]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kernel/cpu/common.c
x86/entry/64: Use a per-CPU trampoline stack for IDT entries
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kernel / cpu / common.c
1 #include <linux/bootmem.h>
2 #include <linux/linkage.h>
3 #include <linux/bitops.h>
4 #include <linux/kernel.h>
5 #include <linux/export.h>
6 #include <linux/percpu.h>
7 #include <linux/string.h>
8 #include <linux/ctype.h>
9 #include <linux/delay.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/clock.h>
12 #include <linux/sched/task.h>
13 #include <linux/init.h>
14 #include <linux/kprobes.h>
15 #include <linux/kgdb.h>
16 #include <linux/smp.h>
17 #include <linux/io.h>
18 #include <linux/syscore_ops.h>
19
20 #include <asm/stackprotector.h>
21 #include <asm/perf_event.h>
22 #include <asm/mmu_context.h>
23 #include <asm/archrandom.h>
24 #include <asm/hypervisor.h>
25 #include <asm/processor.h>
26 #include <asm/tlbflush.h>
27 #include <asm/debugreg.h>
28 #include <asm/sections.h>
29 #include <asm/vsyscall.h>
30 #include <linux/topology.h>
31 #include <linux/cpumask.h>
32 #include <asm/pgtable.h>
33 #include <linux/atomic.h>
34 #include <asm/proto.h>
35 #include <asm/setup.h>
36 #include <asm/apic.h>
37 #include <asm/desc.h>
38 #include <asm/fpu/internal.h>
39 #include <asm/mtrr.h>
40 #include <asm/hwcap2.h>
41 #include <linux/numa.h>
42 #include <asm/asm.h>
43 #include <asm/bugs.h>
44 #include <asm/cpu.h>
45 #include <asm/mce.h>
46 #include <asm/msr.h>
47 #include <asm/pat.h>
48 #include <asm/microcode.h>
49 #include <asm/microcode_intel.h>
50
51 #ifdef CONFIG_X86_LOCAL_APIC
52 #include <asm/uv/uv.h>
53 #endif
54
55 #include "cpu.h"
56
57 u32 elf_hwcap2 __read_mostly;
58
59 /* all of these masks are initialized in setup_cpu_local_masks() */
60 cpumask_var_t cpu_initialized_mask;
61 cpumask_var_t cpu_callout_mask;
62 cpumask_var_t cpu_callin_mask;
63
64 /* representing cpus for which sibling maps can be computed */
65 cpumask_var_t cpu_sibling_setup_mask;
66
67 /* correctly size the local cpu masks */
68 void __init setup_cpu_local_masks(void)
69 {
70 alloc_bootmem_cpumask_var(&cpu_initialized_mask);
71 alloc_bootmem_cpumask_var(&cpu_callin_mask);
72 alloc_bootmem_cpumask_var(&cpu_callout_mask);
73 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
74 }
75
76 static void default_init(struct cpuinfo_x86 *c)
77 {
78 #ifdef CONFIG_X86_64
79 cpu_detect_cache_sizes(c);
80 #else
81 /* Not much we can do here... */
82 /* Check if at least it has cpuid */
83 if (c->cpuid_level == -1) {
84 /* No cpuid. It must be an ancient CPU */
85 if (c->x86 == 4)
86 strcpy(c->x86_model_id, "486");
87 else if (c->x86 == 3)
88 strcpy(c->x86_model_id, "386");
89 }
90 #endif
91 }
92
93 static const struct cpu_dev default_cpu = {
94 .c_init = default_init,
95 .c_vendor = "Unknown",
96 .c_x86_vendor = X86_VENDOR_UNKNOWN,
97 };
98
99 static const struct cpu_dev *this_cpu = &default_cpu;
100
101 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
102 #ifdef CONFIG_X86_64
103 /*
104 * We need valid kernel segments for data and code in long mode too
105 * IRET will check the segment types kkeil 2000/10/28
106 * Also sysret mandates a special GDT layout
107 *
108 * TLS descriptors are currently at a different place compared to i386.
109 * Hopefully nobody expects them at a fixed place (Wine?)
110 */
111 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
112 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
113 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
114 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
115 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
116 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
117 #else
118 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
119 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
120 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
121 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
122 /*
123 * Segments used for calling PnP BIOS have byte granularity.
124 * They code segments and data segments have fixed 64k limits,
125 * the transfer segment sizes are set at run time.
126 */
127 /* 32-bit code */
128 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
129 /* 16-bit code */
130 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
131 /* 16-bit data */
132 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
133 /* 16-bit data */
134 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
135 /* 16-bit data */
136 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
137 /*
138 * The APM segments have byte granularity and their bases
139 * are set at run time. All have 64k limits.
140 */
141 /* 32-bit code */
142 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
143 /* 16-bit code */
144 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
145 /* data */
146 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
147
148 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
149 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
150 GDT_STACK_CANARY_INIT
151 #endif
152 } };
153 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
154
155 static int __init x86_mpx_setup(char *s)
156 {
157 /* require an exact match without trailing characters */
158 if (strlen(s))
159 return 0;
160
161 /* do not emit a message if the feature is not present */
162 if (!boot_cpu_has(X86_FEATURE_MPX))
163 return 1;
164
165 setup_clear_cpu_cap(X86_FEATURE_MPX);
166 pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n");
167 return 1;
168 }
169 __setup("nompx", x86_mpx_setup);
170
171 #ifdef CONFIG_X86_64
172 static int __init x86_nopcid_setup(char *s)
173 {
174 /* nopcid doesn't accept parameters */
175 if (s)
176 return -EINVAL;
177
178 /* do not emit a message if the feature is not present */
179 if (!boot_cpu_has(X86_FEATURE_PCID))
180 return 0;
181
182 setup_clear_cpu_cap(X86_FEATURE_PCID);
183 pr_info("nopcid: PCID feature disabled\n");
184 return 0;
185 }
186 early_param("nopcid", x86_nopcid_setup);
187 #endif
188
189 static int __init x86_noinvpcid_setup(char *s)
190 {
191 /* noinvpcid doesn't accept parameters */
192 if (s)
193 return -EINVAL;
194
195 /* do not emit a message if the feature is not present */
196 if (!boot_cpu_has(X86_FEATURE_INVPCID))
197 return 0;
198
199 setup_clear_cpu_cap(X86_FEATURE_INVPCID);
200 pr_info("noinvpcid: INVPCID feature disabled\n");
201 return 0;
202 }
203 early_param("noinvpcid", x86_noinvpcid_setup);
204
205 #ifdef CONFIG_X86_32
206 static int cachesize_override = -1;
207 static int disable_x86_serial_nr = 1;
208
209 static int __init cachesize_setup(char *str)
210 {
211 get_option(&str, &cachesize_override);
212 return 1;
213 }
214 __setup("cachesize=", cachesize_setup);
215
216 static int __init x86_sep_setup(char *s)
217 {
218 setup_clear_cpu_cap(X86_FEATURE_SEP);
219 return 1;
220 }
221 __setup("nosep", x86_sep_setup);
222
223 /* Standard macro to see if a specific flag is changeable */
224 static inline int flag_is_changeable_p(u32 flag)
225 {
226 u32 f1, f2;
227
228 /*
229 * Cyrix and IDT cpus allow disabling of CPUID
230 * so the code below may return different results
231 * when it is executed before and after enabling
232 * the CPUID. Add "volatile" to not allow gcc to
233 * optimize the subsequent calls to this function.
