]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kernel/cpu/common.c
x86: don't call read_apic_id if !cpu_has_apic
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / cpu / common.c
1 #include <linux/bootmem.h>
2 #include <linux/linkage.h>
3 #include <linux/bitops.h>
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/percpu.h>
7 #include <linux/string.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/init.h>
11 #include <linux/kgdb.h>
12 #include <linux/smp.h>
13 #include <linux/io.h>
14
15 #include <asm/stackprotector.h>
16 #include <asm/mmu_context.h>
17 #include <asm/hypervisor.h>
18 #include <asm/processor.h>
19 #include <asm/sections.h>
20 #include <asm/topology.h>
21 #include <asm/cpumask.h>
22 #include <asm/pgtable.h>
23 #include <asm/atomic.h>
24 #include <asm/proto.h>
25 #include <asm/setup.h>
26 #include <asm/apic.h>
27 #include <asm/desc.h>
28 #include <asm/i387.h>
29 #include <asm/mtrr.h>
30 #include <asm/numa.h>
31 #include <asm/asm.h>
32 #include <asm/cpu.h>
33 #include <asm/mce.h>
34 #include <asm/msr.h>
35 #include <asm/pat.h>
36 #include <asm/smp.h>
37
38 #ifdef CONFIG_X86_LOCAL_APIC
39 #include <asm/uv/uv.h>
40 #endif
41
42 #include "cpu.h"
43
44 /* all of these masks are initialized in setup_cpu_local_masks() */
45 cpumask_var_t cpu_initialized_mask;
46 cpumask_var_t cpu_callout_mask;
47 cpumask_var_t cpu_callin_mask;
48
49 /* representing cpus for which sibling maps can be computed */
50 cpumask_var_t cpu_sibling_setup_mask;
51
52 /* correctly size the local cpu masks */
53 void __init setup_cpu_local_masks(void)
54 {
55 alloc_bootmem_cpumask_var(&cpu_initialized_mask);
56 alloc_bootmem_cpumask_var(&cpu_callin_mask);
57 alloc_bootmem_cpumask_var(&cpu_callout_mask);
58 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
59 }
60
61 static const struct cpu_dev *this_cpu __cpuinitdata;
62
63 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
64 #ifdef CONFIG_X86_64
65 /*
66 * We need valid kernel segments for data and code in long mode too
67 * IRET will check the segment types kkeil 2000/10/28
68 * Also sysret mandates a special GDT layout
69 *
70 * TLS descriptors are currently at a different place compared to i386.
71 * Hopefully nobody expects them at a fixed place (Wine?)
72 */
73 [GDT_ENTRY_KERNEL32_CS] = { { { 0x0000ffff, 0x00cf9b00 } } },
74 [GDT_ENTRY_KERNEL_CS] = { { { 0x0000ffff, 0x00af9b00 } } },
75 [GDT_ENTRY_KERNEL_DS] = { { { 0x0000ffff, 0x00cf9300 } } },
76 [GDT_ENTRY_DEFAULT_USER32_CS] = { { { 0x0000ffff, 0x00cffb00 } } },
77 [GDT_ENTRY_DEFAULT_USER_DS] = { { { 0x0000ffff, 0x00cff300 } } },
78 [GDT_ENTRY_DEFAULT_USER_CS] = { { { 0x0000ffff, 0x00affb00 } } },
79 #else
80 [GDT_ENTRY_KERNEL_CS] = { { { 0x0000ffff, 0x00cf9a00 } } },
81 [GDT_ENTRY_KERNEL_DS] = { { { 0x0000ffff, 0x00cf9200 } } },
82 [GDT_ENTRY_DEFAULT_USER_CS] = { { { 0x0000ffff, 0x00cffa00 } } },
83 [GDT_ENTRY_DEFAULT_USER_DS] = { { { 0x0000ffff, 0x00cff200 } } },
84 /*
85 * Segments used for calling PnP BIOS have byte granularity.
86 * They code segments and data segments have fixed 64k limits,
87 * the transfer segment sizes are set at run time.
88 */
89 /* 32-bit code */
90 [GDT_ENTRY_PNPBIOS_CS32] = { { { 0x0000ffff, 0x00409a00 } } },
91 /* 16-bit code */
92 [GDT_ENTRY_PNPBIOS_CS16] = { { { 0x0000ffff, 0x00009a00 } } },
93 /* 16-bit data */
94 [GDT_ENTRY_PNPBIOS_DS] = { { { 0x0000ffff, 0x00009200 } } },
95 /* 16-bit data */
96 [GDT_ENTRY_PNPBIOS_TS1] = { { { 0x00000000, 0x00009200 } } },
97 /* 16-bit data */
98 [GDT_ENTRY_PNPBIOS_TS2] = { { { 0x00000000, 0x00009200 } } },
99 /*
100 * The APM segments have byte granularity and their bases
101 * are set at run time. All have 64k limits.
