]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kernel/cpu/common.c
x86: detect scattered cpuid features earlier
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / cpu / common.c
1 #include <linux/bootmem.h>
2 #include <linux/linkage.h>
3 #include <linux/bitops.h>
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/percpu.h>
7 #include <linux/string.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/init.h>
11 #include <linux/kgdb.h>
12 #include <linux/smp.h>
13 #include <linux/io.h>
14
15 #include <asm/stackprotector.h>
16 #include <asm/perf_event.h>
17 #include <asm/mmu_context.h>
18 #include <asm/hypervisor.h>
19 #include <asm/processor.h>
20 #include <asm/sections.h>
21 #include <linux/topology.h>
22 #include <linux/cpumask.h>
23 #include <asm/pgtable.h>
24 #include <asm/atomic.h>
25 #include <asm/proto.h>
26 #include <asm/setup.h>
27 #include <asm/apic.h>
28 #include <asm/desc.h>
29 #include <asm/i387.h>
30 #include <asm/mtrr.h>
31 #include <linux/numa.h>
32 #include <asm/asm.h>
33 #include <asm/cpu.h>
34 #include <asm/mce.h>
35 #include <asm/msr.h>
36 #include <asm/pat.h>
37
38 #ifdef CONFIG_X86_LOCAL_APIC
39 #include <asm/uv/uv.h>
40 #endif
41
42 #include "cpu.h"
43
44 /* all of these masks are initialized in setup_cpu_local_masks() */
45 cpumask_var_t cpu_initialized_mask;
46 cpumask_var_t cpu_callout_mask;
47 cpumask_var_t cpu_callin_mask;
48
49 /* representing cpus for which sibling maps can be computed */
50 cpumask_var_t cpu_sibling_setup_mask;
51
52 /* correctly size the local cpu masks */
53 void __init setup_cpu_local_masks(void)
54 {
55 alloc_bootmem_cpumask_var(&cpu_initialized_mask);
56 alloc_bootmem_cpumask_var(&cpu_callin_mask);
57 alloc_bootmem_cpumask_var(&cpu_callout_mask);
58 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
59 }
60
61 static void __cpuinit default_init(struct cpuinfo_x86 *c)
62 {
63 #ifdef CONFIG_X86_64
64 cpu_detect_cache_sizes(c);
65 #else
66 /* Not much we can do here... */
67 /* Check if at least it has cpuid */
68 if (c->cpuid_level == -1) {
69 /* No cpuid. It must be an ancient CPU */
70 if (c->x86 == 4)
71 strcpy(c->x86_model_id, "486");
72 else if (c->x86 == 3)
73 strcpy(c->x86_model_id, "386");
74 }
75 #endif
76 }
77
78 static const struct cpu_dev __cpuinitconst default_cpu = {
79 .c_init = default_init,
80 .c_vendor = "Unknown",
81 .c_x86_vendor = X86_VENDOR_UNKNOWN,
82 };
83
84 static const struct cpu_dev *this_cpu __cpuinitdata = &default_cpu;
85
86 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
87 #ifdef CONFIG_X86_64
88 /*
89 * We need valid kernel segments for data and code in long mode too
90 * IRET will check the segment types kkeil 2000/10/28
91 * Also sysret mandates a special GDT layout
92 *
93 * TLS descriptors are currently at a different place compared to i386.
94 * Hopefully nobody expects them at a fixed place (Wine?)
95 */
96 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
97 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
98 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
99 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
100 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
101 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
102 #else
103 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
104 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
105 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
106 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
107 /*
108 * Segments used for calling PnP BIOS have byte granularity.
109 * They code segments and data segments have fixed 64k limits,
110 * the transfer segment sizes are set at run time.
111 */
112 /* 32-bit code */
113 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
114 /* 16-bit code */
115 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
116 /* 16-bit data */
117 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
118 /* 16-bit data */
119 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
120 /* 16-bit data */
121 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
122 /*
123 * The APM segments have byte granularity and their bases
124 * are set at run time. All have 64k limits.
125 */
126 /* 32-bit code */
127 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
128 /* 16-bit code */
129 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
130 /* data */
131 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
132
133 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
134 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
135 GDT_STACK_CANARY_INIT
136 #endif
137 } };
138 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
139
140 static int __init x86_xsave_setup(char *s)
141 {
142 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
143 return 1;
144 }
145 __setup("noxsave", x86_xsave_setup);
146
147 #ifdef CONFIG_X86_32
148 static int cachesize_override __cpuinitdata = -1;
149 static int disable_x86_serial_nr __cpuinitdata = 1;
150
151 static int __init cachesize_setup(char *str)
152 {
153 get_option(&str, &cachesize_override);
154 return 1;
155 }
156 __setup("cachesize=", cachesize_setup);
157
158 static int __init x86_fxsr_setup(char *s)
159 {
160 setup_clear_cpu_cap(X86_FEATURE_FXSR);
161 setup_clear_cpu_cap(X86_FEATURE_XMM);
162 return 1;
163 }
164 __setup("nofxsr", x86_fxsr_setup);
165
166 static int __init x86_sep_setup(char *s)
167 {
168 setup_clear_cpu_cap(X86_FEATURE_SEP);
169 return 1;
170 }
171 __setup("nosep", x86_sep_setup);
172
173 /* Standard macro to see if a specific flag is changeable */
174 static inline int flag_is_changeable_p(u32 flag)
175 {
176 u32 f1, f2;
177
178 /*
179 * Cyrix and IDT cpus allow disabling of CPUID
180 * so the code below may return different results
181 * when it is executed before and after enabling
182 * the CPUID. Add "volatile" to not allow gcc to
183 * optimize the subsequent calls to this function.
