]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/kernel/cpu/bugs.c
Merge tag 'ext4_for_linus_stable' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kernel / cpu / bugs.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1994 Linus Torvalds
4 *
5 * Cyrix stuff, June 1998 by:
6 * - Rafael R. Reilova (moved everything from head.S),
7 * <rreilova@ececs.uc.edu>
8 * - Channing Corn (tests & fixes),
9 * - Andrew D. Balsa (code cleanup).
10 */
11 #include <linux/init.h>
12 #include <linux/utsname.h>
13 #include <linux/cpu.h>
14 #include <linux/module.h>
15 #include <linux/nospec.h>
16 #include <linux/prctl.h>
17 #include <linux/sched/smt.h>
18 #include <linux/pgtable.h>
19
20 #include <asm/spec-ctrl.h>
21 #include <asm/cmdline.h>
22 #include <asm/bugs.h>
23 #include <asm/processor.h>
24 #include <asm/processor-flags.h>
25 #include <asm/fpu/internal.h>
26 #include <asm/msr.h>
27 #include <asm/vmx.h>
28 #include <asm/paravirt.h>
29 #include <asm/alternative.h>
30 #include <asm/set_memory.h>
31 #include <asm/intel-family.h>
32 #include <asm/e820/api.h>
33 #include <asm/hypervisor.h>
34 #include <asm/tlbflush.h>
35
36 #include "cpu.h"
37
38 static void __init spectre_v1_select_mitigation(void);
39 static void __init spectre_v2_select_mitigation(void);
40 static void __init ssb_select_mitigation(void);
41 static void __init l1tf_select_mitigation(void);
42 static void __init mds_select_mitigation(void);
43 static void __init mds_print_mitigation(void);
44 static void __init taa_select_mitigation(void);
45 static void __init srbds_select_mitigation(void);
46 static void __init l1d_flush_select_mitigation(void);
47
48 /* The base value of the SPEC_CTRL MSR that always has to be preserved. */
49 u64 x86_spec_ctrl_base;
50 EXPORT_SYMBOL_GPL(x86_spec_ctrl_base);
51 static DEFINE_MUTEX(spec_ctrl_mutex);
52
53 /*
54 * The vendor and possibly platform specific bits which can be modified in
55 * x86_spec_ctrl_base.
56 */
57 static u64 __ro_after_init x86_spec_ctrl_mask = SPEC_CTRL_IBRS;
58
59 /*
60 * AMD specific MSR info for Speculative Store Bypass control.
61 * x86_amd_ls_cfg_ssbd_mask is initialized in identify_boot_cpu().
62 */
63 u64 __ro_after_init x86_amd_ls_cfg_base;
64 u64 __ro_after_init x86_amd_ls_cfg_ssbd_mask;
65
66 /* Control conditional STIBP in switch_to() */
67 DEFINE_STATIC_KEY_FALSE(switch_to_cond_stibp);
68 /* Control conditional IBPB in switch_mm() */
69 DEFINE_STATIC_KEY_FALSE(switch_mm_cond_ibpb);
70 /* Control unconditional IBPB in switch_mm() */
71 DEFINE_STATIC_KEY_FALSE(switch_mm_always_ibpb);
72
73 /* Control MDS CPU buffer clear before returning to user space */
74 DEFINE_STATIC_KEY_FALSE(mds_user_clear);
75 EXPORT_SYMBOL_GPL(mds_user_clear);
76 /* Control MDS CPU buffer clear before idling (halt, mwait) */
77 DEFINE_STATIC_KEY_FALSE(mds_idle_clear);
78 EXPORT_SYMBOL_GPL(mds_idle_clear);
79
80 /*
81 * Controls whether l1d flush based mitigations are enabled,
82 * based on hw features and admin setting via boot parameter
83 * defaults to false
84 */
85 DEFINE_STATIC_KEY_FALSE(switch_mm_cond_l1d_flush);
86
87 void __init check_bugs(void)
88 {
89 identify_boot_cpu();
90
91 /*
92 * identify_boot_cpu() initialized SMT support information, let the
93 * core code know.
94 */
95 cpu_smt_check_topology();
96
97 if (!IS_ENABLED(CONFIG_SMP)) {
98 pr_info("CPU: ");
99 print_cpu_info(&boot_cpu_data);
100 }
101
102 /*
103 * Read the SPEC_CTRL MSR to account for reserved bits which may
104 * have unknown values. AMD64_LS_CFG MSR is cached in the early AMD
105 * init code as it is not enumerated and depends on the family.
106 */
107 if (boot_cpu_has(X86_FEATURE_MSR_SPEC_CTRL))
108 rdmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base);
109
110 /* Allow STIBP in MSR_SPEC_CTRL if supported */
111 if (boot_cpu_has(X86_FEATURE_STIBP))
112 x86_spec_ctrl_mask |= SPEC_CTRL_STIBP;
113
114 /* Select the proper CPU mitigations before patching alternatives: */
115 spectre_v1_select_mitigation();
116 spectre_v2_select_mitigation();
117 ssb_select_mitigation();
118 l1tf_select_mitigation();
119 mds_select_mitigation();
120 taa_select_mitigation();
121 srbds_select_mitigation();
122 l1d_flush_select_mitigation();
123
124 /*
125 * As MDS and TAA mitigations are inter-related, print MDS
126 * mitigation until after TAA mitigation selection is done.
127 */
128 mds_print_mitigation();
129
130 arch_smt_update();
131
132 #ifdef CONFIG_X86_32
133 /*
134 * Check whether we are able to run this kernel safely on SMP.
135 *
136 * - i386 is no longer supported.
137 * - In order to run on anything without a TSC, we need to be
138 * compiled for a i486.
139 */
140 if (boot_cpu_data.x86 < 4)
141 panic("Kernel requires i486+ for 'invlpg' and other features");
142
143 init_utsname()->machine[1] =
144 '0' + (boot_cpu_data.x86 > 6 ? 6 : boot_cpu_data.x86);
145 alternative_instructions();
146
147 fpu__init_check_bugs();
148 #else /* CONFIG_X86_64 */
149 alternative_instructions();
150
151 /*
152 * Make sure the first 2MB area is not mapped by huge pages
153 * There are typically fixed size MTRRs in there and overlapping
154 * MTRRs into large pages causes slow downs.
155 *
156 * Right now we don't do that with gbpages because there seems
157 * very little benefit for that case.
158 */
159 if (!direct_gbpages)
160 set_memory_4k((unsigned long)__va(0), 1);
161 #endif
162 }
163
164 void
165 x86_virt_spec_ctrl(u64 guest_spec_ctrl, u64 guest_virt_spec_ctrl, bool setguest)
166 {
167 u64 msrval, guestval, hostval = x86_spec_ctrl_base;
168 struct thread_info *ti = current_thread_info();
169
170 /* Is MSR_SPEC_CTRL implemented ? */
171 if (static_cpu_has(X86_FEATURE_MSR_SPEC_CTRL)) {
172 /*
173 * Restrict guest_spec_ctrl to supported values. Clear the
174 * modifiable bits in the host base value and or the
175 * modifiable bits from the guest value.
176 */
177 guestval = hostval & ~x86_spec_ctrl_mask;
178 guestval |= guest_spec_ctrl & x86_spec_ctrl_mask;
179
180 /* SSBD controlled in MSR_SPEC_CTRL */
181 if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
182 static_cpu_has(X86_FEATURE_AMD_SSBD))
183 hostval |= ssbd_tif_to_spec_ctrl(ti->flags);
184
185 /* Conditional STIBP enabled? */
186 if (static_branch_unlikely(&switch_to_cond_stibp))
187 hostval |= stibp_tif_to_spec_ctrl(ti->flags);
188
189 if (hostval != guestval) {
190 msrval = setguest ? guestval : hostval;
191 wrmsrl(MSR_IA32_SPEC_CTRL, msrval);
192 }
193 }
194
195 /*
196 * If SSBD is not handled in MSR_SPEC_CTRL on AMD, update
197 * MSR_AMD64_L2_CFG or MSR_VIRT_SPEC_CTRL if supported.
198 */
199 if (!static_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
200 !static_cpu_has(X86_FEATURE_VIRT_SSBD))
201 return;
202
203 /*
204 * If the host has SSBD mitigation enabled, force it in the host's
205 * virtual MSR value. If its not permanently enabled, evaluate
206 * current's TIF_SSBD thread flag.
