spectre_v2_enabled) {
793 case SPECTRE_V2_EIBRS:
794 pr_err(SPECTRE_V2_EIBRS_EBPF_MSG);
795 break;
796 case SPECTRE_V2_EIBRS_LFENCE:
797 if (sched_smt_active())
798 pr_err(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG);
799 break;
800 default:
801 break;
802 }
803 }
804 #endif
805
806 static inline bool match_option(const char *arg, int arglen, const char *opt)
807 {
808 int len = strlen(opt);
809
810 return len == arglen && !strncmp(arg, opt, len);
811 }
812
813 /* The kernel command line selection for spectre v2 */
814 enum spectre_v2_mitigation_cmd {
815 SPECTRE_V2_CMD_NONE,
816 SPECTRE_V2_CMD_AUTO,
817 SPECTRE_V2_CMD_FORCE,
818 SPECTRE_V2_CMD_RETPOLINE,
819 SPECTRE_V2_CMD_RETPOLINE_GENERIC,
820 SPECTRE_V2_CMD_RETPOLINE_LFENCE,
821 SPECTRE_V2_CMD_EIBRS,
822 SPECTRE_V2_CMD_EIBRS_RETPOLINE,
823 SPECTRE_V2_CMD_EIBRS_LFENCE,
824 };
825
826 enum spectre_v2_user_cmd {
827 SPECTRE_V2_USER_CMD_NONE,
828 SPECTRE_V2_USER_CMD_AUTO,
829 SPECTRE_V2_USER_CMD_FORCE,
830 SPECTRE_V2_USER_CMD_PRCTL,
831 SPECTRE_V2_USER_CMD_PRCTL_IBPB,
832 SPECTRE_V2_USER_CMD_SECCOMP,
833 SPECTRE_V2_USER_CMD_SECCOMP_IBPB,
834 };
835
836 static const char * const spectre_v2_user_strings[] = {
837 [SPECTRE_V2_USER_NONE] = "User space: Vulnerable",
838 [SPECTRE_V2_USER_STRICT] = "User space: Mitigation: STIBP protection",
839 [SPECTRE_V2_USER_STRICT_PREFERRED] = "User space: Mitigation: STIBP always-on protection",
840 [SPECTRE_V2_USER_PRCTL] = "User space: Mitigation: STIBP via prctl",
841 [SPECTRE_V2_USER_SECCOMP] = "User space: Mitigation: STIBP via seccomp and prctl",
842 };
843
844 static const struct {
845 const char *option;
846 enum spectre_v2_user_cmd cmd;
847 bool secure;
848 } v2_user_options[] __initconst = {
849 { "auto", SPECTRE_V2_USER_CMD_AUTO, false },
850 { "off", SPECTRE_V2_USER_CMD_NONE, false },
851 { "on", SPECTRE_V2_USER_CMD_FORCE, true },
852 { "prctl", SPECTRE_V2_USER_CMD_PRCTL, false },
853 { "prctl,ibpb", SPECTRE_V2_USER_CMD_PRCTL_IBPB, false },
854 { "seccomp", SPECTRE_V2_USER_CMD_SECCOMP, false },
855 { "seccomp,ibpb", SPECTRE_V2_USER_CMD_SECCOMP_IBPB, false },
856 };
857
858 static void __init spec_v2_user_print_cond(const char *reason, bool secure)
859 {
860 if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
861 pr_info("spectre_v2_user=%s forced on command line.\n", reason);
862 }
863
864 static enum spectre_v2_user_cmd __init
865 spectre_v2_parse_user_cmdline(enum spectre_v2_mitigation_cmd v2_cmd)
866 {
867 char arg[20];
868 int ret, i;
869
870 switch (v2_cmd) {
871 case SPECTRE_V2_CMD_NONE:
872 return SPECTRE_V2_USER_CMD_NONE;
873 case SPECTRE_V2_CMD_FORCE:
874 return SPECTRE_V2_USER_CMD_FORCE;
875 default:
876 break;
877 }
878
879 ret = cmdline_find_option(boot_command_line, "spectre_v2_user",
880 arg, sizeof(arg));
881 if (ret < 0)
882 return SPECTRE_V2_USER_CMD_AUTO;
883
884 for (i = 0; i < ARRAY_SIZE(v2_user_options); i++) {
885 if (match_option(arg, ret, v2_user_options[i].option)) {
886 spec_v2_user_print_cond(v2_user_options[i].option,
887 v2_user_options[i].secure);
888 return v2_user_options[i].cmd;
889 }
890 }
891
892 pr_err("Unknown user space protection option (%s). Switching to AUTO select\n", arg);
893 return SPECTRE_V2_USER_CMD_AUTO;
894 }
895
896 static inline bool spectre_v2_in_eibrs_mode(enum spectre_v2_mitigation mode)
897 {
898 return (mode == SPECTRE_V2_EIBRS ||
899 mode == SPECTRE_V2_EIBRS_RETPOLINE ||
900 mode == SPECTRE_V2_EIBRS_LFENCE);
901 }
902
903 static void __init
904 spectre_v2_user_select_mitigation(enum spectre_v2_mitigation_cmd v2_cmd)
905 {
906 enum spectre_v2_user_mitigation mode = SPECTRE_V2_USER_NONE;
907 bool smt_possible = IS_ENABLED(CONFIG_SMP);
908 enum spectre_v2_user_cmd cmd;
909
910 if (!boot_cpu_has(X86_FEATURE_IBPB) && !boot_cpu_has(X86_FEATURE_STIBP))
911 return;
912
913 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED ||
914 cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
915 smt_possible = false;
916
917 cmd = spectre_v2_parse_user_cmdline(v2_cmd);
918 switch (cmd) {
919 case SPECTRE_V2_USER_CMD_NONE:
920 goto set_mode;
921 case SPECTRE_V2_USER_CMD_FORCE:
922 mode = SPECTRE_V2_USER_STRICT;
923 break;
924 case SPECTRE_V2_USER_CMD_PRCTL:
925 case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
926 mode = SPECTRE_V2_USER_PRCTL;
927 break;
928 case SPECTRE_V2_USER_CMD_AUTO:
929 case SPECTRE_V2_USER_CMD_SECCOMP:
930 case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
931 if (IS_ENABLED(CONFIG_SECCOMP))
932 mode = SPECTRE_V2_USER_SECCOMP;
933 else
934 mode = SPECTRE_V2_USER_PRCTL;
935 break;
936 }
937
938 /* Initialize Indirect Branch Prediction Barrier */
939 if (boot_cpu_has(X86_FEATURE_IBPB)) {
940 setup_force_cpu_cap(X86_FEATURE_USE_IBPB);
941
942 spectre_v2_user_ibpb = mode;
943 switch (cmd) {
944 case SPECTRE_V2_USER_CMD_FORCE:
945 case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
946 case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
947 static_branch_enable(&switch_mm_always_ibpb);
948 spectre_v2_user_ibpb = SPECTRE_V2_USER_STRICT;
949 break;
950 case SPECTRE_V2_USER_CMD_PRCTL:
951 case SPECTRE_V2_USER_CMD_AUTO:
952 case SPECTRE_V2_USER_CMD_SECCOMP:
953 static_branch_enable(&switch_mm_cond_ibpb);
954 break;
955 default:
956 break;
957 }
958
959 pr_info("mitigation: Enabling %s Indirect Branch Prediction Barrier\n",
960 static_key_enabled(&switch_mm_always_ibpb) ?