234 */
235 asm volatile ("pushfl \n\t"
236 "pushfl \n\t"
237 "popl %0 \n\t"
238 "movl %0, %1 \n\t"
239 "xorl %2, %0 \n\t"
240 "pushl %0 \n\t"
241 "popfl \n\t"
242 "pushfl \n\t"
243 "popl %0 \n\t"
244 "popfl \n\t"
245
246 : "=&r" (f1), "=&r" (f2)
247 : "ir" (flag));
248
249 return ((f1^f2) & flag) != 0;
250 }
251
252 /* Probe for the CPUID instruction */
253 int have_cpuid_p(void)
254 {
255 return flag_is_changeable_p(X86_EFLAGS_ID);
256 }
257
258 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
259 {
260 unsigned long lo, hi;
261
262 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
263 return;
264
265 /* Disable processor serial number: */
266
267 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
268 lo |= 0x200000;
269 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
270
271 pr_notice("CPU serial number disabled.\n");
272 clear_cpu_cap(c, X86_FEATURE_PN);
273
274 /* Disabling the serial number may affect the cpuid level */
275 c->cpuid_level = cpuid_eax(0);
276 }
277
278 static int __init x86_serial_nr_setup(char *s)
279 {
280 disable_x86_serial_nr = 0;
281 return 1;
282 }
283 __setup("serialnumber", x86_serial_nr_setup);
284 #else
285 static inline int flag_is_changeable_p(u32 flag)
286 {
287 return 1;
288 }
289 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
290 {
291 }
292 #endif
293
294 static __init int setup_disable_smep(char *arg)
295 {
296 setup_clear_cpu_cap(X86_FEATURE_SMEP);
297 /* Check for things that depend on SMEP being enabled: */
298 check_mpx_erratum(&boot_cpu_data);
299 return 1;
300 }
301 __setup("nosmep", setup_disable_smep);
302
303 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
304 {
305 if (cpu_has(c, X86_FEATURE_SMEP))
306 cr4_set_bits(X86_CR4_SMEP);
307 }
308
309 static __init int setup_disable_smap(char *arg)
310 {
311 setup_clear_cpu_cap(X86_FEATURE_SMAP);
312 return 1;
313 }
314 __setup("nosmap", setup_disable_smap);
315
316 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
317 {
318 unsigned long eflags = native_save_fl();
319
320 /* This should have been cleared long ago */
321 BUG_ON(eflags & X86_EFLAGS_AC);
322
323 if (cpu_has(c, X86_FEATURE_SMAP)) {
324 #ifdef CONFIG_X86_SMAP
325 cr4_set_bits(X86_CR4_SMAP);
326 #else
327 cr4_clear_bits(X86_CR4_SMAP);
328 #endif
329 }
330 }
331
332 /*
333 * Protection Keys are not available in 32-bit mode.
334 */
335 static bool pku_disabled;
336
337 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
338 {
339 /* check the boot processor, plus compile options for PKU: */
340 if (!cpu_feature_enabled(X86_FEATURE_PKU))
341 return;
342 /* checks the actual processor's cpuid bits: */
343 if (!cpu_has(c, X86_FEATURE_PKU))
344 return;
345 if (pku_disabled)
346 return;
347
348 cr4_set_bits(X86_CR4_PKE);
349 /*
350 * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
351 * cpuid bit to be set. We need to ensure that we
352 * update that bit in this CPU's "cpu_info".
353 */
354 get_cpu_cap(c);
355 }
356
357 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
358 static __init int setup_disable_pku(char *arg)
359 {
360 /*
361 * Do not clear the X86_FEATURE_PKU bit. All of the
362 * runtime checks are against OSPKE so clearing the
363 * bit does nothing.
364 *
365 * This way, we will see "pku" in cpuinfo, but not
366 * "ospke", which is exactly what we want. It shows
367 * that the CPU has PKU, but the OS has not enabled it.
368 * This happens to be exactly how a system would look
369 * if we disabled the config option.
370 */
371 pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
372 pku_disabled = true;
373 return 1;
374 }
375 __setup("nopku", setup_disable_pku);
376 #endif /* CONFIG_X86_64 */
377
378 /*
379 * Some CPU features depend on higher CPUID levels, which may not always
380 * be available due to CPUID level capping or broken virtualization
381 * software. Add those features to this table to auto-disable them.
382 */
383 struct cpuid_dependent_feature {
384 u32 feature;
385 u32 level;
386 };
387
388 static const struct cpuid_dependent_feature
389 cpuid_dependent_features[] = {
390 { X86_FEATURE_MWAIT, 0x00000005 },
391 { X86_FEATURE_DCA, 0x00000009 },
392 { X86_FEATURE_XSAVE, 0x0000000d },
393 { 0, 0 }
394 };
395
396 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
397 {
398 const struct cpuid_dependent_feature *df;
399
400 for (df = cpuid_dependent_features; df->feature; df++) {
401
402 if (!cpu_has(c, df->feature))
403 continue;
404 /*
405 * Note: cpuid_level is set to -1 if unavailable, but
406 * extended_extended_level is set to 0 if unavailable
407 * and the legitimate extended levels are all negative
408 * when signed; hence the weird messing around with
409 * signs here...
410 */
411 if (!((s32)df->level < 0 ?