207 */
208 if (static_cpu_has(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE))
209 hostval = SPEC_CTRL_SSBD;
210 else
211 hostval = ssbd_tif_to_spec_ctrl(ti->flags);
212
213 /* Sanitize the guest value */
214 guestval = guest_virt_spec_ctrl & SPEC_CTRL_SSBD;
215
216 if (hostval != guestval) {
217 unsigned long tif;
218
219 tif = setguest ? ssbd_spec_ctrl_to_tif(guestval) :
220 ssbd_spec_ctrl_to_tif(hostval);
221
222 speculation_ctrl_update(tif);
223 }
224 }
225 EXPORT_SYMBOL_GPL(x86_virt_spec_ctrl);
226
227 static void x86_amd_ssb_disable(void)
228 {
229 u64 msrval = x86_amd_ls_cfg_base | x86_amd_ls_cfg_ssbd_mask;
230
231 if (boot_cpu_has(X86_FEATURE_VIRT_SSBD))
232 wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, SPEC_CTRL_SSBD);
233 else if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD))
234 wrmsrl(MSR_AMD64_LS_CFG, msrval);
235 }
236
237 #undef pr_fmt
238 #define pr_fmt(fmt) "MDS: " fmt
239
240 /* Default mitigation for MDS-affected CPUs */
241 static enum mds_mitigations mds_mitigation __ro_after_init = MDS_MITIGATION_FULL;
242 static bool mds_nosmt __ro_after_init = false;
243
244 static const char * const mds_strings[] = {
245 [MDS_MITIGATION_OFF] = "Vulnerable",
246 [MDS_MITIGATION_FULL] = "Mitigation: Clear CPU buffers",
247 [MDS_MITIGATION_VMWERV] = "Vulnerable: Clear CPU buffers attempted, no microcode",
248 };
249
250 static void __init mds_select_mitigation(void)
251 {
252 if (!boot_cpu_has_bug(X86_BUG_MDS) || cpu_mitigations_off()) {
253 mds_mitigation = MDS_MITIGATION_OFF;
254 return;
255 }
256
257 if (mds_mitigation == MDS_MITIGATION_FULL) {
258 if (!boot_cpu_has(X86_FEATURE_MD_CLEAR))
259 mds_mitigation = MDS_MITIGATION_VMWERV;
260
261 static_branch_enable(&mds_user_clear);
262
263 if (!boot_cpu_has(X86_BUG_MSBDS_ONLY) &&
264 (mds_nosmt || cpu_mitigations_auto_nosmt()))
265 cpu_smt_disable(false);
266 }
267 }
268
269 static void __init mds_print_mitigation(void)
270 {
271 if (!boot_cpu_has_bug(X86_BUG_MDS) || cpu_mitigations_off())
272 return;
273
274 pr_info("%s\n", mds_strings[mds_mitigation]);
275 }
276
277 static int __init mds_cmdline(char *str)
278 {
279 if (!boot_cpu_has_bug(X86_BUG_MDS))
280 return 0;
281
282 if (!str)
283 return -EINVAL;
284
285 if (!strcmp(str, "off"))
286 mds_mitigation = MDS_MITIGATION_OFF;
287 else if (!strcmp(str, "full"))
288 mds_mitigation = MDS_MITIGATION_FULL;
289 else if (!strcmp(str, "full,nosmt")) {
290 mds_mitigation = MDS_MITIGATION_FULL;
291 mds_nosmt = true;
292 }
293
294 return 0;
295 }
296 early_param("mds", mds_cmdline);
297
298 #undef pr_fmt
299 #define pr_fmt(fmt) "TAA: " fmt
300
301 enum taa_mitigations {
302 TAA_MITIGATION_OFF,
303 TAA_MITIGATION_UCODE_NEEDED,
304 TAA_MITIGATION_VERW,
305 TAA_MITIGATION_TSX_DISABLED,
306 };
307
308 /* Default mitigation for TAA-affected CPUs */
309 static enum taa_mitigations taa_mitigation __ro_after_init = TAA_MITIGATION_VERW;
310 static bool taa_nosmt __ro_after_init;
311
312 static const char * const taa_strings[] = {
313 [TAA_MITIGATION_OFF] = "Vulnerable",
314 [TAA_MITIGATION_UCODE_NEEDED] = "Vulnerable: Clear CPU buffers attempted, no microcode",
315 [TAA_MITIGATION_VERW] = "Mitigation: Clear CPU buffers",
316 [TAA_MITIGATION_TSX_DISABLED] = "Mitigation: TSX disabled",
317 };
318
319 static void __init taa_select_mitigation(void)
320 {
321 u64 ia32_cap;
322
323 if (!boot_cpu_has_bug(X86_BUG_TAA)) {
324 taa_mitigation = TAA_MITIGATION_OFF;
325 return;
326 }
327
328 /* TSX previously disabled by tsx=off */
329 if (!boot_cpu_has(X86_FEATURE_RTM)) {
330 taa_mitigation = TAA_MITIGATION_TSX_DISABLED;
331 goto out;
332 }
333
334 if (cpu_mitigations_off()) {
335 taa_mitigation = TAA_MITIGATION_OFF;
336 return;
337 }
338
339 /*
340 * TAA mitigation via VERW is turned off if both
341 * tsx_async_abort=off and mds=off are specified.
342 */
343 if (taa_mitigation == TAA_MITIGATION_OFF &&
344 mds_mitigation == MDS_MITIGATION_OFF)
345 goto out;
346
347 if (boot_cpu_has(X86_FEATURE_MD_CLEAR))
348 taa_mitigation = TAA_MITIGATION_VERW;
349 else
350 taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
351
352 /*
353 * VERW doesn't clear the CPU buffers when MD_CLEAR=1 and MDS_NO=1.
354 * A microcode update fixes this behavior to clear CPU buffers. It also
355 * adds support for MSR_IA32_TSX_CTRL which is enumerated by the
356 * ARCH_CAP_TSX_CTRL_MSR bit.
357 *
358 * On MDS_NO=1 CPUs if ARCH_CAP_TSX_CTRL_MSR is not set, microcode
359 * update is required.
360 */
361 ia32_cap = x86_read_arch_cap_msr();
362 if ( (ia32_cap & ARCH_CAP_MDS_NO) &&
363 !(ia32_cap & ARCH_CAP_TSX_CTRL_MSR))
364 taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
365
366 /*
367 * TSX is enabled, select alternate mitigation for TAA which is
368 * the same as MDS. Enable MDS static branch to clear CPU buffers.
369 *
370 * For guests that can't determine whether the correct microcode is
371 * present on host, enable the mitigation for UCODE_NEEDED as well.
372 */
373 static_branch_enable(&mds_user_clear);
374
375 if (taa_nosmt || cpu_mitigations_auto_nosmt())
376 cpu_smt_disable(false);
377
378 /*
379 * Update MDS mitigation, if necessary, as the mds_user_clear is
380 * now enabled for TAA mitigation.
381 */
382 if (mds_mitigation == MDS_MITIGATION_OFF &&
383 boot_cpu_has_bug(X86_BUG_MDS)) {
384 mds_mitigation = MDS_MITIGATION_FULL;
385 mds_select_mitigation();
386 }
387 out:
388 pr_info("%s\n", taa_strings[taa_mitigation]);
389 }
390
391 static int __init tsx_async_abort_parse_cmdline(char *str)
392 {
393 if (!boot_cpu_has_bug(X86_BUG_TAA))
394 return 0;
395
396 if (!str)
397 return -EINVAL;
398
399 if (!strcmp(str, "off")) {
400 taa_mitigation = TAA_MITIGATION_OFF;
401 } else if (!strcmp(str, "full")) {
402 taa_mitigation = TAA_MITIGATION_VERW;
403 } else if (!strcmp(str, "full,nosmt")) {
404 taa_mitigation = TAA_MITIGATION_VERW;
405 taa_nosmt = true;
406 }
407
408 return 0;
409 }
410 early_param("tsx_async_abort", tsx_async_abort_parse_cmdline);
411
412 #undef pr_fmt
413 #define pr_fmt(fmt) "SRBDS: " fmt
414
415 enum srbds_mitigations {
416 SRBDS_MITIGATION_OFF,
417 SRBDS_MITIGATION_UCODE_NEEDED,
418 SRBDS_MITIGATION_FULL,
419 SRBDS_MITIGATION_TSX_OFF,
420 SRBDS_MITIGATION_HYPERVISOR,
421 };
422
423 static enum srbds_mitigations srbds_mitigation __ro_after_init = SRBDS_MITIGATION_FULL;
424
425 static const char * const srbds_strings[] = {
426 [SRBDS_MITIGATION_OFF] = "Vulnerable",
427 [SRBDS_MITIGATION_UCODE_NEEDED] = "Vulnerable: No microcode",
428 [SRBDS_MITIGATION_FULL] = "Mitigation: Microcode",
429 [SRBDS_MITIGATION_TSX_OFF] = "Mitigation: TSX disabled",
430 [SRBDS_MITIGATION_HYPERVISOR] = "Unknown: Dependent on hypervisor status",
431 };
432
433 static bool srbds_off;
434
435 void update_srbds_msr(void)
436 {
437 u64 mcu_ctrl;
438
439 if (!boot_cpu_has_bug(X86_BUG_SRBDS))
440 return;
441
442 if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
443 return;
444
445 if (srbds_mitigation == SRBDS_MITIGATION_UCODE_NEEDED)
446 return;
447
448 rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
449
450 switch (srbds_mitigation) {
451 case SRBDS_MITIGATION_OFF:
452 case SRBDS_MITIGATION_TSX_OFF:
453 mcu_ctrl |= RNGDS_MITG_DIS;
454 break;
455 case SRBDS_MITIGATION_FULL:
456 mcu_ctrl &= ~RNGDS_MITG_DIS;
457 break;
458 default:
459 break;
460 }
461
462 wrmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
463 }
464
465 static void __init srbds_select_mitigation(void)
466 {
467 u64 ia32_cap;
468
469 if (!boot_cpu_has_bug(X86_BUG_SRBDS))
470 return;
471
472 /*
473 * Check to see if this is one of the MDS_NO systems supporting
474 * TSX that are only exposed to SRBDS when TSX is enabled.