961 "always-on" : "conditional");
962 }
963
964 /*
965 * If no STIBP, enhanced IBRS is enabled or SMT impossible, STIBP is not
966 * required.
967 */
968 if (!boot_cpu_has(X86_FEATURE_STIBP) ||
969 !smt_possible ||
970 spectre_v2_in_eibrs_mode(spectre_v2_enabled))
971 return;
972
973 /*
974 * At this point, an STIBP mode other than "off" has been set.
975 * If STIBP support is not being forced, check if STIBP always-on
976 * is preferred.
977 */
978 if (mode != SPECTRE_V2_USER_STRICT &&
979 boot_cpu_has(X86_FEATURE_AMD_STIBP_ALWAYS_ON))
980 mode = SPECTRE_V2_USER_STRICT_PREFERRED;
981
982 spectre_v2_user_stibp = mode;
983
984 set_mode:
985 pr_info("%s\n", spectre_v2_user_strings[mode]);
986 }
987
988 static const char * const spectre_v2_strings[] = {
989 [SPECTRE_V2_NONE] = "Vulnerable",
990 [SPECTRE_V2_RETPOLINE] = "Mitigation: Retpolines",
991 [SPECTRE_V2_LFENCE] = "Mitigation: LFENCE",
992 [SPECTRE_V2_EIBRS] = "Mitigation: Enhanced IBRS",
993 [SPECTRE_V2_EIBRS_LFENCE] = "Mitigation: Enhanced IBRS + LFENCE",
994 [SPECTRE_V2_EIBRS_RETPOLINE] = "Mitigation: Enhanced IBRS + Retpolines",
995 };
996
997 static const struct {
998 const char *option;
999 enum spectre_v2_mitigation_cmd cmd;
1000 bool secure;
1001 } mitigation_options[] __initconst = {
1002 { "off", SPECTRE_V2_CMD_NONE, false },
1003 { "on", SPECTRE_V2_CMD_FORCE, true },
1004 { "retpoline", SPECTRE_V2_CMD_RETPOLINE, false },
1005 { "retpoline,amd", SPECTRE_V2_CMD_RETPOLINE_LFENCE, false },
1006 { "retpoline,lfence", SPECTRE_V2_CMD_RETPOLINE_LFENCE, false },
1007 { "retpoline,generic", SPECTRE_V2_CMD_RETPOLINE_GENERIC, false },
1008 { "eibrs", SPECTRE_V2_CMD_EIBRS, false },
1009 { "eibrs,lfence", SPECTRE_V2_CMD_EIBRS_LFENCE, false },
1010 { "eibrs,retpoline", SPECTRE_V2_CMD_EIBRS_RETPOLINE, false },
1011 { "auto", SPECTRE_V2_CMD_AUTO, false },
1012 };
1013
1014 static void __init spec_v2_print_cond(const char *reason, bool secure)
1015 {
1016 if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
1017 pr_info("%s selected on command line.\n", reason);
1018 }
1019
1020 static enum spectre_v2_mitigation_cmd __init spectre_v2_parse_cmdline(void)
1021 {
1022 enum spectre_v2_mitigation_cmd cmd = SPECTRE_V2_CMD_AUTO;
1023 char arg[20];
1024 int ret, i;
1025
1026 if (cmdline_find_option_bool(boot_command_line, "nospectre_v2") ||
1027 cpu_mitigations_off())
1028 return SPECTRE_V2_CMD_NONE;
1029
1030 ret = cmdline_find_option(boot_command_line, "spectre_v2", arg, sizeof(arg));
1031 if (ret < 0)
1032 return SPECTRE_V2_CMD_AUTO;
1033
1034 for (i = 0; i < ARRAY_SIZE(mitigation_options); i++) {
1035 if (!match_option(arg, ret, mitigation_options[i].option))
1036 continue;
1037 cmd = mitigation_options[i].cmd;
1038 break;
1039 }
1040
1041 if (i >= ARRAY_SIZE(mitigation_options)) {
1042 pr_err("unknown option (%s). Switching to AUTO select\n", arg);
1043 return SPECTRE_V2_CMD_AUTO;
1044 }
1045
1046 if ((cmd == SPECTRE_V2_CMD_RETPOLINE ||
1047 cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE ||
1048 cmd == SPECTRE_V2_CMD_RETPOLINE_GENERIC ||
1049 cmd == SPECTRE_V2_CMD_EIBRS_LFENCE ||
1050 cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) &&
1051 !IS_ENABLED(CONFIG_RETPOLINE)) {
1052 pr_err("%s selected but not compiled in. Switching to AUTO select\n",
1053 mitigation_options[i].option);
1054 return SPECTRE_V2_CMD_AUTO;
1055 }
1056
1057 if ((cmd == SPECTRE_V2_CMD_EIBRS ||
1058 cmd == SPECTRE_V2_CMD_EIBRS_LFENCE ||
1059 cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) &&
1060 !boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
1061 pr_err("%s selected but CPU doesn't have eIBRS. Switching to AUTO select\n",
1062 mitigation_options[i].option);
1063 return SPECTRE_V2_CMD_AUTO;
1064 }
1065
1066 if ((cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE ||
1067 cmd == SPECTRE_V2_CMD_EIBRS_LFENCE) &&
1068 !boot_cpu_has(X86_FEATURE_LFENCE_RDTSC)) {
1069 pr_err("%s selected, but CPU doesn't have a serializing LFENCE. Switching to AUTO select\n",
1070 mitigation_options[i].option);
1071 return SPECTRE_V2_CMD_AUTO;
1072 }
1073
1074 spec_v2_print_cond(mitigation_options[i].option,
1075 mitigation_options[i].secure);
1076 return cmd;
1077 }
1078
1079 static enum spectre_v2_mitigation __init spectre_v2_select_retpoline(void)
1080 {
1081 if (!IS_ENABLED(CONFIG_RETPOLINE)) {
1082 pr_err("Kernel not compiled with retpoline; no mitigation available!");
1083 return SPECTRE_V2_NONE;
1084 }
1085
1086 return SPECTRE_V2_RETPOLINE;
1087 }
1088
1089 static void __init spectre_v2_select_mitigation(void)
1090 {
1091 enum spectre_v2_mitigation_cmd cmd = spectre_v2_parse_cmdline();
1092 enum spectre_v2_mitigation mode = SPECTRE_V2_NONE;
1093
1094 /*
1095 * If the CPU is not affected and the command line mode is NONE or AUTO
1096 * then nothing to do.