184 */
185 asm volatile ("pushfl \n\t"
186 "pushfl \n\t"
187 "popl %0 \n\t"
188 "movl %0, %1 \n\t"
189 "xorl %2, %0 \n\t"
190 "pushl %0 \n\t"
191 "popfl \n\t"
192 "pushfl \n\t"
193 "popl %0 \n\t"
194 "popfl \n\t"
195
196 : "=&r" (f1), "=&r" (f2)
197 : "ir" (flag));
198
199 return ((f1^f2) & flag) != 0;
200 }
201
202 /* Probe for the CPUID instruction */
203 static int __cpuinit have_cpuid_p(void)
204 {
205 return flag_is_changeable_p(X86_EFLAGS_ID);
206 }
207
208 static void __cpuinit squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
209 {
210 unsigned long lo, hi;
211
212 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
213 return;
214
215 /* Disable processor serial number: */
216
217 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
218 lo |= 0x200000;
219 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
220
221 printk(KERN_NOTICE "CPU serial number disabled.\n");
222 clear_cpu_cap(c, X86_FEATURE_PN);
223
224 /* Disabling the serial number may affect the cpuid level */
225 c->cpuid_level = cpuid_eax(0);
226 }
227
228 static int __init x86_serial_nr_setup(char *s)
229 {
230 disable_x86_serial_nr = 0;
231 return 1;
232 }
233 __setup("serialnumber", x86_serial_nr_setup);
234 #else
235 static inline int flag_is_changeable_p(u32 flag)
236 {
237 return 1;
238 }
239 /* Probe for the CPUID instruction */
240 static inline int have_cpuid_p(void)
241 {
242 return 1;
243 }
244 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
245 {
246 }
247 #endif
248
249 /*
250 * Some CPU features depend on higher CPUID levels, which may not always
251 * be available due to CPUID level capping or broken virtualization
252 * software. Add those features to this table to auto-disable them.
253 */
254 struct cpuid_dependent_feature {
255 u32 feature;
256 u32 level;
257 };
258
259 static const struct cpuid_dependent_feature __cpuinitconst
260 cpuid_dependent_features[] = {
261 { X86_FEATURE_MWAIT, 0x00000005 },
262 { X86_FEATURE_DCA, 0x00000009 },
263 { X86_FEATURE_XSAVE, 0x0000000d },
264 { 0, 0 }
265 };
266
267 static void __cpuinit filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
268 {
269 const struct cpuid_dependent_feature *df;
270
271 for (df = cpuid_dependent_features; df->feature; df++) {
272
273 if (!cpu_has(c, df->feature))
274 continue;
275 /*
276 * Note: cpuid_level is set to -1 if unavailable, but
277 * extended_extended_level is set to 0 if unavailable
278 * and the legitimate extended levels are all negative
279 * when signed; hence the weird messing around with
280 * signs here...
281 */
282 if (!((s32)df->level < 0 ?
283 (u32)df->level > (u32)c->extended_cpuid_level :
284 (s32)df->level > (s32)c->cpuid_level))
285 continue;
286
287 clear_cpu_cap(c, df->feature);
288 if (!warn)
289 continue;
290
291 printk(KERN_WARNING
292 "CPU: CPU feature %s disabled, no CPUID level 0x%x\n",
293 x86_cap_flags[df->feature], df->level);
294 }
295 }
296
297 /*
298 * Naming convention should be: <Name> [(<Codename>)]
299 * This table only is used unless init_<vendor>() below doesn't set it;
300 * in particular, if CPUID levels 0x80000002..4 are supported, this
301 * isn't used
302 */
303
304 /* Look up CPU names by table lookup. */
305 static const char *__cpuinit table_lookup_model(struct cpuinfo_x86 *c)
306 {
307 const struct cpu_model_info *info;
308
309 if (c->x86_model >= 16)
310 return NULL; /* Range check */
311
312 if (!this_cpu)
313 return NULL;
314
315 info = this_cpu->c_models;
316
317 while (info && info->family) {
318 if (info->family == c->x86)
319 return info->model_names[c->x86_model];
320 info++;
321 }
322 return NULL; /* Not found */
323 }
324
325 __u32 cpu_caps_cleared[NCAPINTS] __cpuinitdata;
326 __u32 cpu_caps_set[NCAPINTS] __cpuinitdata;
327
328 void load_percpu_segment(int cpu)
329 {
330 #ifdef CONFIG_X86_32
331 loadsegment(fs, __KERNEL_PERCPU);
332 #else
333 loadsegment(gs, 0);
334 wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
335 #endif
336 load_stack_canary_segment();
337 }
338
339 /*
340 * Current gdt points %fs at the "master" per-cpu area: after this,
341 * it's on the real one.
