]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/kernel/cpu/bugs.c
x86/speculation/mmio: Enable CPU Fill buffer clearing on idle
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kernel / cpu / bugs.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1994 Linus Torvalds
4 *
5 * Cyrix stuff, June 1998 by:
6 * - Rafael R. Reilova (moved everything from head.S),
7 * <rreilova@ececs.uc.edu>
8 * - Channing Corn (tests & fixes),
9 * - Andrew D. Balsa (code cleanup).
10 */
11 #include <linux/init.h>
12 #include <linux/utsname.h>
13 #include <linux/cpu.h>
14 #include <linux/module.h>
15 #include <linux/nospec.h>
16 #include <linux/prctl.h>
17 #include <linux/sched/smt.h>
18 #include <linux/pgtable.h>
19 #include <linux/bpf.h>
20
21 #include <asm/spec-ctrl.h>
22 #include <asm/cmdline.h>
23 #include <asm/bugs.h>
24 #include <asm/processor.h>
25 #include <asm/processor-flags.h>
26 #include <asm/fpu/api.h>
27 #include <asm/msr.h>
28 #include <asm/vmx.h>
29 #include <asm/paravirt.h>
30 #include <asm/alternative.h>
31 #include <asm/set_memory.h>
32 #include <asm/intel-family.h>
33 #include <asm/e820/api.h>
34 #include <asm/hypervisor.h>
35 #include <asm/tlbflush.h>
36
37 #include "cpu.h"
38
39 static void __init spectre_v1_select_mitigation(void);
40 static void __init spectre_v2_select_mitigation(void);
41 static void __init ssb_select_mitigation(void);
42 static void __init l1tf_select_mitigation(void);
43 static void __init mds_select_mitigation(void);
44 static void __init md_clear_update_mitigation(void);
45 static void __init md_clear_select_mitigation(void);
46 static void __init taa_select_mitigation(void);
47 static void __init mmio_select_mitigation(void);
48 static void __init srbds_select_mitigation(void);
49 static void __init l1d_flush_select_mitigation(void);
50
51 /* The base value of the SPEC_CTRL MSR that always has to be preserved. */
52 u64 x86_spec_ctrl_base;
53 EXPORT_SYMBOL_GPL(x86_spec_ctrl_base);
54 static DEFINE_MUTEX(spec_ctrl_mutex);
55
56 /*
57 * The vendor and possibly platform specific bits which can be modified in
58 * x86_spec_ctrl_base.
59 */
60 static u64 __ro_after_init x86_spec_ctrl_mask = SPEC_CTRL_IBRS;
61
62 /*
63 * AMD specific MSR info for Speculative Store Bypass control.
64 * x86_amd_ls_cfg_ssbd_mask is initialized in identify_boot_cpu().
65 */
66 u64 __ro_after_init x86_amd_ls_cfg_base;
67 u64 __ro_after_init x86_amd_ls_cfg_ssbd_mask;
68
69 /* Control conditional STIBP in switch_to() */
70 DEFINE_STATIC_KEY_FALSE(switch_to_cond_stibp);
71 /* Control conditional IBPB in switch_mm() */
72 DEFINE_STATIC_KEY_FALSE(switch_mm_cond_ibpb);
73 /* Control unconditional IBPB in switch_mm() */
74 DEFINE_STATIC_KEY_FALSE(switch_mm_always_ibpb);
75
76 /* Control MDS CPU buffer clear before returning to user space */
77 DEFINE_STATIC_KEY_FALSE(mds_user_clear);
78 EXPORT_SYMBOL_GPL(mds_user_clear);
79 /* Control MDS CPU buffer clear before idling (halt, mwait) */
80 DEFINE_STATIC_KEY_FALSE(mds_idle_clear);
81 EXPORT_SYMBOL_GPL(mds_idle_clear);
82
83 /*
84 * Controls whether l1d flush based mitigations are enabled,
85 * based on hw features and admin setting via boot parameter
86 * defaults to false
87 */
88 DEFINE_STATIC_KEY_FALSE(switch_mm_cond_l1d_flush);
89
90 /* Controls CPU Fill buffer clear before KVM guest MMIO accesses */
91 DEFINE_STATIC_KEY_FALSE(mmio_stale_data_clear);
92 EXPORT_SYMBOL_GPL(mmio_stale_data_clear);
93
94 void __init check_bugs(void)
95 {
96 identify_boot_cpu();
97
98 /*
99 * identify_boot_cpu() initialized SMT support information, let the
100 * core code know.
101 */
102 cpu_smt_check_topology();
103
104 if (!IS_ENABLED(CONFIG_SMP)) {
105 pr_info("CPU: ");
106 print_cpu_info(&boot_cpu_data);
107 }
108
109 /*
110 * Read the SPEC_CTRL MSR to account for reserved bits which may
111 * have unknown values. AMD64_LS_CFG MSR is cached in the early AMD
112 * init code as it is not enumerated and depends on the family.
113 */
114 if (boot_cpu_has(X86_FEATURE_MSR_SPEC_CTRL))
115 rdmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base);
116
117 /* Allow STIBP in MSR_SPEC_CTRL if supported */
118 if (boot_cpu_has(X86_FEATURE_STIBP))
119 x86_spec_ctrl_mask |= SPEC_CTRL_STIBP;
120
121 /* Select the proper CPU mitigations before patching alternatives: */
122 spectre_v1_select_mitigation();
123 spectre_v2_select_mitigation();
124 ssb_select_mitigation();
125 l1tf_select_mitigation();
126 md_clear_select_mitigation();
127 srbds_select_mitigation();
128 l1d_flush_select_mitigation();
129
130 arch_smt_update();
131
132 #ifdef CONFIG_X86_32
133 /*
134 * Check whether we are able to run this kernel safely on SMP.
135 *
136 * - i386 is no longer supported.
137 * - In order to run on anything without a TSC, we need to be
138 * compiled for a i486.
139 */
140 if (boot_cpu_data.x86 < 4)
141 panic("Kernel requires i486+ for 'invlpg' and other features");
142
143 init_utsname()->machine[1] =
144 '0' + (boot_cpu_data.x86 > 6 ? 6 : boot_cpu_data.x86);
145 alternative_instructions();
146
147 fpu__init_check_bugs();
148 #else /* CONFIG_X86_64 */
149 alternative_instructions();
150
151 /*
152 * Make sure the first 2MB area is not mapped by huge pages
153 * There are typically fixed size MTRRs in there and overlapping
154 * MTRRs into large pages causes slow downs.
155 *
156 * Right now we don't do that with gbpages because there seems
157 * very little benefit for that case.
158 */
159 if (!direct_gbpages)
160 set_memory_4k((unsigned long)__va(0), 1);
161 #endif
162 }
163
164 void
165 x86_virt_spec_ctrl(u64 guest_spec_ctrl, u64 guest_virt_spec_ctrl, bool setguest)
166 {
167 u64 msrval, guestval, hostval = x86_spec_ctrl_base;
168 struct thread_info *ti = current_thread_info();
169
170 /* Is MSR_SPEC_CTRL implemented ? */
171 if (static_cpu_has(X86_FEATURE_MSR_SPEC_CTRL)) {
172 /*
173 * Restrict guest_spec_ctrl to supported values. Clear the
174 * modifiable bits in the host base value and or the
175 * modifiable bits from the guest value.
176 */
177 guestval = hostval & ~x86_spec_ctrl_mask;
178 guestval |= guest_spec_ctrl & x86_spec_ctrl_mask;
179
180 /* SSBD controlled in MSR_SPEC_CTRL */
181 if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
182 static_cpu_has(X86_FEATURE_AMD_SSBD))
183 hostval |= ssbd_tif_to_spec_ctrl(ti->flags);
184
185 /* Conditional STIBP enabled? */
186 if (static_branch_unlikely(&switch_to_cond_stibp))
187 hostval |= stibp_tif_to_spec_ctrl(ti->flags);
188
189 if (hostval != guestval) {
190 msrval = setguest ? guestval : hostval;
191 wrmsrl(MSR_IA32_SPEC_CTRL, msrval);
192 }
193 }
194
195 /*
196 * If SSBD is not handled in MSR_SPEC_CTRL on AMD, update
197 * MSR_AMD64_L2_CFG or MSR_VIRT_SPEC_CTRL if supported.
198 */
199 if (!static_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
200 !static_cpu_has(X86_FEATURE_VIRT_SSBD))
201 return;
202
203 /*
204 * If the host has SSBD mitigation enabled, force it in the host's
205 * virtual MSR value. If its not permanently enabled, evaluate
206 * current's TIF_SSBD thread flag.