102 */
103 /* 32-bit code */
104 [GDT_ENTRY_APMBIOS_BASE] = { { { 0x0000ffff, 0x00409a00 } } },
105 /* 16-bit code */
106 [GDT_ENTRY_APMBIOS_BASE+1] = { { { 0x0000ffff, 0x00009a00 } } },
107 /* data */
108 [GDT_ENTRY_APMBIOS_BASE+2] = { { { 0x0000ffff, 0x00409200 } } },
109
110 [GDT_ENTRY_ESPFIX_SS] = { { { 0x00000000, 0x00c09200 } } },
111 [GDT_ENTRY_PERCPU] = { { { 0x0000ffff, 0x00cf9200 } } },
112 GDT_STACK_CANARY_INIT
113 #endif
114 } };
115 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
116
117 #ifdef CONFIG_X86_32
118 static int cachesize_override __cpuinitdata = -1;
119 static int disable_x86_serial_nr __cpuinitdata = 1;
120
121 static int __init cachesize_setup(char *str)
122 {
123 get_option(&str, &cachesize_override);
124 return 1;
125 }
126 __setup("cachesize=", cachesize_setup);
127
128 static int __init x86_fxsr_setup(char *s)
129 {
130 setup_clear_cpu_cap(X86_FEATURE_FXSR);
131 setup_clear_cpu_cap(X86_FEATURE_XMM);
132 return 1;
133 }
134 __setup("nofxsr", x86_fxsr_setup);
135
136 static int __init x86_sep_setup(char *s)
137 {
138 setup_clear_cpu_cap(X86_FEATURE_SEP);
139 return 1;
140 }
141 __setup("nosep", x86_sep_setup);
142
143 /* Standard macro to see if a specific flag is changeable */
144 static inline int flag_is_changeable_p(u32 flag)
145 {
146 u32 f1, f2;
147
148 /*
149 * Cyrix and IDT cpus allow disabling of CPUID
150 * so the code below may return different results
151 * when it is executed before and after enabling
152 * the CPUID. Add "volatile" to not allow gcc to
153 * optimize the subsequent calls to this function.
154 */
155 asm volatile ("pushfl \n\t"
156 "pushfl \n\t"
157 "popl %0 \n\t"
158 "movl %0, %1 \n\t"
159 "xorl %2, %0 \n\t"
160 "pushl %0 \n\t"
161 "popfl \n\t"
162 "pushfl \n\t"
163 "popl %0 \n\t"
164 "popfl \n\t"
165
166 : "=&r" (f1), "=&r" (f2)
167 : "ir" (flag));
168
169 return ((f1^f2) & flag) != 0;
170 }
171
172 /* Probe for the CPUID instruction */
173 static int __cpuinit have_cpuid_p(void)
174 {
175 return flag_is_changeable_p(X86_EFLAGS_ID);
176 }
177
178 static void __cpuinit squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
179 {
180 unsigned long lo, hi;
181
182 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
183 return;
184
185 /* Disable processor serial number: */
186
187 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
188 lo |= 0x200000;
189 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
190
191 printk(KERN_NOTICE "CPU serial number disabled.\n");
192 clear_cpu_cap(c, X86_FEATURE_PN);
193
194 /* Disabling the serial number may affect the cpuid level */
195 c->cpuid_level = cpuid_eax(0);
196 }
197
198 static int __init x86_serial_nr_setup(char *s)
199 {
200 disable_x86_serial_nr = 0;
201 return 1;
202 }
203 __setup("serialnumber", x86_serial_nr_setup);
204 #else
205 static inline int flag_is_changeable_p(u32 flag)
206 {
207 return 1;
208 }
209 /* Probe for the CPUID instruction */
210 static inline int have_cpuid_p(void)
211 {
212 return 1;
213 }
214 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
215 {
216 }
217 #endif
218
219 /*
220 * Some CPU features depend on higher CPUID levels, which may not always
221 * be available due to CPUID level capping or broken virtualization
222 * software. Add those features to this table to auto-disable them.
223 */
224 struct cpuid_dependent_feature {
225 u32 feature;
226 u32 level;
227 };
228
229 static const struct cpuid_dependent_feature __cpuinitconst
230 cpuid_dependent_features[] = {
231 { X86_FEATURE_MWAIT, 0x00000005 },
232 { X86_FEATURE_DCA, 0x00000009 },
233 { X86_FEATURE_XSAVE, 0x0000000d },
234 { 0, 0 }
235 };
236
237 static void __cpuinit filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
238 {
239 const struct cpuid_dependent_feature *df;
240
241 for (df = cpuid_dependent_features; df->feature; df++) {
242
243 if (!cpu_has(c, df->feature))
244 continue;
245 /*
246 * Note: cpuid_level is set to -1 if unavailable, but
247 * extended_extended_level is set to 0 if unavailable
248 * and the legitimate extended levels are all negative
249 * when signed; hence the weird messing around with
250 * signs here...
251 */
252 if (!((s32)df->level < 0 ?