1097 */
1098 if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2) &&
1099 (cmd == SPECTRE_V2_CMD_NONE || cmd == SPECTRE_V2_CMD_AUTO))
1100 return;
1101
1102 switch (cmd) {
1103 case SPECTRE_V2_CMD_NONE:
1104 return;
1105
1106 case SPECTRE_V2_CMD_FORCE:
1107 case SPECTRE_V2_CMD_AUTO:
1108 if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
1109 mode = SPECTRE_V2_EIBRS;
1110 break;
1111 }
1112
1113 mode = spectre_v2_select_retpoline();
1114 break;
1115
1116 case SPECTRE_V2_CMD_RETPOLINE_LFENCE:
1117 pr_err(SPECTRE_V2_LFENCE_MSG);
1118 mode = SPECTRE_V2_LFENCE;
1119 break;
1120
1121 case SPECTRE_V2_CMD_RETPOLINE_GENERIC:
1122 mode = SPECTRE_V2_RETPOLINE;
1123 break;
1124
1125 case SPECTRE_V2_CMD_RETPOLINE:
1126 mode = spectre_v2_select_retpoline();
1127 break;
1128
1129 case SPECTRE_V2_CMD_EIBRS:
1130 mode = SPECTRE_V2_EIBRS;
1131 break;
1132
1133 case SPECTRE_V2_CMD_EIBRS_LFENCE:
1134 mode = SPECTRE_V2_EIBRS_LFENCE;
1135 break;
1136
1137 case SPECTRE_V2_CMD_EIBRS_RETPOLINE:
1138 mode = SPECTRE_V2_EIBRS_RETPOLINE;
1139 break;
1140 }
1141
1142 if (mode == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled())
1143 pr_err(SPECTRE_V2_EIBRS_EBPF_MSG);
1144
1145 if (spectre_v2_in_eibrs_mode(mode)) {
1146 /* Force it so VMEXIT will restore correctly */
1147 x86_spec_ctrl_base |= SPEC_CTRL_IBRS;
1148 wrmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base);
1149 }
1150
1151 switch (mode) {
1152 case SPECTRE_V2_NONE:
1153 case SPECTRE_V2_EIBRS:
1154 break;
1155
1156 case SPECTRE_V2_LFENCE:
1157 case SPECTRE_V2_EIBRS_LFENCE:
1158 setup_force_cpu_cap(X86_FEATURE_RETPOLINE_LFENCE);
1159 fallthrough;
1160
1161 case SPECTRE_V2_RETPOLINE:
1162 case SPECTRE_V2_EIBRS_RETPOLINE:
1163 setup_force_cpu_cap(X86_FEATURE_RETPOLINE);
1164 break;
1165 }
1166
1167 spectre_v2_enabled = mode;
1168 pr_info("%s\n", spectre_v2_strings[mode]);
1169
1170 /*
1171 * If spectre v2 protection has been enabled, unconditionally fill
1172 * RSB during a context switch; this protects against two independent
1173 * issues:
1174 *
1175 * - RSB underflow (and switch to BTB) on Skylake+
1176 * - SpectreRSB variant of spectre v2 on X86_BUG_SPECTRE_V2 CPUs
1177 */
1178 setup_force_cpu_cap(X86_FEATURE_RSB_CTXSW);
1179 pr_info("Spectre v2 / SpectreRSB mitigation: Filling RSB on context switch\n");
1180
1181 /*
1182 * Retpoline means the kernel is safe because it has no indirect
1183 * branches. Enhanced IBRS protects firmware too, so, enable restricted
1184 * speculation around firmware calls only when Enhanced IBRS isn't
1185 * supported.
1186 *
1187 * Use "mode" to check Enhanced IBRS instead of boot_cpu_has(), because
1188 * the user might select retpoline on the kernel command line and if
1189 * the CPU supports Enhanced IBRS, kernel might un-intentionally not
1190 * enable IBRS around firmware calls.
1191 */
1192 if (boot_cpu_has(X86_FEATURE_IBRS) && !spectre_v2_in_eibrs_mode(mode)) {
1193 setup_force_cpu_cap(X86_FEATURE_USE_IBRS_FW);
1194 pr_info("Enabling Restricted Speculation for firmware calls\n");
1195 }
1196
1197 /* Set up IBPB and STIBP depending on the general spectre V2 command */
1198 spectre_v2_user_select_mitigation(cmd);
1199 }
1200
1201 static void update_stibp_msr(void * __unused)
1202 {
1203 wrmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base);
1204 }
1205
1206 /* Update x86_spec_ctrl_base in case SMT state changed. */
1207 static void update_stibp_strict(void)
1208 {
1209 u64 mask = x86_spec_ctrl_base & ~SPEC_CTRL_STIBP;
1210
1211 if (sched_smt_active())
1212 mask |= SPEC_CTRL_STIBP;
1213
1214 if (mask == x86_spec_ctrl_base)
1215 return;
1216
1217 pr_info("Update user space SMT mitigation: STIBP %s\n",
1218 mask & SPEC_CTRL_STIBP ? "always-on" : "off");
1219 x86_spec_ctrl_base = mask;
1220 on_each_cpu(update_stibp_msr, NULL, 1);
1221 }
1222
1223 /* Update the static key controlling the evaluation of TIF_SPEC_IB */
1224 static void update_indir_branch_cond(void)
1225 {
1226 if (sched_smt_active())
1227 static_branch_enable(&switch_to_cond_stibp);
1228 else
1229 static_branch_disable(&switch_to_cond_stibp);
1230 }
1231
1232 #undef pr_fmt
1233 #define pr_fmt(fmt) fmt
1234
1235 /* Update the static key controlling the MDS CPU buffer clear in idle */
1236 static void update_mds_branch_idle(void)
1237 {
1238 u64 ia32_cap = x86_read_arch_cap_msr();
1239
1240 /*
1241 * Enable the idle clearing if SMT is active on CPUs which are
1242 * affected only by MSBDS and not any other MDS variant.
1243 *
1244 * The other variants cannot be mitigated when SMT is enabled, so
1245 * clearing the buffers on idle just to prevent the Store Buffer
1246 * repartitioning leak would be a window dressing exercise.
