]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kernel/cpu/common.c
x86/entry/64: Make cpu_entry_area.tss read-only
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / cpu / common.c
1 #include <linux/bootmem.h>
2 #include <linux/linkage.h>
3 #include <linux/bitops.h>
4 #include <linux/kernel.h>
5 #include <linux/export.h>
6 #include <linux/percpu.h>
7 #include <linux/string.h>
8 #include <linux/ctype.h>
9 #include <linux/delay.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/clock.h>
12 #include <linux/sched/task.h>
13 #include <linux/init.h>
14 #include <linux/kprobes.h>
15 #include <linux/kgdb.h>
16 #include <linux/smp.h>
17 #include <linux/io.h>
18 #include <linux/syscore_ops.h>
19
20 #include <asm/stackprotector.h>
21 #include <asm/perf_event.h>
22 #include <asm/mmu_context.h>
23 #include <asm/archrandom.h>
24 #include <asm/hypervisor.h>
25 #include <asm/processor.h>
26 #include <asm/tlbflush.h>
27 #include <asm/debugreg.h>
28 #include <asm/sections.h>
29 #include <asm/vsyscall.h>
30 #include <linux/topology.h>
31 #include <linux/cpumask.h>
32 #include <asm/pgtable.h>
33 #include <linux/atomic.h>
34 #include <asm/proto.h>
35 #include <asm/setup.h>
36 #include <asm/apic.h>
37 #include <asm/desc.h>
38 #include <asm/fpu/internal.h>
39 #include <asm/mtrr.h>
40 #include <asm/hwcap2.h>
41 #include <linux/numa.h>
42 #include <asm/asm.h>
43 #include <asm/bugs.h>
44 #include <asm/cpu.h>
45 #include <asm/mce.h>
46 #include <asm/msr.h>
47 #include <asm/pat.h>
48 #include <asm/microcode.h>
49 #include <asm/microcode_intel.h>
50
51 #ifdef CONFIG_X86_LOCAL_APIC
52 #include <asm/uv/uv.h>
53 #endif
54
55 #include "cpu.h"
56
57 u32 elf_hwcap2 __read_mostly;
58
59 /* all of these masks are initialized in setup_cpu_local_masks() */
60 cpumask_var_t cpu_initialized_mask;
61 cpumask_var_t cpu_callout_mask;
62 cpumask_var_t cpu_callin_mask;
63
64 /* representing cpus for which sibling maps can be computed */
65 cpumask_var_t cpu_sibling_setup_mask;
66
67 /* correctly size the local cpu masks */
68 void __init setup_cpu_local_masks(void)
69 {
70 alloc_bootmem_cpumask_var(&cpu_initialized_mask);
71 alloc_bootmem_cpumask_var(&cpu_callin_mask);
72 alloc_bootmem_cpumask_var(&cpu_callout_mask);
73 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
74 }
75
76 static void default_init(struct cpuinfo_x86 *c)
77 {
78 #ifdef CONFIG_X86_64
79 cpu_detect_cache_sizes(c);
80 #else
81 /* Not much we can do here... */
82 /* Check if at least it has cpuid */
83 if (c->cpuid_level == -1) {
84 /* No cpuid. It must be an ancient CPU */
85 if (c->x86 == 4)
86 strcpy(c->x86_model_id, "486");
87 else if (c->x86 == 3)
88 strcpy(c->x86_model_id, "386");
89 }
90 #endif
91 }
92
93 static const struct cpu_dev default_cpu = {
94 .c_init = default_init,
95 .c_vendor = "Unknown",
96 .c_x86_vendor = X86_VENDOR_UNKNOWN,
97 };
98
99 static const struct cpu_dev *this_cpu = &default_cpu;
100
101 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
102 #ifdef CONFIG_X86_64
103 /*
104 * We need valid kernel segments for data and code in long mode too
105 * IRET will check the segment types kkeil 2000/10/28
106 * Also sysret mandates a special GDT layout
107 *
108 * TLS descriptors are currently at a different place compared to i386.
109 * Hopefully nobody expects them at a fixed place (Wine?)
110 */
111 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
112 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
113 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
114 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
115 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
116 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
117 #else
118 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
119 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
120 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
121 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
122 /*
123 * Segments used for calling PnP BIOS have byte granularity.
124 * They code segments and data segments have fixed 64k limits,
125 * the transfer segment sizes are set at run time.
126 */
127 /* 32-bit code */
128 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
129 /* 16-bit code */
130 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
131 /* 16-bit data */
132 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
133 /* 16-bit data */
134 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
135 /* 16-bit data */
136 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
137 /*
138 * The APM segments have byte granularity and their bases
139 * are set at run time. All have 64k limits.