412 (u32)df->level > (u32)c->extended_cpuid_level :
413 (s32)df->level > (s32)c->cpuid_level))
414 continue;
415
416 clear_cpu_cap(c, df->feature);
417 if (!warn)
418 continue;
419
420 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
421 x86_cap_flag(df->feature), df->level);
422 }
423 }
424
425 /*
426 * Naming convention should be: <Name> [(<Codename>)]
427 * This table only is used unless init_<vendor>() below doesn't set it;
428 * in particular, if CPUID levels 0x80000002..4 are supported, this
429 * isn't used
430 */
431
432 /* Look up CPU names by table lookup. */
433 static const char *table_lookup_model(struct cpuinfo_x86 *c)
434 {
435 #ifdef CONFIG_X86_32
436 const struct legacy_cpu_model_info *info;
437
438 if (c->x86_model >= 16)
439 return NULL; /* Range check */
440
441 if (!this_cpu)
442 return NULL;
443
444 info = this_cpu->legacy_models;
445
446 while (info->family) {
447 if (info->family == c->x86)
448 return info->model_names[c->x86_model];
449 info++;
450 }
451 #endif
452 return NULL; /* Not found */
453 }
454
455 __u32 cpu_caps_cleared[NCAPINTS];
456 __u32 cpu_caps_set[NCAPINTS];
457
458 void load_percpu_segment(int cpu)
459 {
460 #ifdef CONFIG_X86_32
461 loadsegment(fs, __KERNEL_PERCPU);
462 #else
463 __loadsegment_simple(gs, 0);
464 wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
465 #endif
466 load_stack_canary_segment();
467 }
468
469 static void set_percpu_fixmap_pages(int fixmap_index, void *ptr,
470 int pages, pgprot_t prot)
471 {
472 int i;
473
474 for (i = 0; i < pages; i++) {
475 __set_fixmap(fixmap_index - i,
476 per_cpu_ptr_to_phys(ptr + i * PAGE_SIZE), prot);
477 }
478 }
479
480 #ifdef CONFIG_X86_32
481 /* The 32-bit entry code needs to find cpu_entry_area. */
482 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
483 #endif
484
485 /* Setup the fixmap mappings only once per-processor */
486 static inline void setup_cpu_entry_area(int cpu)
487 {
488 #ifdef CONFIG_X86_64
489 /* On 64-bit systems, we use a read-only fixmap GDT. */
490 pgprot_t gdt_prot = PAGE_KERNEL_RO;
491 #else
492 /*
493 * On native 32-bit systems, the GDT cannot be read-only because
494 * our double fault handler uses a task gate, and entering through
495 * a task gate needs to change an available TSS to busy. If the GDT
496 * is read-only, that will triple fault.
497 *
498 * On Xen PV, the GDT must be read-only because the hypervisor requires
499 * it.
500 */
501 pgprot_t gdt_prot = boot_cpu_has(X86_FEATURE_XENPV) ?
502 PAGE_KERNEL_RO : PAGE_KERNEL;
503 #endif
504
505 __set_fixmap(get_cpu_entry_area_index(cpu, gdt), get_cpu_gdt_paddr(cpu), gdt_prot);
506
507 /*
508 * The Intel SDM says (Volume 3, 7.2.1):
509 *
510 * Avoid placing a page boundary in the part of the TSS that the
511 * processor reads during a task switch (the first 104 bytes). The
512 * processor may not correctly perform address translations if a
513 * boundary occurs in this area. During a task switch, the processor
514 * reads and writes into the first 104 bytes of each TSS (using
515 * contiguous physical addresses beginning with the physical address
516 * of the first byte of the TSS). So, after TSS access begins, if
517 * part of the 104 bytes is not physically contiguous, the processor
518 * will access incorrect information without generating a page-fault
519 * exception.
520 *
521 * There are also a lot of errata involving the TSS spanning a page
522 * boundary. Assert that we're not doing that.
523 */
524 BUILD_BUG_ON((offsetof(struct tss_struct, x86_tss) ^
525 offsetofend(struct tss_struct, x86_tss)) & PAGE_MASK);
526 BUILD_BUG_ON(sizeof(struct tss_struct) % PAGE_SIZE != 0);
527 set_percpu_fixmap_pages(get_cpu_entry_area_index(cpu, tss),
528 &per_cpu(cpu_tss, cpu),
529 sizeof(struct tss_struct) / PAGE_SIZE,
530 PAGE_KERNEL);
531
532 #ifdef CONFIG_X86_32
533 this_cpu_write(cpu_entry_area, get_cpu_entry_area(cpu));
534 #endif
535 }
536
537 /* Load the original GDT from the per-cpu structure */
538 void load_direct_gdt(int cpu)
539 {
540 struct desc_ptr gdt_descr;
541
542 gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
543 gdt_descr.size = GDT_SIZE - 1;
544 load_gdt(&gdt_descr);
545 }
546 EXPORT_SYMBOL_GPL(load_direct_gdt);
547
548 /* Load a fixmap remapping of the per-cpu GDT */
549 void load_fixmap_gdt(int cpu)
550 {
551 struct desc_ptr gdt_descr;
552
553 gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
554 gdt_descr.size = GDT_SIZE - 1;
555 load_gdt(&gdt_descr);
556 }
557 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
558
559 /*
560 * Current gdt points %fs at the "master" per-cpu area: after this,
561 * it's on the real one.
562 */
563 void switch_to_new_gdt(int cpu)
564 {
565 /* Load the original GDT */
566 load_direct_gdt(cpu);
567 /* Reload the per-cpu base */
568 load_percpu_segment(cpu);
569 }
570
571 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
572
573 static void get_model_name(struct cpuinfo_x86 *c)
574 {
575 unsigned int *v;
576 char *p, *q, *s;
577
578 if (c->extended_cpuid_level < 0x80000004)
579 return;
580
581 v = (unsigned int *)c->x86_model_id;
582 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
583 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
584 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
585 c->x86_model_id[48] = 0;
586
587 /* Trim whitespace */
588 p = q = s = &c->x86_model_id[0];
589
590 while (*p == ' ')
591 p++;
592
593 while (*p) {
594 /* Note the last non-whitespace index */
595 if (!isspace(*p))
596 s = q;
597
598 *q++ = *p++;
599 }
600
601 *(s + 1) = '\0';
602 }
603
604 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
605 {
606 unsigned int n, dummy, ebx, ecx, edx, l2size;
607
608 n = c->extended_cpuid_level;
609
610 if (n >= 0x80000005) {
611 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
612 c->x86_cache_size = (ecx>>24) + (edx>>24);
613 #ifdef CONFIG_X86_64
614 /* On K8 L1 TLB is inclusive, so don't count it */
615 c->x86_tlbsize = 0;
616 #endif
617 }
618
619 if (n < 0x80000006) /* Some chips just has a large L1. */
620 return;
621
622 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
623 l2size = ecx >> 16;
624
625 #ifdef CONFIG_X86_64
626 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
627 #else
628 /* do processor-specific cache resizing */
629 if (this_cpu->legacy_cache_size)
630 l2size = this_cpu->legacy_cache_size(c, l2size);
631
632 /* Allow user to override all this if necessary. */
633 if (cachesize_override != -1)
634 l2size = cachesize_override;
635
636 if (l2size == 0)
637 return; /* Again, no L2 cache is possible */
638 #endif
639
640 c->x86_cache_size = l2size;