475 */
476 ia32_cap = x86_read_arch_cap_msr();
477 if ((ia32_cap & ARCH_CAP_MDS_NO) && !boot_cpu_has(X86_FEATURE_RTM))
478 srbds_mitigation = SRBDS_MITIGATION_TSX_OFF;
479 else if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
480 srbds_mitigation = SRBDS_MITIGATION_HYPERVISOR;
481 else if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL))
482 srbds_mitigation = SRBDS_MITIGATION_UCODE_NEEDED;
483 else if (cpu_mitigations_off() || srbds_off)
484 srbds_mitigation = SRBDS_MITIGATION_OFF;
485
486 update_srbds_msr();
487 pr_info("%s\n", srbds_strings[srbds_mitigation]);
488 }
489
490 static int __init srbds_parse_cmdline(char *str)
491 {
492 if (!str)
493 return -EINVAL;
494
495 if (!boot_cpu_has_bug(X86_BUG_SRBDS))
496 return 0;
497
498 srbds_off = !strcmp(str, "off");
499 return 0;
500 }
501 early_param("srbds", srbds_parse_cmdline);
502
503 #undef pr_fmt
504 #define pr_fmt(fmt) "L1D Flush : " fmt
505
506 enum l1d_flush_mitigations {
507 L1D_FLUSH_OFF = 0,
508 L1D_FLUSH_ON,
509 };
510
511 static enum l1d_flush_mitigations l1d_flush_mitigation __initdata = L1D_FLUSH_OFF;
512
513 static void __init l1d_flush_select_mitigation(void)
514 {
515 if (!l1d_flush_mitigation || !boot_cpu_has(X86_FEATURE_FLUSH_L1D))
516 return;
517
518 static_branch_enable(&switch_mm_cond_l1d_flush);
519 pr_info("Conditional flush on switch_mm() enabled\n");
520 }
521
522 static int __init l1d_flush_parse_cmdline(char *str)
523 {
524 if (!strcmp(str, "on"))
525 l1d_flush_mitigation = L1D_FLUSH_ON;
526
527 return 0;
528 }
529 early_param("l1d_flush", l1d_flush_parse_cmdline);
530
531 #undef pr_fmt
532 #define pr_fmt(fmt) "Spectre V1 : " fmt
533
534 enum spectre_v1_mitigation {
535 SPECTRE_V1_MITIGATION_NONE,
536 SPECTRE_V1_MITIGATION_AUTO,
537 };
538
539 static enum spectre_v1_mitigation spectre_v1_mitigation __ro_after_init =
540 SPECTRE_V1_MITIGATION_AUTO;
541
542 static const char * const spectre_v1_strings[] = {
543 [SPECTRE_V1_MITIGATION_NONE] = "Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers",
544 [SPECTRE_V1_MITIGATION_AUTO] = "Mitigation: usercopy/swapgs barriers and __user pointer sanitization",
545 };
546
547 /*
548 * Does SMAP provide full mitigation against speculative kernel access to
549 * userspace?
550 */
551 static bool smap_works_speculatively(void)
552 {
553 if (!boot_cpu_has(X86_FEATURE_SMAP))
554 return false;
555
556 /*
557 * On CPUs which are vulnerable to Meltdown, SMAP does not
558 * prevent speculative access to user data in the L1 cache.
559 * Consider SMAP to be non-functional as a mitigation on these
560 * CPUs.
561 */
562 if (boot_cpu_has(X86_BUG_CPU_MELTDOWN))
563 return false;
564
565 return true;
566 }
567
568 static void __init spectre_v1_select_mitigation(void)
569 {
570 if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V1) || cpu_mitigations_off()) {
571 spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
572 return;
573 }
574
575 if (spectre_v1_mitigation == SPECTRE_V1_MITIGATION_AUTO) {
576 /*
577 * With Spectre v1, a user can speculatively control either
578 * path of a conditional swapgs with a user-controlled GS
579 * value. The mitigation is to add lfences to both code paths.
580 *
581 * If FSGSBASE is enabled, the user can put a kernel address in
582 * GS, in which case SMAP provides no protection.
583 *
584 * If FSGSBASE is disabled, the user can only put a user space
585 * address in GS. That makes an attack harder, but still
586 * possible if there's no SMAP protection.
587 */
588 if (boot_cpu_has(X86_FEATURE_FSGSBASE) ||
589 !smap_works_speculatively()) {
590 /*
591 * Mitigation can be provided from SWAPGS itself or
592 * PTI as the CR3 write in the Meltdown mitigation
593 * is serializing.
594 *
595 * If neither is there, mitigate with an LFENCE to
596 * stop speculation through swapgs.
597 */
598 if (boot_cpu_has_bug(X86_BUG_SWAPGS) &&
599 !boot_cpu_has(X86_FEATURE_PTI))
600 setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_USER);
601
602 /*
603 * Enable lfences in the kernel entry (non-swapgs)
604 * paths, to prevent user entry from speculatively
605 * skipping swapgs.
606 */
607 setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_KERNEL);
608 }
609 }
610
611 pr_info("%s\n", spectre_v1_strings[spectre_v1_mitigation]);
612 }
613
614 static int __init nospectre_v1_cmdline(char *str)
615 {
616 spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
617 return 0;
618 }
619 early_param("nospectre_v1", nospectre_v1_cmdline);
620
621 #undef pr_fmt
622 #define pr_fmt(fmt) "Spectre V2 : " fmt
623
624 static enum spectre_v2_mitigation spectre_v2_enabled __ro_after_init =
625 SPECTRE_V2_NONE;
626
627 static enum spectre_v2_user_mitigation spectre_v2_user_stibp __ro_after_init =
628 SPECTRE_V2_USER_NONE;
629 static enum spectre_v2_user_mitigation spectre_v2_user_ibpb __ro_after_init =
630 SPECTRE_V2_USER_NONE;
631
632 #ifdef CONFIG_RETPOLINE
633 static bool spectre_v2_bad_module;
634
635 bool retpoline_module_ok(bool has_retpoline)
636 {
637 if (spectre_v2_enabled == SPECTRE_V2_NONE || has_retpoline)
638 return true;
639
640 pr_err("System may be vulnerable to spectre v2\n");
641 spectre_v2_bad_module = true;
642 return false;
643 }
644
645 static inline const char *spectre_v2_module_string(void)
646 {
647 return spectre_v2_bad_module ? " - vulnerable module loaded" : "";
648 }
649 #else
650 static inline const char *spectre_v2_module_string(void) { return ""; }
651 #endif
652
653 static inline bool match_option(const char *arg, int arglen, const char *opt)
654 {
655 int len = strlen(opt);
656
657 return len == arglen && !strncmp(arg, opt, len);
658 }
659
660 /* The kernel command line selection for spectre v2 */
661 enum spectre_v2_mitigation_cmd {
662 SPECTRE_V2_CMD_NONE,
663 SPECTRE_V2_CMD_AUTO,
664 SPECTRE_V2_CMD_FORCE,
665 SPECTRE_V2_CMD_RETPOLINE,
666 SPECTRE_V2_CMD_RETPOLINE_GENERIC,
667 SPECTRE_V2_CMD_RETPOLINE_AMD,
668 };
669
670 enum spectre_v2_user_cmd {
671 SPECTRE_V2_USER_CMD_NONE,
672 SPECTRE_V2_USER_CMD_AUTO,
673 SPECTRE_V2_USER_CMD_FORCE,
674 SPECTRE_V2_USER_CMD_PRCTL,
675 SPECTRE_V2_USER_CMD_PRCTL_IBPB,
676 SPECTRE_V2_USER_CMD_SECCOMP,
677 SPECTRE_V2_USER_CMD_SECCOMP_IBPB,
678 };
679
680 static const char * const spectre_v2_user_strings[] = {
681 [SPECTRE_V2_USER_NONE] = "User space: Vulnerable",
682 [SPECTRE_V2_USER_STRICT] = "User space: Mitigation: STIBP protection",
683 [SPECTRE_V2_USER_STRICT_PREFERRED] = "User space: Mitigation: STIBP always-on protection",
684 [SPECTRE_V2_USER_PRCTL] = "User space: Mitigation: STIBP via prctl",
685 [SPECTRE_V2_USER_SECCOMP] = "User space: Mitigation: STIBP via seccomp and prctl",
686 };
687
688 static const struct {
689 const char *option;
690 enum spectre_v2_user_cmd cmd;
691 bool secure;
692 } v2_user_options[] __initconst = {
693 { "auto", SPECTRE_V2_USER_CMD_AUTO, false },
694 { "off", SPECTRE_V2_USER_CMD_NONE, false },