140 */
141 /* 32-bit code */
142 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
143 /* 16-bit code */
144 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
145 /* data */
146 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
147
148 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
149 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
150 GDT_STACK_CANARY_INIT
151 #endif
152 } };
153 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
154
155 static int __init x86_mpx_setup(char *s)
156 {
157 /* require an exact match without trailing characters */
158 if (strlen(s))
159 return 0;
160
161 /* do not emit a message if the feature is not present */
162 if (!boot_cpu_has(X86_FEATURE_MPX))
163 return 1;
164
165 setup_clear_cpu_cap(X86_FEATURE_MPX);
166 pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n");
167 return 1;
168 }
169 __setup("nompx", x86_mpx_setup);
170
171 #ifdef CONFIG_X86_64
172 static int __init x86_nopcid_setup(char *s)
173 {
174 /* nopcid doesn't accept parameters */
175 if (s)
176 return -EINVAL;
177
178 /* do not emit a message if the feature is not present */
179 if (!boot_cpu_has(X86_FEATURE_PCID))
180 return 0;
181
182 setup_clear_cpu_cap(X86_FEATURE_PCID);
183 pr_info("nopcid: PCID feature disabled\n");
184 return 0;
185 }
186 early_param("nopcid", x86_nopcid_setup);
187 #endif
188
189 static int __init x86_noinvpcid_setup(char *s)
190 {
191 /* noinvpcid doesn't accept parameters */
192 if (s)
193 return -EINVAL;
194
195 /* do not emit a message if the feature is not present */
196 if (!boot_cpu_has(X86_FEATURE_INVPCID))
197 return 0;
198
199 setup_clear_cpu_cap(X86_FEATURE_INVPCID);
200 pr_info("noinvpcid: INVPCID feature disabled\n");
201 return 0;
202 }
203 early_param("noinvpcid", x86_noinvpcid_setup);
204
205 #ifdef CONFIG_X86_32
206 static int cachesize_override = -1;
207 static int disable_x86_serial_nr = 1;
208
209 static int __init cachesize_setup(char *str)
210 {
211 get_option(&str, &cachesize_override);
212 return 1;
213 }
214 __setup("cachesize=", cachesize_setup);
215
216 static int __init x86_sep_setup(char *s)
217 {
218 setup_clear_cpu_cap(X86_FEATURE_SEP);
219 return 1;
220 }
221 __setup("nosep", x86_sep_setup);
222
223 /* Standard macro to see if a specific flag is changeable */
224 static inline int flag_is_changeable_p(u32 flag)
225 {
226 u32 f1, f2;
227
228 /*
229 * Cyrix and IDT cpus allow disabling of CPUID
230 * so the code below may return different results
231 * when it is executed before and after enabling
232 * the CPUID. Add "volatile" to not allow gcc to
233 * optimize the subsequent calls to this function.
234 */
235 asm volatile ("pushfl \n\t"
236 "pushfl \n\t"
237 "popl %0 \n\t"
238 "movl %0, %1 \n\t"
239 "xorl %2, %0 \n\t"
240 "pushl %0 \n\t"
241 "popfl \n\t"
242 "pushfl \n\t"
243 "popl %0 \n\t"
244 "popfl \n\t"
245
246 : "=&r" (f1), "=&r" (f2)
247 : "ir" (flag));
248
249 return ((f1^f2) & flag) != 0;
250 }
251
252 /* Probe for the CPUID instruction */
253 int have_cpuid_p(void)
254 {
255 return flag_is_changeable_p(X86_EFLAGS_ID);
256 }
257
258 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
259 {
260 unsigned long lo, hi;
261
262 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
263 return;
264
265 /* Disable processor serial number: */
266
267 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
268 lo |= 0x200000;
269 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
270
271 pr_notice("CPU serial number disabled.\n");
272 clear_cpu_cap(c, X86_FEATURE_PN);
273
274 /* Disabling the serial number may affect the cpuid level */
275 c->cpuid_level = cpuid_eax(0);
276 }
277
278 static int __init x86_serial_nr_setup(char *s)
279 {
280 disable_x86_serial_nr = 0;
281 return 1;
282 }
283 __setup("serialnumber", x86_serial_nr_setup);
284 #else
285 static inline int flag_is_changeable_p(u32 flag)
286 {
287 return 1;
288 }
289 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
290 {
291 }
292 #endif
293
294 static __init int setup_disable_smep(char *arg)
295 {
296 setup_clear_cpu_cap(X86_FEATURE_SMEP);
297 /* Check for things that depend on SMEP being enabled: */
298 check_mpx_erratum(&boot_cpu_data);
299 return 1;
300 }
301 __setup("nosmep", setup_disable_smep);
302
303 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
304 {
305 if (cpu_has(c, X86_FEATURE_SMEP))
306 cr4_set_bits(X86_CR4_SMEP);
307 }
308
309 static __init int setup_disable_smap(char *arg)
310 {
311 setup_clear_cpu_cap(X86_FEATURE_SMAP);
312 return 1;
313 }
314 __setup("nosmap", setup_disable_smap);
315
316 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
317 {
318 unsigned long eflags = native_save_fl();
319
320 /* This should have been cleared long ago */
321 BUG_ON(eflags & X86_EFLAGS_AC);
322
323 if (cpu_has(c, X86_FEATURE_SMAP)) {
324 #ifdef CONFIG_X86_SMAP
325 cr4_set_bits(X86_CR4_SMAP);
326 #else
327 cr4_clear_bits(X86_CR4_SMAP);
328 #endif
329 }
330 }
331
332 /*
333 * Protection Keys are not available in 32-bit mode.