342 */
343 void switch_to_new_gdt(int cpu)
344 {
345 struct desc_ptr gdt_descr;
346
347 gdt_descr.address = (long)get_cpu_gdt_table(cpu);
348 gdt_descr.size = GDT_SIZE - 1;
349 load_gdt(&gdt_descr);
350 /* Reload the per-cpu base */
351
352 load_percpu_segment(cpu);
353 }
354
355 static const struct cpu_dev *__cpuinitdata cpu_devs[X86_VENDOR_NUM] = {};
356
357 static void __cpuinit get_model_name(struct cpuinfo_x86 *c)
358 {
359 unsigned int *v;
360 char *p, *q;
361
362 if (c->extended_cpuid_level < 0x80000004)
363 return;
364
365 v = (unsigned int *)c->x86_model_id;
366 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
367 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
368 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
369 c->x86_model_id[48] = 0;
370
371 /*
372 * Intel chips right-justify this string for some dumb reason;
373 * undo that brain damage:
374 */
375 p = q = &c->x86_model_id[0];
376 while (*p == ' ')
377 p++;
378 if (p != q) {
379 while (*p)
380 *q++ = *p++;
381 while (q <= &c->x86_model_id[48])
382 *q++ = '\0'; /* Zero-pad the rest */
383 }
384 }
385
386 void __cpuinit cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
387 {
388 unsigned int n, dummy, ebx, ecx, edx, l2size;
389
390 n = c->extended_cpuid_level;
391
392 if (n >= 0x80000005) {
393 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
394 c->x86_cache_size = (ecx>>24) + (edx>>24);
395 #ifdef CONFIG_X86_64
396 /* On K8 L1 TLB is inclusive, so don't count it */
397 c->x86_tlbsize = 0;
398 #endif
399 }
400
401 if (n < 0x80000006) /* Some chips just has a large L1. */
402 return;
403
404 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
405 l2size = ecx >> 16;
406
407 #ifdef CONFIG_X86_64
408 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
409 #else
410 /* do processor-specific cache resizing */
411 if (this_cpu->c_size_cache)
412 l2size = this_cpu->c_size_cache(c, l2size);
413
414 /* Allow user to override all this if necessary. */
415 if (cachesize_override != -1)
416 l2size = cachesize_override;
417
418 if (l2size == 0)
419 return; /* Again, no L2 cache is possible */
420 #endif
421
422 c->x86_cache_size = l2size;
423 }
424
425 void __cpuinit detect_ht(struct cpuinfo_x86 *c)
426 {
427 #ifdef CONFIG_X86_HT
428 u32 eax, ebx, ecx, edx;
429 int index_msb, core_bits;
430 static bool printed;
431
432 if (!cpu_has(c, X86_FEATURE_HT))
433 return;
434
435 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
436 goto out;
437
438 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
439 return;
440
441 cpuid(1, &eax, &ebx, &ecx, &edx);
442
443 smp_num_siblings = (ebx & 0xff0000) >> 16;
444
445 if (smp_num_siblings == 1) {
446 printk_once(KERN_INFO "CPU0: Hyper-Threading is disabled\n");
447 goto out;
448 }
449
450 if (smp_num_siblings <= 1)
451 goto out;
452
453 if (smp_num_siblings > nr_cpu_ids) {
454 pr_warning("CPU: Unsupported number of siblings %d",
455 smp_num_siblings);
456 smp_num_siblings = 1;
457 return;
458 }
459
460 index_msb = get_count_order(smp_num_siblings);
461 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
462
463 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
464
465 index_msb = get_count_order(smp_num_siblings);
466
467 core_bits = get_count_order(c->x86_max_cores);
468
469 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
470 ((1 << core_bits) - 1);
471
472 out:
473 if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
474 printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
475 c->phys_proc_id);
476 printk(KERN_INFO "CPU: Processor Core ID: %d\n",
477 c->cpu_core_id);
478 printed = 1;