253 (u32)df->level > (u32)c->extended_cpuid_level :
254 (s32)df->level > (s32)c->cpuid_level))
255 continue;
256
257 clear_cpu_cap(c, df->feature);
258 if (!warn)
259 continue;
260
261 printk(KERN_WARNING
262 "CPU: CPU feature %s disabled, no CPUID level 0x%x\n",
263 x86_cap_flags[df->feature], df->level);
264 }
265 }
266
267 /*
268 * Naming convention should be: <Name> [(<Codename>)]
269 * This table only is used unless init_<vendor>() below doesn't set it;
270 * in particular, if CPUID levels 0x80000002..4 are supported, this
271 * isn't used
272 */
273
274 /* Look up CPU names by table lookup. */
275 static const char *__cpuinit table_lookup_model(struct cpuinfo_x86 *c)
276 {
277 const struct cpu_model_info *info;
278
279 if (c->x86_model >= 16)
280 return NULL; /* Range check */
281
282 if (!this_cpu)
283 return NULL;
284
285 info = this_cpu->c_models;
286
287 while (info && info->family) {
288 if (info->family == c->x86)
289 return info->model_names[c->x86_model];
290 info++;
291 }
292 return NULL; /* Not found */
293 }
294
295 __u32 cleared_cpu_caps[NCAPINTS] __cpuinitdata;
296
297 void load_percpu_segment(int cpu)
298 {
299 #ifdef CONFIG_X86_32
300 loadsegment(fs, __KERNEL_PERCPU);
301 #else
302 loadsegment(gs, 0);
303 wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
304 #endif
305 load_stack_canary_segment();
306 }
307
308 /*
309 * Current gdt points %fs at the "master" per-cpu area: after this,
310 * it's on the real one.
311 */
312 void switch_to_new_gdt(int cpu)
313 {
314 struct desc_ptr gdt_descr;
315
316 gdt_descr.address = (long)get_cpu_gdt_table(cpu);
317 gdt_descr.size = GDT_SIZE - 1;
318 load_gdt(&gdt_descr);
319 /* Reload the per-cpu base */
320
321 load_percpu_segment(cpu);
322 }
323
324 static const struct cpu_dev *__cpuinitdata cpu_devs[X86_VENDOR_NUM] = {};
325
326 static void __cpuinit default_init(struct cpuinfo_x86 *c)
327 {
328 #ifdef CONFIG_X86_64
329 display_cacheinfo(c);
330 #else
331 /* Not much we can do here... */
332 /* Check if at least it has cpuid */
333 if (c->cpuid_level == -1) {
334 /* No cpuid. It must be an ancient CPU */
335 if (c->x86 == 4)
336 strcpy(c->x86_model_id, "486");
337 else if (c->x86 == 3)
338 strcpy(c->x86_model_id, "386");
339 }
340 #endif
341 }
342
343 static const struct cpu_dev __cpuinitconst default_cpu = {
344 .c_init = default_init,
345 .c_vendor = "Unknown",
346 .c_x86_vendor = X86_VENDOR_UNKNOWN,
347 };
348
349 static void __cpuinit get_model_name(struct cpuinfo_x86 *c)
350 {
351 unsigned int *v;
352 char *p, *q;
353
354 if (c->extended_cpuid_level < 0x80000004)
355 return;
356
357 v = (unsigned int *)c->x86_model_id;
358 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
359 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
360 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
361 c->x86_model_id[48] = 0;
362
363 /*
364 * Intel chips right-justify this string for some dumb reason;
365 * undo that brain damage:
366 */
367 p = q = &c->x86_model_id[0];
368 while (*p == ' ')
369 p++;
370 if (p != q) {
371 while (*p)
372 *q++ = *p++;
373 while (q <= &c->x86_model_id[48])
374 *q++ = '\0'; /* Zero-pad the rest */
375 }
376 }
377
378 void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
379 {
380 unsigned int n, dummy, ebx, ecx, edx, l2size;
381
382 n = c->extended_cpuid_level;
383
384 if (n >= 0x80000005) {
385 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
386 printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n",
387 edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
388 c->x86_cache_size = (ecx>>24) + (edx>>24);
389 #ifdef CONFIG_X86_64
390 /* On K8 L1 TLB is inclusive, so don't count it */
391 c->x86_tlbsize = 0;
392 #endif
393 }
394
395 if (n < 0x80000006) /* Some chips just has a large L1. */
396 return;
397
398 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
399 l2size = ecx >> 16;
400
401 #ifdef CONFIG_X86_64
402 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
403 #else
404 /* do processor-specific cache resizing */
405 if (this_cpu->c_size_cache)
406 l2size = this_cpu->c_size_cache(c, l2size);
407
408 /* Allow user to override all this if necessary. */
409 if (cachesize_override != -1)
410 l2size = cachesize_override;
411
412 if (l2size == 0)
413 return; /* Again, no L2 cache is possible */
414 #endif
415
416 c->x86_cache_size = l2size;
417
418 printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
419 l2size, ecx & 0xFF);
420 }
421
422 void __cpuinit detect_ht(struct cpuinfo_x86 *c)
423 {
424 #ifdef CONFIG_X86_HT
425 u32 eax, ebx, ecx, edx;
426 int index_msb, core_bits;
427