207 */
208 if (static_cpu_has(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE))
209 hostval = SPEC_CTRL_SSBD;
210 else
211 hostval = ssbd_tif_to_spec_ctrl(ti->flags);
212
213 /* Sanitize the guest value */
214 guestval = guest_virt_spec_ctrl & SPEC_CTRL_SSBD;
215
216 if (hostval != guestval) {
217 unsigned long tif;
218
219 tif = setguest ? ssbd_spec_ctrl_to_tif(guestval) :
220 ssbd_spec_ctrl_to_tif(hostval);
221
222 speculation_ctrl_update(tif);
223 }
224 }
225 EXPORT_SYMBOL_GPL(x86_virt_spec_ctrl);
226
227 static void x86_amd_ssb_disable(void)
228 {
229 u64 msrval = x86_amd_ls_cfg_base | x86_amd_ls_cfg_ssbd_mask;
230
231 if (boot_cpu_has(X86_FEATURE_VIRT_SSBD))
232 wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, SPEC_CTRL_SSBD);
233 else if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD))
234 wrmsrl(MSR_AMD64_LS_CFG, msrval);
235 }
236
237 #undef pr_fmt
238 #define pr_fmt(fmt) "MDS: " fmt
239
240 /* Default mitigation for MDS-affected CPUs */
241 static enum mds_mitigations mds_mitigation __ro_after_init = MDS_MITIGATION_FULL;
242 static bool mds_nosmt __ro_after_init = false;
243
244 static const char * const mds_strings[] = {
245 [MDS_MITIGATION_OFF] = "Vulnerable",
246 [MDS_MITIGATION_FULL] = "Mitigation: Clear CPU buffers",
247 [MDS_MITIGATION_VMWERV] = "Vulnerable: Clear CPU buffers attempted, no microcode",
248 };
249
250 static void __init mds_select_mitigation(void)
251 {
252 if (!boot_cpu_has_bug(X86_BUG_MDS) || cpu_mitigations_off()) {
253 mds_mitigation = MDS_MITIGATION_OFF;
254 return;
255 }
256
257 if (mds_mitigation == MDS_MITIGATION_FULL) {
258 if (!boot_cpu_has(X86_FEATURE_MD_CLEAR))
259 mds_mitigation = MDS_MITIGATION_VMWERV;
260
261 static_branch_enable(&mds_user_clear);
262
263 if (!boot_cpu_has(X86_BUG_MSBDS_ONLY) &&
264 (mds_nosmt || cpu_mitigations_auto_nosmt()))
265 cpu_smt_disable(false);
266 }
267 }
268
269 static int __init mds_cmdline(char *str)
270 {
271 if (!boot_cpu_has_bug(X86_BUG_MDS))
272 return 0;
273
274 if (!str)
275 return -EINVAL;
276
277 if (!strcmp(str, "off"))
278 mds_mitigation = MDS_MITIGATION_OFF;
279 else if (!strcmp(str, "full"))
280 mds_mitigation = MDS_MITIGATION_FULL;
281 else if (!strcmp(str, "full,nosmt")) {
282 mds_mitigation = MDS_MITIGATION_FULL;
283 mds_nosmt = true;
284 }
285
286 return 0;
287 }
288 early_param("mds", mds_cmdline);
289
290 #undef pr_fmt
291 #define pr_fmt(fmt) "TAA: " fmt
292
293 enum taa_mitigations {
294 TAA_MITIGATION_OFF,
295 TAA_MITIGATION_UCODE_NEEDED,
296 TAA_MITIGATION_VERW,
297 TAA_MITIGATION_TSX_DISABLED,
298 };
299
300 /* Default mitigation for TAA-affected CPUs */
301 static enum taa_mitigations taa_mitigation __ro_after_init = TAA_MITIGATION_VERW;
302 static bool taa_nosmt __ro_after_init;
303
304 static const char * const taa_strings[] = {
305 [TAA_MITIGATION_OFF] = "Vulnerable",
306 [TAA_MITIGATION_UCODE_NEEDED] = "Vulnerable: Clear CPU buffers attempted, no microcode",
307 [TAA_MITIGATION_VERW] = "Mitigation: Clear CPU buffers",
308 [TAA_MITIGATION_TSX_DISABLED] = "Mitigation: TSX disabled",
309 };
310
311 static void __init taa_select_mitigation(void)
312 {
313 u64 ia32_cap;
314
315 if (!boot_cpu_has_bug(X86_BUG_TAA)) {
316 taa_mitigation = TAA_MITIGATION_OFF;
317 return;
318 }
319
320 /* TSX previously disabled by tsx=off */
321 if (!boot_cpu_has(X86_FEATURE_RTM)) {
322 taa_mitigation = TAA_MITIGATION_TSX_DISABLED;
323 return;
324 }
325
326 if (cpu_mitigations_off()) {
327 taa_mitigation = TAA_MITIGATION_OFF;
328 return;
329 }
330
331 /*
332 * TAA mitigation via VERW is turned off if both
333 * tsx_async_abort=off and mds=off are specified.
334 */
335 if (taa_mitigation == TAA_MITIGATION_OFF &&
336 mds_mitigation == MDS_MITIGATION_OFF)
337 return;
338
339 if (boot_cpu_has(X86_FEATURE_MD_CLEAR))
340 taa_mitigation = TAA_MITIGATION_VERW;
341 else
342 taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
343
344 /*
345 * VERW doesn't clear the CPU buffers when MD_CLEAR=1 and MDS_NO=1.
346 * A microcode update fixes this behavior to clear CPU buffers. It also
347 * adds support for MSR_IA32_TSX_CTRL which is enumerated by the
348 * ARCH_CAP_TSX_CTRL_MSR bit.
349 *
350 * On MDS_NO=1 CPUs if ARCH_CAP_TSX_CTRL_MSR is not set, microcode
351 * update is required.
352 */
353 ia32_cap = x86_read_arch_cap_msr();
354 if ( (ia32_cap & ARCH_CAP_MDS_NO) &&
355 !(ia32_cap & ARCH_CAP_TSX_CTRL_MSR))
356 taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
357
358 /*
359 * TSX is enabled, select alternate mitigation for TAA which is
360 * the same as MDS. Enable MDS static branch to clear CPU buffers.
361 *
362 * For guests that can't determine whether the correct microcode is
363 * present on host, enable the mitigation for UCODE_NEEDED as well.
364 */
365 static_branch_enable(&mds_user_clear);
366
367 if (taa_nosmt || cpu_mitigations_auto_nosmt())
368 cpu_smt_disable(false);
369 }
370
371 static int __init tsx_async_abort_parse_cmdline(char *str)
372 {
373 if (!boot_cpu_has_bug(X86_BUG_TAA))
374 return 0;
375
376 if (!str)
377 return -EINVAL;
378
379 if (!strcmp(str, "off")) {
380 taa_mitigation = TAA_MITIGATION_OFF;
381 } else if (!strcmp(str, "full")) {
382 taa_mitigation = TAA_MITIGATION_VERW;
383 } else if (!strcmp(str, "full,nosmt")) {
384 taa_mitigation = TAA_MITIGATION_VERW;
385 taa_nosmt = true;
386 }
387
388 return 0;
389 }
390 early_param("tsx_async_abort", tsx_async_abort_parse_cmdline);
391
392 #undef pr_fmt
393 #define pr_fmt(fmt) "MMIO Stale Data: " fmt
394
395 enum mmio_mitigations {
396 MMIO_MITIGATION_OFF,
397 MMIO_MITIGATION_UCODE_NEEDED,
398 MMIO_MITIGATION_VERW,
399 };
400
401 /* Default mitigation for Processor MMIO Stale Data vulnerabilities */
402 static enum mmio_mitigations mmio_mitigation __ro_after_init = MMIO_MITIGATION_VERW;
403 static bool mmio_nosmt __ro_after_init = false;
404
405 static const char * const mmio_strings[] = {
406 [MMIO_MITIGATION_OFF] = "Vulnerable",
407 [MMIO_MITIGATION_UCODE_NEEDED] = "Vulnerable: Clear CPU buffers attempted, no microcode",
408 [MMIO_MITIGATION_VERW] = "Mitigation: Clear CPU buffers",
409 };
410
411 static void __init mmio_select_mitigation(void)
412 {
413 u64 ia32_cap;
414
415 if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA) ||
416 cpu_mitigations_off()) {
417 mmio_mitigation = MMIO_MITIGATION_OFF;
418 return;
419 }
420
421 if (mmio_mitigation == MMIO_MITIGATION_OFF)
422 return;
423
424 ia32_cap = x86_read_arch_cap_msr();
425
426 /*
427 * Enable CPU buffer clear mitigation for host and VMM, if also affected
428 * by MDS or TAA. Otherwise, enable mitigation for VMM only.
429 */
430 if (boot_cpu_has_bug(X86_BUG_MDS) || (boot_cpu_has_bug(X86_BUG_TAA) &&
431 boot_cpu_has(X86_FEATURE_RTM)))
432 static_branch_enable(&mds_user_clear);
433 else
434 static_branch_enable(&mmio_stale_data_clear);
435
436 /*
437 * If Processor-MMIO-Stale-Data bug is present and Fill Buffer data can
438 * be propagated to uncore buffers, clearing the Fill buffers on idle
439 * is required irrespective of SMT state.
440 */
441 if (!(ia32_cap & ARCH_CAP_FBSDP_NO))
442 static_branch_enable(&mds_idle_clear);
443
444 /*
445 * Check if the system has the right microcode.
446 *
447 * CPU Fill buffer clear mitigation is enumerated by either an explicit
448 * FB_CLEAR or by the presence of both MD_CLEAR and L1D_FLUSH on MDS
449 * affected systems.
450 */
451 if ((ia32_cap & ARCH_CAP_FB_CLEAR) ||
452 (boot_cpu_has(X86_FEATURE_MD_CLEAR) &&
453 boot_cpu_has(X86_FEATURE_FLUSH_L1D) &&
454 !(ia32_cap & ARCH_CAP_MDS_NO)))
455 mmio_mitigation = MMIO_MITIGATION_VERW;
456 else
457 mmio_mitigation = MMIO_MITIGATION_UCODE_NEEDED;
458
459 if (mmio_nosmt || cpu_mitigations_auto_nosmt())
460 cpu_smt_disable(false);
461 }
462
463 static int __init mmio_stale_data_parse_cmdline(char *str)
464 {
465 if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
466 return 0;
467
468 if (!str)
469 return -EINVAL;
470
471 if (!strcmp(str, "off")) {
472 mmio_mitigation = MMIO_MITIGATION_OFF;
473 } else if (!strcmp(str, "full")) {
474 mmio_mitigation = MMIO_MITIGATION_VERW;
475 } else if (!strcmp(str, "full,nosmt")) {
476 mmio_mitigation = MMIO_MITIGATION_VERW;
477 mmio_nosmt = true;
478 }
479
480 return 0;
481 }
482 early_param("mmio_stale_data", mmio_stale_data_parse_cmdline);
483
484 #undef pr_fmt
485 #define pr_fmt(fmt) "" fmt
486
487 static void __init md_clear_update_mitigation(void)
488 {
489 if (cpu_mitigations_off())
490 return;
491
492 if (!static_key_enabled(&mds_user_clear))
493 goto out;
494
495 /*
496 * mds_user_clear is now enabled. Update MDS, TAA and MMIO Stale Data
497 * mitigation, if necessary.
498 */
499 if (mds_mitigation == MDS_MITIGATION_OFF &&
500 boot_cpu_has_bug(X86_BUG_MDS)) {
501 mds_mitigation = MDS_MITIGATION_FULL;
502 mds_select_mitigation();
503 }
504 if (taa_mitigation == TAA_MITIGATION_OFF &&
505 boot_cpu_has_bug(X86_BUG_TAA)) {
506 taa_mitigation = TAA_MITIGATION_VERW;
507 taa_select_mitigation();
508 }
509 if (mmio_mitigation == MMIO_MITIGATION_OFF &&
510 boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA)) {
511 mmio_mitigation = MMIO_MITIGATION_VERW;
512 mmio_select_mitigation();
513 }
514 out:
515 if (boot_cpu_has_bug(X86_BUG_MDS))
516 pr_info("MDS: %s\n", mds_strings[mds_mitigation]);
517 if (boot_cpu_has_bug(X86_BUG_TAA))
518 pr_info("TAA: %s\n", taa_strings[taa_mitigation]);
519 if (boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
520 pr_info("MMIO Stale Data: %s\n", mmio_strings[mmio_mitigation]);
521 }
522
523 static void __init md_clear_select_mitigation(void)
524 {
525 mds_select_mitigation();
526 taa_select_mitigation();
527 mmio_select_mitigation();
528
529 /*
530 * As MDS, TAA and MMIO Stale Data mitigations are inter-related, update
531 * and print their mitigation after MDS, TAA and MMIO Stale Data
532 * mitigation selection is done.