695 { "on", SPECTRE_V2_USER_CMD_FORCE, true },
696 { "prctl", SPECTRE_V2_USER_CMD_PRCTL, false },
697 { "prctl,ibpb", SPECTRE_V2_USER_CMD_PRCTL_IBPB, false },
698 { "seccomp", SPECTRE_V2_USER_CMD_SECCOMP, false },
699 { "seccomp,ibpb", SPECTRE_V2_USER_CMD_SECCOMP_IBPB, false },
700 };
701
702 static void __init spec_v2_user_print_cond(const char *reason, bool secure)
703 {
704 if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
705 pr_info("spectre_v2_user=%s forced on command line.\n", reason);
706 }
707
708 static enum spectre_v2_user_cmd __init
709 spectre_v2_parse_user_cmdline(enum spectre_v2_mitigation_cmd v2_cmd)
710 {
711 char arg[20];
712 int ret, i;
713
714 switch (v2_cmd) {
715 case SPECTRE_V2_CMD_NONE:
716 return SPECTRE_V2_USER_CMD_NONE;
717 case SPECTRE_V2_CMD_FORCE:
718 return SPECTRE_V2_USER_CMD_FORCE;
719 default:
720 break;
721 }
722
723 ret = cmdline_find_option(boot_command_line, "spectre_v2_user",
724 arg, sizeof(arg));
725 if (ret < 0)
726 return SPECTRE_V2_USER_CMD_AUTO;
727
728 for (i = 0; i < ARRAY_SIZE(v2_user_options); i++) {
729 if (match_option(arg, ret, v2_user_options[i].option)) {
730 spec_v2_user_print_cond(v2_user_options[i].option,
731 v2_user_options[i].secure);
732 return v2_user_options[i].cmd;
733 }
734 }
735
736 pr_err("Unknown user space protection option (%s). Switching to AUTO select\n", arg);
737 return SPECTRE_V2_USER_CMD_AUTO;
738 }
739
740 static void __init
741 spectre_v2_user_select_mitigation(enum spectre_v2_mitigation_cmd v2_cmd)
742 {
743 enum spectre_v2_user_mitigation mode = SPECTRE_V2_USER_NONE;
744 bool smt_possible = IS_ENABLED(CONFIG_SMP);
745 enum spectre_v2_user_cmd cmd;
746
747 if (!boot_cpu_has(X86_FEATURE_IBPB) && !boot_cpu_has(X86_FEATURE_STIBP))
748 return;
749
750 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED ||
751 cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
752 smt_possible = false;
753
754 cmd = spectre_v2_parse_user_cmdline(v2_cmd);
755 switch (cmd) {
756 case SPECTRE_V2_USER_CMD_NONE:
757 goto set_mode;
758 case SPECTRE_V2_USER_CMD_FORCE:
759 mode = SPECTRE_V2_USER_STRICT;
760 break;
761 case SPECTRE_V2_USER_CMD_PRCTL:
762 case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
763 mode = SPECTRE_V2_USER_PRCTL;
764 break;
765 case SPECTRE_V2_USER_CMD_AUTO:
766 case SPECTRE_V2_USER_CMD_SECCOMP:
767 case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
768 if (IS_ENABLED(CONFIG_SECCOMP))
769 mode = SPECTRE_V2_USER_SECCOMP;
770 else
771 mode = SPECTRE_V2_USER_PRCTL;
772 break;
773 }
774
775 /* Initialize Indirect Branch Prediction Barrier */
776 if (boot_cpu_has(X86_FEATURE_IBPB)) {
777 setup_force_cpu_cap(X86_FEATURE_USE_IBPB);
778
779 spectre_v2_user_ibpb = mode;
780 switch (cmd) {
781 case SPECTRE_V2_USER_CMD_FORCE:
782 case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
783 case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
784 static_branch_enable(&switch_mm_always_ibpb);
785 spectre_v2_user_ibpb = SPECTRE_V2_USER_STRICT;
786 break;
787 case SPECTRE_V2_USER_CMD_PRCTL:
788 case SPECTRE_V2_USER_CMD_AUTO:
789 case SPECTRE_V2_USER_CMD_SECCOMP:
790 static_branch_enable(&switch_mm_cond_ibpb);
791 break;
792 default:
793 break;
794 }
795
796 pr_info("mitigation: Enabling %s Indirect Branch Prediction Barrier\n",
797 static_key_enabled(&switch_mm_always_ibpb) ?
798 "always-on" : "conditional");
799 }
800
801 /*
802 * If no STIBP, enhanced IBRS is enabled or SMT impossible, STIBP is not
803 * required.
804 */
805 if (!boot_cpu_has(X86_FEATURE_STIBP) ||
806 !smt_possible ||
807 spectre_v2_enabled == SPECTRE_V2_IBRS_ENHANCED)
808 return;
809
810 /*
811 * At this point, an STIBP mode other than "off" has been set.
812 * If STIBP support is not being forced, check if STIBP always-on
813 * is preferred.
814 */
815 if (mode != SPECTRE_V2_USER_STRICT &&
816 boot_cpu_has(X86_FEATURE_AMD_STIBP_ALWAYS_ON))
817 mode = SPECTRE_V2_USER_STRICT_PREFERRED;
818
819 spectre_v2_user_stibp = mode;
820
821 set_mode:
822 pr_info("%s\n", spectre_v2_user_strings[mode]);
823 }
824
825 static const char * const spectre_v2_strings[] = {
826 [SPECTRE_V2_NONE] = "Vulnerable",
827 [SPECTRE_V2_RETPOLINE_GENERIC] = "Mitigation: Full generic retpoline",
828 [SPECTRE_V2_RETPOLINE_AMD] = "Mitigation: Full AMD retpoline",
829 [SPECTRE_V2_IBRS_ENHANCED] = "Mitigation: Enhanced IBRS",
830 };
831
832 static const struct {
833 const char *option;
834 enum spectre_v2_mitigation_cmd cmd;
835 bool secure;
836 } mitigation_options[] __initconst = {
837 { "off", SPECTRE_V2_CMD_NONE, false },
838 { "on", SPECTRE_V2_CMD_FORCE, true },
839 { "retpoline", SPECTRE_V2_CMD_RETPOLINE, false },
840 { "retpoline,amd", SPECTRE_V2_CMD_RETPOLINE_AMD, false },
841 { "retpoline,generic", SPECTRE_V2_CMD_RETPOLINE_GENERIC, false },
842 { "auto", SPECTRE_V2_CMD_AUTO, false },
843 };
844
845 static void __init spec_v2_print_cond(const char *reason, bool secure)
846 {
847 if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
848 pr_info("%s selected on command line.\n", reason);
849 }
850
851 static enum spectre_v2_mitigation_cmd __init spectre_v2_parse_cmdline(void)
852 {
853 enum spectre_v2_mitigation_cmd cmd = SPECTRE_V2_CMD_AUTO;
854 char arg[20];
855 int ret, i;
856
857 if (cmdline_find_option_bool(boot_command_line, "nospectre_v2") ||
858 cpu_mitigations_off())
859 return SPECTRE_V2_CMD_NONE;
860
861 ret = cmdline_find_option(boot_command_line, "spectre_v2", arg, sizeof(arg));
862 if (ret < 0)
863 return SPECTRE_V2_CMD_AUTO;
864
865 for (i = 0; i < ARRAY_SIZE(mitigation_options); i++) {
866 if (!match_option(arg, ret, mitigation_options[i].option))
867 continue;
868 cmd = mitigation_options[i].cmd;
869 break;
870 }
871
872 if (i >= ARRAY_SIZE(mitigation_options)) {
873 pr_err("unknown option (%s). Switching to AUTO select\n", arg);
874 return SPECTRE_V2_CMD_AUTO;
875 }
876
877 if ((cmd == SPECTRE_V2_CMD_RETPOLINE ||
878 cmd == SPECTRE_V2_CMD_RETPOLINE_AMD ||
879 cmd == SPECTRE_V2_CMD_RETPOLINE_GENERIC) &&
880 !IS_ENABLED(CONFIG_RETPOLINE)) {
881 pr_err("%s selected but not compiled in. Switching to AUTO select\n", mitigation_options[i].option);
882 return SPECTRE_V2_CMD_AUTO;
883 }
884
885 if (cmd == SPECTRE_V2_CMD_RETPOLINE_AMD &&
886 boot_cpu_data.x86_vendor != X86_VENDOR_HYGON &&
887 boot_cpu_data.x86_vendor != X86_VENDOR_AMD) {
888 pr_err("retpoline,amd selected but CPU is not AMD. Switching to AUTO select\n");
889 return SPECTRE_V2_CMD_AUTO;
890 }
891
892 spec_v2_print_cond(mitigation_options[i].option,
893 mitigation_options[i].secure);
894 return cmd;
895 }
896
897 static void __init spectre_v2_select_mitigation(void)
898 {
899 enum spectre_v2_mitigation_cmd cmd = spectre_v2_parse_cmdline();
900 enum spectre_v2_mitigation mode = SPECTRE_V2_NONE;
901
902 /*
903 * If the CPU is not affected and the command line mode is NONE or AUTO
904 * then nothing to do.