479 }
480 #endif
481 }
482
483 static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
484 {
485 char *v = c->x86_vendor_id;
486 int i;
487
488 for (i = 0; i < X86_VENDOR_NUM; i++) {
489 if (!cpu_devs[i])
490 break;
491
492 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
493 (cpu_devs[i]->c_ident[1] &&
494 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
495
496 this_cpu = cpu_devs[i];
497 c->x86_vendor = this_cpu->c_x86_vendor;
498 return;
499 }
500 }
501
502 printk_once(KERN_ERR
503 "CPU: vendor_id '%s' unknown, using generic init.\n" \
504 "CPU: Your system may be unstable.\n", v);
505
506 c->x86_vendor = X86_VENDOR_UNKNOWN;
507 this_cpu = &default_cpu;
508 }
509
510 void __cpuinit cpu_detect(struct cpuinfo_x86 *c)
511 {
512 /* Get vendor name */
513 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
514 (unsigned int *)&c->x86_vendor_id[0],
515 (unsigned int *)&c->x86_vendor_id[8],
516 (unsigned int *)&c->x86_vendor_id[4]);
517
518 c->x86 = 4;
519 /* Intel-defined flags: level 0x00000001 */
520 if (c->cpuid_level >= 0x00000001) {
521 u32 junk, tfms, cap0, misc;
522
523 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
524 c->x86 = (tfms >> 8) & 0xf;
525 c->x86_model = (tfms >> 4) & 0xf;
526 c->x86_mask = tfms & 0xf;
527
528 if (c->x86 == 0xf)
529 c->x86 += (tfms >> 20) & 0xff;
530 if (c->x86 >= 0x6)
531 c->x86_model += ((tfms >> 16) & 0xf) << 4;
532
533 if (cap0 & (1<<19)) {
534 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
535 c->x86_cache_alignment = c->x86_clflush_size;
536 }
537 }
538 }
539
540 static void __cpuinit get_cpu_cap(struct cpuinfo_x86 *c)
541 {
542 u32 tfms, xlvl;
543 u32 ebx;
544
545 /* Intel-defined flags: level 0x00000001 */
546 if (c->cpuid_level >= 0x00000001) {
547 u32 capability, excap;
548
549 cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
550 c->x86_capability[0] = capability;
551 c->x86_capability[4] = excap;
552 }
553
554 /* AMD-defined flags: level 0x80000001 */
555 xlvl = cpuid_eax(0x80000000);
556 c->extended_cpuid_level = xlvl;
557
558 if ((xlvl & 0xffff0000) == 0x80000000) {
559 if (xlvl >= 0x80000001) {
560 c->x86_capability[1] = cpuid_edx(0x80000001);
561 c->x86_capability[6] = cpuid_ecx(0x80000001);
562 }
563 }
564
565 if (c->extended_cpuid_level >= 0x80000008) {
566 u32 eax = cpuid_eax(0x80000008);
567
568 c->x86_virt_bits = (eax >> 8) & 0xff;
569 c->x86_phys_bits = eax & 0xff;
570 }
571 #ifdef CONFIG_X86_32
572 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
573 c->x86_phys_bits = 36;
574 #endif
575
576 if (c->extended_cpuid_level >= 0x80000007)
577 c->x86_power = cpuid_edx(0x80000007);
578
579 init_scattered_cpuid_features(c);
580 }
581
582 static void __cpuinit identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
583 {
584 #ifdef CONFIG_X86_32
585 int i;
586
587 /*
588 * First of all, decide if this is a 486 or higher
589 * It's a 486 if we can modify the AC flag
590 */
591 if (flag_is_changeable_p(X86_EFLAGS_AC))
592 c->x86 = 4;
593 else
594 c->x86 = 3;
595
596 for (i = 0; i < X86_VENDOR_NUM; i++)
597 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
598 c->x86_vendor_id[0] = 0;
599 cpu_devs[i]->c_identify(c);
600 if (c->x86_vendor_id[0]) {
601 get_cpu_vendor(c);
602 break;
603 }
604 }
605 #endif
606 }
607
608 /*
609 * Do minimum CPU detection early.
610 * Fields really needed: vendor, cpuid_level, family, model, mask,
611 * cache alignment.
612 * The others are not touched to avoid unwanted side effects.
613 *
614 * WARNING: this function is only called on the BP. Don't add code here
615 * that is supposed to run on all CPUs.