533 */
534 md_clear_update_mitigation();
535 }
536
537 #undef pr_fmt
538 #define pr_fmt(fmt) "SRBDS: " fmt
539
540 enum srbds_mitigations {
541 SRBDS_MITIGATION_OFF,
542 SRBDS_MITIGATION_UCODE_NEEDED,
543 SRBDS_MITIGATION_FULL,
544 SRBDS_MITIGATION_TSX_OFF,
545 SRBDS_MITIGATION_HYPERVISOR,
546 };
547
548 static enum srbds_mitigations srbds_mitigation __ro_after_init = SRBDS_MITIGATION_FULL;
549
550 static const char * const srbds_strings[] = {
551 [SRBDS_MITIGATION_OFF] = "Vulnerable",
552 [SRBDS_MITIGATION_UCODE_NEEDED] = "Vulnerable: No microcode",
553 [SRBDS_MITIGATION_FULL] = "Mitigation: Microcode",
554 [SRBDS_MITIGATION_TSX_OFF] = "Mitigation: TSX disabled",
555 [SRBDS_MITIGATION_HYPERVISOR] = "Unknown: Dependent on hypervisor status",
556 };
557
558 static bool srbds_off;
559
560 void update_srbds_msr(void)
561 {
562 u64 mcu_ctrl;
563
564 if (!boot_cpu_has_bug(X86_BUG_SRBDS))
565 return;
566
567 if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
568 return;
569
570 if (srbds_mitigation == SRBDS_MITIGATION_UCODE_NEEDED)
571 return;
572
573 rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
574
575 switch (srbds_mitigation) {
576 case SRBDS_MITIGATION_OFF:
577 case SRBDS_MITIGATION_TSX_OFF:
578 mcu_ctrl |= RNGDS_MITG_DIS;
579 break;
580 case SRBDS_MITIGATION_FULL:
581 mcu_ctrl &= ~RNGDS_MITG_DIS;
582 break;
583 default:
584 break;
585 }
586
587 wrmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
588 }
589
590 static void __init srbds_select_mitigation(void)
591 {
592 u64 ia32_cap;
593
594 if (!boot_cpu_has_bug(X86_BUG_SRBDS))
595 return;
596
597 /*
598 * Check to see if this is one of the MDS_NO systems supporting
599 * TSX that are only exposed to SRBDS when TSX is enabled.
600 */
601 ia32_cap = x86_read_arch_cap_msr();
602 if ((ia32_cap & ARCH_CAP_MDS_NO) && !boot_cpu_has(X86_FEATURE_RTM))
603 srbds_mitigation = SRBDS_MITIGATION_TSX_OFF;
604 else if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
605 srbds_mitigation = SRBDS_MITIGATION_HYPERVISOR;
606 else if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL))
607 srbds_mitigation = SRBDS_MITIGATION_UCODE_NEEDED;
608 else if (cpu_mitigations_off() || srbds_off)
609 srbds_mitigation = SRBDS_MITIGATION_OFF;
610
611 update_srbds_msr();
612 pr_info("%s\n", srbds_strings[srbds_mitigation]);
613 }
614
615 static int __init srbds_parse_cmdline(char *str)
616 {
617 if (!str)
618 return -EINVAL;
619
620 if (!boot_cpu_has_bug(X86_BUG_SRBDS))
621 return 0;
622
623 srbds_off = !strcmp(str, "off");
624 return 0;
625 }
626 early_param("srbds", srbds_parse_cmdline);
627
628 #undef pr_fmt
629 #define pr_fmt(fmt) "L1D Flush : " fmt
630
631 enum l1d_flush_mitigations {
632 L1D_FLUSH_OFF = 0,
633 L1D_FLUSH_ON,
634 };
635
636 static enum l1d_flush_mitigations l1d_flush_mitigation __initdata = L1D_FLUSH_OFF;
637
638 static void __init l1d_flush_select_mitigation(void)
639 {
640 if (!l1d_flush_mitigation || !boot_cpu_has(X86_FEATURE_FLUSH_L1D))
641 return;
642
643 static_branch_enable(&switch_mm_cond_l1d_flush);
644 pr_info("Conditional flush on switch_mm() enabled\n");
645 }
646
647 static int __init l1d_flush_parse_cmdline(char *str)
648 {
649 if (!strcmp(str, "on"))
650 l1d_flush_mitigation = L1D_FLUSH_ON;
651
652 return 0;
653 }
654 early_param("l1d_flush", l1d_flush_parse_cmdline);
655
656 #undef pr_fmt
657 #define pr_fmt(fmt) "Spectre V1 : " fmt
658
659 enum spectre_v1_mitigation {
660 SPECTRE_V1_MITIGATION_NONE,
661 SPECTRE_V1_MITIGATION_AUTO,
662 };
663
664 static enum spectre_v1_mitigation spectre_v1_mitigation __ro_after_init =
665 SPECTRE_V1_MITIGATION_AUTO;
666
667 static const char * const spectre_v1_strings[] = {
668 [SPECTRE_V1_MITIGATION_NONE] = "Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers",
669 [SPECTRE_V1_MITIGATION_AUTO] = "Mitigation: usercopy/swapgs barriers and __user pointer sanitization",
670 };
671
672 /*
673 * Does SMAP provide full mitigation against speculative kernel access to
674 * userspace?
675 */
676 static bool smap_works_speculatively(void)
677 {
678 if (!boot_cpu_has(X86_FEATURE_SMAP))
679 return false;
680
681 /*
682 * On CPUs which are vulnerable to Meltdown, SMAP does not
683 * prevent speculative access to user data in the L1 cache.
684 * Consider SMAP to be non-functional as a mitigation on these
685 * CPUs.
686 */
687 if (boot_cpu_has(X86_BUG_CPU_MELTDOWN))
688 return false;
689
690 return true;
691 }
692
693 static void __init spectre_v1_select_mitigation(void)
694 {
695 if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V1) || cpu_mitigations_off()) {
696 spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
697 return;
698 }
699
700 if (spectre_v1_mitigation == SPECTRE_V1_MITIGATION_AUTO) {
701 /*
702 * With Spectre v1, a user can speculatively control either
703 * path of a conditional swapgs with a user-controlled GS
704 * value. The mitigation is to add lfences to both code paths.
705 *
706 * If FSGSBASE is enabled, the user can put a kernel address in
707 * GS, in which case SMAP provides no protection.
708 *
709 * If FSGSBASE is disabled, the user can only put a user space
710 * address in GS. That makes an attack harder, but still
711 * possible if there's no SMAP protection.
712 */
713 if (boot_cpu_has(X86_FEATURE_FSGSBASE) ||
714 !smap_works_speculatively()) {
715 /*
716 * Mitigation can be provided from SWAPGS itself or
717 * PTI as the CR3 write in the Meltdown mitigation
718 * is serializing.
719 *
720 * If neither is there, mitigate with an LFENCE to
721 * stop speculation through swapgs.
722 */
723 if (boot_cpu_has_bug(X86_BUG_SWAPGS) &&
724 !boot_cpu_has(X86_FEATURE_PTI))
725 setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_USER);
726
727 /*
728 * Enable lfences in the kernel entry (non-swapgs)
729 * paths, to prevent user entry from speculatively
730 * skipping swapgs.