641 }
642
643 u16 __read_mostly tlb_lli_4k[NR_INFO];
644 u16 __read_mostly tlb_lli_2m[NR_INFO];
645 u16 __read_mostly tlb_lli_4m[NR_INFO];
646 u16 __read_mostly tlb_lld_4k[NR_INFO];
647 u16 __read_mostly tlb_lld_2m[NR_INFO];
648 u16 __read_mostly tlb_lld_4m[NR_INFO];
649 u16 __read_mostly tlb_lld_1g[NR_INFO];
650
651 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
652 {
653 if (this_cpu->c_detect_tlb)
654 this_cpu->c_detect_tlb(c);
655
656 pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
657 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
658 tlb_lli_4m[ENTRIES]);
659
660 pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
661 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
662 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
663 }
664
665 void detect_ht(struct cpuinfo_x86 *c)
666 {
667 #ifdef CONFIG_SMP
668 u32 eax, ebx, ecx, edx;
669 int index_msb, core_bits;
670 static bool printed;
671
672 if (!cpu_has(c, X86_FEATURE_HT))
673 return;
674
675 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
676 goto out;
677
678 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
679 return;
680
681 cpuid(1, &eax, &ebx, &ecx, &edx);
682
683 smp_num_siblings = (ebx & 0xff0000) >> 16;
684
685 if (smp_num_siblings == 1) {
686 pr_info_once("CPU0: Hyper-Threading is disabled\n");
687 goto out;
688 }
689
690 if (smp_num_siblings <= 1)
691 goto out;
692
693 index_msb = get_count_order(smp_num_siblings);
694 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
695
696 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
697
698 index_msb = get_count_order(smp_num_siblings);
699
700 core_bits = get_count_order(c->x86_max_cores);
701
702 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
703 ((1 << core_bits) - 1);
704
705 out:
706 if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
707 pr_info("CPU: Physical Processor ID: %d\n",
708 c->phys_proc_id);
709 pr_info("CPU: Processor Core ID: %d\n",
710 c->cpu_core_id);
711 printed = 1;
712 }
713 #endif
714 }
715
716 static void get_cpu_vendor(struct cpuinfo_x86 *c)
717 {
718 char *v = c->x86_vendor_id;
719 int i;
720
721 for (i = 0; i < X86_VENDOR_NUM; i++) {
722 if (!cpu_devs[i])
723 break;
724
725 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
726 (cpu_devs[i]->c_ident[1] &&
727 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
728
729 this_cpu = cpu_devs[i];
730 c->x86_vendor = this_cpu->c_x86_vendor;
731 return;
732 }
733 }
734
735 pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
736 "CPU: Your system may be unstable.\n", v);
737
738 c->x86_vendor = X86_VENDOR_UNKNOWN;
739 this_cpu = &default_cpu;
740 }
741
742 void cpu_detect(struct cpuinfo_x86 *c)
743 {
744 /* Get vendor name */
745 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
746 (unsigned int *)&c->x86_vendor_id[0],
747 (unsigned int *)&c->x86_vendor_id[8],
748 (unsigned int *)&c->x86_vendor_id[4]);
749
750 c->x86 = 4;
751 /* Intel-defined flags: level 0x00000001 */
752 if (c->cpuid_level >= 0x00000001) {
753 u32 junk, tfms, cap0, misc;
754
755 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
756 c->x86 = x86_family(tfms);
757 c->x86_model = x86_model(tfms);
758 c->x86_mask = x86_stepping(tfms);
759
760 if (cap0 & (1<<19)) {
761 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
762 c->x86_cache_alignment = c->x86_clflush_size;
763 }
764 }
765 }
766
767 static void apply_forced_caps(struct cpuinfo_x86 *c)
768 {
769 int i;
770
771 for (i = 0; i < NCAPINTS; i++) {
772 c->x86_capability[i] &= ~cpu_caps_cleared[i];
773 c->x86_capability[i] |= cpu_caps_set[i];
774 }
775 }
776
777 void get_cpu_cap(struct cpuinfo_x86 *c)
778 {
779 u32 eax, ebx, ecx, edx;
780
781 /* Intel-defined flags: level 0x00000001 */
782 if (c->cpuid_level >= 0x00000001) {
783 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
784
785 c->x86_capability[CPUID_1_ECX] = ecx;
786 c->x86_capability[CPUID_1_EDX] = edx;
787 }
788
789 /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
790 if (c->cpuid_level >= 0x00000006)
791 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
792
793 /* Additional Intel-defined flags: level 0x00000007 */
794 if (c->cpuid_level >= 0x00000007) {
795 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
796 c->x86_capability[CPUID_7_0_EBX] = ebx;
797 c->x86_capability[CPUID_7_ECX] = ecx;
798 }
799
800 /* Extended state features: level 0x0000000d */
801 if (c->cpuid_level >= 0x0000000d) {
802 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
803
804 c->x86_capability[CPUID_D_1_EAX] = eax;
805 }
806
807 /* Additional Intel-defined flags: level 0x0000000F */
808 if (c->cpuid_level >= 0x0000000F) {
809
810 /* QoS sub-leaf, EAX=0Fh, ECX=0 */
811 cpuid_count(0x0000000F, 0, &eax, &ebx, &ecx, &edx);
812 c->x86_capability[CPUID_F_0_EDX] = edx;
813
814 if (cpu_has(c, X86_FEATURE_CQM_LLC)) {
815 /* will be overridden if occupancy monitoring exists */
816 c->x86_cache_max_rmid = ebx;
817
818 /* QoS sub-leaf, EAX=0Fh, ECX=1 */
819 cpuid_count(0x0000000F, 1, &eax, &ebx, &ecx, &edx);
820 c->x86_capability[CPUID_F_1_EDX] = edx;
821
822 if ((cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC)) ||
823 ((cpu_has(c, X86_FEATURE_CQM_MBM_TOTAL)) ||
824 (cpu_has(c, X86_FEATURE_CQM_MBM_LOCAL)))) {
825 c->x86_cache_max_rmid = ecx;
826 c->x86_cache_occ_scale = ebx;
827 }
828 } else {
829 c->x86_cache_max_rmid = -1;
830 c->x86_cache_occ_scale = -1;
831 }
832 }
833
834 /* AMD-defined flags: level 0x80000001 */
835 eax = cpuid_eax(0x80000000);
836 c->extended_cpuid_level = eax;
837
838 if ((eax & 0xffff0000) == 0x80000000) {
839 if (eax >= 0x80000001) {
840 cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
841
842 c->x86_capability[CPUID_8000_0001_ECX] = ecx;
843 c->x86_capability[CPUID_8000_0001_EDX] = edx;
844 }
845 }
846
847 if (c->extended_cpuid_level >= 0x80000007) {
848 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
849
850 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
851 c->x86_power = edx;
852 }
853
854 if (c->extended_cpuid_level >= 0x80000008) {
855 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
856
857 c->x86_virt_bits = (eax >> 8) & 0xff;
858 c->x86_phys_bits = eax & 0xff;
859 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
860 }
861 #ifdef CONFIG_X86_32
862 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
863 c->x86_phys_bits = 36;
864 #endif
865
866 if (c->extended_cpuid_level >= 0x8000000a)
867 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
868
869 init_scattered_cpuid_features(c);
870
871 /*
872 * Clear/Set all flags overridden by options, after probe.