616 */
617 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
618 {
619 #ifdef CONFIG_X86_64
620 c->x86_clflush_size = 64;
621 c->x86_phys_bits = 36;
622 c->x86_virt_bits = 48;
623 #else
624 c->x86_clflush_size = 32;
625 c->x86_phys_bits = 32;
626 c->x86_virt_bits = 32;
627 #endif
628 c->x86_cache_alignment = c->x86_clflush_size;
629
630 memset(&c->x86_capability, 0, sizeof c->x86_capability);
631 c->extended_cpuid_level = 0;
632
633 if (!have_cpuid_p())
634 identify_cpu_without_cpuid(c);
635
636 /* cyrix could have cpuid enabled via c_identify()*/
637 if (!have_cpuid_p())
638 return;
639
640 cpu_detect(c);
641
642 get_cpu_vendor(c);
643
644 get_cpu_cap(c);
645
646 if (this_cpu->c_early_init)
647 this_cpu->c_early_init(c);
648
649 #ifdef CONFIG_SMP
650 c->cpu_index = boot_cpu_id;
651 #endif
652 filter_cpuid_features(c, false);
653 }
654
655 void __init early_cpu_init(void)
656 {
657 const struct cpu_dev *const *cdev;
658 int count = 0;
659
660 #ifdef PROCESSOR_SELECT
661 printk(KERN_INFO "KERNEL supported cpus:\n");
662 #endif
663
664 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
665 const struct cpu_dev *cpudev = *cdev;
666
667 if (count >= X86_VENDOR_NUM)
668 break;
669 cpu_devs[count] = cpudev;
670 count++;
671
672 #ifdef PROCESSOR_SELECT
673 {
674 unsigned int j;
675
676 for (j = 0; j < 2; j++) {
677 if (!cpudev->c_ident[j])
678 continue;
679 printk(KERN_INFO " %s %s\n", cpudev->c_vendor,
680 cpudev->c_ident[j]);
681 }
682 }
683 #endif
684 }
685 early_identify_cpu(&boot_cpu_data);
686 }
687
688 /*
689 * The NOPL instruction is supposed to exist on all CPUs with
690 * family >= 6; unfortunately, that's not true in practice because
691 * of early VIA chips and (more importantly) broken virtualizers that
692 * are not easy to detect. In the latter case it doesn't even *fail*
693 * reliably, so probing for it doesn't even work. Disable it completely
694 * unless we can find a reliable way to detect all the broken cases.
695 */
696 static void __cpuinit detect_nopl(struct cpuinfo_x86 *c)
697 {
698 clear_cpu_cap(c, X86_FEATURE_NOPL);
699 }
700
701 static void __cpuinit generic_identify(struct cpuinfo_x86 *c)
702 {
703 c->extended_cpuid_level = 0;
704
705 if (!have_cpuid_p())
706 identify_cpu_without_cpuid(c);
707
708 /* cyrix could have cpuid enabled via c_identify()*/
709 if (!have_cpuid_p())
710 return;
711
712 cpu_detect(c);
713
714 get_cpu_vendor(c);
715
716 get_cpu_cap(c);
717
718 if (c->cpuid_level >= 0x00000001) {
719 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
720 #ifdef CONFIG_X86_32
721 # ifdef CONFIG_X86_HT
722 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
723 # else
724 c->apicid = c->initial_apicid;
725 # endif
726 #endif
727
728 #ifdef CONFIG_X86_HT
729 c->phys_proc_id = c->initial_apicid;
730 #endif
731 }
732
733 get_model_name(c); /* Default name */
734
735 detect_nopl(c);
736 }
737
738 /*
739 * This does the hard work of actually picking apart the CPU stuff...
740 */
741 static void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
742 {
743 int i;
744
745 c->loops_per_jiffy = loops_per_jiffy;
746 c->x86_cache_size = -1;
747 c->x86_vendor = X86_VENDOR_UNKNOWN;
748 c->x86_model = c->x86_mask = 0; /* So far unknown... */
749 c->x86_vendor_id[0] = '\0'; /* Unset */
750 c->x86_model_id[0] = '\0'; /* Unset */
751 c->x86_max_cores = 1;
752 c->x86_coreid_bits = 0;
753 #ifdef CONFIG_X86_64
754 c->x86_clflush_size = 64;
755 c->x86_phys_bits = 36;
756 c->x86_virt_bits = 48;
757 #else
758 c->cpuid_level = -1; /* CPUID not detected */
759 c->x86_clflush_size = 32;
760 c->x86_phys_bits = 32;
761 c->x86_virt_bits = 32;
762 #endif
763 c->x86_cache_alignment = c->x86_clflush_size;
764 memset(&c->x86_capability, 0, sizeof c->x86_capability);
765
766 generic_identify(c);
767
768 if (this_cpu->c_identify)
769 this_cpu->c_identify(c);
770
771 /* Clear/Set all flags overriden by options, after probe */
772 for (i = 0; i < NCAPINTS; i++) {
773 c->x86_capability[i] &= ~cpu_caps_cleared[i];
774 c->x86_capability[i] |= cpu_caps_set[i];
775 }
776
777 #ifdef CONFIG_X86_64
778 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
779 #endif
780
781 /*
782 * Vendor-specific initialization. In this section we
783 * canonicalize the feature flags, meaning if there are
784 * features a certain CPU supports which CPUID doesn't
785 * tell us, CPUID claiming incorrect flags, or other bugs,
786 * we handle them here.
787 *
788 * At the end of this section, c->x86_capability better
789 * indicate the features this CPU genuinely supports!
790 */
791 if (this_cpu->c_init)
792 this_cpu->c_init(c);
793
794 /* Disable the PN if appropriate */
795 squash_the_stupid_serial_number(c);
796
797 /*
798 * The vendor-specific functions might have changed features.