428 if (!cpu_has(c, X86_FEATURE_HT))
429 return;
430
431 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
432 goto out;
433
434 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
435 return;
436
437 cpuid(1, &eax, &ebx, &ecx, &edx);
438
439 smp_num_siblings = (ebx & 0xff0000) >> 16;
440
441 if (smp_num_siblings == 1) {
442 printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
443 goto out;
444 }
445
446 if (smp_num_siblings <= 1)
447 goto out;
448
449 if (smp_num_siblings > nr_cpu_ids) {
450 pr_warning("CPU: Unsupported number of siblings %d",
451 smp_num_siblings);
452 smp_num_siblings = 1;
453 return;
454 }
455
456 index_msb = get_count_order(smp_num_siblings);
457 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
458
459 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
460
461 index_msb = get_count_order(smp_num_siblings);
462
463 core_bits = get_count_order(c->x86_max_cores);
464
465 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
466 ((1 << core_bits) - 1);
467
468 out:
469 if ((c->x86_max_cores * smp_num_siblings) > 1) {
470 printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
471 c->phys_proc_id);
472 printk(KERN_INFO "CPU: Processor Core ID: %d\n",
473 c->cpu_core_id);
474 }
475 #endif
476 }
477
478 static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
479 {
480 char *v = c->x86_vendor_id;
481 static int printed;
482 int i;
483
484 for (i = 0; i < X86_VENDOR_NUM; i++) {
485 if (!cpu_devs[i])
486 break;
487
488 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
489 (cpu_devs[i]->c_ident[1] &&
490 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
491
492 this_cpu = cpu_devs[i];
493 c->x86_vendor = this_cpu->c_x86_vendor;
494 return;
495 }
496 }
497
498 if (!printed) {
499 printed++;
500 printk(KERN_ERR
501 "CPU: vendor_id '%s' unknown, using generic init.\n", v);
502
503 printk(KERN_ERR "CPU: Your system may be unstable.\n");
504 }
505
506 c->x86_vendor = X86_VENDOR_UNKNOWN;
507 this_cpu = &default_cpu;
508 }
509
510 void __cpuinit cpu_detect(struct cpuinfo_x86 *c)
511 {
512 /* Get vendor name */
513 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
514 (unsigned int *)&c->x86_vendor_id[0],
515 (unsigned int *)&c->x86_vendor_id[8],
516 (unsigned int *)&c->x86_vendor_id[4]);
517
518 c->x86 = 4;
519 /* Intel-defined flags: level 0x00000001 */
520 if (c->cpuid_level >= 0x00000001) {
521 u32 junk, tfms, cap0, misc;
522
523 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
524 c->x86 = (tfms >> 8) & 0xf;
525 c->x86_model = (tfms >> 4) & 0xf;
526 c->x86_mask = tfms & 0xf;
527
528 if (c->x86 == 0xf)
529 c->x86 += (tfms >> 20) & 0xff;
530 if (c->x86 >= 0x6)
531 c->x86_model += ((tfms >> 16) & 0xf) << 4;
532
533 if (cap0 & (1<<19)) {
534 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
535 c->x86_cache_alignment = c->x86_clflush_size;
536 }
537 }
538 }
539
540 static void __cpuinit get_cpu_cap(struct cpuinfo_x86 *c)
541 {
542 u32 tfms, xlvl;
543 u32 ebx;
544
545 /* Intel-defined flags: level 0x00000001 */
546 if (c->cpuid_level >= 0x00000001) {
547 u32 capability, excap;
548
549 cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
550 c->x86_capability[0] = capability;
551 c->x86_capability[4] = excap;
552 }
553
554 /* AMD-defined flags: level 0x80000001 */
555 xlvl = cpuid_eax(0x80000000);
556 c->extended_cpuid_level = xlvl;
557
558 if ((xlvl & 0xffff0000) == 0x80000000) {
559 if (xlvl >= 0x80000001) {
560 c->x86_capability[1] = cpuid_edx(0x80000001);
561 c->x86_capability[6] = cpuid_ecx(0x80000001);
562 }
563 }
564
565 if (c->extended_cpuid_level >= 0x80000008) {
566 u32 eax = cpuid_eax(0x80000008);
567
568 c->x86_virt_bits = (eax >> 8) & 0xff;
569 c->x86_phys_bits = eax & 0xff;
570 }
571 #ifdef CONFIG_X86_32
572 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
573 c->x86_phys_bits = 36;
574 #endif
575
576 if (c->extended_cpuid_level >= 0x80000007)
577 c->x86_power = cpuid_edx(0x80000007);
578
579 }
580
581 static void __cpuinit identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
582 {
583 #ifdef CONFIG_X86_32
584 int i;
585
586 /*
587 * First of all, decide if this is a 486 or higher
588 * It's a 486 if we can modify the AC flag
589 */
590 if (flag_is_changeable_p(X86_EFLAGS_AC))
591 c->x86 = 4;
592 else
593 c->x86 = 3;
594
595 for (i = 0; i < X86_VENDOR_NUM; i++)
596 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
597 c->x86_vendor_id[0] = 0;
598 cpu_devs[i]->c_identify(c);
599 if (c->x86_vendor_id[0]) {
600 get_cpu_vendor(c);
601 break;
602 }
603 }
604 #endif
605 }
606
607 /*
608 * Do minimum CPU detection early.