1247 */
1248 if (!boot_cpu_has_bug(X86_BUG_MSBDS_ONLY))
1249 return;
1250
1251 if (sched_smt_active()) {
1252 static_branch_enable(&mds_idle_clear);
1253 } else if (mmio_mitigation == MMIO_MITIGATION_OFF ||
1254 (ia32_cap & ARCH_CAP_FBSDP_NO)) {
1255 static_branch_disable(&mds_idle_clear);
1256 }
1257 }
1258
1259 #define MDS_MSG_SMT "MDS CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/mds.html for more details.\n"
1260 #define TAA_MSG_SMT "TAA CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/tsx_async_abort.html for more details.\n"
1261
1262 void cpu_bugs_smt_update(void)
1263 {
1264 mutex_lock(&spec_ctrl_mutex);
1265
1266 if (sched_smt_active() && unprivileged_ebpf_enabled() &&
1267 spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE)
1268 pr_warn_once(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG);
1269
1270 switch (spectre_v2_user_stibp) {
1271 case SPECTRE_V2_USER_NONE:
1272 break;
1273 case SPECTRE_V2_USER_STRICT:
1274 case SPECTRE_V2_USER_STRICT_PREFERRED:
1275 update_stibp_strict();
1276 break;
1277 case SPECTRE_V2_USER_PRCTL:
1278 case SPECTRE_V2_USER_SECCOMP:
1279 update_indir_branch_cond();
1280 break;
1281 }
1282
1283 switch (mds_mitigation) {
1284 case MDS_MITIGATION_FULL:
1285 case MDS_MITIGATION_VMWERV:
1286 if (sched_smt_active() && !boot_cpu_has(X86_BUG_MSBDS_ONLY))
1287 pr_warn_once(MDS_MSG_SMT);
1288 update_mds_branch_idle();
1289 break;
1290 case MDS_MITIGATION_OFF:
1291 break;
1292 }
1293
1294 switch (taa_mitigation) {
1295 case TAA_MITIGATION_VERW:
1296 case TAA_MITIGATION_UCODE_NEEDED:
1297 if (sched_smt_active())
1298 pr_warn_once(TAA_MSG_SMT);
1299 break;
1300 case TAA_MITIGATION_TSX_DISABLED:
1301 case TAA_MITIGATION_OFF:
1302 break;
1303 }
1304
1305 mutex_unlock(&spec_ctrl_mutex);
1306 }
1307
1308 #undef pr_fmt
1309 #define pr_fmt(fmt) "Speculative Store Bypass: " fmt
1310
1311 static enum ssb_mitigation ssb_mode __ro_after_init = SPEC_STORE_BYPASS_NONE;
1312
1313 /* The kernel command line selection */
1314 enum ssb_mitigation_cmd {
1315 SPEC_STORE_BYPASS_CMD_NONE,
1316 SPEC_STORE_BYPASS_CMD_AUTO,
1317 SPEC_STORE_BYPASS_CMD_ON,
1318 SPEC_STORE_BYPASS_CMD_PRCTL,
1319 SPEC_STORE_BYPASS_CMD_SECCOMP,
1320 };
1321
1322 static const char * const ssb_strings[] = {
1323 [SPEC_STORE_BYPASS_NONE] = "Vulnerable",
1324 [SPEC_STORE_BYPASS_DISABLE] = "Mitigation: Speculative Store Bypass disabled",
1325 [SPEC_STORE_BYPASS_PRCTL] = "Mitigation: Speculative Store Bypass disabled via prctl",
1326 [SPEC_STORE_BYPASS_SECCOMP] = "Mitigation: Speculative Store Bypass disabled via prctl and seccomp",
1327 };
1328
1329 static const struct {
1330 const char *option;
1331 enum ssb_mitigation_cmd cmd;
1332 } ssb_mitigation_options[] __initconst = {
1333 { "auto", SPEC_STORE_BYPASS_CMD_AUTO }, /* Platform decides */
1334 { "on", SPEC_STORE_BYPASS_CMD_ON }, /* Disable Speculative Store Bypass */
1335 { "off", SPEC_STORE_BYPASS_CMD_NONE }, /* Don't touch Speculative Store Bypass */
1336 { "prctl", SPEC_STORE_BYPASS_CMD_PRCTL }, /* Disable Speculative Store Bypass via prctl */
1337 { "seccomp", SPEC_STORE_BYPASS_CMD_SECCOMP }, /* Disable Speculative Store Bypass via prctl and seccomp */
1338 };
1339
1340 static enum ssb_mitigation_cmd __init ssb_parse_cmdline(void)
1341 {
1342 enum ssb_mitigation_cmd cmd = SPEC_STORE_BYPASS_CMD_AUTO;
1343 char arg[20];
1344 int ret, i;
1345
1346 if (cmdline_find_option_bool(boot_command_line, "nospec_store_bypass_disable") ||
1347 cpu_mitigations_off()) {
1348 return SPEC_STORE_BYPASS_CMD_NONE;
1349 } else {
1350 ret = cmdline_find_option(boot_command_line, "spec_store_bypass_disable",
1351 arg, sizeof(arg));
1352 if (ret < 0)
1353 return SPEC_STORE_BYPASS_CMD_AUTO;
1354
1355 for (i = 0; i < ARRAY_SIZE(ssb_mitigation_options); i++) {
1356 if (!match_option(arg, ret, ssb_mitigation_options[i].option))
1357 continue;
1358
1359 cmd = ssb_mitigation_options[i].cmd;
1360 break;
1361 }
1362
1363 if (i >= ARRAY_SIZE(ssb_mitigation_options)) {
1364 pr_err("unknown option (%s). Switching to AUTO select\n", arg);
1365 return SPEC_STORE_BYPASS_CMD_AUTO;
1366 }
1367 }
1368
1369 return cmd;
1370 }
1371
1372 static enum ssb_mitigation __init __ssb_select_mitigation(void)
1373 {
1374 enum ssb_mitigation mode = SPEC_STORE_BYPASS_NONE;
1375 enum ssb_mitigation_cmd cmd;
1376
1377 if (!boot_cpu_has(X86_FEATURE_SSBD))
1378 return mode;
1379
1380 cmd = ssb_parse_cmdline();
1381 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS) &&
1382 (cmd == SPEC_STORE_BYPASS_CMD_NONE ||
1383 cmd == SPEC_STORE_BYPASS_CMD_AUTO))
1384 return mode;
1385
1386 switch (cmd) {
1387 case SPEC_STORE_BYPASS_CMD_AUTO:
1388 case SPEC_STORE_BYPASS_CMD_SECCOMP:
1389 /*
1390 * Choose prctl+seccomp as the default mode if seccomp is
1391 * enabled.
1392 */
1393 if (IS_ENABLED(CONFIG_SECCOMP))
1394 mode = SPEC_STORE_BYPASS_SECCOMP;
1395 else
1396 mode = SPEC_STORE_BYPASS_PRCTL;
1397 break;
1398 case SPEC_STORE_BYPASS_CMD_ON:
1399 mode = SPEC_STORE_BYPASS_DISABLE;
1400 break;
1401 case SPEC_STORE_BYPASS_CMD_PRCTL:
1402 mode = SPEC_STORE_BYPASS_PRCTL;
1403 break;
1404 case SPEC_STORE_BYPASS_CMD_NONE:
1405 break;
1406 }
1407
1408 /*
1409 * If SSBD is controlled by the SPEC_CTRL MSR, then set the proper
1410 * bit in the mask to allow guests to use the mitigation even in the
1411 * case where the host does not enable it.