799 * Now we do "generic changes."
800 */
801
802 /* Filter out anything that depends on CPUID levels we don't have */
803 filter_cpuid_features(c, true);
804
805 /* If the model name is still unset, do table lookup. */
806 if (!c->x86_model_id[0]) {
807 const char *p;
808 p = table_lookup_model(c);
809 if (p)
810 strcpy(c->x86_model_id, p);
811 else
812 /* Last resort... */
813 sprintf(c->x86_model_id, "%02x/%02x",
814 c->x86, c->x86_model);
815 }
816
817 #ifdef CONFIG_X86_64
818 detect_ht(c);
819 #endif
820
821 init_hypervisor(c);
822
823 /*
824 * Clear/Set all flags overriden by options, need do it
825 * before following smp all cpus cap AND.
826 */
827 for (i = 0; i < NCAPINTS; i++) {
828 c->x86_capability[i] &= ~cpu_caps_cleared[i];
829 c->x86_capability[i] |= cpu_caps_set[i];
830 }
831
832 /*
833 * On SMP, boot_cpu_data holds the common feature set between
834 * all CPUs; so make sure that we indicate which features are
835 * common between the CPUs. The first time this routine gets
836 * executed, c == &boot_cpu_data.
837 */
838 if (c != &boot_cpu_data) {
839 /* AND the already accumulated flags with these */
840 for (i = 0; i < NCAPINTS; i++)
841 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
842 }
843
844 /* Init Machine Check Exception if available. */
845 mcheck_cpu_init(c);
846
847 select_idle_routine(c);
848
849 #if defined(CONFIG_NUMA) && defined(CONFIG_X86_64)
850 numa_add_cpu(smp_processor_id());
851 #endif
852 }
853
854 #ifdef CONFIG_X86_64
855 static void vgetcpu_set_mode(void)
856 {
857 if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP))
858 vgetcpu_mode = VGETCPU_RDTSCP;
859 else
860 vgetcpu_mode = VGETCPU_LSL;
861 }
862 #endif
863
864 void __init identify_boot_cpu(void)
865 {
866 identify_cpu(&boot_cpu_data);
867 init_c1e_mask();
868 #ifdef CONFIG_X86_32
869 sysenter_setup();
870 enable_sep_cpu();
871 #else
872 vgetcpu_set_mode();
873 #endif
874 init_hw_perf_events();
875 }
876
877 void __cpuinit identify_secondary_cpu(struct cpuinfo_x86 *c)
878 {
879 BUG_ON(c == &boot_cpu_data);
880 identify_cpu(c);
881 #ifdef CONFIG_X86_32
882 enable_sep_cpu();
883 #endif
884 mtrr_ap_init();
885 }
886
887 struct msr_range {
888 unsigned min;
889 unsigned max;
890 };
891
892 static const struct msr_range msr_range_array[] __cpuinitconst = {
893 { 0x00000000, 0x00000418},
894 { 0xc0000000, 0xc000040b},
895 { 0xc0010000, 0xc0010142},
896 { 0xc0011000, 0xc001103b},
897 };
898
899 static void __cpuinit print_cpu_msr(void)
900 {
901 unsigned index_min, index_max;
902 unsigned index;
903 u64 val;
904 int i;
905
906 for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
907 index_min = msr_range_array[i].min;
908 index_max = msr_range_array[i].max;
909
910 for (index = index_min; index < index_max; index++) {
911 if (rdmsrl_amd_safe(index, &val))
912 continue;
913 printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
914 }
915 }
916 }
917
918 static int show_msr __cpuinitdata;
919
920 static __init int setup_show_msr(char *arg)
921 {
922 int num;
923
924 get_option(&arg, &num);
925
926 if (num > 0)
927 show_msr = num;
928 return 1;
929 }
930 __setup("show_msr=", setup_show_msr);
931
932 static __init int setup_noclflush(char *arg)
933 {
934 setup_clear_cpu_cap(X86_FEATURE_CLFLSH);
935 return 1;
936 }
937 __setup("noclflush", setup_noclflush);
938
939 void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
940 {
941 const char *vendor = NULL;
942
943 if (c->x86_vendor < X86_VENDOR_NUM) {
944 vendor = this_cpu->c_vendor;
945 } else {
946 if (c->cpuid_level >= 0)
947 vendor = c->x86_vendor_id;
948 }
949
950 if (vendor && !strstr(c->x86_model_id, vendor))
951 printk(KERN_CONT "%s ", vendor);
952
953 if (c->x86_model_id[0])
954 printk(KERN_CONT "%s", c->x86_model_id);
955 else
956 printk(KERN_CONT "%d86", c->x86);
957
958 if (c->x86_mask || c->cpuid_level >= 0)
959 printk(KERN_CONT " stepping %02x\n", c->x86_mask);
960 else
961 printk(KERN_CONT "\n");
962
963 #ifdef CONFIG_SMP
964 if (c->cpu_index < show_msr)
965 print_cpu_msr();
966 #else
967 if (show_msr)
968 print_cpu_msr();
969 #endif
970 }
971
972 static __init int setup_disablecpuid(char *arg)
973 {
974 int bit;
975
976 if (get_option(&arg, &bit) && bit < NCAPINTS*32)
977 setup_clear_cpu_cap(bit);
978 else
979 return 0;
980
981 return 1;
982 }
983 __setup("clearcpuid=", setup_disablecpuid);
984
985 #ifdef CONFIG_X86_64
986 struct desc_ptr idt_descr = { NR_VECTORS * 16 - 1, (unsigned long) idt_table };
987
988 DEFINE_PER_CPU_FIRST(union irq_stack_union,
989 irq_stack_union) __aligned(PAGE_SIZE);
990
991 /*
992 * The following four percpu variables are hot. Align current_task to
993 * cacheline size such that all four fall in the same cacheline.