873 * This needs to happen each time we re-probe, which may happen
874 * several times during CPU initialization.
875 */
876 apply_forced_caps(c);
877 }
878
879 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
880 {
881 #ifdef CONFIG_X86_32
882 int i;
883
884 /*
885 * First of all, decide if this is a 486 or higher
886 * It's a 486 if we can modify the AC flag
887 */
888 if (flag_is_changeable_p(X86_EFLAGS_AC))
889 c->x86 = 4;
890 else
891 c->x86 = 3;
892
893 for (i = 0; i < X86_VENDOR_NUM; i++)
894 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
895 c->x86_vendor_id[0] = 0;
896 cpu_devs[i]->c_identify(c);
897 if (c->x86_vendor_id[0]) {
898 get_cpu_vendor(c);
899 break;
900 }
901 }
902 #endif
903 }
904
905 /*
906 * Do minimum CPU detection early.
907 * Fields really needed: vendor, cpuid_level, family, model, mask,
908 * cache alignment.
909 * The others are not touched to avoid unwanted side effects.
910 *
911 * WARNING: this function is only called on the BP. Don't add code here
912 * that is supposed to run on all CPUs.
913 */
914 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
915 {
916 #ifdef CONFIG_X86_64
917 c->x86_clflush_size = 64;
918 c->x86_phys_bits = 36;
919 c->x86_virt_bits = 48;
920 #else
921 c->x86_clflush_size = 32;
922 c->x86_phys_bits = 32;
923 c->x86_virt_bits = 32;
924 #endif
925 c->x86_cache_alignment = c->x86_clflush_size;
926
927 memset(&c->x86_capability, 0, sizeof c->x86_capability);
928 c->extended_cpuid_level = 0;
929
930 /* cyrix could have cpuid enabled via c_identify()*/
931 if (have_cpuid_p()) {
932 cpu_detect(c);
933 get_cpu_vendor(c);
934 get_cpu_cap(c);
935 setup_force_cpu_cap(X86_FEATURE_CPUID);
936
937 if (this_cpu->c_early_init)
938 this_cpu->c_early_init(c);
939
940 c->cpu_index = 0;
941 filter_cpuid_features(c, false);
942
943 if (this_cpu->c_bsp_init)
944 this_cpu->c_bsp_init(c);
945 } else {
946 identify_cpu_without_cpuid(c);
947 setup_clear_cpu_cap(X86_FEATURE_CPUID);
948 }
949
950 setup_force_cpu_cap(X86_FEATURE_ALWAYS);
951 fpu__init_system(c);
952
953 #ifdef CONFIG_X86_32
954 /*
955 * Regardless of whether PCID is enumerated, the SDM says
956 * that it can't be enabled in 32-bit mode.
957 */
958 setup_clear_cpu_cap(X86_FEATURE_PCID);
959 #endif
960 }
961
962 void __init early_cpu_init(void)
963 {
964 const struct cpu_dev *const *cdev;
965 int count = 0;
966
967 #ifdef CONFIG_PROCESSOR_SELECT
968 pr_info("KERNEL supported cpus:\n");
969 #endif
970
971 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
972 const struct cpu_dev *cpudev = *cdev;
973
974 if (count >= X86_VENDOR_NUM)
975 break;
976 cpu_devs[count] = cpudev;
977 count++;
978
979 #ifdef CONFIG_PROCESSOR_SELECT
980 {
981 unsigned int j;
982
983 for (j = 0; j < 2; j++) {
984 if (!cpudev->c_ident[j])
985 continue;
986 pr_info(" %s %s\n", cpudev->c_vendor,
987 cpudev->c_ident[j]);
988 }
989 }
990 #endif
991 }
992 early_identify_cpu(&boot_cpu_data);
993 }
994
995 /*
996 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
997 * unfortunately, that's not true in practice because of early VIA
998 * chips and (more importantly) broken virtualizers that are not easy
999 * to detect. In the latter case it doesn't even *fail* reliably, so
1000 * probing for it doesn't even work. Disable it completely on 32-bit
1001 * unless we can find a reliable way to detect all the broken cases.
1002 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1003 */
1004 static void detect_nopl(struct cpuinfo_x86 *c)
1005 {
1006 #ifdef CONFIG_X86_32
1007 clear_cpu_cap(c, X86_FEATURE_NOPL);
1008 #else
1009 set_cpu_cap(c, X86_FEATURE_NOPL);
1010 #endif
1011 }
1012
1013 static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
1014 {
1015 #ifdef CONFIG_X86_64
1016 /*
1017 * Empirically, writing zero to a segment selector on AMD does
1018 * not clear the base, whereas writing zero to a segment
1019 * selector on Intel does clear the base. Intel's behavior
1020 * allows slightly faster context switches in the common case
1021 * where GS is unused by the prev and next threads.
1022 *
1023 * Since neither vendor documents this anywhere that I can see,
1024 * detect it directly instead of hardcoding the choice by
1025 * vendor.
1026 *
1027 * I've designated AMD's behavior as the "bug" because it's
1028 * counterintuitive and less friendly.
1029 */
1030
1031 unsigned long old_base, tmp;
1032 rdmsrl(MSR_FS_BASE, old_base);
1033 wrmsrl(MSR_FS_BASE, 1);
1034 loadsegment(fs, 0);
1035 rdmsrl(MSR_FS_BASE, tmp);
1036 if (tmp != 0)
1037 set_cpu_bug(c, X86_BUG_NULL_SEG);
1038 wrmsrl(MSR_FS_BASE, old_base);
1039 #endif
1040 }
1041
1042 static void generic_identify(struct cpuinfo_x86 *c)
1043 {
1044 c->extended_cpuid_level = 0;
1045
1046 if (!have_cpuid_p())
1047 identify_cpu_without_cpuid(c);
1048
1049 /* cyrix could have cpuid enabled via c_identify()*/
1050 if (!have_cpuid_p())
1051 return;
1052
1053 cpu_detect(c);
1054
1055 get_cpu_vendor(c);
1056
1057 get_cpu_cap(c);
1058
1059 if (c->cpuid_level >= 0x00000001) {
1060 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1061 #ifdef CONFIG_X86_32
1062 # ifdef CONFIG_SMP
1063 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1064 # else
1065 c->apicid = c->initial_apicid;
1066 # endif
1067 #endif
1068 c->phys_proc_id = c->initial_apicid;
1069 }
1070
1071 get_model_name(c); /* Default name */
1072
1073 detect_nopl(c);
1074
1075 detect_null_seg_behavior(c);
1076
1077 /*
1078 * ESPFIX is a strange bug. All real CPUs have it. Paravirt
1079 * systems that run Linux at CPL > 0 may or may not have the
1080 * issue, but, even if they have the issue, there's absolutely
1081 * nothing we can do about it because we can't use the real IRET
1082 * instruction.