1412 */
1413 if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
1414 static_cpu_has(X86_FEATURE_AMD_SSBD)) {
1415 x86_spec_ctrl_mask |= SPEC_CTRL_SSBD;
1416 }
1417
1418 /*
1419 * We have three CPU feature flags that are in play here:
1420 * - X86_BUG_SPEC_STORE_BYPASS - CPU is susceptible.
1421 * - X86_FEATURE_SSBD - CPU is able to turn off speculative store bypass
1422 * - X86_FEATURE_SPEC_STORE_BYPASS_DISABLE - engage the mitigation
1423 */
1424 if (mode == SPEC_STORE_BYPASS_DISABLE) {
1425 setup_force_cpu_cap(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE);
1426 /*
1427 * Intel uses the SPEC CTRL MSR Bit(2) for this, while AMD may
1428 * use a completely different MSR and bit dependent on family.
1429 */
1430 if (!static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) &&
1431 !static_cpu_has(X86_FEATURE_AMD_SSBD)) {
1432 x86_amd_ssb_disable();
1433 } else {
1434 x86_spec_ctrl_base |= SPEC_CTRL_SSBD;
1435 wrmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base);
1436 }
1437 }
1438
1439 return mode;
1440 }
1441
1442 static void ssb_select_mitigation(void)
1443 {
1444 ssb_mode = __ssb_select_mitigation();
1445
1446 if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1447 pr_info("%s\n", ssb_strings[ssb_mode]);
1448 }
1449
1450 #undef pr_fmt
1451 #define pr_fmt(fmt) "Speculation prctl: " fmt
1452
1453 static void task_update_spec_tif(struct task_struct *tsk)
1454 {
1455 /* Force the update of the real TIF bits */
1456 set_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE);
1457
1458 /*
1459 * Immediately update the speculation control MSRs for the current
1460 * task, but for a non-current task delay setting the CPU
1461 * mitigation until it is scheduled next.
1462 *
1463 * This can only happen for SECCOMP mitigation. For PRCTL it's
1464 * always the current task.
1465 */
1466 if (tsk == current)
1467 speculation_ctrl_update_current();
1468 }
1469
1470 static int l1d_flush_prctl_set(struct task_struct *task, unsigned long ctrl)
1471 {
1472
1473 if (!static_branch_unlikely(&switch_mm_cond_l1d_flush))
1474 return -EPERM;
1475
1476 switch (ctrl) {
1477 case PR_SPEC_ENABLE:
1478 set_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH);
1479 return 0;
1480 case PR_SPEC_DISABLE:
1481 clear_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH);
1482 return 0;
1483 default:
1484 return -ERANGE;
1485 }
1486 }
1487
1488 static int ssb_prctl_set(struct task_struct *task, unsigned long ctrl)
1489 {
1490 if (ssb_mode != SPEC_STORE_BYPASS_PRCTL &&
1491 ssb_mode != SPEC_STORE_BYPASS_SECCOMP)
1492 return -ENXIO;
1493
1494 switch (ctrl) {
1495 case PR_SPEC_ENABLE:
1496 /* If speculation is force disabled, enable is not allowed */
1497 if (task_spec_ssb_force_disable(task))
1498 return -EPERM;
1499 task_clear_spec_ssb_disable(task);
1500 task_clear_spec_ssb_noexec(task);
1501 task_update_spec_tif(task);
1502 break;
1503 case PR_SPEC_DISABLE:
1504 task_set_spec_ssb_disable(task);
1505 task_clear_spec_ssb_noexec(task);
1506 task_update_spec_tif(task);
1507 break;
1508 case PR_SPEC_FORCE_DISABLE:
1509 task_set_spec_ssb_disable(task);
1510 task_set_spec_ssb_force_disable(task);
1511 task_clear_spec_ssb_noexec(task);
1512 task_update_spec_tif(task);
1513 break;
1514 case PR_SPEC_DISABLE_NOEXEC:
1515 if (task_spec_ssb_force_disable(task))
1516 return -EPERM;
1517 task_set_spec_ssb_disable(task);
1518 task_set_spec_ssb_noexec(task);
1519 task_update_spec_tif(task);
1520 break;
1521 default:
1522 return -ERANGE;
1523 }
1524 return 0;
1525 }
1526
1527 static bool is_spec_ib_user_controlled(void)
1528 {
1529 return spectre_v2_user_ibpb == SPECTRE_V2_USER_PRCTL ||
1530 spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
1531 spectre_v2_user_stibp == SPECTRE_V2_USER_PRCTL ||
1532 spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP;
1533 }
1534
1535 static int ib_prctl_set(struct task_struct *task, unsigned long ctrl)
1536 {
1537 switch (ctrl) {
1538 case PR_SPEC_ENABLE:
1539 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
1540 spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
1541 return 0;
1542
1543 /*
1544 * With strict mode for both IBPB and STIBP, the instruction
1545 * code paths avoid checking this task flag and instead,
1546 * unconditionally run the instruction. However, STIBP and IBPB
1547 * are independent and either can be set to conditionally
1548 * enabled regardless of the mode of the other.
1549 *
1550 * If either is set to conditional, allow the task flag to be
1551 * updated, unless it was force-disabled by a previous prctl
1552 * call. Currently, this is possible on an AMD CPU which has the
1553 * feature X86_FEATURE_AMD_STIBP_ALWAYS_ON. In this case, if the
1554 * kernel is booted with 'spectre_v2_user=seccomp', then
1555 * spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP and
1556 * spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED.
1557 */
1558 if (!is_spec_ib_user_controlled() ||
1559 task_spec_ib_force_disable(task))
1560 return -EPERM;
1561
1562 task_clear_spec_ib_disable(task);
1563 task_update_spec_tif(task);
1564 break;
1565 case PR_SPEC_DISABLE:
1566 case PR_SPEC_FORCE_DISABLE:
1567 /*
1568 * Indirect branch speculation is always allowed when
1569 * mitigation is force disabled.