609 * Fields really needed: vendor, cpuid_level, family, model, mask,
610 * cache alignment.
611 * The others are not touched to avoid unwanted side effects.
612 *
613 * WARNING: this function is only called on the BP. Don't add code here
614 * that is supposed to run on all CPUs.
615 */
616 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
617 {
618 #ifdef CONFIG_X86_64
619 c->x86_clflush_size = 64;
620 c->x86_phys_bits = 36;
621 c->x86_virt_bits = 48;
622 #else
623 c->x86_clflush_size = 32;
624 c->x86_phys_bits = 32;
625 c->x86_virt_bits = 32;
626 #endif
627 c->x86_cache_alignment = c->x86_clflush_size;
628
629 memset(&c->x86_capability, 0, sizeof c->x86_capability);
630 c->extended_cpuid_level = 0;
631
632 if (!have_cpuid_p())
633 identify_cpu_without_cpuid(c);
634
635 /* cyrix could have cpuid enabled via c_identify()*/
636 if (!have_cpuid_p())
637 return;
638
639 cpu_detect(c);
640
641 get_cpu_vendor(c);
642
643 get_cpu_cap(c);
644
645 if (this_cpu->c_early_init)
646 this_cpu->c_early_init(c);
647
648 #ifdef CONFIG_SMP
649 c->cpu_index = boot_cpu_id;
650 #endif
651 filter_cpuid_features(c, false);
652 }
653
654 void __init early_cpu_init(void)
655 {
656 const struct cpu_dev *const *cdev;
657 int count = 0;
658
659 printk(KERN_INFO "KERNEL supported cpus:\n");
660 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
661 const struct cpu_dev *cpudev = *cdev;
662 unsigned int j;
663
664 if (count >= X86_VENDOR_NUM)
665 break;
666 cpu_devs[count] = cpudev;
667 count++;
668
669 for (j = 0; j < 2; j++) {
670 if (!cpudev->c_ident[j])
671 continue;
672 printk(KERN_INFO " %s %s\n", cpudev->c_vendor,
673 cpudev->c_ident[j]);
674 }
675 }
676
677 early_identify_cpu(&boot_cpu_data);
678 }
679
680 /*
681 * The NOPL instruction is supposed to exist on all CPUs with
682 * family >= 6; unfortunately, that's not true in practice because
683 * of early VIA chips and (more importantly) broken virtualizers that
684 * are not easy to detect. In the latter case it doesn't even *fail*
685 * reliably, so probing for it doesn't even work. Disable it completely
686 * unless we can find a reliable way to detect all the broken cases.
687 */
688 static void __cpuinit detect_nopl(struct cpuinfo_x86 *c)
689 {
690 clear_cpu_cap(c, X86_FEATURE_NOPL);
691 }
692
693 static void __cpuinit generic_identify(struct cpuinfo_x86 *c)
694 {
695 c->extended_cpuid_level = 0;
696
697 if (!have_cpuid_p())
698 identify_cpu_without_cpuid(c);
699
700 /* cyrix could have cpuid enabled via c_identify()*/
701 if (!have_cpuid_p())
702 return;
703
704 cpu_detect(c);
705
706 get_cpu_vendor(c);
707
708 get_cpu_cap(c);
709
710 if (c->cpuid_level >= 0x00000001) {
711 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
712 #ifdef CONFIG_X86_32
713 # ifdef CONFIG_X86_HT
714 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
715 # else
716 c->apicid = c->initial_apicid;
717 # endif
718 #endif
719
720 #ifdef CONFIG_X86_HT
721 c->phys_proc_id = c->initial_apicid;
722 #endif
723 }
724
725 get_model_name(c); /* Default name */
726
727 init_scattered_cpuid_features(c);
728 detect_nopl(c);
729 }
730
731 /*
732 * This does the hard work of actually picking apart the CPU stuff...
733 */
734 static void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
735 {
736 int i;
737
738 c->loops_per_jiffy = loops_per_jiffy;
739 c->x86_cache_size = -1;
740 c->x86_vendor = X86_VENDOR_UNKNOWN;
741 c->x86_model = c->x86_mask = 0; /* So far unknown... */
742 c->x86_vendor_id[0] = '\0'; /* Unset */
743 c->x86_model_id[0] = '\0'; /* Unset */
744 c->x86_max_cores = 1;
745 c->x86_coreid_bits = 0;
746 #ifdef CONFIG_X86_64
747 c->x86_clflush_size = 64;
748 c->x86_phys_bits = 36;
749 c->x86_virt_bits = 48;
750 #else
751 c->cpuid_level = -1; /* CPUID not detected */
752 c->x86_clflush_size = 32;
753 c->x86_phys_bits = 32;
754 c->x86_virt_bits = 32;
755 #endif
756 c->x86_cache_alignment = c->x86_clflush_size;
757 memset(&c->x86_capability, 0, sizeof c->x86_capability);
758
759 generic_identify(c);
760
761 if (this_cpu->c_identify)
762 this_cpu->c_identify(c);
763
764 /* Clear/Set all flags overriden by options, after probe */
765 for (i = 0; i < NCAPINTS; i++) {
766 c->x86_capability[i] &= ~cpu_caps_cleared[i];
767 c->x86_capability[i] |= cpu_caps_set[i];
768 }
769
770 #ifdef CONFIG_X86_64
771 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
772 #endif
773
774 /*
775 * Vendor-specific initialization. In this section we
776 * canonicalize the feature flags, meaning if there are
777 * features a certain CPU supports which CPUID doesn't
778 * tell us, CPUID claiming incorrect flags, or other bugs,
779 * we handle them here.