731 */
732 setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_KERNEL);
733 }
734 }
735
736 pr_info("%s\n", spectre_v1_strings[spectre_v1_mitigation]);
737 }
738
739 static int __init nospectre_v1_cmdline(char *str)
740 {
741 spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
742 return 0;
743 }
744 early_param("nospectre_v1", nospectre_v1_cmdline);
745
746 #undef pr_fmt
747 #define pr_fmt(fmt) "Spectre V2 : " fmt
748
749 static enum spectre_v2_mitigation spectre_v2_enabled __ro_after_init =
750 SPECTRE_V2_NONE;
751
752 static enum spectre_v2_user_mitigation spectre_v2_user_stibp __ro_after_init =
753 SPECTRE_V2_USER_NONE;
754 static enum spectre_v2_user_mitigation spectre_v2_user_ibpb __ro_after_init =
755 SPECTRE_V2_USER_NONE;
756
757 #ifdef CONFIG_RETPOLINE
758 static bool spectre_v2_bad_module;
759
760 bool retpoline_module_ok(bool has_retpoline)
761 {
762 if (spectre_v2_enabled == SPECTRE_V2_NONE || has_retpoline)
763 return true;
764
765 pr_err("System may be vulnerable to spectre v2\n");
766 spectre_v2_bad_module = true;
767 return false;
768 }
769
770 static inline const char *spectre_v2_module_string(void)
771 {
772 return spectre_v2_bad_module ? " - vulnerable module loaded" : "";
773 }
774 #else
775 static inline const char *spectre_v2_module_string(void) { return ""; }
776 #endif
777
778 #define SPECTRE_V2_LFENCE_MSG "WARNING: LFENCE mitigation is not recommended for this CPU, data leaks possible!\n"
779 #define SPECTRE_V2_EIBRS_EBPF_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS on, data leaks possible via Spectre v2 BHB attacks!\n"
780 #define SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS+LFENCE mitigation and SMT, data leaks possible via Spectre v2 BHB attacks!\n"
781
782 #ifdef CONFIG_BPF_SYSCALL
783 void unpriv_ebpf_notify(int new_state)
784 {
785 if (new_state)
786 return;
787
788 /* Unprivileged eBPF is enabled */
789
790 switch (spectre_v2_enabled) {
791 case SPECTRE_V2_EIBRS:
792 pr_err(SPECTRE_V2_EIBRS_EBPF_MSG);
793 break;
794 case SPECTRE_V2_EIBRS_LFENCE:
795 if (sched_smt_active())
796 pr_err(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG);
797 break;
798 default:
799 break;
800 }
801 }
802 #endif
803
804 static inline bool match_option(const char *arg, int arglen, const char *opt)
805 {
806 int len = strlen(opt);
807
808 return len == arglen && !strncmp(arg, opt, len);
809 }
810
811 /* The kernel command line selection for spectre v2 */
812 enum spectre_v2_mitigation_cmd {
813 SPECTRE_V2_CMD_NONE,
814 SPECTRE_V2_CMD_AUTO,
815 SPECTRE_V2_CMD_FORCE,
816 SPECTRE_V2_CMD_RETPOLINE,
817 SPECTRE_V2_CMD_RETPOLINE_GENERIC,
818 SPECTRE_V2_CMD_RETPOLINE_LFENCE,
819 SPECTRE_V2_CMD_EIBRS,
820 SPECTRE_V2_CMD_EIBRS_RETPOLINE,
821 SPECTRE_V2_CMD_EIBRS_LFENCE,
822 };
823
824 enum spectre_v2_user_cmd {
825 SPECTRE_V2_USER_CMD_NONE,
826 SPECTRE_V2_USER_CMD_AUTO,
827 SPECTRE_V2_USER_CMD_FORCE,
828 SPECTRE_V2_USER_CMD_PRCTL,
829 SPECTRE_V2_USER_CMD_PRCTL_IBPB,
830 SPECTRE_V2_USER_CMD_SECCOMP,
831 SPECTRE_V2_USER_CMD_SECCOMP_IBPB,
832 };
833
834 static const char * const spectre_v2_user_strings[] = {
835 [SPECTRE_V2_USER_NONE] = "User space: Vulnerable",
836 [SPECTRE_V2_USER_STRICT] = "User space: Mitigation: STIBP protection",
837 [SPECTRE_V2_USER_STRICT_PREFERRED] = "User space: Mitigation: STIBP always-on protection",
838 [SPECTRE_V2_USER_PRCTL] = "User space: Mitigation: STIBP via prctl",
839 [SPECTRE_V2_USER_SECCOMP] = "User space: Mitigation: STIBP via seccomp and prctl",
840 };
841
842 static const struct {
843 const char *option;
844 enum spectre_v2_user_cmd cmd;
845 bool secure;
846 } v2_user_options[] __initconst = {
847 { "auto", SPECTRE_V2_USER_CMD_AUTO, false },
848 { "off", SPECTRE_V2_USER_CMD_NONE, false },
849 { "on", SPECTRE_V2_USER_CMD_FORCE, true },
850 { "prctl", SPECTRE_V2_USER_CMD_PRCTL, false },
851 { "prctl,ibpb", SPECTRE_V2_USER_CMD_PRCTL_IBPB, false },
852 { "seccomp", SPECTRE_V2_USER_CMD_SECCOMP, false },
853 { "seccomp,ibpb", SPECTRE_V2_USER_CMD_SECCOMP_IBPB, false },
854 };
855
856 static void __init spec_v2_user_print_cond(const char *reason, bool secure)
857 {
858 if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
859 pr_info("spectre_v2_user=%s forced on command line.\n", reason);
860 }
861
862 static enum spectre_v2_user_cmd __init
863 spectre_v2_parse_user_cmdline(enum spectre_v2_mitigation_cmd v2_cmd)
864 {
865 char arg[20];
866 int ret, i;
867
868 switch (v2_cmd) {
869 case SPECTRE_V2_CMD_NONE:
870 return SPECTRE_V2_USER_CMD_NONE;
871 case SPECTRE_V2_CMD_FORCE:
872 return SPECTRE_V2_USER_CMD_FORCE;
873 default:
874 break;
875 }
876
877 ret = cmdline_find_option(boot_command_line, "spectre_v2_user",
878 arg, sizeof(arg));
879 if (ret < 0)
880 return SPECTRE_V2_USER_CMD_AUTO;
881
882 for (i = 0; i < ARRAY_SIZE(v2_user_options); i++) {
883 if (match_option(arg, ret, v2_user_options[i].option)) {
884 spec_v2_user_print_cond(v2_user_options[i].option,
885 v2_user_options[i].secure);
886 return v2_user_options[i].cmd;
887 }
888 }
889
890 pr_err("Unknown user space protection option (%s). Switching to AUTO select\n", arg);
891 return SPECTRE_V2_USER_CMD_AUTO;
892 }
893
894 static inline bool spectre_v2_in_eibrs_mode(enum spectre_v2_mitigation mode)
895 {
896 return (mode == SPECTRE_V2_EIBRS ||
897 mode == SPECTRE_V2_EIBRS_RETPOLINE ||
898 mode == SPECTRE_V2_EIBRS_LFENCE);
899 }
900
901 static void __init
902 spectre_v2_user_select_mitigation(enum spectre_v2_mitigation_cmd v2_cmd)
903 {
904 enum spectre_v2_user_mitigation mode = SPECTRE_V2_USER_NONE;
905 bool smt_possible = IS_ENABLED(CONFIG_SMP);
906 enum spectre_v2_user_cmd cmd;
907
908 if (!boot_cpu_has(X86_FEATURE_IBPB) && !boot_cpu_has(X86_FEATURE_STIBP))
909 return;
910
911 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED ||
912 cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
913 smt_possible = false;
914
915 cmd = spectre_v2_parse_user_cmdline(v2_cmd);
916 switch (cmd) {
917 case SPECTRE_V2_USER_CMD_NONE:
918 goto set_mode;
919 case SPECTRE_V2_USER_CMD_FORCE:
920 mode = SPECTRE_V2_USER_STRICT;
921 break;
922 case SPECTRE_V2_USER_CMD_PRCTL:
923 case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
924 mode = SPECTRE_V2_USER_PRCTL;
925 break;
926 case SPECTRE_V2_USER_CMD_AUTO:
927 case SPECTRE_V2_USER_CMD_SECCOMP:
928 case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
929 if (IS_ENABLED(CONFIG_SECCOMP))
930 mode = SPECTRE_V2_USER_SECCOMP;
931 else
932 mode = SPECTRE_V2_USER_PRCTL;
933 break;
934 }
935
936 /* Initialize Indirect Branch Prediction Barrier */
937 if (boot_cpu_has(X86_FEATURE_IBPB)) {
938 setup_force_cpu_cap(X86_FEATURE_USE_IBPB);
939
940 spectre_v2_user_ibpb = mode;
941 switch (cmd) {
942 case SPECTRE_V2_USER_CMD_FORCE:
943 case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
944 case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
945 static_branch_enable(&switch_mm_always_ibpb);
946 spectre_v2_user_ibpb = SPECTRE_V2_USER_STRICT;
947 break;
948 case SPECTRE_V2_USER_CMD_PRCTL:
949 case SPECTRE_V2_USER_CMD_AUTO:
950 case SPECTRE_V2_USER_CMD_SECCOMP:
951 static_branch_enable(&switch_mm_cond_ibpb);
952 break;
953 default:
954 break;
955 }
956
957 pr_info("mitigation: Enabling %s Indirect Branch Prediction Barrier\n",
958 static_key_enabled(&switch_mm_always_ibpb) ?
959 "always-on" : "conditional");
960 }
961
962 /*
963 * If no STIBP, enhanced IBRS is enabled or SMT impossible, STIBP is not
964 * required.
965 */
966 if (!boot_cpu_has(X86_FEATURE_STIBP) ||
967 !smt_possible ||
968 spectre_v2_in_eibrs_mode(spectre_v2_enabled))
969 return;
970
971 /*
972 * At this point, an STIBP mode other than "off" has been set.
973 * If STIBP support is not being forced, check if STIBP always-on
974 * is preferred.
975 */
976 if (mode != SPECTRE_V2_USER_STRICT &&
977 boot_cpu_has(X86_FEATURE_AMD_STIBP_ALWAYS_ON))
978 mode = SPECTRE_V2_USER_STRICT_PREFERRED;
979
980 spectre_v2_user_stibp = mode;
981
982 set_mode:
983 pr_info("%s\n", spectre_v2_user_strings[mode]);
984 }
985
986 static const char * const spectre_v2_strings[] = {
987 [SPECTRE_V2_NONE] = "Vulnerable",
988 [SPECTRE_V2_RETPOLINE] = "Mitigation: Retpolines",
989 [SPECTRE_V2_LFENCE] = "Mitigation: LFENCE",
990 [SPECTRE_V2_EIBRS] = "Mitigation: Enhanced IBRS",
991 [SPECTRE_V2_EIBRS_LFENCE] = "Mitigation: Enhanced IBRS + LFENCE",
992 [SPECTRE_V2_EIBRS_RETPOLINE] = "Mitigation: Enhanced IBRS + Retpolines",
993 };
994
995 static const struct {
996 const char *option;
997 enum spectre_v2_mitigation_cmd cmd;
998 bool secure;
999 } mitigation_options[] __initconst = {
1000 { "off", SPECTRE_V2_CMD_NONE, false },
1001 { "on", SPECTRE_V2_CMD_FORCE, true },
1002 { "retpoline", SPECTRE_V2_CMD_RETPOLINE, false },
1003 { "retpoline,amd", SPECTRE_V2_CMD_RETPOLINE_LFENCE, false },
1004 { "retpoline,lfence", SPECTRE_V2_CMD_RETPOLINE_LFENCE, false },
1005 { "retpoline,generic", SPECTRE_V2_CMD_RETPOLINE_GENERIC, false },
1006 { "eibrs", SPECTRE_V2_CMD_EIBRS, false },
1007 { "eibrs,lfence", SPECTRE_V2_CMD_EIBRS_LFENCE, false },
1008 { "eibrs,retpoline", SPECTRE_V2_CMD_EIBRS_RETPOLINE, false },
1009 { "auto", SPECTRE_V2_CMD_AUTO, false },
1010 };
1011
1012 static void __init spec_v2_print_cond(const char *reason, bool secure)
1013 {
1014 if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
1015 pr_info("%s selected on command line.\n", reason);
1016 }
1017
1018 static enum spectre_v2_mitigation_cmd __init spectre_v2_parse_cmdline(void)
1019 {
1020 enum spectre_v2_mitigation_cmd cmd = SPECTRE_V2_CMD_AUTO;
1021 char arg[20];
1022 int ret, i;
1023
1024 if (cmdline_find_option_bool(boot_command_line, "nospectre_v2") ||
1025 cpu_mitigations_off())
1026 return SPECTRE_V2_CMD_NONE;
1027
1028 ret = cmdline_find_option(boot_command_line, "spectre_v2", arg, sizeof(arg));
1029 if (ret < 0)
1030 return SPECTRE_V2_CMD_AUTO;
1031
1032 for (i = 0; i < ARRAY_SIZE(mitigation_options); i++) {
1033 if (!match_option(arg, ret, mitigation_options[i].option))
1034 continue;
1035 cmd = mitigation_options[i].cmd;
1036 break;
1037 }
1038
1039 if (i >= ARRAY_SIZE(mitigation_options)) {
1040 pr_err("unknown option (%s). Switching to AUTO select\n", arg);
1041 return SPECTRE_V2_CMD_AUTO;
1042 }
1043
1044 if ((cmd == SPECTRE_V2_CMD_RETPOLINE ||
1045 cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE ||
1046 cmd == SPECTRE_V2_CMD_RETPOLINE_GENERIC ||
1047 cmd == SPECTRE_V2_CMD_EIBRS_LFENCE ||
1048 cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) &&
1049 !IS_ENABLED(CONFIG_RETPOLINE)) {
1050 pr_err("%s selected but not compiled in. Switching to AUTO select\n",
1051 mitigation_options[i].option);
1052 return SPECTRE_V2_CMD_AUTO;
1053 }
1054
1055 if ((cmd == SPECTRE_V2_CMD_EIBRS ||
1056 cmd == SPECTRE_V2_CMD_EIBRS_LFENCE ||
1057 cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) &&
1058 !boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
1059 pr_err("%s selected but CPU doesn't have eIBRS. Switching to AUTO select\n",
1060 mitigation_options[i].option);
1061 return SPECTRE_V2_CMD_AUTO;
1062 }
1063
1064 if ((cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE ||
1065 cmd == SPECTRE_V2_CMD_EIBRS_LFENCE) &&
1066 !boot_cpu_has(X86_FEATURE_LFENCE_RDTSC)) {
1067 pr_err("%s selected, but CPU doesn't have a serializing LFENCE. Switching to AUTO select\n",
1068 mitigation_options[i].option);
1069 return SPECTRE_V2_CMD_AUTO;
1070 }
1071
1072 spec_v2_print_cond(mitigation_options[i].option,
1073 mitigation_options[i].secure);
1074 return cmd;
1075 }
1076
1077 static enum spectre_v2_mitigation __init spectre_v2_select_retpoline(void)
1078 {
1079 if (!IS_ENABLED(CONFIG_RETPOLINE)) {
1080 pr_err("Kernel not compiled with retpoline; no mitigation available!");
1081 return SPECTRE_V2_NONE;
1082 }
1083
1084 return SPECTRE_V2_RETPOLINE;
1085 }
1086
1087 static void __init spectre_v2_select_mitigation(void)
1088 {
1089 enum spectre_v2_mitigation_cmd cmd = spectre_v2_parse_cmdline();
1090 enum spectre_v2_mitigation mode = SPECTRE_V2_NONE;
1091
1092 /*
1093 * If the CPU is not affected and the command line mode is NONE or AUTO
1094 * then nothing to do.