1083 *
1084 * NB: For the time being, only 32-bit kernels support
1085 * X86_BUG_ESPFIX as such. 64-bit kernels directly choose
1086 * whether to apply espfix using paravirt hooks. If any
1087 * non-paravirt system ever shows up that does *not* have the
1088 * ESPFIX issue, we can change this.
1089 */
1090 #ifdef CONFIG_X86_32
1091 # ifdef CONFIG_PARAVIRT
1092 do {
1093 extern void native_iret(void);
1094 if (pv_cpu_ops.iret == native_iret)
1095 set_cpu_bug(c, X86_BUG_ESPFIX);
1096 } while (0);
1097 # else
1098 set_cpu_bug(c, X86_BUG_ESPFIX);
1099 # endif
1100 #endif
1101 }
1102
1103 static void x86_init_cache_qos(struct cpuinfo_x86 *c)
1104 {
1105 /*
1106 * The heavy lifting of max_rmid and cache_occ_scale are handled
1107 * in get_cpu_cap(). Here we just set the max_rmid for the boot_cpu
1108 * in case CQM bits really aren't there in this CPU.
1109 */
1110 if (c != &boot_cpu_data) {
1111 boot_cpu_data.x86_cache_max_rmid =
1112 min(boot_cpu_data.x86_cache_max_rmid,
1113 c->x86_cache_max_rmid);
1114 }
1115 }
1116
1117 /*
1118 * Validate that ACPI/mptables have the same information about the
1119 * effective APIC id and update the package map.
1120 */
1121 static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1122 {
1123 #ifdef CONFIG_SMP
1124 unsigned int apicid, cpu = smp_processor_id();
1125
1126 apicid = apic->cpu_present_to_apicid(cpu);
1127
1128 if (apicid != c->apicid) {
1129 pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1130 cpu, apicid, c->initial_apicid);
1131 }
1132 BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1133 #else
1134 c->logical_proc_id = 0;
1135 #endif
1136 }
1137
1138 /*
1139 * This does the hard work of actually picking apart the CPU stuff...
1140 */
1141 static void identify_cpu(struct cpuinfo_x86 *c)
1142 {
1143 int i;
1144
1145 c->loops_per_jiffy = loops_per_jiffy;
1146 c->x86_cache_size = -1;
1147 c->x86_vendor = X86_VENDOR_UNKNOWN;
1148 c->x86_model = c->x86_mask = 0; /* So far unknown... */
1149 c->x86_vendor_id[0] = '\0'; /* Unset */
1150 c->x86_model_id[0] = '\0'; /* Unset */
1151 c->x86_max_cores = 1;
1152 c->x86_coreid_bits = 0;
1153 c->cu_id = 0xff;
1154 #ifdef CONFIG_X86_64
1155 c->x86_clflush_size = 64;
1156 c->x86_phys_bits = 36;
1157 c->x86_virt_bits = 48;
1158 #else
1159 c->cpuid_level = -1; /* CPUID not detected */
1160 c->x86_clflush_size = 32;
1161 c->x86_phys_bits = 32;
1162 c->x86_virt_bits = 32;
1163 #endif
1164 c->x86_cache_alignment = c->x86_clflush_size;
1165 memset(&c->x86_capability, 0, sizeof c->x86_capability);
1166
1167 generic_identify(c);
1168
1169 if (this_cpu->c_identify)
1170 this_cpu->c_identify(c);
1171
1172 /* Clear/Set all flags overridden by options, after probe */
1173 apply_forced_caps(c);
1174
1175 #ifdef CONFIG_X86_64
1176 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1177 #endif
1178
1179 /*
1180 * Vendor-specific initialization. In this section we
1181 * canonicalize the feature flags, meaning if there are
1182 * features a certain CPU supports which CPUID doesn't
1183 * tell us, CPUID claiming incorrect flags, or other bugs,
1184 * we handle them here.
1185 *
1186 * At the end of this section, c->x86_capability better
1187 * indicate the features this CPU genuinely supports!
1188 */
1189 if (this_cpu->c_init)
1190 this_cpu->c_init(c);
1191
1192 /* Disable the PN if appropriate */
1193 squash_the_stupid_serial_number(c);
1194
1195 /* Set up SMEP/SMAP */
1196 setup_smep(c);
1197 setup_smap(c);
1198
1199 /*
1200 * The vendor-specific functions might have changed features.
1201 * Now we do "generic changes."
1202 */
1203
1204 /* Filter out anything that depends on CPUID levels we don't have */
1205 filter_cpuid_features(c, true);
1206
1207 /* If the model name is still unset, do table lookup. */
1208 if (!c->x86_model_id[0]) {
1209 const char *p;
1210 p = table_lookup_model(c);
1211 if (p)
1212 strcpy(c->x86_model_id, p);
1213 else
1214 /* Last resort... */
1215 sprintf(c->x86_model_id, "%02x/%02x",
1216 c->x86, c->x86_model);
1217 }
1218
1219 #ifdef CONFIG_X86_64
1220 detect_ht(c);
1221 #endif
1222
1223 x86_init_rdrand(c);
1224 x86_init_cache_qos(c);
1225 setup_pku(c);
1226
1227 /*
1228 * Clear/Set all flags overridden by options, need do it
1229 * before following smp all cpus cap AND.
1230 */
1231 apply_forced_caps(c);
1232
1233 /*
1234 * On SMP, boot_cpu_data holds the common feature set between
1235 * all CPUs; so make sure that we indicate which features are
1236 * common between the CPUs. The first time this routine gets
1237 * executed, c == &boot_cpu_data.
1238 */
1239 if (c != &boot_cpu_data) {
1240 /* AND the already accumulated flags with these */
1241 for (i = 0; i < NCAPINTS; i++)
1242 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1243
1244 /* OR, i.e. replicate the bug flags */
1245 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1246 c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1247 }
1248
1249 /* Init Machine Check Exception if available. */
1250 mcheck_cpu_init(c);
1251
1252 select_idle_routine(c);
1253
1254 #ifdef CONFIG_NUMA
1255 numa_add_cpu(smp_processor_id());
1256 #endif
1257 }
1258
1259 /*
1260 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1261 * on 32-bit kernels:
1262 */
1263 #ifdef CONFIG_X86_32
1264 void enable_sep_cpu(void)
1265 {
1266 struct tss_struct *tss;
1267 int cpu;
1268
1269 if (!boot_cpu_has(X86_FEATURE_SEP))
1270 return;
1271
1272 cpu = get_cpu();
1273 tss = &per_cpu(cpu_tss, cpu);
1274
1275 /*
1276 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1277 * see the big comment in struct x86_hw_tss's definition.