780 *
781 * At the end of this section, c->x86_capability better
782 * indicate the features this CPU genuinely supports!
783 */
784 if (this_cpu->c_init)
785 this_cpu->c_init(c);
786
787 /* Disable the PN if appropriate */
788 squash_the_stupid_serial_number(c);
789
790 /*
791 * The vendor-specific functions might have changed features.
792 * Now we do "generic changes."
793 */
794
795 /* Filter out anything that depends on CPUID levels we don't have */
796 filter_cpuid_features(c, true);
797
798 /* If the model name is still unset, do table lookup. */
799 if (!c->x86_model_id[0]) {
800 const char *p;
801 p = table_lookup_model(c);
802 if (p)
803 strcpy(c->x86_model_id, p);
804 else
805 /* Last resort... */
806 sprintf(c->x86_model_id, "%02x/%02x",
807 c->x86, c->x86_model);
808 }
809
810 #ifdef CONFIG_X86_64
811 detect_ht(c);
812 #endif
813
814 init_hypervisor(c);
815 /*
816 * On SMP, boot_cpu_data holds the common feature set between
817 * all CPUs; so make sure that we indicate which features are
818 * common between the CPUs. The first time this routine gets
819 * executed, c == &boot_cpu_data.
820 */
821 if (c != &boot_cpu_data) {
822 /* AND the already accumulated flags with these */
823 for (i = 0; i < NCAPINTS; i++)
824 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
825 }
826
827 /* Clear all flags overriden by options */
828 for (i = 0; i < NCAPINTS; i++)
829 c->x86_capability[i] &= ~cleared_cpu_caps[i];
830
831 #ifdef CONFIG_X86_MCE
832 /* Init Machine Check Exception if available. */
833 mcheck_init(c);
834 #endif
835
836 select_idle_routine(c);
837
838 #if defined(CONFIG_NUMA) && defined(CONFIG_X86_64)
839 numa_add_cpu(smp_processor_id());
840 #endif
841 }
842
843 #ifdef CONFIG_X86_64
844 static void vgetcpu_set_mode(void)
845 {
846 if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP))
847 vgetcpu_mode = VGETCPU_RDTSCP;
848 else
849 vgetcpu_mode = VGETCPU_LSL;
850 }
851 #endif
852
853 void __init identify_boot_cpu(void)
854 {
855 identify_cpu(&boot_cpu_data);
856 init_c1e_mask();
857 #ifdef CONFIG_X86_32
858 sysenter_setup();
859 enable_sep_cpu();
860 #else
861 vgetcpu_set_mode();
862 #endif
863 }
864
865 void __cpuinit identify_secondary_cpu(struct cpuinfo_x86 *c)
866 {
867 BUG_ON(c == &boot_cpu_data);
868 identify_cpu(c);
869 #ifdef CONFIG_X86_32
870 enable_sep_cpu();
871 #endif
872 mtrr_ap_init();
873 }
874
875 struct msr_range {
876 unsigned min;
877 unsigned max;
878 };
879
880 static const struct msr_range msr_range_array[] __cpuinitconst = {
881 { 0x00000000, 0x00000418},
882 { 0xc0000000, 0xc000040b},
883 { 0xc0010000, 0xc0010142},
884 { 0xc0011000, 0xc001103b},
885 };
886
887 static void __cpuinit print_cpu_msr(void)
888 {
889 unsigned index_min, index_max;
890 unsigned index;
891 u64 val;
892 int i;
893
894 for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
895 index_min = msr_range_array[i].min;
896 index_max = msr_range_array[i].max;
897
898 for (index = index_min; index < index_max; index++) {
899 if (rdmsrl_amd_safe(index, &val))
900 continue;
901 printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
902 }
903 }
904 }
905
906 static int show_msr __cpuinitdata;
907
908 static __init int setup_show_msr(char *arg)
909 {
910 int num;
911
912 get_option(&arg, &num);
913
914 if (num > 0)
915 show_msr = num;
916 return 1;
917 }
918 __setup("show_msr=", setup_show_msr);
919
920 static __init int setup_noclflush(char *arg)
921 {
922 setup_clear_cpu_cap(X86_FEATURE_CLFLSH);
923 return 1;
924 }
925 __setup("noclflush", setup_noclflush);
926
927 void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
928 {
929 const char *vendor = NULL;
930
931 if (c->x86_vendor < X86_VENDOR_NUM) {
932 vendor = this_cpu->c_vendor;
933 } else {
934 if (c->cpuid_level >= 0)
935 vendor = c->x86_vendor_id;