334 */
335 static bool pku_disabled;
336
337 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
338 {
339 /* check the boot processor, plus compile options for PKU: */
340 if (!cpu_feature_enabled(X86_FEATURE_PKU))
341 return;
342 /* checks the actual processor's cpuid bits: */
343 if (!cpu_has(c, X86_FEATURE_PKU))
344 return;
345 if (pku_disabled)
346 return;
347
348 cr4_set_bits(X86_CR4_PKE);
349 /*
350 * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
351 * cpuid bit to be set. We need to ensure that we
352 * update that bit in this CPU's "cpu_info".
353 */
354 get_cpu_cap(c);
355 }
356
357 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
358 static __init int setup_disable_pku(char *arg)
359 {
360 /*
361 * Do not clear the X86_FEATURE_PKU bit. All of the
362 * runtime checks are against OSPKE so clearing the
363 * bit does nothing.
364 *
365 * This way, we will see "pku" in cpuinfo, but not
366 * "ospke", which is exactly what we want. It shows
367 * that the CPU has PKU, but the OS has not enabled it.
368 * This happens to be exactly how a system would look
369 * if we disabled the config option.
370 */
371 pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
372 pku_disabled = true;
373 return 1;
374 }
375 __setup("nopku", setup_disable_pku);
376 #endif /* CONFIG_X86_64 */
377
378 /*
379 * Some CPU features depend on higher CPUID levels, which may not always
380 * be available due to CPUID level capping or broken virtualization
381 * software. Add those features to this table to auto-disable them.
382 */
383 struct cpuid_dependent_feature {
384 u32 feature;
385 u32 level;
386 };
387
388 static const struct cpuid_dependent_feature
389 cpuid_dependent_features[] = {
390 { X86_FEATURE_MWAIT, 0x00000005 },
391 { X86_FEATURE_DCA, 0x00000009 },
392 { X86_FEATURE_XSAVE, 0x0000000d },
393 { 0, 0 }
394 };
395
396 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
397 {
398 const struct cpuid_dependent_feature *df;
399
400 for (df = cpuid_dependent_features; df->feature; df++) {
401
402 if (!cpu_has(c, df->feature))
403 continue;
404 /*
405 * Note: cpuid_level is set to -1 if unavailable, but
406 * extended_extended_level is set to 0 if unavailable
407 * and the legitimate extended levels are all negative
408 * when signed; hence the weird messing around with
409 * signs here...
410 */
411 if (!((s32)df->level < 0 ?
412 (u32)df->level > (u32)c->extended_cpuid_level :
413 (s32)df->level > (s32)c->cpuid_level))
414 continue;
415
416 clear_cpu_cap(c, df->feature);
417 if (!warn)
418 continue;
419
420 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
421 x86_cap_flag(df->feature), df->level);
422 }
423 }
424
425 /*
426 * Naming convention should be: <Name> [(<Codename>)]
427 * This table only is used unless init_<vendor>() below doesn't set it;
428 * in particular, if CPUID levels 0x80000002..4 are supported, this
429 * isn't used
430 */
431
432 /* Look up CPU names by table lookup. */
433 static const char *table_lookup_model(struct cpuinfo_x86 *c)
434 {
435 #ifdef CONFIG_X86_32
436 const struct legacy_cpu_model_info *info;
437
438 if (c->x86_model >= 16)
439 return NULL; /* Range check */
440
441 if (!this_cpu)
442 return NULL;
443
444 info = this_cpu->legacy_models;
445
446 while (info->family) {
447 if (info->family == c->x86)
448 return info->model_names[c->x86_model];
449 info++;
450 }
451 #endif
452 return NULL; /* Not found */
453 }
454
455 __u32 cpu_caps_cleared[NCAPINTS];
456 __u32 cpu_caps_set[NCAPINTS];
457
458 void load_percpu_segment(int cpu)
459 {
460 #ifdef CONFIG_X86_32
461 loadsegment(fs, __KERNEL_PERCPU);
462 #else
463 __loadsegment_simple(gs, 0);
464 wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
465 #endif
466 load_stack_canary_segment();
467 }
468
469 #ifdef CONFIG_X86_32
470 /* The 32-bit entry code needs to find cpu_entry_area. */
471 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
472 #endif
473
474 #ifdef CONFIG_X86_64
475 /*
476 * Special IST stacks which the CPU switches to when it calls
477 * an IST-marked descriptor entry. Up to 7 stacks (hardware
478 * limit), all of them are 4K, except the debug stack which
479 * is 8K.