1278 */
1279
1280 tss->x86_tss.ss1 = __KERNEL_CS;
1281 wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1282
1283 wrmsr(MSR_IA32_SYSENTER_ESP,
1284 (unsigned long)&get_cpu_entry_area(cpu)->tss +
1285 offsetofend(struct tss_struct, SYSENTER_stack),
1286 0);
1287
1288 wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1289
1290 put_cpu();
1291 }
1292 #endif
1293
1294 void __init identify_boot_cpu(void)
1295 {
1296 identify_cpu(&boot_cpu_data);
1297 #ifdef CONFIG_X86_32
1298 sysenter_setup();
1299 enable_sep_cpu();
1300 #endif
1301 cpu_detect_tlb(&boot_cpu_data);
1302 }
1303
1304 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1305 {
1306 BUG_ON(c == &boot_cpu_data);
1307 identify_cpu(c);
1308 #ifdef CONFIG_X86_32
1309 enable_sep_cpu();
1310 #endif
1311 mtrr_ap_init();
1312 validate_apic_and_package_id(c);
1313 }
1314
1315 static __init int setup_noclflush(char *arg)
1316 {
1317 setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1318 setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1319 return 1;
1320 }
1321 __setup("noclflush", setup_noclflush);
1322
1323 void print_cpu_info(struct cpuinfo_x86 *c)
1324 {
1325 const char *vendor = NULL;
1326
1327 if (c->x86_vendor < X86_VENDOR_NUM) {
1328 vendor = this_cpu->c_vendor;
1329 } else {
1330 if (c->cpuid_level >= 0)
1331 vendor = c->x86_vendor_id;
1332 }
1333
1334 if (vendor && !strstr(c->x86_model_id, vendor))
1335 pr_cont("%s ", vendor);
1336
1337 if (c->x86_model_id[0])
1338 pr_cont("%s", c->x86_model_id);
1339 else
1340 pr_cont("%d86", c->x86);
1341
1342 pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1343
1344 if (c->x86_mask || c->cpuid_level >= 0)
1345 pr_cont(", stepping: 0x%x)\n", c->x86_mask);
1346 else
1347 pr_cont(")\n");
1348 }
1349
1350 /*
1351 * clearcpuid= was already parsed in fpu__init_parse_early_param.
1352 * But we need to keep a dummy __setup around otherwise it would
1353 * show up as an environment variable for init.
1354 */
1355 static __init int setup_clearcpuid(char *arg)
1356 {
1357 return 1;
1358 }
1359 __setup("clearcpuid=", setup_clearcpuid);
1360
1361 #ifdef CONFIG_X86_64
1362 DEFINE_PER_CPU_FIRST(union irq_stack_union,
1363 irq_stack_union) __aligned(PAGE_SIZE) __visible;
1364
1365 /*
1366 * The following percpu variables are hot. Align current_task to
1367 * cacheline size such that they fall in the same cacheline.
1368 */
1369 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1370 &init_task;
1371 EXPORT_PER_CPU_SYMBOL(current_task);
1372
1373 DEFINE_PER_CPU(char *, irq_stack_ptr) =
1374 init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE;
1375
1376 DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1377
1378 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1379 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1380
1381 /*
1382 * Special IST stacks which the CPU switches to when it calls
1383 * an IST-marked descriptor entry. Up to 7 stacks (hardware
1384 * limit), all of them are 4K, except the debug stack which
1385 * is 8K.
1386 */
1387 static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
1388 [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ,
1389 [DEBUG_STACK - 1] = DEBUG_STKSZ
1390 };
1391
1392 static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
1393 [(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]);
1394
1395 /* May not be marked __init: used by software suspend */
1396 void syscall_init(void)
1397 {
1398 int cpu = smp_processor_id();
1399
1400 wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1401 wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1402
1403 #ifdef CONFIG_IA32_EMULATION
1404 wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1405 /*
1406 * This only works on Intel CPUs.
1407 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1408 * This does not cause SYSENTER to jump to the wrong location, because
1409 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1410 */
1411 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1412 wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
1413 (unsigned long)&get_cpu_entry_area(cpu)->tss +
1414 offsetofend(struct tss_struct, SYSENTER_stack));
1415 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1416 #else
1417 wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1418 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1419 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1420 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1421 #endif
1422
1423 /* Flags to clear on syscall */
1424 wrmsrl(MSR_SYSCALL_MASK,
1425 X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1426 X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1427 }
1428
1429 /*
1430 * Copies of the original ist values from the tss are only accessed during
1431 * debugging, no special alignment required.
1432 */
1433 DEFINE_PER_CPU(struct orig_ist, orig_ist);
1434
1435 static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
1436 DEFINE_PER_CPU(int, debug_stack_usage);
1437
1438 int is_debug_stack(unsigned long addr)
1439 {
1440 return __this_cpu_read(debug_stack_usage) ||
1441 (addr <= __this_cpu_read(debug_stack_addr) &&
1442 addr > (__this_cpu_read(debug_stack_addr) - DEBUG_STKSZ));
1443 }
1444 NOKPROBE_SYMBOL(is_debug_stack);
1445
1446 DEFINE_PER_CPU(u32, debug_idt_ctr);
1447
1448 void debug_stack_set_zero(void)
1449 {
1450 this_cpu_inc(debug_idt_ctr);
1451 load_current_idt();
1452 }
1453 NOKPROBE_SYMBOL(debug_stack_set_zero);
1454
1455 void debug_stack_reset(void)
1456 {
1457 if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
1458 return;
1459 if (this_cpu_dec_return(debug_idt_ctr) == 0)
1460 load_current_idt();
1461 }
1462 NOKPROBE_SYMBOL(debug_stack_reset);
1463
1464 #else /* CONFIG_X86_64 */
1465
1466 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1467 EXPORT_PER_CPU_SYMBOL(current_task);
1468 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1469 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1470
1471 /*
1472 * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1473 * the top of the kernel stack. Use an extra percpu variable to track the
1474 * top of the kernel stack directly.
1475 */
1476 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1477 (unsigned long)&init_thread_union + THREAD_SIZE;
1478 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1479
1480 #ifdef CONFIG_CC_STACKPROTECTOR
1481 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1482 #endif
1483
1484 #endif /* CONFIG_X86_64 */
1485
1486 /*
1487 * Clear all 6 debug registers:
1488 */
1489 static void clear_all_debug_regs(void)
1490 {
1491 int i;
1492
1493 for (i = 0; i < 8; i++) {
1494 /* Ignore db4, db5 */
1495 if ((i == 4) || (i == 5))
1496 continue;
1497
1498 set_debugreg(0, i);
1499 }
1500 }
1501
1502 #ifdef CONFIG_KGDB
1503 /*
1504 * Restore debug regs if using kgdbwait and you have a kernel debugger
1505 * connection established.