994 */
995 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
996 &init_task;
997 EXPORT_PER_CPU_SYMBOL(current_task);
998
999 DEFINE_PER_CPU(unsigned long, kernel_stack) =
1000 (unsigned long)&init_thread_union - KERNEL_STACK_OFFSET + THREAD_SIZE;
1001 EXPORT_PER_CPU_SYMBOL(kernel_stack);
1002
1003 DEFINE_PER_CPU(char *, irq_stack_ptr) =
1004 init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64;
1005
1006 DEFINE_PER_CPU(unsigned int, irq_count) = -1;
1007
1008 /*
1009 * Special IST stacks which the CPU switches to when it calls
1010 * an IST-marked descriptor entry. Up to 7 stacks (hardware
1011 * limit), all of them are 4K, except the debug stack which
1012 * is 8K.
1013 */
1014 static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
1015 [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ,
1016 [DEBUG_STACK - 1] = DEBUG_STKSZ
1017 };
1018
1019 static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
1020 [(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]);
1021
1022 /* May not be marked __init: used by software suspend */
1023 void syscall_init(void)
1024 {
1025 /*
1026 * LSTAR and STAR live in a bit strange symbiosis.
1027 * They both write to the same internal register. STAR allows to
1028 * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
1029 */
1030 wrmsrl(MSR_STAR, ((u64)__USER32_CS)<<48 | ((u64)__KERNEL_CS)<<32);
1031 wrmsrl(MSR_LSTAR, system_call);
1032 wrmsrl(MSR_CSTAR, ignore_sysret);
1033
1034 #ifdef CONFIG_IA32_EMULATION
1035 syscall32_cpu_init();
1036 #endif
1037
1038 /* Flags to clear on syscall */
1039 wrmsrl(MSR_SYSCALL_MASK,
1040 X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|X86_EFLAGS_IOPL);
1041 }
1042
1043 unsigned long kernel_eflags;
1044
1045 /*
1046 * Copies of the original ist values from the tss are only accessed during
1047 * debugging, no special alignment required.
1048 */
1049 DEFINE_PER_CPU(struct orig_ist, orig_ist);
1050
1051 #else /* CONFIG_X86_64 */
1052
1053 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1054 EXPORT_PER_CPU_SYMBOL(current_task);
1055
1056 #ifdef CONFIG_CC_STACKPROTECTOR
1057 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1058 #endif
1059
1060 /* Make sure %fs and %gs are initialized properly in idle threads */
1061 struct pt_regs * __cpuinit idle_regs(struct pt_regs *regs)
1062 {
1063 memset(regs, 0, sizeof(struct pt_regs));
1064 regs->fs = __KERNEL_PERCPU;
1065 regs->gs = __KERNEL_STACK_CANARY;
1066
1067 return regs;
1068 }
1069 #endif /* CONFIG_X86_64 */
1070
1071 /*
1072 * Clear all 6 debug registers:
1073 */
1074 static void clear_all_debug_regs(void)
1075 {
1076 int i;
1077
1078 for (i = 0; i < 8; i++) {
1079 /* Ignore db4, db5 */
1080 if ((i == 4) || (i == 5))
1081 continue;
1082
1083 set_debugreg(0, i);
1084 }
1085 }
1086
1087 /*
1088 * cpu_init() initializes state that is per-CPU. Some data is already
1089 * initialized (naturally) in the bootstrap process, such as the GDT
1090 * and IDT. We reload them nevertheless, this function acts as a
1091 * 'CPU state barrier', nothing should get across.