1570 */
1571 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
1572 spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
1573 return -EPERM;
1574
1575 if (!is_spec_ib_user_controlled())
1576 return 0;
1577
1578 task_set_spec_ib_disable(task);
1579 if (ctrl == PR_SPEC_FORCE_DISABLE)
1580 task_set_spec_ib_force_disable(task);
1581 task_update_spec_tif(task);
1582 break;
1583 default:
1584 return -ERANGE;
1585 }
1586 return 0;
1587 }
1588
1589 int arch_prctl_spec_ctrl_set(struct task_struct *task, unsigned long which,
1590 unsigned long ctrl)
1591 {
1592 switch (which) {
1593 case PR_SPEC_STORE_BYPASS:
1594 return ssb_prctl_set(task, ctrl);
1595 case PR_SPEC_INDIRECT_BRANCH:
1596 return ib_prctl_set(task, ctrl);
1597 case PR_SPEC_L1D_FLUSH:
1598 return l1d_flush_prctl_set(task, ctrl);
1599 default:
1600 return -ENODEV;
1601 }
1602 }
1603
1604 #ifdef CONFIG_SECCOMP
1605 void arch_seccomp_spec_mitigate(struct task_struct *task)
1606 {
1607 if (ssb_mode == SPEC_STORE_BYPASS_SECCOMP)
1608 ssb_prctl_set(task, PR_SPEC_FORCE_DISABLE);
1609 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
1610 spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP)
1611 ib_prctl_set(task, PR_SPEC_FORCE_DISABLE);
1612 }
1613 #endif
1614
1615 static int l1d_flush_prctl_get(struct task_struct *task)
1616 {
1617 if (!static_branch_unlikely(&switch_mm_cond_l1d_flush))
1618 return PR_SPEC_FORCE_DISABLE;
1619
1620 if (test_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH))
1621 return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
1622 else
1623 return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
1624 }
1625
1626 static int ssb_prctl_get(struct task_struct *task)
1627 {
1628 switch (ssb_mode) {
1629 case SPEC_STORE_BYPASS_DISABLE:
1630 return PR_SPEC_DISABLE;
1631 case SPEC_STORE_BYPASS_SECCOMP:
1632 case SPEC_STORE_BYPASS_PRCTL:
1633 if (task_spec_ssb_force_disable(task))
1634 return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
1635 if (task_spec_ssb_noexec(task))
1636 return PR_SPEC_PRCTL | PR_SPEC_DISABLE_NOEXEC;
1637 if (task_spec_ssb_disable(task))
1638 return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
1639 return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
1640 default:
1641 if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1642 return PR_SPEC_ENABLE;
1643 return PR_SPEC_NOT_AFFECTED;
1644 }
1645 }
1646
1647 static int ib_prctl_get(struct task_struct *task)
1648 {
1649 if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2))
1650 return PR_SPEC_NOT_AFFECTED;
1651
1652 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
1653 spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
1654 return PR_SPEC_ENABLE;
1655 else if (is_spec_ib_user_controlled()) {
1656 if (task_spec_ib_force_disable(task))
1657 return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
1658 if (task_spec_ib_disable(task))
1659 return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
1660 return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
1661 } else if (spectre_v2_user_ibpb == SPECTRE_V2_USER_STRICT ||
1662 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
1663 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED)
1664 return PR_SPEC_DISABLE;
1665 else
1666 return PR_SPEC_NOT_AFFECTED;
1667 }
1668
1669 int arch_prctl_spec_ctrl_get(struct task_struct *task, unsigned long which)
1670 {
1671 switch (which) {
1672 case PR_SPEC_STORE_BYPASS:
1673 return ssb_prctl_get(task);
1674 case PR_SPEC_INDIRECT_BRANCH:
1675 return ib_prctl_get(task);
1676 case PR_SPEC_L1D_FLUSH:
1677 return l1d_flush_prctl_get(task);
1678 default:
1679 return -ENODEV;
1680 }
1681 }
1682
1683 void x86_spec_ctrl_setup_ap(void)
1684 {
1685 if (boot_cpu_has(X86_FEATURE_MSR_SPEC_CTRL))
1686 wrmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base);
1687
1688 if (ssb_mode == SPEC_STORE_BYPASS_DISABLE)
1689 x86_amd_ssb_disable();
1690 }
1691
1692 bool itlb_multihit_kvm_mitigation;
1693 EXPORT_SYMBOL_GPL(itlb_multihit_kvm_mitigation);
1694
1695 #undef pr_fmt
1696 #define pr_fmt(fmt) "L1TF: " fmt
1697
1698 /* Default mitigation for L1TF-affected CPUs */
1699 enum l1tf_mitigations l1tf_mitigation __ro_after_init = L1TF_MITIGATION_FLUSH;
1700 #if IS_ENABLED(CONFIG_KVM_INTEL)
1701 EXPORT_SYMBOL_GPL(l1tf_mitigation);
1702 #endif
1703 enum vmx_l1d_flush_state l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
1704 EXPORT_SYMBOL_GPL(l1tf_vmx_mitigation);
1705
1706 /*
1707 * These CPUs all support 44bits physical address space internally in the
1708 * cache but CPUID can report a smaller number of physical address bits.
1709 *
1710 * The L1TF mitigation uses the top most address bit for the inversion of
1711 * non present PTEs. When the installed memory reaches into the top most
1712 * address bit due to memory holes, which has been observed on machines
1713 * which report 36bits physical address bits and have 32G RAM installed,
1714 * then the mitigation range check in l1tf_select_mitigation() triggers.
1715 * This is a false positive because the mitigation is still possible due to
1716 * the fact that the cache uses 44bit internally. Use the cache bits
1717 * instead of the reported physical bits and adjust them on the affected
1718 * machines to 44bit if the reported bits are less than 44.