936 }
937
938 if (vendor && !strstr(c->x86_model_id, vendor))
939 printk(KERN_CONT "%s ", vendor);
940
941 if (c->x86_model_id[0])
942 printk(KERN_CONT "%s", c->x86_model_id);
943 else
944 printk(KERN_CONT "%d86", c->x86);
945
946 if (c->x86_mask || c->cpuid_level >= 0)
947 printk(KERN_CONT " stepping %02x\n", c->x86_mask);
948 else
949 printk(KERN_CONT "\n");
950
951 #ifdef CONFIG_SMP
952 if (c->cpu_index < show_msr)
953 print_cpu_msr();
954 #else
955 if (show_msr)
956 print_cpu_msr();
957 #endif
958 }
959
960 static __init int setup_disablecpuid(char *arg)
961 {
962 int bit;
963
964 if (get_option(&arg, &bit) && bit < NCAPINTS*32)
965 setup_clear_cpu_cap(bit);
966 else
967 return 0;
968
969 return 1;
970 }
971 __setup("clearcpuid=", setup_disablecpuid);
972
973 #ifdef CONFIG_X86_64
974 struct desc_ptr idt_descr = { 256 * 16 - 1, (unsigned long) idt_table };
975
976 DEFINE_PER_CPU_FIRST(union irq_stack_union,
977 irq_stack_union) __aligned(PAGE_SIZE);
978
979 DEFINE_PER_CPU(char *, irq_stack_ptr) =
980 init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64;
981
982 DEFINE_PER_CPU(unsigned long, kernel_stack) =
983 (unsigned long)&init_thread_union - KERNEL_STACK_OFFSET + THREAD_SIZE;
984 EXPORT_PER_CPU_SYMBOL(kernel_stack);
985
986 DEFINE_PER_CPU(unsigned int, irq_count) = -1;
987
988 /*
989 * Special IST stacks which the CPU switches to when it calls
990 * an IST-marked descriptor entry. Up to 7 stacks (hardware
991 * limit), all of them are 4K, except the debug stack which
992 * is 8K.
993 */
994 static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
995 [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ,
996 [DEBUG_STACK - 1] = DEBUG_STKSZ
997 };
998
999 static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
1000 [(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ])
1001 __aligned(PAGE_SIZE);
1002
1003 /* May not be marked __init: used by software suspend */
1004 void syscall_init(void)
1005 {
1006 /*
1007 * LSTAR and STAR live in a bit strange symbiosis.
1008 * They both write to the same internal register. STAR allows to
1009 * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
1010 */
1011 wrmsrl(MSR_STAR, ((u64)__USER32_CS)<<48 | ((u64)__KERNEL_CS)<<32);
1012 wrmsrl(MSR_LSTAR, system_call);
1013 wrmsrl(MSR_CSTAR, ignore_sysret);
1014
1015 #ifdef CONFIG_IA32_EMULATION
1016 syscall32_cpu_init();
1017 #endif
1018
1019 /* Flags to clear on syscall */
1020 wrmsrl(MSR_SYSCALL_MASK,
1021 X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|X86_EFLAGS_IOPL);
1022 }
1023
1024 unsigned long kernel_eflags;
1025
1026 /*
1027 * Copies of the original ist values from the tss are only accessed during
1028 * debugging, no special alignment required.
1029 */
1030 DEFINE_PER_CPU(struct orig_ist, orig_ist);
1031
1032 #else /* CONFIG_X86_64 */
1033
1034 #ifdef CONFIG_CC_STACKPROTECTOR
1035 DEFINE_PER_CPU(unsigned long, stack_canary);
1036 #endif
1037
1038 /* Make sure %fs and %gs are initialized properly in idle threads */
1039 struct pt_regs * __cpuinit idle_regs(struct pt_regs *regs)
1040 {
1041 memset(regs, 0, sizeof(struct pt_regs));
1042 regs->fs = __KERNEL_PERCPU;
1043 regs->gs = __KERNEL_STACK_CANARY;
1044
1045 return regs;
1046 }
1047 #endif /* CONFIG_X86_64 */
1048
1049 /*
1050 * Clear all 6 debug registers:
1051 */
1052 static void clear_all_debug_regs(void)
1053 {
1054 int i;
1055
1056 for (i = 0; i < 8; i++) {
1057 /* Ignore db4, db5 */
1058 if ((i == 4) || (i == 5))
1059 continue;
1060
1061 set_debugreg(0, i);
1062 }
1063 }
1064
1065 /*
1066 * cpu_init() initializes state that is per-CPU. Some data is already
1067 * initialized (naturally) in the bootstrap process, such as the GDT
1068 * and IDT. We reload them nevertheless, this function acts as a
1069 * 'CPU state barrier', nothing should get across.