1095 */
1096 if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2) &&
1097 (cmd == SPECTRE_V2_CMD_NONE || cmd == SPECTRE_V2_CMD_AUTO))
1098 return;
1099
1100 switch (cmd) {
1101 case SPECTRE_V2_CMD_NONE:
1102 return;
1103
1104 case SPECTRE_V2_CMD_FORCE:
1105 case SPECTRE_V2_CMD_AUTO:
1106 if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
1107 mode = SPECTRE_V2_EIBRS;
1108 break;
1109 }
1110
1111 mode = spectre_v2_select_retpoline();
1112 break;
1113
1114 case SPECTRE_V2_CMD_RETPOLINE_LFENCE:
1115 pr_err(SPECTRE_V2_LFENCE_MSG);
1116 mode = SPECTRE_V2_LFENCE;
1117 break;
1118
1119 case SPECTRE_V2_CMD_RETPOLINE_GENERIC:
1120 mode = SPECTRE_V2_RETPOLINE;
1121 break;
1122
1123 case SPECTRE_V2_CMD_RETPOLINE:
1124 mode = spectre_v2_select_retpoline();
1125 break;
1126
1127 case SPECTRE_V2_CMD_EIBRS:
1128 mode = SPECTRE_V2_EIBRS;
1129 break;
1130
1131 case SPECTRE_V2_CMD_EIBRS_LFENCE:
1132 mode = SPECTRE_V2_EIBRS_LFENCE;
1133 break;
1134
1135 case SPECTRE_V2_CMD_EIBRS_RETPOLINE:
1136 mode = SPECTRE_V2_EIBRS_RETPOLINE;
1137 break;
1138 }
1139
1140 if (mode == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled())
1141 pr_err(SPECTRE_V2_EIBRS_EBPF_MSG);
1142
1143 if (spectre_v2_in_eibrs_mode(mode)) {
1144 /* Force it so VMEXIT will restore correctly */
1145 x86_spec_ctrl_base |= SPEC_CTRL_IBRS;
1146 wrmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base);
1147 }
1148
1149 switch (mode) {
1150 case SPECTRE_V2_NONE:
1151 case SPECTRE_V2_EIBRS:
1152 break;
1153
1154 case SPECTRE_V2_LFENCE:
1155 case SPECTRE_V2_EIBRS_LFENCE:
1156 setup_force_cpu_cap(X86_FEATURE_RETPOLINE_LFENCE);
1157 fallthrough;
1158
1159 case SPECTRE_V2_RETPOLINE:
1160 case SPECTRE_V2_EIBRS_RETPOLINE:
1161 setup_force_cpu_cap(X86_FEATURE_RETPOLINE);
1162 break;
1163 }
1164
1165 spectre_v2_enabled = mode;
1166 pr_info("%s\n", spectre_v2_strings[mode]);
1167
1168 /*
1169 * If spectre v2 protection has been enabled, unconditionally fill
1170 * RSB during a context switch; this protects against two independent
1171 * issues:
1172 *
1173 * - RSB underflow (and switch to BTB) on Skylake+
1174 * - SpectreRSB variant of spectre v2 on X86_BUG_SPECTRE_V2 CPUs
1175 */
1176 setup_force_cpu_cap(X86_FEATURE_RSB_CTXSW);
1177 pr_info("Spectre v2 / SpectreRSB mitigation: Filling RSB on context switch\n");
1178
1179 /*
1180 * Retpoline means the kernel is safe because it has no indirect
1181 * branches. Enhanced IBRS protects firmware too, so, enable restricted
1182 * speculation around firmware calls only when Enhanced IBRS isn't
1183 * supported.
1184 *
1185 * Use "mode" to check Enhanced IBRS instead of boot_cpu_has(), because
1186 * the user might select retpoline on the kernel command line and if
1187 * the CPU supports Enhanced IBRS, kernel might un-intentionally not
1188 * enable IBRS around firmware calls.
1189 */
1190 if (boot_cpu_has(X86_FEATURE_IBRS) && !spectre_v2_in_eibrs_mode(mode)) {
1191 setup_force_cpu_cap(X86_FEATURE_USE_IBRS_FW);
1192 pr_info("Enabling Restricted Speculation for firmware calls\n");
1193 }
1194
1195 /* Set up IBPB and STIBP depending on the general spectre V2 command */
1196 spectre_v2_user_select_mitigation(cmd);
1197 }
1198
1199 static void update_stibp_msr(void * __unused)
1200 {
1201 wrmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base);
1202 }
1203
1204 /* Update x86_spec_ctrl_base in case SMT state changed. */
1205 static void update_stibp_strict(void)
1206 {
1207 u64 mask = x86_spec_ctrl_base & ~SPEC_CTRL_STIBP;
1208
1209 if (sched_smt_active())
1210 mask |= SPEC_CTRL_STIBP;
1211
1212 if (mask == x86_spec_ctrl_base)
1213 return;
1214
1215 pr_info("Update user space SMT mitigation: STIBP %s\n",
1216 mask & SPEC_CTRL_STIBP ? "always-on" : "off");
1217 x86_spec_ctrl_base = mask;
1218 on_each_cpu(update_stibp_msr, NULL, 1);
1219 }
1220
1221 /* Update the static key controlling the evaluation of TIF_SPEC_IB */
1222 static void update_indir_branch_cond(void)
1223 {
1224 if (sched_smt_active())
1225 static_branch_enable(&switch_to_cond_stibp);
1226 else
1227 static_branch_disable(&switch_to_cond_stibp);
1228 }
1229
1230 #undef pr_fmt
1231 #define pr_fmt(fmt) fmt
1232
1233 /* Update the static key controlling the MDS CPU buffer clear in idle */
1234 static void update_mds_branch_idle(void)
1235 {
1236 u64 ia32_cap = x86_read_arch_cap_msr();
1237
1238 /*
1239 * Enable the idle clearing if SMT is active on CPUs which are
1240 * affected only by MSBDS and not any other MDS variant.
1241 *
1242 * The other variants cannot be mitigated when SMT is enabled, so
1243 * clearing the buffers on idle just to prevent the Store Buffer
1244 * repartitioning leak would be a window dressing exercise.