1719 */
1720 static void override_cache_bits(struct cpuinfo_x86 *c)
1721 {
1722 if (c->x86 != 6)
1723 return;
1724
1725 switch (c->x86_model) {
1726 case INTEL_FAM6_NEHALEM:
1727 case INTEL_FAM6_WESTMERE:
1728 case INTEL_FAM6_SANDYBRIDGE:
1729 case INTEL_FAM6_IVYBRIDGE:
1730 case INTEL_FAM6_HASWELL:
1731 case INTEL_FAM6_HASWELL_L:
1732 case INTEL_FAM6_HASWELL_G:
1733 case INTEL_FAM6_BROADWELL:
1734 case INTEL_FAM6_BROADWELL_G:
1735 case INTEL_FAM6_SKYLAKE_L:
1736 case INTEL_FAM6_SKYLAKE:
1737 case INTEL_FAM6_KABYLAKE_L:
1738 case INTEL_FAM6_KABYLAKE:
1739 if (c->x86_cache_bits < 44)
1740 c->x86_cache_bits = 44;
1741 break;
1742 }
1743 }
1744
1745 static void __init l1tf_select_mitigation(void)
1746 {
1747 u64 half_pa;
1748
1749 if (!boot_cpu_has_bug(X86_BUG_L1TF))
1750 return;
1751
1752 if (cpu_mitigations_off())
1753 l1tf_mitigation = L1TF_MITIGATION_OFF;
1754 else if (cpu_mitigations_auto_nosmt())
1755 l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
1756
1757 override_cache_bits(&boot_cpu_data);
1758
1759 switch (l1tf_mitigation) {
1760 case L1TF_MITIGATION_OFF:
1761 case L1TF_MITIGATION_FLUSH_NOWARN:
1762 case L1TF_MITIGATION_FLUSH:
1763 break;
1764 case L1TF_MITIGATION_FLUSH_NOSMT:
1765 case L1TF_MITIGATION_FULL:
1766 cpu_smt_disable(false);
1767 break;
1768 case L1TF_MITIGATION_FULL_FORCE:
1769 cpu_smt_disable(true);
1770 break;
1771 }
1772
1773 #if CONFIG_PGTABLE_LEVELS == 2
1774 pr_warn("Kernel not compiled for PAE. No mitigation for L1TF\n");
1775 return;
1776 #endif
1777
1778 half_pa = (u64)l1tf_pfn_limit() << PAGE_SHIFT;
1779 if (l1tf_mitigation != L1TF_MITIGATION_OFF &&
1780 e820__mapped_any(half_pa, ULLONG_MAX - half_pa, E820_TYPE_RAM)) {
1781 pr_warn("System has more than MAX_PA/2 memory. L1TF mitigation not effective.\n");
1782 pr_info("You may make it effective by booting the kernel with mem=%llu parameter.\n",
1783 half_pa);
1784 pr_info("However, doing so will make a part of your RAM unusable.\n");
1785 pr_info("Reading https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html might help you decide.\n");
1786 return;
1787 }
1788
1789 setup_force_cpu_cap(X86_FEATURE_L1TF_PTEINV);
1790 }
1791
1792 static int __init l1tf_cmdline(char *str)
1793 {
1794 if (!boot_cpu_has_bug(X86_BUG_L1TF))
1795 return 0;
1796
1797 if (!str)
1798 return -EINVAL;
1799
1800 if (!strcmp(str, "off"))
1801 l1tf_mitigation = L1TF_MITIGATION_OFF;
1802 else if (!strcmp(str, "flush,nowarn"))
1803 l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOWARN;
1804 else if (!strcmp(str, "flush"))
1805 l1tf_mitigation = L1TF_MITIGATION_FLUSH;
1806 else if (!strcmp(str, "flush,nosmt"))
1807 l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
1808 else if (!strcmp(str, "full"))
1809 l1tf_mitigation = L1TF_MITIGATION_FULL;
1810 else if (!strcmp(str, "full,force"))
1811 l1tf_mitigation = L1TF_MITIGATION_FULL_FORCE;
1812
1813 return 0;
1814 }
1815 early_param("l1tf", l1tf_cmdline);
1816
1817 #undef pr_fmt
1818 #define pr_fmt(fmt) fmt
1819
1820 #ifdef CONFIG_SYSFS
1821
1822 #define L1TF_DEFAULT_MSG "Mitigation: PTE Inversion"
1823
1824 #if IS_ENABLED(CONFIG_KVM_INTEL)
1825 static const char * const l1tf_vmx_states[] = {
1826 [VMENTER_L1D_FLUSH_AUTO] = "auto",
1827 [VMENTER_L1D_FLUSH_NEVER] = "vulnerable",
1828 [VMENTER_L1D_FLUSH_COND] = "conditional cache flushes",
1829 [VMENTER_L1D_FLUSH_ALWAYS] = "cache flushes",
1830 [VMENTER_L1D_FLUSH_EPT_DISABLED] = "EPT disabled",
1831 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = "flush not necessary"
1832 };
1833
1834 static ssize_t l1tf_show_state(char *buf)
1835 {
1836 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO)
1837 return sprintf(buf, "%s\n", L1TF_DEFAULT_MSG);
1838
1839 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_EPT_DISABLED ||
1840 (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER &&
1841 sched_smt_active())) {
1842 return sprintf(buf, "%s; VMX: %s\n", L1TF_DEFAULT_MSG,
1843 l1tf_vmx_states[l1tf_vmx_mitigation]);
1844 }
1845
1846 return sprintf(buf, "%s; VMX: %s, SMT %s\n", L1TF_DEFAULT_MSG,
1847 l1tf_vmx_states[l1tf_vmx_mitigation],
1848 sched_smt_active() ? "vulnerable" : "disabled");
1849 }
1850
1851 static ssize_t itlb_multihit_show_state(char *buf)
1852 {
1853 if (!boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
1854 !boot_cpu_has(X86_FEATURE_VMX))
1855 return sprintf(buf, "KVM: Mitigation: VMX unsupported\n");
1856 else if (!(cr4_read_shadow() & X86_CR4_VMXE))
1857 return sprintf(buf, "KVM: Mitigation: VMX disabled\n");
1858 else if (itlb_multihit_kvm_mitigation)
1859 return sprintf(buf, "KVM: Mitigation: Split huge pages\n");
1860 else
1861 return sprintf(buf, "KVM: Vulnerable\n");
1862 }
1863 #else
1864 static ssize_t l1tf_show_state(char *buf)
1865 {
1866 return sprintf(buf, "%s\n", L1TF_DEFAULT_MSG);
1867 }
1868
1869 static ssize_t itlb_multihit_show_state(char *buf)
1870 {
1871 return sprintf(buf, "Processor vulnerable\n");
1872 }
1873 #endif
1874
1875 static ssize_t mds_show_state(char *buf)
1876 {
1877 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
1878 return sprintf(buf, "%s; SMT Host state unknown\n",
1879 mds_strings[mds_mitigation]);
1880 }
1881
1882 if (boot_cpu_has(X86_BUG_MSBDS_ONLY)) {
1883 return sprintf(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
1884 (mds_mitigation == MDS_MITIGATION_OFF ? "vulnerable" :
1885 sched_smt_active() ? "mitigated" : "disabled"));
1886 }
1887
1888 return sprintf(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
1889 sched_smt_active() ? "vulnerable" : "disabled");
1890 }
1891
1892 static ssize_t tsx_async_abort_show_state(char *buf)
1893 {
1894 if ((taa_mitigation == TAA_MITIGATION_TSX_DISABLED) ||
1895 (taa_mitigation == TAA_MITIGATION_OFF))
1896 return sprintf(buf, "%s\n", taa_strings[taa_mitigation]);
1897