905 */
906 if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2) &&
907 (cmd == SPECTRE_V2_CMD_NONE || cmd == SPECTRE_V2_CMD_AUTO))
908 return;
909
910 switch (cmd) {
911 case SPECTRE_V2_CMD_NONE:
912 return;
913
914 case SPECTRE_V2_CMD_FORCE:
915 case SPECTRE_V2_CMD_AUTO:
916 if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
917 mode = SPECTRE_V2_IBRS_ENHANCED;
918 /* Force it so VMEXIT will restore correctly */
919 x86_spec_ctrl_base |= SPEC_CTRL_IBRS;
920 wrmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base);
921 goto specv2_set_mode;
922 }
923 if (IS_ENABLED(CONFIG_RETPOLINE))
924 goto retpoline_auto;
925 break;
926 case SPECTRE_V2_CMD_RETPOLINE_AMD:
927 if (IS_ENABLED(CONFIG_RETPOLINE))
928 goto retpoline_amd;
929 break;
930 case SPECTRE_V2_CMD_RETPOLINE_GENERIC:
931 if (IS_ENABLED(CONFIG_RETPOLINE))
932 goto retpoline_generic;
933 break;
934 case SPECTRE_V2_CMD_RETPOLINE:
935 if (IS_ENABLED(CONFIG_RETPOLINE))
936 goto retpoline_auto;
937 break;
938 }
939 pr_err("Spectre mitigation: kernel not compiled with retpoline; no mitigation available!");
940 return;
941
942 retpoline_auto:
943 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
944 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) {
945 retpoline_amd:
946 if (!boot_cpu_has(X86_FEATURE_LFENCE_RDTSC)) {
947 pr_err("Spectre mitigation: LFENCE not serializing, switching to generic retpoline\n");
948 goto retpoline_generic;
949 }
950 mode = SPECTRE_V2_RETPOLINE_AMD;
951 setup_force_cpu_cap(X86_FEATURE_RETPOLINE_AMD);
952 setup_force_cpu_cap(X86_FEATURE_RETPOLINE);
953 } else {
954 retpoline_generic:
955 mode = SPECTRE_V2_RETPOLINE_GENERIC;
956 setup_force_cpu_cap(X86_FEATURE_RETPOLINE);
957 }
958
959 specv2_set_mode:
960 spectre_v2_enabled = mode;
961 pr_info("%s\n", spectre_v2_strings[mode]);
962
963 /*
964 * If spectre v2 protection has been enabled, unconditionally fill
965 * RSB during a context switch; this protects against two independent
966 * issues:
967 *
968 * - RSB underflow (and switch to BTB) on Skylake+
969 * - SpectreRSB variant of spectre v2 on X86_BUG_SPECTRE_V2 CPUs
970 */
971 setup_force_cpu_cap(X86_FEATURE_RSB_CTXSW);
972 pr_info("Spectre v2 / SpectreRSB mitigation: Filling RSB on context switch\n");
973
974 /*
975 * Retpoline means the kernel is safe because it has no indirect
976 * branches. Enhanced IBRS protects firmware too, so, enable restricted
977 * speculation around firmware calls only when Enhanced IBRS isn't
978 * supported.
979 *
980 * Use "mode" to check Enhanced IBRS instead of boot_cpu_has(), because
981 * the user might select retpoline on the kernel command line and if
982 * the CPU supports Enhanced IBRS, kernel might un-intentionally not
983 * enable IBRS around firmware calls.
984 */
985 if (boot_cpu_has(X86_FEATURE_IBRS) && mode != SPECTRE_V2_IBRS_ENHANCED) {
986 setup_force_cpu_cap(X86_FEATURE_USE_IBRS_FW);
987 pr_info("Enabling Restricted Speculation for firmware calls\n");
988 }
989
990 /* Set up IBPB and STIBP depending on the general spectre V2 command */
991 spectre_v2_user_select_mitigation(cmd);
992 }
993
994 static void update_stibp_msr(void * __unused)
995 {
996 wrmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base);
997 }
998
999 /* Update x86_spec_ctrl_base in case SMT state changed. */
1000 static void update_stibp_strict(void)
1001 {
1002 u64 mask = x86_spec_ctrl_base & ~SPEC_CTRL_STIBP;
1003
1004 if (sched_smt_active())
1005 mask |= SPEC_CTRL_STIBP;
1006
1007 if (mask == x86_spec_ctrl_base)
1008 return;
1009
1010 pr_info("Update user space SMT mitigation: STIBP %s\n",
1011 mask & SPEC_CTRL_STIBP ? "always-on" : "off");
1012 x86_spec_ctrl_base = mask;
1013 on_each_cpu(update_stibp_msr, NULL, 1);
1014 }
1015
1016 /* Update the static key controlling the evaluation of TIF_SPEC_IB */
1017 static void update_indir_branch_cond(void)
1018 {
1019 if (sched_smt_active())
1020 static_branch_enable(&switch_to_cond_stibp);
1021 else
1022 static_branch_disable(&switch_to_cond_stibp);
1023 }
1024
1025 #undef pr_fmt
1026 #define pr_fmt(fmt) fmt
1027
1028 /* Update the static key controlling the MDS CPU buffer clear in idle */
1029 static void update_mds_branch_idle(void)
1030 {
1031 /*
1032 * Enable the idle clearing if SMT is active on CPUs which are
1033 * affected only by MSBDS and not any other MDS variant.
1034 *
1035 * The other variants cannot be mitigated when SMT is enabled, so
1036 * clearing the buffers on idle just to prevent the Store Buffer
1037 * repartitioning leak would be a window dressing exercise.
1038 */
1039 if (!boot_cpu_has_bug(X86_BUG_MSBDS_ONLY))
1040 return;
1041
1042 if (sched_smt_active())
1043 static_branch_enable(&mds_idle_clear);
1044 else
1045 static_branch_disable(&mds_idle_clear);
1046 }
1047
1048 #define MDS_MSG_SMT "MDS CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/mds.html for more details.\n"
1049 #define TAA_MSG_SMT "TAA CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/tsx_async_abort.html for more details.\n"
1050
1051 void cpu_bugs_smt_update(void)
1052 {
1053 mutex_lock(&spec_ctrl_mutex);
1054
1055 switch (spectre_v2_user_stibp) {
1056 case SPECTRE_V2_USER_NONE:
1057 break;
1058 case SPECTRE_V2_USER_STRICT:
1059 case SPECTRE_V2_USER_STRICT_PREFERRED:
1060 update_stibp_strict();
1061 break;
1062 case SPECTRE_V2_USER_PRCTL:
1063 case SPECTRE_V2_USER_SECCOMP:
1064 update_indir_branch_cond();
1065 break;
1066 }
1067
1068 switch (mds_mitigation) {
1069 case MDS_MITIGATION_FULL:
1070 case MDS_MITIGATION_VMWERV:
1071 if (sched_smt_active() && !boot_cpu_has(X86_BUG_MSBDS_ONLY))
1072 pr_warn_once(MDS_MSG_SMT);
1073 update_mds_branch_idle();
1074 break;
1075 case MDS_MITIGATION_OFF:
1076 break;
1077 }
1078
1079 switch (taa_mitigation) {
1080 case TAA_MITIGATION_VERW:
1081 case TAA_MITIGATION_UCODE_NEEDED:
1082 if (sched_smt_active())
1083 pr_warn_once(TAA_MSG_SMT);
1084 break;
1085 case TAA_MITIGATION_TSX_DISABLED:
1086 case TAA_MITIGATION_OFF:
1087 break;
1088 }
1089
1090 mutex_unlock(&spec_ctrl_mutex);
1091 }
1092
1093 #undef pr_fmt
1094 #define pr_fmt(fmt) "Speculative Store Bypass: " fmt
1095
1096 static enum ssb_mitigation ssb_mode __ro_after_init = SPEC_STORE_BYPASS_NONE;
1097
1098 /* The kernel command line selection */
1099 enum ssb_mitigation_cmd {
1100 SPEC_STORE_BYPASS_CMD_NONE,
1101 SPEC_STORE_BYPASS_CMD_AUTO,
1102 SPEC_STORE_BYPASS_CMD_ON,
1103 SPEC_STORE_BYPASS_CMD_PRCTL,
1104 SPEC_STORE_BYPASS_CMD_SECCOMP,
1105 };
1106
1107 static const char * const ssb_strings[] = {
1108 [SPEC_STORE_BYPASS_NONE] = "Vulnerable",
1109 [SPEC_STORE_BYPASS_DISABLE] = "Mitigation: Speculative Store Bypass disabled",
1110 [SPEC_STORE_BYPASS_PRCTL] = "Mitigation: Speculative Store Bypass disabled via prctl",
1111 [SPEC_STORE_BYPASS_SECCOMP] = "Mitigation: Speculative Store Bypass disabled via prctl and seccomp",
1112 };
1113
1114 static const struct {
1115 const char *option;
1116 enum ssb_mitigation_cmd cmd;
1117 } ssb_mitigation_options[] __initconst = {
1118 { "auto", SPEC_STORE_BYPASS_CMD_AUTO }, /* Platform decides */
1119 { "on", SPEC_STORE_BYPASS_CMD_ON }, /* Disable Speculative Store Bypass */
1120 { "off", SPEC_STORE_BYPASS_CMD_NONE }, /* Don't touch Speculative Store Bypass */
1121 { "prctl", SPEC_STORE_BYPASS_CMD_PRCTL }, /* Disable Speculative Store Bypass via prctl */
1122 { "seccomp", SPEC_STORE_BYPASS_CMD_SECCOMP }, /* Disable Speculative Store Bypass via prctl and seccomp */
1123 };
1124
1125 static enum ssb_mitigation_cmd __init ssb_parse_cmdline(void)
1126 {
1127 enum ssb_mitigation_cmd cmd = SPEC_STORE_BYPASS_CMD_AUTO;
1128 char arg[20];
1129 int ret, i;
1130
1131 if (cmdline_find_option_bool(boot_command_line, "nospec_store_bypass_disable") ||
1132 cpu_mitigations_off()) {
1133 return SPEC_STORE_BYPASS_CMD_NONE;
1134 } else {
1135 ret = cmdline_find_option(boot_command_line, "spec_store_bypass_disable",
1136 arg, sizeof(arg));
1137 if (ret < 0)
1138 return SPEC_STORE_BYPASS_CMD_AUTO;
1139
1140 for (i = 0; i < ARRAY_SIZE(ssb_mitigation_options); i++) {
1141 if (!match_option(arg, ret, ssb_mitigation_options[i].option))
1142 continue;
1143
1144 cmd = ssb_mitigation_options[i].cmd;
1145 break;
1146 }
1147
1148 if (i >= ARRAY_SIZE(ssb_mitigation_options)) {
1149 pr_err("unknown option (%s). Switching to AUTO select\n", arg);
1150 return SPEC_STORE_BYPASS_CMD_AUTO;
1151 }
1152 }
1153
1154 return cmd;
1155 }
1156
1157 static enum ssb_mitigation __init __ssb_select_mitigation(void)
1158 {
1159 enum ssb_mitigation mode = SPEC_STORE_BYPASS_NONE;
1160 enum ssb_mitigation_cmd cmd;
1161
1162 if (!boot_cpu_has(X86_FEATURE_SSBD))
1163 return mode;
1164
1165 cmd = ssb_parse_cmdline();
1166 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS) &&
1167 (cmd == SPEC_STORE_BYPASS_CMD_NONE ||
1168 cmd == SPEC_STORE_BYPASS_CMD_AUTO))
1169 return mode;
1170
1171 switch (cmd) {
1172 case SPEC_STORE_BYPASS_CMD_AUTO:
1173 case SPEC_STORE_BYPASS_CMD_SECCOMP:
1174 /*
1175 * Choose prctl+seccomp as the default mode if seccomp is
1176 * enabled.