1245 */
1246 if (!boot_cpu_has_bug(X86_BUG_MSBDS_ONLY))
1247 return;
1248
1249 if (sched_smt_active()) {
1250 static_branch_enable(&mds_idle_clear);
1251 } else if (mmio_mitigation == MMIO_MITIGATION_OFF ||
1252 (ia32_cap & ARCH_CAP_FBSDP_NO)) {
1253 static_branch_disable(&mds_idle_clear);
1254 }
1255 }
1256
1257 #define MDS_MSG_SMT "MDS CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/mds.html for more details.\n"
1258 #define TAA_MSG_SMT "TAA CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/tsx_async_abort.html for more details.\n"
1259
1260 void cpu_bugs_smt_update(void)
1261 {
1262 mutex_lock(&spec_ctrl_mutex);
1263
1264 if (sched_smt_active() && unprivileged_ebpf_enabled() &&
1265 spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE)
1266 pr_warn_once(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG);
1267
1268 switch (spectre_v2_user_stibp) {
1269 case SPECTRE_V2_USER_NONE:
1270 break;
1271 case SPECTRE_V2_USER_STRICT:
1272 case SPECTRE_V2_USER_STRICT_PREFERRED:
1273 update_stibp_strict();
1274 break;
1275 case SPECTRE_V2_USER_PRCTL:
1276 case SPECTRE_V2_USER_SECCOMP:
1277 update_indir_branch_cond();
1278 break;
1279 }
1280
1281 switch (mds_mitigation) {
1282 case MDS_MITIGATION_FULL:
1283 case MDS_MITIGATION_VMWERV:
1284 if (sched_smt_active() && !boot_cpu_has(X86_BUG_MSBDS_ONLY))
1285 pr_warn_once(MDS_MSG_SMT);
1286 update_mds_branch_idle();
1287 break;
1288 case MDS_MITIGATION_OFF:
1289 break;
1290 }
1291
1292 switch (taa_mitigation) {
1293 case TAA_MITIGATION_VERW:
1294 case TAA_MITIGATION_UCODE_NEEDED:
1295 if (sched_smt_active())
1296 pr_warn_once(TAA_MSG_SMT);
1297 break;
1298 case TAA_MITIGATION_TSX_DISABLED:
1299 case TAA_MITIGATION_OFF:
1300 break;
1301 }
1302
1303 mutex_unlock(&spec_ctrl_mutex);
1304 }
1305
1306 #undef pr_fmt
1307 #define pr_fmt(fmt) "Speculative Store Bypass: " fmt
1308
1309 static enum ssb_mitigation ssb_mode __ro_after_init = SPEC_STORE_BYPASS_NONE;
1310
1311 /* The kernel command line selection */
1312 enum ssb_mitigation_cmd {
1313 SPEC_STORE_BYPASS_CMD_NONE,
1314 SPEC_STORE_BYPASS_CMD_AUTO,
1315 SPEC_STORE_BYPASS_CMD_ON,
1316 SPEC_STORE_BYPASS_CMD_PRCTL,
1317 SPEC_STORE_BYPASS_CMD_SECCOMP,
1318 };
1319
1320 static const char * const ssb_strings[] = {
1321 [SPEC_STORE_BYPASS_NONE] = "Vulnerable",
1322 [SPEC_STORE_BYPASS_DISABLE] = "Mitigation: Speculative Store Bypass disabled",
1323 [SPEC_STORE_BYPASS_PRCTL] = "Mitigation: Speculative Store Bypass disabled via prctl",
1324 [SPEC_STORE_BYPASS_SECCOMP] = "Mitigation: Speculative Store Bypass disabled via prctl and seccomp",
1325 };
1326
1327 static const struct {
1328 const char *option;
1329 enum ssb_mitigation_cmd cmd;
1330 } ssb_mitigation_options[] __initconst = {
1331 { "auto", SPEC_STORE_BYPASS_CMD_AUTO }, /* Platform decides */
1332 { "on", SPEC_STORE_BYPASS_CMD_ON }, /* Disable Speculative Store Bypass */
1333 { "off", SPEC_STORE_BYPASS_CMD_NONE }, /* Don't touch Speculative Store Bypass */
1334 { "prctl", SPEC_STORE_BYPASS_CMD_PRCTL }, /* Disable Speculative Store Bypass via prctl */
1335 { "seccomp", SPEC_STORE_BYPASS_CMD_SECCOMP }, /* Disable Speculative Store Bypass via prctl and seccomp */
1336 };
1337
1338 static enum ssb_mitigation_cmd __init ssb_parse_cmdline(void)
1339 {
1340 enum ssb_mitigation_cmd cmd = SPEC_STORE_BYPASS_CMD_AUTO;
1341 char arg[20];
1342 int ret, i;
1343
1344 if (cmdline_find_option_bool(boot_command_line, "nospec_store_bypass_disable") ||
1345 cpu_mitigations_off()) {
1346 return SPEC_STORE_BYPASS_CMD_NONE;
1347 } else {
1348 ret = cmdline_find_option(boot_command_line, "spec_store_bypass_disable",
1349 arg, sizeof(arg));
1350 if (ret < 0)
1351 return SPEC_STORE_BYPASS_CMD_AUTO;
1352
1353 for (i = 0; i < ARRAY_SIZE(ssb_mitigation_options); i++) {
1354 if (!match_option(arg, ret, ssb_mitigation_options[i].option))
1355 continue;
1356
1357 cmd = ssb_mitigation_options[i].cmd;
1358 break;
1359 }
1360
1361 if (i >= ARRAY_SIZE(ssb_mitigation_options)) {
1362 pr_err("unknown option (%s). Switching to AUTO select\n", arg);
1363 return SPEC_STORE_BYPASS_CMD_AUTO;
1364 }
1365 }
1366
1367 return cmd;
1368 }
1369
1370 static enum ssb_mitigation __init __ssb_select_mitigation(void)
1371 {
1372 enum ssb_mitigation mode = SPEC_STORE_BYPASS_NONE;
1373 enum ssb_mitigation_cmd cmd;
1374
1375 if (!boot_cpu_has(X86_FEATURE_SSBD))
1376 return mode;
1377
1378 cmd = ssb_parse_cmdline();
1379 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS) &&
1380 (cmd == SPEC_STORE_BYPASS_CMD_NONE ||
1381 cmd == SPEC_STORE_BYPASS_CMD_AUTO))
1382 return mode;
1383
1384 switch (cmd) {
1385 case SPEC_STORE_BYPASS_CMD_AUTO:
1386 case SPEC_STORE_BYPASS_CMD_SECCOMP:
1387 /*
1388 * Choose prctl+seccomp as the default mode if seccomp is
1389 * enabled.
1390 */
1391 if (IS_ENABLED(CONFIG_SECCOMP))
1392 mode = SPEC_STORE_BYPASS_SECCOMP;
1393 else
1394 mode = SPEC_STORE_BYPASS_PRCTL;
1395 break;
1396 case SPEC_STORE_BYPASS_CMD_ON:
1397 mode = SPEC_STORE_BYPASS_DISABLE;
1398 break;
1399 case SPEC_STORE_BYPASS_CMD_PRCTL:
1400 mode = SPEC_STORE_BYPASS_PRCTL;
1401 break;
1402 case SPEC_STORE_BYPASS_CMD_NONE:
1403 break;
1404 }
1405
1406 /*
1407 * If SSBD is controlled by the SPEC_CTRL MSR, then set the proper
1408 * bit in the mask to allow guests to use the mitigation even in the
1409 * case where the host does not enable it.
1410 */
1411 if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
1412 static_cpu_has(X86_FEATURE_AMD_SSBD)) {
1413 x86_spec_ctrl_mask |= SPEC_CTRL_SSBD;
1414 }
1415
1416 /*
1417 * We have three CPU feature flags that are in play here:
1418 * - X86_BUG_SPEC_STORE_BYPASS - CPU is susceptible.
1419 * - X86_FEATURE_SSBD - CPU is able to turn off speculative store bypass
1420 * - X86_FEATURE_SPEC_STORE_BYPASS_DISABLE - engage the mitigation
1421 */
1422 if (mode == SPEC_STORE_BYPASS_DISABLE) {
1423 setup_force_cpu_cap(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE);
1424 /*
1425 * Intel uses the SPEC CTRL MSR Bit(2) for this, while AMD may
1426 * use a completely different MSR and bit dependent on family.
1427 */
1428 if (!static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) &&
1429 !static_cpu_has(X86_FEATURE_AMD_SSBD)) {
1430 x86_amd_ssb_disable();
1431 } else {
1432 x86_spec_ctrl_base |= SPEC_CTRL_SSBD;
1433 wrmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base);
1434 }
1435 }
1436
1437 return mode;
1438 }
1439
1440 static void ssb_select_mitigation(void)
1441 {
1442 ssb_mode = __ssb_select_mitigation();
1443
1444 if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1445 pr_info("%s\n", ssb_strings[ssb_mode]);
1446 }
1447
1448 #undef pr_fmt
1449 #define pr_fmt(fmt) "Speculation prctl: " fmt
1450
1451 static void task_update_spec_tif(struct task_struct *tsk)
1452 {
1453 /* Force the update of the real TIF bits */
1454 set_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE);
1455
1456 /*
1457 * Immediately update the speculation control MSRs for the current
1458 * task, but for a non-current task delay setting the CPU
1459 * mitigation until it is scheduled next.
1460 *
1461 * This can only happen for SECCOMP mitigation. For PRCTL it's
1462 * always the current task.
1463 */
1464 if (tsk == current)
1465 speculation_ctrl_update_current();
1466 }
1467
1468 static int l1d_flush_prctl_set(struct task_struct *task, unsigned long ctrl)
1469 {
1470
1471 if (!static_branch_unlikely(&switch_mm_cond_l1d_flush))
1472 return -EPERM;
1473
1474 switch (ctrl) {
1475 case PR_SPEC_ENABLE:
1476 set_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH);
1477 return 0;
1478 case PR_SPEC_DISABLE:
1479 clear_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH);
1480 return 0;
1481 default:
1482 return -ERANGE;
1483 }
1484 }
1485
1486 static int ssb_prctl_set(struct task_struct *task, unsigned long ctrl)
1487 {
1488 if (ssb_mode != SPEC_STORE_BYPASS_PRCTL &&
1489 ssb_mode != SPEC_STORE_BYPASS_SECCOMP)
1490 return -ENXIO;
1491
1492 switch (ctrl) {
1493 case PR_SPEC_ENABLE:
1494 /* If speculation is force disabled, enable is not allowed */
1495 if (task_spec_ssb_force_disable(task))
1496 return -EPERM;
1497 task_clear_spec_ssb_disable(task);
1498 task_clear_spec_ssb_noexec(task);
1499 task_update_spec_tif(task);
1500 break;
1501 case PR_SPEC_DISABLE:
1502 task_set_spec_ssb_disable(task);
1503 task_clear_spec_ssb_noexec(task);
1504 task_update_spec_tif(task);
1505 break;
1506 case PR_SPEC_FORCE_DISABLE:
1507 task_set_spec_ssb_disable(task);
1508 task_set_spec_ssb_force_disable(task);
1509 task_clear_spec_ssb_noexec(task);
1510 task_update_spec_tif(task);
1511 break;
1512 case PR_SPEC_DISABLE_NOEXEC:
1513 if (task_spec_ssb_force_disable(task))
1514 return -EPERM;
1515 task_set_spec_ssb_disable(task);
1516 task_set_spec_ssb_noexec(task);
1517 task_update_spec_tif(task);
1518 break;
1519 default:
1520 return -ERANGE;
1521 }
1522 return 0;
1523 }
1524
1525 static bool is_spec_ib_user_controlled(void)
1526 {
1527 return spectre_v2_user_ibpb == SPECTRE_V2_USER_PRCTL ||
1528 spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
1529 spectre_v2_user_stibp == SPECTRE_V2_USER_PRCTL ||
1530 spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP;
1531 }
1532
1533 static int ib_prctl_set(struct task_struct *task, unsigned long ctrl)
1534 {
1535 switch (ctrl) {
1536 case PR_SPEC_ENABLE:
1537 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
1538 spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
1539 return 0;
1540
1541 /*
1542 * With strict mode for both IBPB and STIBP, the instruction
1543 * code paths avoid checking this task flag and instead,
1544 * unconditionally run the instruction. However, STIBP and IBPB
1545 * are independent and either can be set to conditionally
1546 * enabled regardless of the mode of the other.