1898 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
1899 return sprintf(buf, "%s; SMT Host state unknown\n",
1900 taa_strings[taa_mitigation]);
1901 }
1902
1903 return sprintf(buf, "%s; SMT %s\n", taa_strings[taa_mitigation],
1904 sched_smt_active() ? "vulnerable" : "disabled");
1905 }
1906
1907 static ssize_t mmio_stale_data_show_state(char *buf)
1908 {
1909 if (mmio_mitigation == MMIO_MITIGATION_OFF)
1910 return sysfs_emit(buf, "%s\n", mmio_strings[mmio_mitigation]);
1911
1912 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
1913 return sysfs_emit(buf, "%s; SMT Host state unknown\n",
1914 mmio_strings[mmio_mitigation]);
1915 }
1916
1917 return sysfs_emit(buf, "%s; SMT %s\n", mmio_strings[mmio_mitigation],
1918 sched_smt_active() ? "vulnerable" : "disabled");
1919 }
1920
1921 static char *stibp_state(void)
1922 {
1923 if (spectre_v2_in_eibrs_mode(spectre_v2_enabled))
1924 return "";
1925
1926 switch (spectre_v2_user_stibp) {
1927 case SPECTRE_V2_USER_NONE:
1928 return ", STIBP: disabled";
1929 case SPECTRE_V2_USER_STRICT:
1930 return ", STIBP: forced";
1931 case SPECTRE_V2_USER_STRICT_PREFERRED:
1932 return ", STIBP: always-on";
1933 case SPECTRE_V2_USER_PRCTL:
1934 case SPECTRE_V2_USER_SECCOMP:
1935 if (static_key_enabled(&switch_to_cond_stibp))
1936 return ", STIBP: conditional";
1937 }
1938 return "";
1939 }
1940
1941 static char *ibpb_state(void)
1942 {
1943 if (boot_cpu_has(X86_FEATURE_IBPB)) {
1944 if (static_key_enabled(&switch_mm_always_ibpb))
1945 return ", IBPB: always-on";
1946 if (static_key_enabled(&switch_mm_cond_ibpb))
1947 return ", IBPB: conditional";
1948 return ", IBPB: disabled";
1949 }
1950 return "";
1951 }
1952
1953 static ssize_t spectre_v2_show_state(char *buf)
1954 {
1955 if (spectre_v2_enabled == SPECTRE_V2_LFENCE)
1956 return sprintf(buf, "Vulnerable: LFENCE\n");
1957
1958 if (spectre_v2_enabled == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled())
1959 return sprintf(buf, "Vulnerable: eIBRS with unprivileged eBPF\n");
1960
1961 if (sched_smt_active() && unprivileged_ebpf_enabled() &&
1962 spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE)
1963 return sprintf(buf, "Vulnerable: eIBRS+LFENCE with unprivileged eBPF and SMT\n");
1964
1965 return sprintf(buf, "%s%s%s%s%s%s\n",
1966 spectre_v2_strings[spectre_v2_enabled],
1967 ibpb_state(),
1968 boot_cpu_has(X86_FEATURE_USE_IBRS_FW) ? ", IBRS_FW" : "",
1969 stibp_state(),
1970 boot_cpu_has(X86_FEATURE_RSB_CTXSW) ? ", RSB filling" : "",
1971 spectre_v2_module_string());
1972 }
1973
1974 static ssize_t srbds_show_state(char *buf)
1975 {
1976 return sprintf(buf, "%s\n", srbds_strings[srbds_mitigation]);
1977 }
1978
1979 static ssize_t cpu_show_common(struct device *dev, struct device_attribute *attr,
1980 char *buf, unsigned int bug)
1981 {
1982 if (!boot_cpu_has_bug(bug))
1983 return sprintf(buf, "Not affected\n");
1984
1985 switch (bug) {
1986 case X86_BUG_CPU_MELTDOWN:
1987 if (boot_cpu_has(X86_FEATURE_PTI))
1988 return sprintf(buf, "Mitigation: PTI\n");
1989
1990 if (hypervisor_is_type(X86_HYPER_XEN_PV))
1991 return sprintf(buf, "Unknown (XEN PV detected, hypervisor mitigation required)\n");
1992
1993 break;
1994
1995 case X86_BUG_SPECTRE_V1:
1996 return sprintf(buf, "%s\n", spectre_v1_strings[spectre_v1_mitigation]);
1997
1998 case X86_BUG_SPECTRE_V2:
1999 return spectre_v2_show_state(buf);
2000
2001 case X86_BUG_SPEC_STORE_BYPASS:
2002 return sprintf(buf, "%s\n", ssb_strings[ssb_mode]);
2003
2004 case X86_BUG_L1TF:
2005 if (boot_cpu_has(X86_FEATURE_L1TF_PTEINV))
2006 return l1tf_show_state(buf);
2007 break;
2008
2009 case X86_BUG_MDS:
2010 return mds_show_state(buf);
2011
2012 case X86_BUG_TAA:
2013 return tsx_async_abort_show_state(buf);
2014
2015 case X86_BUG_ITLB_MULTIHIT:
2016 return itlb_multihit_show_state(buf);
2017
2018 case X86_BUG_SRBDS:
2019 return srbds_show_state(buf);
2020
2021 case X86_BUG_MMIO_STALE_DATA:
2022 return mmio_stale_data_show_state(buf);
2023
2024 default:
2025 break;
2026 }
2027
2028 return sprintf(buf, "Vulnerable\n");
2029 }
2030
2031 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr, char *buf)
2032 {
2033 return cpu_show_common(dev, attr, buf, X86_BUG_CPU_MELTDOWN);
2034 }
2035
2036 ssize_t cpu_show_spectre_v1(struct device *dev, struct device_attribute *attr, char *buf)
2037 {
2038 return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V1);
2039 }
2040
2041 ssize_t cpu_show_spectre_v2(struct device *dev, struct device_attribute *attr, char *buf)
2042 {
2043 return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V2);
2044 }
2045
2046 ssize_t cpu_show_spec_store_bypass(struct device *dev, struct device_attribute *attr, char *buf)
2047 {
2048 return cpu_show_common(dev, attr, buf, X86_BUG_SPEC_STORE_BYPASS);
2049 }
2050
2051 ssize_t cpu_show_l1tf(struct device *dev, struct device_attribute *attr, char *buf)
2052 {
2053 return cpu_show_common(dev, attr, buf, X86_BUG_L1TF);
2054 }
2055
2056 ssize_t cpu_show_mds(struct device *dev, struct device_attribute *attr, char *buf)
2057 {
2058 return cpu_show_common(dev, attr, buf, X86_BUG_MDS);
2059 }
2060
2061 ssize_t cpu_show_tsx_async_abort(struct device *dev, struct device_attribute *attr, char *buf)
2062 {
2063 return cpu_show_common(dev, attr, buf, X86_BUG_TAA);
2064 }
2065
2066 ssize_t cpu_show_itlb_multihit(struct device *dev, struct device_attribute *attr, char *buf)
2067 {
2068 return cpu_show_common(dev, attr, buf, X86_BUG_ITLB_MULTIHIT);
2069 }
2070
2071 ssize_t cpu_show_srbds(struct device *dev, struct device_attribute *attr, char *buf)
2072 {
2073 return cpu_show_common(dev, attr, buf, X86_BUG_SRBDS);
2074 }
2075
2076 ssize_t cpu_show_mmio_stale_data(struct device *dev, struct device_attribute *attr, char *buf)
2077 {
2078 return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_STALE_DATA);
2079 }
2080 #endif