1177 */
1178 if (IS_ENABLED(CONFIG_SECCOMP))
1179 mode = SPEC_STORE_BYPASS_SECCOMP;
1180 else
1181 mode = SPEC_STORE_BYPASS_PRCTL;
1182 break;
1183 case SPEC_STORE_BYPASS_CMD_ON:
1184 mode = SPEC_STORE_BYPASS_DISABLE;
1185 break;
1186 case SPEC_STORE_BYPASS_CMD_PRCTL:
1187 mode = SPEC_STORE_BYPASS_PRCTL;
1188 break;
1189 case SPEC_STORE_BYPASS_CMD_NONE:
1190 break;
1191 }
1192
1193 /*
1194 * If SSBD is controlled by the SPEC_CTRL MSR, then set the proper
1195 * bit in the mask to allow guests to use the mitigation even in the
1196 * case where the host does not enable it.
1197 */
1198 if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
1199 static_cpu_has(X86_FEATURE_AMD_SSBD)) {
1200 x86_spec_ctrl_mask |= SPEC_CTRL_SSBD;
1201 }
1202
1203 /*
1204 * We have three CPU feature flags that are in play here:
1205 * - X86_BUG_SPEC_STORE_BYPASS - CPU is susceptible.
1206 * - X86_FEATURE_SSBD - CPU is able to turn off speculative store bypass
1207 * - X86_FEATURE_SPEC_STORE_BYPASS_DISABLE - engage the mitigation
1208 */
1209 if (mode == SPEC_STORE_BYPASS_DISABLE) {
1210 setup_force_cpu_cap(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE);
1211 /*
1212 * Intel uses the SPEC CTRL MSR Bit(2) for this, while AMD may
1213 * use a completely different MSR and bit dependent on family.
1214 */
1215 if (!static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) &&
1216 !static_cpu_has(X86_FEATURE_AMD_SSBD)) {
1217 x86_amd_ssb_disable();
1218 } else {
1219 x86_spec_ctrl_base |= SPEC_CTRL_SSBD;
1220 wrmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base);
1221 }
1222 }
1223
1224 return mode;
1225 }
1226
1227 static void ssb_select_mitigation(void)
1228 {
1229 ssb_mode = __ssb_select_mitigation();
1230
1231 if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1232 pr_info("%s\n", ssb_strings[ssb_mode]);
1233 }
1234
1235 #undef pr_fmt
1236 #define pr_fmt(fmt) "Speculation prctl: " fmt
1237
1238 static void task_update_spec_tif(struct task_struct *tsk)
1239 {
1240 /* Force the update of the real TIF bits */
1241 set_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE);
1242
1243 /*
1244 * Immediately update the speculation control MSRs for the current
1245 * task, but for a non-current task delay setting the CPU
1246 * mitigation until it is scheduled next.
1247 *
1248 * This can only happen for SECCOMP mitigation. For PRCTL it's
1249 * always the current task.
1250 */
1251 if (tsk == current)
1252 speculation_ctrl_update_current();
1253 }
1254
1255 static int l1d_flush_prctl_set(struct task_struct *task, unsigned long ctrl)
1256 {
1257
1258 if (!static_branch_unlikely(&switch_mm_cond_l1d_flush))
1259 return -EPERM;
1260
1261 switch (ctrl) {
1262 case PR_SPEC_ENABLE:
1263 set_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH);
1264 return 0;
1265 case PR_SPEC_DISABLE:
1266 clear_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH);
1267 return 0;
1268 default:
1269 return -ERANGE;
1270 }
1271 }
1272
1273 static int ssb_prctl_set(struct task_struct *task, unsigned long ctrl)
1274 {
1275 if (ssb_mode != SPEC_STORE_BYPASS_PRCTL &&
1276 ssb_mode != SPEC_STORE_BYPASS_SECCOMP)
1277 return -ENXIO;
1278
1279 switch (ctrl) {
1280 case PR_SPEC_ENABLE:
1281 /* If speculation is force disabled, enable is not allowed */
1282 if (task_spec_ssb_force_disable(task))
1283 return -EPERM;
1284 task_clear_spec_ssb_disable(task);
1285 task_clear_spec_ssb_noexec(task);
1286 task_update_spec_tif(task);
1287 break;
1288 case PR_SPEC_DISABLE:
1289 task_set_spec_ssb_disable(task);
1290 task_clear_spec_ssb_noexec(task);
1291 task_update_spec_tif(task);
1292 break;
1293 case PR_SPEC_FORCE_DISABLE:
1294 task_set_spec_ssb_disable(task);
1295 task_set_spec_ssb_force_disable(task);
1296 task_clear_spec_ssb_noexec(task);
1297 task_update_spec_tif(task);
1298 break;
1299 case PR_SPEC_DISABLE_NOEXEC:
1300 if (task_spec_ssb_force_disable(task))
1301 return -EPERM;
1302 task_set_spec_ssb_disable(task);
1303 task_set_spec_ssb_noexec(task);
1304 task_update_spec_tif(task);
1305 break;
1306 default:
1307 return -ERANGE;
1308 }
1309 return 0;
1310 }
1311
1312 static bool is_spec_ib_user_controlled(void)
1313 {
1314 return spectre_v2_user_ibpb == SPECTRE_V2_USER_PRCTL ||
1315 spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
1316 spectre_v2_user_stibp == SPECTRE_V2_USER_PRCTL ||
1317 spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP;
1318 }
1319
1320 static int ib_prctl_set(struct task_struct *task, unsigned long ctrl)
1321 {
1322 switch (ctrl) {
1323 case PR_SPEC_ENABLE:
1324 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
1325 spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
1326 return 0;
1327
1328 /*
1329 * With strict mode for both IBPB and STIBP, the instruction
1330 * code paths avoid checking this task flag and instead,
1331 * unconditionally run the instruction. However, STIBP and IBPB
1332 * are independent and either can be set to conditionally
1333 * enabled regardless of the mode of the other.
1334 *
1335 * If either is set to conditional, allow the task flag to be
1336 * updated, unless it was force-disabled by a previous prctl
1337 * call. Currently, this is possible on an AMD CPU which has the
1338 * feature X86_FEATURE_AMD_STIBP_ALWAYS_ON. In this case, if the
1339 * kernel is booted with 'spectre_v2_user=seccomp', then
1340 * spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP and
1341 * spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED.
1342 */
1343 if (!is_spec_ib_user_controlled() ||
1344 task_spec_ib_force_disable(task))
1345 return -EPERM;
1346
1347 task_clear_spec_ib_disable(task);
1348 task_update_spec_tif(task);
1349 break;
1350 case PR_SPEC_DISABLE:
1351 case PR_SPEC_FORCE_DISABLE:
1352 /*
1353 * Indirect branch speculation is always allowed when
1354 * mitigation is force disabled.