1547 *
1548 * If either is set to conditional, allow the task flag to be
1549 * updated, unless it was force-disabled by a previous prctl
1550 * call. Currently, this is possible on an AMD CPU which has the
1551 * feature X86_FEATURE_AMD_STIBP_ALWAYS_ON. In this case, if the
1552 * kernel is booted with 'spectre_v2_user=seccomp', then
1553 * spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP and
1554 * spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED.
1555 */
1556 if (!is_spec_ib_user_controlled() ||
1557 task_spec_ib_force_disable(task))
1558 return -EPERM;
1559
1560 task_clear_spec_ib_disable(task);
1561 task_update_spec_tif(task);
1562 break;
1563 case PR_SPEC_DISABLE:
1564 case PR_SPEC_FORCE_DISABLE:
1565 /*
1566 * Indirect branch speculation is always allowed when
1567 * mitigation is force disabled.
1568 */
1569 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
1570 spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
1571 return -EPERM;
1572
1573 if (!is_spec_ib_user_controlled())
1574 return 0;
1575
1576 task_set_spec_ib_disable(task);
1577 if (ctrl == PR_SPEC_FORCE_DISABLE)
1578 task_set_spec_ib_force_disable(task);
1579 task_update_spec_tif(task);
1580 break;
1581 default:
1582 return -ERANGE;
1583 }
1584 return 0;
1585 }
1586
1587 int arch_prctl_spec_ctrl_set(struct task_struct *task, unsigned long which,
1588 unsigned long ctrl)
1589 {
1590 switch (which) {
1591 case PR_SPEC_STORE_BYPASS:
1592 return ssb_prctl_set(task, ctrl);
1593 case PR_SPEC_INDIRECT_BRANCH:
1594 return ib_prctl_set(task, ctrl);
1595 case PR_SPEC_L1D_FLUSH:
1596 return l1d_flush_prctl_set(task, ctrl);
1597 default:
1598 return -ENODEV;
1599 }
1600 }
1601
1602 #ifdef CONFIG_SECCOMP
1603 void arch_seccomp_spec_mitigate(struct task_struct *task)
1604 {
1605 if (ssb_mode == SPEC_STORE_BYPASS_SECCOMP)
1606 ssb_prctl_set(task, PR_SPEC_FORCE_DISABLE);
1607 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
1608 spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP)
1609 ib_prctl_set(task, PR_SPEC_FORCE_DISABLE);
1610 }
1611 #endif
1612
1613 static int l1d_flush_prctl_get(struct task_struct *task)
1614 {
1615 if (!static_branch_unlikely(&switch_mm_cond_l1d_flush))
1616 return PR_SPEC_FORCE_DISABLE;
1617
1618 if (test_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH))
1619 return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
1620 else
1621 return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
1622 }
1623
1624 static int ssb_prctl_get(struct task_struct *task)
1625 {
1626 switch (ssb_mode) {
1627 case SPEC_STORE_BYPASS_DISABLE:
1628 return PR_SPEC_DISABLE;
1629 case SPEC_STORE_BYPASS_SECCOMP:
1630 case SPEC_STORE_BYPASS_PRCTL:
1631 if (task_spec_ssb_force_disable(task))
1632 return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
1633 if (task_spec_ssb_noexec(task))
1634 return PR_SPEC_PRCTL | PR_SPEC_DISABLE_NOEXEC;
1635 if (task_spec_ssb_disable(task))
1636 return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
1637 return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
1638 default:
1639 if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1640 return PR_SPEC_ENABLE;
1641 return PR_SPEC_NOT_AFFECTED;
1642 }
1643 }
1644
1645 static int ib_prctl_get(struct task_struct *task)
1646 {
1647 if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2))
1648 return PR_SPEC_NOT_AFFECTED;
1649
1650 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
1651 spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
1652 return PR_SPEC_ENABLE;
1653 else if (is_spec_ib_user_controlled()) {
1654 if (task_spec_ib_force_disable(task))
1655 return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
1656 if (task_spec_ib_disable(task))
1657 return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
1658 return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
1659 } else if (spectre_v2_user_ibpb == SPECTRE_V2_USER_STRICT ||
1660 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
1661 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED)
1662 return PR_SPEC_DISABLE;
1663 else
1664 return PR_SPEC_NOT_AFFECTED;
1665 }
1666
1667 int arch_prctl_spec_ctrl_get(struct task_struct *task, unsigned long which)
1668 {
1669 switch (which) {
1670 case PR_SPEC_STORE_BYPASS:
1671 return ssb_prctl_get(task);
1672 case PR_SPEC_INDIRECT_BRANCH:
1673 return ib_prctl_get(task);
1674 case PR_SPEC_L1D_FLUSH:
1675 return l1d_flush_prctl_get(task);
1676 default:
1677 return -ENODEV;
1678 }
1679 }
1680
1681 void x86_spec_ctrl_setup_ap(void)
1682 {
1683 if (boot_cpu_has(X86_FEATURE_MSR_SPEC_CTRL))
1684 wrmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base);
1685
1686 if (ssb_mode == SPEC_STORE_BYPASS_DISABLE)
1687 x86_amd_ssb_disable();
1688 }
1689
1690 bool itlb_multihit_kvm_mitigation;
1691 EXPORT_SYMBOL_GPL(itlb_multihit_kvm_mitigation);
1692
1693 #undef pr_fmt
1694 #define pr_fmt(fmt) "L1TF: " fmt
1695
1696 /* Default mitigation for L1TF-affected CPUs */
1697 enum l1tf_mitigations l1tf_mitigation __ro_after_init = L1TF_MITIGATION_FLUSH;
1698 #if IS_ENABLED(CONFIG_KVM_INTEL)
1699 EXPORT_SYMBOL_GPL(l1tf_mitigation);
1700 #endif
1701 enum vmx_l1d_flush_state l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
1702 EXPORT_SYMBOL_GPL(l1tf_vmx_mitigation);
1703
1704 /*
1705 * These CPUs all support 44bits physical address space internally in the
1706 * cache but CPUID can report a smaller number of physical address bits.
1707 *
1708 * The L1TF mitigation uses the top most address bit for the inversion of
1709 * non present PTEs. When the installed memory reaches into the top most
1710 * address bit due to memory holes, which has been observed on machines
1711 * which report 36bits physical address bits and have 32G RAM installed,
1712 * then the mitigation range check in l1tf_select_mitigation() triggers.
1713 * This is a false positive because the mitigation is still possible due to
1714 * the fact that the cache uses 44bit internally. Use the cache bits
1715 * instead of the reported physical bits and adjust them on the affected
1716 * machines to 44bit if the reported bits are less than 44.
1717 */
1718 static void override_cache_bits(struct cpuinfo_x86 *c)
1719 {
1720 if (c->x86 != 6)
1721 return;
1722
1723 switch (c->x86_model) {
1724 case INTEL_FAM6_NEHALEM:
1725 case INTEL_FAM6_WESTMERE:
1726 case INTEL_FAM6_SANDYBRIDGE:
1727 case INTEL_FAM6_IVYBRIDGE:
1728 case INTEL_FAM6_HASWELL:
1729 case INTEL_FAM6_HASWELL_L:
1730 case INTEL_FAM6_HASWELL_G:
1731 case INTEL_FAM6_BROADWELL:
1732 case INTEL_FAM6_BROADWELL_G:
1733 case INTEL_FAM6_SKYLAKE_L:
1734 case INTEL_FAM6_SKYLAKE:
1735 case INTEL_FAM6_KABYLAKE_L:
1736 case INTEL_FAM6_KABYLAKE:
1737 if (c->x86_cache_bits < 44)
1738 c->x86_cache_bits = 44;
1739 break;
1740 }
1741 }
1742
1743 static void __init l1tf_select_mitigation(void)
1744 {
1745 u64 half_pa;
1746
1747 if (!boot_cpu_has_bug(X86_BUG_L1TF))
1748 return;
1749
1750 if (cpu_mitigations_off())
1751 l1tf_mitigation = L1TF_MITIGATION_OFF;
1752 else if (cpu_mitigations_auto_nosmt())
1753 l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
1754
1755 override_cache_bits(&boot_cpu_data);
1756
1757 switch (l1tf_mitigation) {
1758 case L1TF_MITIGATION_OFF:
1759 case L1TF_MITIGATION_FLUSH_NOWARN:
1760 case L1TF_MITIGATION_FLUSH:
1761 break;
1762 case L1TF_MITIGATION_FLUSH_NOSMT:
1763 case L1TF_MITIGATION_FULL:
1764 cpu_smt_disable(false);
1765 break;
1766 case L1TF_MITIGATION_FULL_FORCE:
1767 cpu_smt_disable(true);
1768 break;
1769 }
1770
1771 #if CONFIG_PGTABLE_LEVELS == 2
1772 pr_warn("Kernel not compiled for PAE. No mitigation for L1TF\n");
1773 return;
1774 #endif
1775
1776 half_pa = (u64)l1tf_pfn_limit() << PAGE_SHIFT;
1777 if (l1tf_mitigation != L1TF_MITIGATION_OFF &&
1778 e820__mapped_any(half_pa, ULLONG_MAX - half_pa, E820_TYPE_RAM)) {
1779 pr_warn("System has more than MAX_PA/2 memory. L1TF mitigation not effective.\n");
1780 pr_info("You may make it effective by booting the kernel with mem=%llu parameter.\n",
1781 half_pa);
1782 pr_info("However, doing so will make a part of your RAM unusable.\n");
1783 pr_info("Reading https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html might help you decide.\n");
1784 return;
1785 }
1786
1787 setup_force_cpu_cap(X86_FEATURE_L1TF_PTEINV);
1788 }
1789
1790 static int __init l1tf_cmdline(char *str)
1791 {
1792 if (!boot_cpu_has_bug(X86_BUG_L1TF))
1793 return 0;
1794
1795 if (!str)
1796 return -EINVAL;
1797
1798 if (!strcmp(str, "off"))