1506 */
1507 static void dbg_restore_debug_regs(void)
1508 {
1509 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1510 arch_kgdb_ops.correct_hw_break();
1511 }
1512 #else /* ! CONFIG_KGDB */
1513 #define dbg_restore_debug_regs()
1514 #endif /* ! CONFIG_KGDB */
1515
1516 static void wait_for_master_cpu(int cpu)
1517 {
1518 #ifdef CONFIG_SMP
1519 /*
1520 * wait for ACK from master CPU before continuing
1521 * with AP initialization
1522 */
1523 WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1524 while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1525 cpu_relax();
1526 #endif
1527 }
1528
1529 /*
1530 * cpu_init() initializes state that is per-CPU. Some data is already
1531 * initialized (naturally) in the bootstrap process, such as the GDT
1532 * and IDT. We reload them nevertheless, this function acts as a
1533 * 'CPU state barrier', nothing should get across.
1534 * A lot of state is already set up in PDA init for 64 bit
1535 */
1536 #ifdef CONFIG_X86_64
1537
1538 void cpu_init(void)
1539 {
1540 struct orig_ist *oist;
1541 struct task_struct *me;
1542 struct tss_struct *t;
1543 unsigned long v;
1544 int cpu = raw_smp_processor_id();
1545 int i;
1546
1547 wait_for_master_cpu(cpu);
1548
1549 /*
1550 * Initialize the CR4 shadow before doing anything that could
1551 * try to read it.
1552 */
1553 cr4_init_shadow();
1554
1555 if (cpu)
1556 load_ucode_ap();
1557
1558 t = &per_cpu(cpu_tss, cpu);
1559 oist = &per_cpu(orig_ist, cpu);
1560
1561 #ifdef CONFIG_NUMA
1562 if (this_cpu_read(numa_node) == 0 &&
1563 early_cpu_to_node(cpu) != NUMA_NO_NODE)
1564 set_numa_node(early_cpu_to_node(cpu));
1565 #endif
1566
1567 me = current;
1568
1569 pr_debug("Initializing CPU#%d\n", cpu);
1570
1571 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1572
1573 /*
1574 * Initialize the per-CPU GDT with the boot GDT,
1575 * and set up the GDT descriptor:
1576 */
1577
1578 switch_to_new_gdt(cpu);
1579 loadsegment(fs, 0);
1580
1581 load_current_idt();
1582
1583 memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1584 syscall_init();
1585
1586 wrmsrl(MSR_FS_BASE, 0);
1587 wrmsrl(MSR_KERNEL_GS_BASE, 0);
1588 barrier();
1589
1590 x86_configure_nx();
1591 x2apic_setup();
1592
1593 /*
1594 * set up and load the per-CPU TSS
1595 */
1596 if (!oist->ist[0]) {
1597 char *estacks = per_cpu(exception_stacks, cpu);
1598
1599 for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1600 estacks += exception_stack_sizes[v];
1601 oist->ist[v] = t->x86_tss.ist[v] =
1602 (unsigned long)estacks;
1603 if (v == DEBUG_STACK-1)
1604 per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
1605 }
1606 }
1607
1608 t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
1609
1610 /*
1611 * <= is required because the CPU will access up to
1612 * 8 bits beyond the end of the IO permission bitmap.
1613 */
1614 for (i = 0; i <= IO_BITMAP_LONGS; i++)
1615 t->io_bitmap[i] = ~0UL;
1616
1617 mmgrab(&init_mm);
1618 me->active_mm = &init_mm;
1619 BUG_ON(me->mm);
1620 initialize_tlbstate_and_flush();
1621 enter_lazy_tlb(&init_mm, me);
1622
1623 setup_cpu_entry_area(cpu);
1624
1625 /*
1626 * Initialize the TSS. sp0 points to the entry trampoline stack
1627 * regardless of what task is running.
1628 */
1629 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1630 load_TR_desc();
1631 load_sp0((unsigned long)&get_cpu_entry_area(cpu)->tss +
1632 offsetofend(struct tss_struct, SYSENTER_stack));
1633
1634 load_mm_ldt(&init_mm);
1635
1636 clear_all_debug_regs();
1637 dbg_restore_debug_regs();
1638
1639 fpu__init_cpu();
1640
1641 if (is_uv_system())
1642 uv_cpu_init();
1643
1644 load_fixmap_gdt(cpu);
1645 }
1646
1647 #else
1648
1649 void cpu_init(void)
1650 {
1651 int cpu = smp_processor_id();
1652 struct task_struct *curr = current;
1653 struct tss_struct *t = &per_cpu(cpu_tss, cpu);
1654
1655 wait_for_master_cpu(cpu);
1656
1657 /*
1658 * Initialize the CR4 shadow before doing anything that could
1659 * try to read it.
1660 */
1661 cr4_init_shadow();
1662
1663 show_ucode_info_early();
1664
1665 pr_info("Initializing CPU#%d\n", cpu);
1666
1667 if (cpu_feature_enabled(X86_FEATURE_VME) ||
1668 boot_cpu_has(X86_FEATURE_TSC) ||
1669 boot_cpu_has(X86_FEATURE_DE))
1670 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1671
1672 load_current_idt();
1673 switch_to_new_gdt(cpu);
1674
1675 /*
1676 * Set up and load the per-CPU TSS and LDT
1677 */
1678 mmgrab(&init_mm);
1679 curr->active_mm = &init_mm;
1680 BUG_ON(curr->mm);
1681 initialize_tlbstate_and_flush();
1682 enter_lazy_tlb(&init_mm, curr);
1683
1684 setup_cpu_entry_area(cpu);
1685
1686 /*
1687 * Initialize the TSS. Don't bother initializing sp0, as the initial
1688 * task never enters user mode.
1689 */
1690 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1691 load_TR_desc();
1692
1693 load_mm_ldt(&init_mm);
1694
1695 t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
1696
1697 #ifdef CONFIG_DOUBLEFAULT
1698 /* Set up doublefault TSS pointer in the GDT */
1699 __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1700 #endif
1701
1702 clear_all_debug_regs();
1703 dbg_restore_debug_regs();
1704
1705 fpu__init_cpu();
1706
1707 load_fixmap_gdt(cpu);
1708 }
1709 #endif
1710
1711 static void bsp_resume(void)
1712 {
1713 if (this_cpu->c_bsp_resume)
1714 this_cpu->c_bsp_resume(&boot_cpu_data);
1715 }
1716
1717 static struct syscore_ops cpu_syscore_ops = {
1718 .resume = bsp_resume,
1719 };
1720
1721 static int __init init_cpu_syscore(void)
1722 {
1723 register_syscore_ops(&cpu_syscore_ops);
1724 return 0;
1725 }
1726 core_initcall(init_cpu_syscore);