1355 */
1356 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
1357 spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
1358 return -EPERM;
1359
1360 if (!is_spec_ib_user_controlled())
1361 return 0;
1362
1363 task_set_spec_ib_disable(task);
1364 if (ctrl == PR_SPEC_FORCE_DISABLE)
1365 task_set_spec_ib_force_disable(task);
1366 task_update_spec_tif(task);
1367 break;
1368 default:
1369 return -ERANGE;
1370 }
1371 return 0;
1372 }
1373
1374 int arch_prctl_spec_ctrl_set(struct task_struct *task, unsigned long which,
1375 unsigned long ctrl)
1376 {
1377 switch (which) {
1378 case PR_SPEC_STORE_BYPASS:
1379 return ssb_prctl_set(task, ctrl);
1380 case PR_SPEC_INDIRECT_BRANCH:
1381 return ib_prctl_set(task, ctrl);
1382 case PR_SPEC_L1D_FLUSH:
1383 return l1d_flush_prctl_set(task, ctrl);
1384 default:
1385 return -ENODEV;
1386 }
1387 }
1388
1389 #ifdef CONFIG_SECCOMP
1390 void arch_seccomp_spec_mitigate(struct task_struct *task)
1391 {
1392 if (ssb_mode == SPEC_STORE_BYPASS_SECCOMP)
1393 ssb_prctl_set(task, PR_SPEC_FORCE_DISABLE);
1394 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
1395 spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP)
1396 ib_prctl_set(task, PR_SPEC_FORCE_DISABLE);
1397 }
1398 #endif
1399
1400 static int l1d_flush_prctl_get(struct task_struct *task)
1401 {
1402 if (!static_branch_unlikely(&switch_mm_cond_l1d_flush))
1403 return PR_SPEC_FORCE_DISABLE;
1404
1405 if (test_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH))
1406 return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
1407 else
1408 return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
1409 }
1410
1411 static int ssb_prctl_get(struct task_struct *task)
1412 {
1413 switch (ssb_mode) {
1414 case SPEC_STORE_BYPASS_DISABLE:
1415 return PR_SPEC_DISABLE;
1416 case SPEC_STORE_BYPASS_SECCOMP:
1417 case SPEC_STORE_BYPASS_PRCTL:
1418 if (task_spec_ssb_force_disable(task))
1419 return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
1420 if (task_spec_ssb_noexec(task))
1421 return PR_SPEC_PRCTL | PR_SPEC_DISABLE_NOEXEC;
1422 if (task_spec_ssb_disable(task))
1423 return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
1424 return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
1425 default:
1426 if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1427 return PR_SPEC_ENABLE;
1428 return PR_SPEC_NOT_AFFECTED;
1429 }
1430 }
1431
1432 static int ib_prctl_get(struct task_struct *task)
1433 {
1434 if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2))
1435 return PR_SPEC_NOT_AFFECTED;
1436
1437 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
1438 spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
1439 return PR_SPEC_ENABLE;
1440 else if (is_spec_ib_user_controlled()) {
1441 if (task_spec_ib_force_disable(task))
1442 return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
1443 if (task_spec_ib_disable(task))
1444 return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
1445 return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
1446 } else if (spectre_v2_user_ibpb == SPECTRE_V2_USER_STRICT ||
1447 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
1448 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED)
1449 return PR_SPEC_DISABLE;
1450 else
1451 return PR_SPEC_NOT_AFFECTED;
1452 }
1453
1454 int arch_prctl_spec_ctrl_get(struct task_struct *task, unsigned long which)
1455 {
1456 switch (which) {
1457 case PR_SPEC_STORE_BYPASS:
1458 return ssb_prctl_get(task);
1459 case PR_SPEC_INDIRECT_BRANCH:
1460 return ib_prctl_get(task);
1461 case PR_SPEC_L1D_FLUSH:
1462 return l1d_flush_prctl_get(task);
1463 default:
1464 return -ENODEV;
1465 }
1466 }
1467
1468 void x86_spec_ctrl_setup_ap(void)
1469 {
1470 if (boot_cpu_has(X86_FEATURE_MSR_SPEC_CTRL))
1471 wrmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base);
1472
1473 if (ssb_mode == SPEC_STORE_BYPASS_DISABLE)
1474 x86_amd_ssb_disable();
1475 }
1476
1477 bool itlb_multihit_kvm_mitigation;
1478 EXPORT_SYMBOL_GPL(itlb_multihit_kvm_mitigation);
1479
1480 #undef pr_fmt
1481 #define pr_fmt(fmt) "L1TF: " fmt
1482
1483 /* Default mitigation for L1TF-affected CPUs */
1484 enum l1tf_mitigations l1tf_mitigation __ro_after_init = L1TF_MITIGATION_FLUSH;
1485 #if IS_ENABLED(CONFIG_KVM_INTEL)
1486 EXPORT_SYMBOL_GPL(l1tf_mitigation);
1487 #endif
1488 enum vmx_l1d_flush_state l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
1489 EXPORT_SYMBOL_GPL(l1tf_vmx_mitigation);
1490
1491 /*
1492 * These CPUs all support 44bits physical address space internally in the
1493 * cache but CPUID can report a smaller number of physical address bits.
1494 *
1495 * The L1TF mitigation uses the top most address bit for the inversion of
1496 * non present PTEs. When the installed memory reaches into the top most
1497 * address bit due to memory holes, which has been observed on machines
1498 * which report 36bits physical address bits and have 32G RAM installed,
1499 * then the mitigation range check in l1tf_select_mitigation() triggers.
1500 * This is a false positive because the mitigation is still possible due to
1501 * the fact that the cache uses 44bit internally. Use the cache bits
1502 * instead of the reported physical bits and adjust them on the affected
1503 * machines to 44bit if the reported bits are less than 44.
1504 */
1505 static void override_cache_bits(struct cpuinfo_x86 *c)
1506 {
1507 if (c->x86 != 6)
1508 return;
1509
1510 switch (c->x86_model) {
1511 case INTEL_FAM6_NEHALEM:
1512 case INTEL_FAM6_WESTMERE:
1513 case INTEL_FAM6_SANDYBRIDGE:
1514 case INTEL_FAM6_IVYBRIDGE:
1515 case INTEL_FAM6_HASWELL:
1516 case INTEL_FAM6_HASWELL_L:
1517 case INTEL_FAM6_HASWELL_G:
1518 case INTEL_FAM6_BROADWELL:
1519 case INTEL_FAM6_BROADWELL_G:
1520 case INTEL_FAM6_SKYLAKE_L:
1521 case INTEL_FAM6_SKYLAKE:
1522 case INTEL_FAM6_KABYLAKE_L:
1523 case INTEL_FAM6_KABYLAKE:
1524 if (c->x86_cache_bits < 44)
1525 c->x86_cache_bits = 44;
1526 break;
1527 }
1528 }
1529
1530 static void __init l1tf_select_mitigation(void)
1531 {
1532 u64 half_pa;
1533
1534 if (!boot_cpu_has_bug(X86_BUG_L1TF))
1535 return;
1536
1537 if (cpu_mitigations_off())
1538 l1tf_mitigation = L1TF_MITIGATION_OFF;
1539 else if (cpu_mitigations_auto_nosmt())
1540 l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
1541
1542 override_cache_bits(&boot_cpu_data);
1543
1544 switch (l1tf_mitigation) {
1545 case L1TF_MITIGATION_OFF:
1546 case L1TF_MITIGATION_FLUSH_NOWARN:
1547 case L1TF_MITIGATION_FLUSH:
1548 break;
1549 case L1TF_MITIGATION_FLUSH_NOSMT:
1550 case L1TF_MITIGATION_FULL:
1551 cpu_smt_disable(false);
1552 break;
1553 case L1TF_MITIGATION_FULL_FORCE:
1554 cpu_smt_disable(true);
1555 break;
1556 }
1557
1558 #if CONFIG_PGTABLE_LEVELS == 2
1559 pr_warn("Kernel not compiled for PAE. No mitigation for L1TF\n");
1560 return;
1561 #endif
1562
1563 half_pa = (u64)l1tf_pfn_limit() << PAGE_SHIFT;
1564 if (l1tf_mitigation != L1TF_MITIGATION_OFF &&
1565 e820__mapped_any(half_pa, ULLONG_MAX - half_pa, E820_TYPE_RAM)) {
1566 pr_warn("System has more than MAX_PA/2 memory. L1TF mitigation not effective.\n");
1567 pr_info("You may make it effective by booting the kernel with mem=%llu parameter.\n",
1568 half_pa);
1569 pr_info("However, doing so will make a part of your RAM unusable.\n");
1570 pr_info("Reading https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html might help you decide.\n");
1571 return;
1572 }
1573
1574 setup_force_cpu_cap(X86_FEATURE_L1TF_PTEINV);
1575 }
1576
1577 static int __init l1tf_cmdline(char *str)
1578 {
1579 if (!boot_cpu_has_bug(X86_BUG_L1TF))
1580 return 0;
1581
1582 if (!str)
1583 return -EINVAL;
1584
1585 if (!strcmp(str, "off"))
1586 l1tf_mitigation = L1TF_MITIGATION_OFF;
1587 else if (!strcmp(str, "flush,nowarn"))