1799 l1tf_mitigation = L1TF_MITIGATION_OFF;
1800 else if (!strcmp(str, "flush,nowarn"))
1801 l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOWARN;
1802 else if (!strcmp(str, "flush"))
1803 l1tf_mitigation = L1TF_MITIGATION_FLUSH;
1804 else if (!strcmp(str, "flush,nosmt"))
1805 l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
1806 else if (!strcmp(str, "full"))
1807 l1tf_mitigation = L1TF_MITIGATION_FULL;
1808 else if (!strcmp(str, "full,force"))
1809 l1tf_mitigation = L1TF_MITIGATION_FULL_FORCE;
1810
1811 return 0;
1812 }
1813 early_param("l1tf", l1tf_cmdline);
1814
1815 #undef pr_fmt
1816 #define pr_fmt(fmt) fmt
1817
1818 #ifdef CONFIG_SYSFS
1819
1820 #define L1TF_DEFAULT_MSG "Mitigation: PTE Inversion"
1821
1822 #if IS_ENABLED(CONFIG_KVM_INTEL)
1823 static const char * const l1tf_vmx_states[] = {
1824 [VMENTER_L1D_FLUSH_AUTO] = "auto",
1825 [VMENTER_L1D_FLUSH_NEVER] = "vulnerable",
1826 [VMENTER_L1D_FLUSH_COND] = "conditional cache flushes",
1827 [VMENTER_L1D_FLUSH_ALWAYS] = "cache flushes",
1828 [VMENTER_L1D_FLUSH_EPT_DISABLED] = "EPT disabled",
1829 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = "flush not necessary"
1830 };
1831
1832 static ssize_t l1tf_show_state(char *buf)
1833 {
1834 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO)
1835 return sprintf(buf, "%s\n", L1TF_DEFAULT_MSG);
1836
1837 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_EPT_DISABLED ||
1838 (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER &&
1839 sched_smt_active())) {
1840 return sprintf(buf, "%s; VMX: %s\n", L1TF_DEFAULT_MSG,
1841 l1tf_vmx_states[l1tf_vmx_mitigation]);
1842 }
1843
1844 return sprintf(buf, "%s; VMX: %s, SMT %s\n", L1TF_DEFAULT_MSG,
1845 l1tf_vmx_states[l1tf_vmx_mitigation],
1846 sched_smt_active() ? "vulnerable" : "disabled");
1847 }
1848
1849 static ssize_t itlb_multihit_show_state(char *buf)
1850 {
1851 if (!boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
1852 !boot_cpu_has(X86_FEATURE_VMX))
1853 return sprintf(buf, "KVM: Mitigation: VMX unsupported\n");
1854 else if (!(cr4_read_shadow() & X86_CR4_VMXE))
1855 return sprintf(buf, "KVM: Mitigation: VMX disabled\n");
1856 else if (itlb_multihit_kvm_mitigation)
1857 return sprintf(buf, "KVM: Mitigation: Split huge pages\n");
1858 else
1859 return sprintf(buf, "KVM: Vulnerable\n");
1860 }
1861 #else
1862 static ssize_t l1tf_show_state(char *buf)
1863 {
1864 return sprintf(buf, "%s\n", L1TF_DEFAULT_MSG);
1865 }
1866
1867 static ssize_t itlb_multihit_show_state(char *buf)
1868 {
1869 return sprintf(buf, "Processor vulnerable\n");
1870 }
1871 #endif
1872
1873 static ssize_t mds_show_state(char *buf)
1874 {
1875 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
1876 return sprintf(buf, "%s; SMT Host state unknown\n",
1877 mds_strings[mds_mitigation]);
1878 }
1879
1880 if (boot_cpu_has(X86_BUG_MSBDS_ONLY)) {
1881 return sprintf(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
1882 (mds_mitigation == MDS_MITIGATION_OFF ? "vulnerable" :
1883 sched_smt_active() ? "mitigated" : "disabled"));
1884 }
1885
1886 return sprintf(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
1887 sched_smt_active() ? "vulnerable" : "disabled");
1888 }
1889
1890 static ssize_t tsx_async_abort_show_state(char *buf)
1891 {
1892 if ((taa_mitigation == TAA_MITIGATION_TSX_DISABLED) ||
1893 (taa_mitigation == TAA_MITIGATION_OFF))
1894 return sprintf(buf, "%s\n", taa_strings[taa_mitigation]);
1895
1896 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
1897 return sprintf(buf, "%s; SMT Host state unknown\n",
1898 taa_strings[taa_mitigation]);
1899 }
1900
1901 return sprintf(buf, "%s; SMT %s\n", taa_strings[taa_mitigation],
1902 sched_smt_active() ? "vulnerable" : "disabled");
1903 }
1904
1905 static char *stibp_state(void)
1906 {
1907 if (spectre_v2_in_eibrs_mode(spectre_v2_enabled))
1908 return "";
1909
1910 switch (spectre_v2_user_stibp) {
1911 case SPECTRE_V2_USER_NONE:
1912 return ", STIBP: disabled";
1913 case SPECTRE_V2_USER_STRICT:
1914 return ", STIBP: forced";
1915 case SPECTRE_V2_USER_STRICT_PREFERRED:
1916 return ", STIBP: always-on";
1917 case SPECTRE_V2_USER_PRCTL:
1918 case SPECTRE_V2_USER_SECCOMP:
1919 if (static_key_enabled(&switch_to_cond_stibp))
1920 return ", STIBP: conditional";
1921 }
1922 return "";
1923 }
1924
1925 static char *ibpb_state(void)
1926 {
1927 if (boot_cpu_has(X86_FEATURE_IBPB)) {
1928 if (static_key_enabled(&switch_mm_always_ibpb))
1929 return ", IBPB: always-on";
1930 if (static_key_enabled(&switch_mm_cond_ibpb))
1931 return ", IBPB: conditional";
1932 return ", IBPB: disabled";
1933 }
1934 return "";
1935 }
1936
1937 static ssize_t spectre_v2_show_state(char *buf)
1938 {
1939 if (spectre_v2_enabled == SPECTRE_V2_LFENCE)
1940 return sprintf(buf, "Vulnerable: LFENCE\n");
1941
1942 if (spectre_v2_enabled == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled())
1943 return sprintf(buf, "Vulnerable: eIBRS with unprivileged eBPF\n");
1944
1945 if (sched_smt_active() && unprivileged_ebpf_enabled() &&
1946 spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE)
1947 return sprintf(buf, "Vulnerable: eIBRS+LFENCE with unprivileged eBPF and SMT\n");
1948
1949 return sprintf(buf, "%s%s%s%s%s%s\n",
1950 spectre_v2_strings[spectre_v2_enabled],
1951 ibpb_state(),
1952 boot_cpu_has(X86_FEATURE_USE_IBRS_FW) ? ", IBRS_FW" : "",
1953 stibp_state(),
1954 boot_cpu_has(X86_FEATURE_RSB_CTXSW) ? ", RSB filling" : "",
1955 spectre_v2_module_string());
1956 }
1957
1958 static ssize_t srbds_show_state(char *buf)
1959 {
1960 return sprintf(buf, "%s\n", srbds_strings[srbds_mitigation]);
1961 }
1962
1963 static ssize_t cpu_show_common(struct device *dev, struct device_attribute *attr,
1964 char *buf, unsigned int bug)
1965 {
1966 if (!boot_cpu_has_bug(bug))
1967 return sprintf(buf, "Not affected\n");
1968
1969 switch (bug) {
1970 case X86_BUG_CPU_MELTDOWN:
1971 if (boot_cpu_has(X86_FEATURE_PTI))
1972 return sprintf(buf, "Mitigation: PTI\n");
1973
1974 if (hypervisor_is_type(X86_HYPER_XEN_PV))
1975 return sprintf(buf, "Unknown (XEN PV detected, hypervisor mitigation required)\n");
1976
1977 break;
1978
1979 case X86_BUG_SPECTRE_V1:
1980 return sprintf(buf, "%s\n", spectre_v1_strings[spectre_v1_mitigation]);
1981
1982 case X86_BUG_SPECTRE_V2:
1983 return spectre_v2_show_state(buf);
1984
1985 case X86_BUG_SPEC_STORE_BYPASS:
1986 return sprintf(buf, "%s\n", ssb_strings[ssb_mode]);
1987
1988 case X86_BUG_L1TF:
1989 if (boot_cpu_has(X86_FEATURE_L1TF_PTEINV))
1990 return l1tf_show_state(buf);
1991 break;
1992
1993 case X86_BUG_MDS:
1994 return mds_show_state(buf);
1995
1996 case X86_BUG_TAA:
1997 return tsx_async_abort_show_state(buf);
1998
1999 case X86_BUG_ITLB_MULTIHIT:
2000 return itlb_multihit_show_state(buf);
2001
2002 case X86_BUG_SRBDS:
2003 return srbds_show_state(buf);
2004
2005 default:
2006 break;
2007 }
2008
2009 return sprintf(buf, "Vulnerable\n");
2010 }
2011
2012 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr, char *buf)
2013 {
2014 return cpu_show_common(dev, attr, buf, X86_BUG_CPU_MELTDOWN);
2015 }
2016
2017 ssize_t cpu_show_spectre_v1(struct device *dev, struct device_attribute *attr, char *buf)
2018 {
2019 return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V1);
2020 }
2021
2022 ssize_t cpu_show_spectre_v2(struct device *dev, struct device_attribute *attr, char *buf)
2023 {
2024 return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V2);
2025 }
2026
2027 ssize_t cpu_show_spec_store_bypass(struct device *dev, struct device_attribute *attr, char *buf)
2028 {
2029 return cpu_show_common(dev, attr, buf, X86_BUG_SPEC_STORE_BYPASS);
2030 }
2031
2032 ssize_t cpu_show_l1tf(struct device *dev, struct device_attribute *attr, char *buf)
2033 {
2034 return cpu_show_common(dev, attr, buf, X86_BUG_L1TF);
2035 }
2036
2037 ssize_t cpu_show_mds(struct device *dev, struct device_attribute *attr, char *buf)
2038 {
2039 return cpu_show_common(dev, attr, buf, X86_BUG_MDS);
2040 }
2041
2042 ssize_t cpu_show_tsx_async_abort(struct device *dev, struct device_attribute *attr, char *buf)
2043 {
2044 return cpu_show_common(dev, attr, buf, X86_BUG_TAA);
2045 }
2046
2047 ssize_t cpu_show_itlb_multihit(struct device *dev, struct device_attribute *attr, char *buf)
2048 {
2049 return cpu_show_common(dev, attr, buf, X86_BUG_ITLB_MULTIHIT);
2050 }
2051
2052 ssize_t cpu_show_srbds(struct device *dev, struct device_attribute *attr, char *buf)
2053 {
2054 return cpu_show_common(dev, attr, buf, X86_BUG_SRBDS);
2055 }
2056 #endif