1092 * A lot of state is already set up in PDA init for 64 bit
1093 */
1094 #ifdef CONFIG_X86_64
1095
1096 void __cpuinit cpu_init(void)
1097 {
1098 struct orig_ist *oist;
1099 struct task_struct *me;
1100 struct tss_struct *t;
1101 unsigned long v;
1102 int cpu;
1103 int i;
1104
1105 cpu = stack_smp_processor_id();
1106 t = &per_cpu(init_tss, cpu);
1107 oist = &per_cpu(orig_ist, cpu);
1108
1109 #ifdef CONFIG_NUMA
1110 if (cpu != 0 && percpu_read(node_number) == 0 &&
1111 cpu_to_node(cpu) != NUMA_NO_NODE)
1112 percpu_write(node_number, cpu_to_node(cpu));
1113 #endif
1114
1115 me = current;
1116
1117 if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask))
1118 panic("CPU#%d already initialized!\n", cpu);
1119
1120 pr_debug("Initializing CPU#%d\n", cpu);
1121
1122 clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1123
1124 /*
1125 * Initialize the per-CPU GDT with the boot GDT,
1126 * and set up the GDT descriptor:
1127 */
1128
1129 switch_to_new_gdt(cpu);
1130 loadsegment(fs, 0);
1131
1132 load_idt((const struct desc_ptr *)&idt_descr);
1133
1134 memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1135 syscall_init();
1136
1137 wrmsrl(MSR_FS_BASE, 0);
1138 wrmsrl(MSR_KERNEL_GS_BASE, 0);
1139 barrier();
1140
1141 x86_configure_nx();
1142 if (cpu != 0)
1143 enable_x2apic();
1144
1145 /*
1146 * set up and load the per-CPU TSS
1147 */
1148 if (!oist->ist[0]) {
1149 char *estacks = per_cpu(exception_stacks, cpu);
1150
1151 for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1152 estacks += exception_stack_sizes[v];
1153 oist->ist[v] = t->x86_tss.ist[v] =
1154 (unsigned long)estacks;
1155 }
1156 }
1157
1158 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1159
1160 /*
1161 * <= is required because the CPU will access up to
1162 * 8 bits beyond the end of the IO permission bitmap.
1163 */
1164 for (i = 0; i <= IO_BITMAP_LONGS; i++)
1165 t->io_bitmap[i] = ~0UL;
1166
1167 atomic_inc(&init_mm.mm_count);
1168 me->active_mm = &init_mm;
1169 BUG_ON(me->mm);
1170 enter_lazy_tlb(&init_mm, me);
1171
1172 load_sp0(t, &current->thread);
1173 set_tss_desc(cpu, t);
1174 load_TR_desc();
1175 load_LDT(&init_mm.context);
1176
1177 #ifdef CONFIG_KGDB
1178 /*
1179 * If the kgdb is connected no debug regs should be altered. This
1180 * is only applicable when KGDB and a KGDB I/O module are built
1181 * into the kernel and you are using early debugging with
1182 * kgdbwait. KGDB will control the kernel HW breakpoint registers.
1183 */
1184 if (kgdb_connected && arch_kgdb_ops.correct_hw_break)
1185 arch_kgdb_ops.correct_hw_break();
1186 else
1187 #endif
1188 clear_all_debug_regs();
1189
1190 fpu_init();
1191
1192 raw_local_save_flags(kernel_eflags);
1193
1194 if (is_uv_system())
1195 uv_cpu_init();
1196 }
1197
1198 #else
1199
1200 void __cpuinit cpu_init(void)
1201 {
1202 int cpu = smp_processor_id();
1203 struct task_struct *curr = current;
1204 struct tss_struct *t = &per_cpu(init_tss, cpu);
1205 struct thread_struct *thread = &curr->thread;
1206
1207 if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask)) {
1208 printk(KERN_WARNING "CPU#%d already initialized!\n", cpu);
1209 for (;;)
1210 local_irq_enable();
1211 }
1212
1213 printk(KERN_INFO "Initializing CPU#%d\n", cpu);
1214
1215 if (cpu_has_vme || cpu_has_tsc || cpu_has_de)
1216 clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1217
1218 load_idt(&idt_descr);
1219 switch_to_new_gdt(cpu);
1220
1221 /*
1222 * Set up and load the per-CPU TSS and LDT
1223 */
1224 atomic_inc(&init_mm.mm_count);
1225 curr->active_mm = &init_mm;
1226 BUG_ON(curr->mm);
1227 enter_lazy_tlb(&init_mm, curr);
1228
1229 load_sp0(t, thread);
1230 set_tss_desc(cpu, t);
1231 load_TR_desc();
1232 load_LDT(&init_mm.context);
1233
1234 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1235
1236 #ifdef CONFIG_DOUBLEFAULT
1237 /* Set up doublefault TSS pointer in the GDT */
1238 __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1239 #endif
1240
1241 clear_all_debug_regs();
1242
1243 /*
1244 * Force FPU initialization:
1245 */
1246 current_thread_info()->status = 0;
1247 clear_used_math();
1248 mxcsr_feature_mask_init();
1249
1250 /*
1251 * Boot processor to setup the FP and extended state context info.
1252 */
1253 if (smp_processor_id() == boot_cpu_id)
1254 init_thread_xstate();
1255
1256 xsave_init();
1257 }
1258 #endif