1070 * A lot of state is already set up in PDA init for 64 bit
1071 */
1072 #ifdef CONFIG_X86_64
1073
1074 void __cpuinit cpu_init(void)
1075 {
1076 struct orig_ist *orig_ist;
1077 struct task_struct *me;
1078 struct tss_struct *t;
1079 unsigned long v;
1080 int cpu;
1081 int i;
1082
1083 cpu = stack_smp_processor_id();
1084 t = &per_cpu(init_tss, cpu);
1085 orig_ist = &per_cpu(orig_ist, cpu);
1086
1087 #ifdef CONFIG_NUMA
1088 if (cpu != 0 && percpu_read(node_number) == 0 &&
1089 cpu_to_node(cpu) != NUMA_NO_NODE)
1090 percpu_write(node_number, cpu_to_node(cpu));
1091 #endif
1092
1093 me = current;
1094
1095 if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask))
1096 panic("CPU#%d already initialized!\n", cpu);
1097
1098 printk(KERN_INFO "Initializing CPU#%d\n", cpu);
1099
1100 clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1101
1102 /*
1103 * Initialize the per-CPU GDT with the boot GDT,
1104 * and set up the GDT descriptor:
1105 */
1106
1107 switch_to_new_gdt(cpu);
1108 loadsegment(fs, 0);
1109
1110 load_idt((const struct desc_ptr *)&idt_descr);
1111
1112 memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1113 syscall_init();
1114
1115 wrmsrl(MSR_FS_BASE, 0);
1116 wrmsrl(MSR_KERNEL_GS_BASE, 0);
1117 barrier();
1118
1119 check_efer();
1120 if (cpu != 0)
1121 enable_x2apic();
1122
1123 /*
1124 * set up and load the per-CPU TSS
1125 */
1126 if (!orig_ist->ist[0]) {
1127 char *estacks = per_cpu(exception_stacks, cpu);
1128
1129 for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1130 estacks += exception_stack_sizes[v];
1131 orig_ist->ist[v] = t->x86_tss.ist[v] =
1132 (unsigned long)estacks;
1133 }
1134 }
1135
1136 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1137
1138 /*
1139 * <= is required because the CPU will access up to
1140 * 8 bits beyond the end of the IO permission bitmap.
1141 */
1142 for (i = 0; i <= IO_BITMAP_LONGS; i++)
1143 t->io_bitmap[i] = ~0UL;
1144
1145 atomic_inc(&init_mm.mm_count);
1146 me->active_mm = &init_mm;
1147 BUG_ON(me->mm);
1148 enter_lazy_tlb(&init_mm, me);
1149
1150 load_sp0(t, &current->thread);
1151 set_tss_desc(cpu, t);
1152 load_TR_desc();
1153 load_LDT(&init_mm.context);
1154
1155 #ifdef CONFIG_KGDB
1156 /*
1157 * If the kgdb is connected no debug regs should be altered. This
1158 * is only applicable when KGDB and a KGDB I/O module are built
1159 * into the kernel and you are using early debugging with
1160 * kgdbwait. KGDB will control the kernel HW breakpoint registers.
1161 */
1162 if (kgdb_connected && arch_kgdb_ops.correct_hw_break)
1163 arch_kgdb_ops.correct_hw_break();
1164 else
1165 #endif
1166 clear_all_debug_regs();
1167
1168 fpu_init();
1169
1170 raw_local_save_flags(kernel_eflags);
1171
1172 if (is_uv_system())
1173 uv_cpu_init();
1174 }
1175
1176 #else
1177
1178 void __cpuinit cpu_init(void)
1179 {
1180 int cpu = smp_processor_id();
1181 struct task_struct *curr = current;
1182 struct tss_struct *t = &per_cpu(init_tss, cpu);
1183 struct thread_struct *thread = &curr->thread;
1184
1185 if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask)) {
1186 printk(KERN_WARNING "CPU#%d already initialized!\n", cpu);
1187 for (;;)
1188 local_irq_enable();
1189 }
1190
1191 printk(KERN_INFO "Initializing CPU#%d\n", cpu);
1192
1193 if (cpu_has_vme || cpu_has_tsc || cpu_has_de)
1194 clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1195
1196 load_idt(&idt_descr);
1197 switch_to_new_gdt(cpu);
1198
1199 /*
1200 * Set up and load the per-CPU TSS and LDT
1201 */
1202 atomic_inc(&init_mm.mm_count);
1203 curr->active_mm = &init_mm;
1204 BUG_ON(curr->mm);
1205 enter_lazy_tlb(&init_mm, curr);
1206
1207 load_sp0(t, thread);
1208 set_tss_desc(cpu, t);
1209 load_TR_desc();
1210 load_LDT(&init_mm.context);
1211
1212 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1213
1214 #ifdef CONFIG_DOUBLEFAULT
1215 /* Set up doublefault TSS pointer in the GDT */
1216 __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1217 #endif
1218
1219 clear_all_debug_regs();
1220
1221 /*
1222 * Force FPU initialization:
1223 */
1224 if (cpu_has_xsave)
1225 current_thread_info()->status = TS_XSAVE;
1226 else
1227 current_thread_info()->status = 0;
1228 clear_used_math();
1229 mxcsr_feature_mask_init();
1230
1231 /*
1232 * Boot processor to setup the FP and extended state context info.
1233 */
1234 if (smp_processor_id() == boot_cpu_id)
1235 init_thread_xstate();
1236
1237 xsave_init();
1238 }
1239 #endif