1588 l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOWARN;
1589 else if (!strcmp(str, "flush"))
1590 l1tf_mitigation = L1TF_MITIGATION_FLUSH;
1591 else if (!strcmp(str, "flush,nosmt"))
1592 l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
1593 else if (!strcmp(str, "full"))
1594 l1tf_mitigation = L1TF_MITIGATION_FULL;
1595 else if (!strcmp(str, "full,force"))
1596 l1tf_mitigation = L1TF_MITIGATION_FULL_FORCE;
1597
1598 return 0;
1599 }
1600 early_param("l1tf", l1tf_cmdline);
1601
1602 #undef pr_fmt
1603 #define pr_fmt(fmt) fmt
1604
1605 #ifdef CONFIG_SYSFS
1606
1607 #define L1TF_DEFAULT_MSG "Mitigation: PTE Inversion"
1608
1609 #if IS_ENABLED(CONFIG_KVM_INTEL)
1610 static const char * const l1tf_vmx_states[] = {
1611 [VMENTER_L1D_FLUSH_AUTO] = "auto",
1612 [VMENTER_L1D_FLUSH_NEVER] = "vulnerable",
1613 [VMENTER_L1D_FLUSH_COND] = "conditional cache flushes",
1614 [VMENTER_L1D_FLUSH_ALWAYS] = "cache flushes",
1615 [VMENTER_L1D_FLUSH_EPT_DISABLED] = "EPT disabled",
1616 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = "flush not necessary"
1617 };
1618
1619 static ssize_t l1tf_show_state(char *buf)
1620 {
1621 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO)
1622 return sprintf(buf, "%s\n", L1TF_DEFAULT_MSG);
1623
1624 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_EPT_DISABLED ||
1625 (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER &&
1626 sched_smt_active())) {
1627 return sprintf(buf, "%s; VMX: %s\n", L1TF_DEFAULT_MSG,
1628 l1tf_vmx_states[l1tf_vmx_mitigation]);
1629 }
1630
1631 return sprintf(buf, "%s; VMX: %s, SMT %s\n", L1TF_DEFAULT_MSG,
1632 l1tf_vmx_states[l1tf_vmx_mitigation],
1633 sched_smt_active() ? "vulnerable" : "disabled");
1634 }
1635
1636 static ssize_t itlb_multihit_show_state(char *buf)
1637 {
1638 if (!boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
1639 !boot_cpu_has(X86_FEATURE_VMX))
1640 return sprintf(buf, "KVM: Mitigation: VMX unsupported\n");
1641 else if (!(cr4_read_shadow() & X86_CR4_VMXE))
1642 return sprintf(buf, "KVM: Mitigation: VMX disabled\n");
1643 else if (itlb_multihit_kvm_mitigation)
1644 return sprintf(buf, "KVM: Mitigation: Split huge pages\n");
1645 else
1646 return sprintf(buf, "KVM: Vulnerable\n");
1647 }
1648 #else
1649 static ssize_t l1tf_show_state(char *buf)
1650 {
1651 return sprintf(buf, "%s\n", L1TF_DEFAULT_MSG);
1652 }
1653
1654 static ssize_t itlb_multihit_show_state(char *buf)
1655 {
1656 return sprintf(buf, "Processor vulnerable\n");
1657 }
1658 #endif
1659
1660 static ssize_t mds_show_state(char *buf)
1661 {
1662 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
1663 return sprintf(buf, "%s; SMT Host state unknown\n",
1664 mds_strings[mds_mitigation]);
1665 }
1666
1667 if (boot_cpu_has(X86_BUG_MSBDS_ONLY)) {
1668 return sprintf(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
1669 (mds_mitigation == MDS_MITIGATION_OFF ? "vulnerable" :
1670 sched_smt_active() ? "mitigated" : "disabled"));
1671 }
1672
1673 return sprintf(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
1674 sched_smt_active() ? "vulnerable" : "disabled");
1675 }
1676
1677 static ssize_t tsx_async_abort_show_state(char *buf)
1678 {
1679 if ((taa_mitigation == TAA_MITIGATION_TSX_DISABLED) ||
1680 (taa_mitigation == TAA_MITIGATION_OFF))
1681 return sprintf(buf, "%s\n", taa_strings[taa_mitigation]);
1682
1683 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
1684 return sprintf(buf, "%s; SMT Host state unknown\n",
1685 taa_strings[taa_mitigation]);
1686 }
1687
1688 return sprintf(buf, "%s; SMT %s\n", taa_strings[taa_mitigation],
1689 sched_smt_active() ? "vulnerable" : "disabled");
1690 }
1691
1692 static char *stibp_state(void)
1693 {
1694 if (spectre_v2_enabled == SPECTRE_V2_IBRS_ENHANCED)
1695 return "";
1696
1697 switch (spectre_v2_user_stibp) {
1698 case SPECTRE_V2_USER_NONE:
1699 return ", STIBP: disabled";
1700 case SPECTRE_V2_USER_STRICT:
1701 return ", STIBP: forced";
1702 case SPECTRE_V2_USER_STRICT_PREFERRED:
1703 return ", STIBP: always-on";
1704 case SPECTRE_V2_USER_PRCTL:
1705 case SPECTRE_V2_USER_SECCOMP:
1706 if (static_key_enabled(&switch_to_cond_stibp))
1707 return ", STIBP: conditional";
1708 }
1709 return "";
1710 }
1711
1712 static char *ibpb_state(void)
1713 {
1714 if (boot_cpu_has(X86_FEATURE_IBPB)) {
1715 if (static_key_enabled(&switch_mm_always_ibpb))
1716 return ", IBPB: always-on";
1717 if (static_key_enabled(&switch_mm_cond_ibpb))
1718 return ", IBPB: conditional";
1719 return ", IBPB: disabled";
1720 }
1721 return "";
1722 }
1723
1724 static ssize_t srbds_show_state(char *buf)
1725 {
1726 return sprintf(buf, "%s\n", srbds_strings[srbds_mitigation]);
1727 }
1728
1729 static ssize_t cpu_show_common(struct device *dev, struct device_attribute *attr,
1730 char *buf, unsigned int bug)
1731 {
1732 if (!boot_cpu_has_bug(bug))
1733 return sprintf(buf, "Not affected\n");
1734
1735 switch (bug) {
1736 case X86_BUG_CPU_MELTDOWN:
1737 if (boot_cpu_has(X86_FEATURE_PTI))
1738 return sprintf(buf, "Mitigation: PTI\n");
1739
1740 if (hypervisor_is_type(X86_HYPER_XEN_PV))
1741 return sprintf(buf, "Unknown (XEN PV detected, hypervisor mitigation required)\n");
1742
1743 break;
1744
1745 case X86_BUG_SPECTRE_V1:
1746 return sprintf(buf, "%s\n", spectre_v1_strings[spectre_v1_mitigation]);
1747
1748 case X86_BUG_SPECTRE_V2:
1749 return sprintf(buf, "%s%s%s%s%s%s\n", spectre_v2_strings[spectre_v2_enabled],
1750 ibpb_state(),
1751 boot_cpu_has(X86_FEATURE_USE_IBRS_FW) ? ", IBRS_FW" : "",
1752 stibp_state(),
1753 boot_cpu_has(X86_FEATURE_RSB_CTXSW) ? ", RSB filling" : "",
1754 spectre_v2_module_string());
1755
1756 case X86_BUG_SPEC_STORE_BYPASS:
1757 return sprintf(buf, "%s\n", ssb_strings[ssb_mode]);
1758
1759 case X86_BUG_L1TF:
1760 if (boot_cpu_has(X86_FEATURE_L1TF_PTEINV))
1761 return l1tf_show_state(buf);
1762 break;
1763
1764 case X86_BUG_MDS:
1765 return mds_show_state(buf);
1766
1767 case X86_BUG_TAA:
1768 return tsx_async_abort_show_state(buf);
1769
1770 case X86_BUG_ITLB_MULTIHIT:
1771 return itlb_multihit_show_state(buf);
1772
1773 case X86_BUG_SRBDS:
1774 return srbds_show_state(buf);
1775
1776 default:
1777 break;
1778 }
1779
1780 return sprintf(buf, "Vulnerable\n");
1781 }
1782
1783 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr, char *buf)
1784 {
1785 return cpu_show_common(dev, attr, buf, X86_BUG_CPU_MELTDOWN);
1786 }
1787
1788 ssize_t cpu_show_spectre_v1(struct device *dev, struct device_attribute *attr, char *buf)
1789 {
1790 return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V1);
1791 }
1792
1793 ssize_t cpu_show_spectre_v2(struct device *dev, struct device_attribute *attr, char *buf)
1794 {
1795 return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V2);
1796 }
1797
1798 ssize_t cpu_show_spec_store_bypass(struct device *dev, struct device_attribute *attr, char *buf)
1799 {
1800 return cpu_show_common(dev, attr, buf, X86_BUG_SPEC_STORE_BYPASS);
1801 }
1802
1803 ssize_t cpu_show_l1tf(struct device *dev, struct device_attribute *attr, char *buf)
1804 {
1805 return cpu_show_common(dev, attr, buf, X86_BUG_L1TF);
1806 }
1807
1808 ssize_t cpu_show_mds(struct device *dev, struct device_attribute *attr, char *buf)
1809 {
1810 return cpu_show_common(dev, attr, buf, X86_BUG_MDS);
1811 }
1812
1813 ssize_t cpu_show_tsx_async_abort(struct device *dev, struct device_attribute *attr, char *buf)
1814 {
1815 return cpu_show_common(dev, attr, buf, X86_BUG_TAA);
1816 }
1817
1818 ssize_t cpu_show_itlb_multihit(struct device *dev, struct device_attribute *attr, char *buf)
1819 {
1820 return cpu_show_common(dev, attr, buf, X86_BUG_ITLB_MULTIHIT);
1821 }
1822
1823 ssize_t cpu_show_srbds(struct device *dev, struct device_attribute *attr, char *buf)
1824 {
1825 return cpu_show_common(dev, attr, buf, X86_BUG_SRBDS);
1826 }
1827 #endif