480 */
481 static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
482 [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ,
483 [DEBUG_STACK - 1] = DEBUG_STKSZ
484 };
485
486 static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
487 [(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]);
488 #endif
489
490 static DEFINE_PER_CPU_PAGE_ALIGNED(struct SYSENTER_stack_page,
491 SYSENTER_stack_storage);
492
493 static void __init
494 set_percpu_fixmap_pages(int idx, void *ptr, int pages, pgprot_t prot)
495 {
496 for ( ; pages; pages--, idx--, ptr += PAGE_SIZE)
497 __set_fixmap(idx, per_cpu_ptr_to_phys(ptr), prot);
498 }
499
500 /* Setup the fixmap mappings only once per-processor */
501 static void __init setup_cpu_entry_area(int cpu)
502 {
503 #ifdef CONFIG_X86_64
504 extern char _entry_trampoline[];
505
506 /* On 64-bit systems, we use a read-only fixmap GDT and TSS. */
507 pgprot_t gdt_prot = PAGE_KERNEL_RO;
508 pgprot_t tss_prot = PAGE_KERNEL_RO;
509 #else
510 /*
511 * On native 32-bit systems, the GDT cannot be read-only because
512 * our double fault handler uses a task gate, and entering through
513 * a task gate needs to change an available TSS to busy. If the
514 * GDT is read-only, that will triple fault. The TSS cannot be
515 * read-only because the CPU writes to it on task switches.
516 *
517 * On Xen PV, the GDT must be read-only because the hypervisor
518 * requires it.
519 */
520 pgprot_t gdt_prot = boot_cpu_has(X86_FEATURE_XENPV) ?
521 PAGE_KERNEL_RO : PAGE_KERNEL;
522 pgprot_t tss_prot = PAGE_KERNEL;
523 #endif
524
525 __set_fixmap(get_cpu_entry_area_index(cpu, gdt), get_cpu_gdt_paddr(cpu), gdt_prot);
526 set_percpu_fixmap_pages(get_cpu_entry_area_index(cpu, SYSENTER_stack_page),
527 per_cpu_ptr(&SYSENTER_stack_storage, cpu), 1,
528 PAGE_KERNEL);
529
530 /*
531 * The Intel SDM says (Volume 3, 7.2.1):
532 *
533 * Avoid placing a page boundary in the part of the TSS that the
534 * processor reads during a task switch (the first 104 bytes). The
535 * processor may not correctly perform address translations if a
536 * boundary occurs in this area. During a task switch, the processor
537 * reads and writes into the first 104 bytes of each TSS (using
538 * contiguous physical addresses beginning with the physical address
539 * of the first byte of the TSS). So, after TSS access begins, if
540 * part of the 104 bytes is not physically contiguous, the processor
541 * will access incorrect information without generating a page-fault
542 * exception.
543 *
544 * There are also a lot of errata involving the TSS spanning a page
545 * boundary. Assert that we're not doing that.
546 */
547 BUILD_BUG_ON((offsetof(struct tss_struct, x86_tss) ^
548 offsetofend(struct tss_struct, x86_tss)) & PAGE_MASK);
549 BUILD_BUG_ON(sizeof(struct tss_struct) % PAGE_SIZE != 0);
550 set_percpu_fixmap_pages(get_cpu_entry_area_index(cpu, tss),
551 &per_cpu(cpu_tss_rw, cpu),
552 sizeof(struct tss_struct) / PAGE_SIZE,
553 tss_prot);
554
555 #ifdef CONFIG_X86_32
556 per_cpu(cpu_entry_area, cpu) = get_cpu_entry_area(cpu);
557 #endif
558
559 #ifdef CONFIG_X86_64
560 BUILD_BUG_ON(sizeof(exception_stacks) % PAGE_SIZE != 0);
561 BUILD_BUG_ON(sizeof(exception_stacks) !=
562 sizeof(((struct cpu_entry_area *)0)->exception_stacks));
563 set_percpu_fixmap_pages(get_cpu_entry_area_index(cpu, exception_stacks),
564 &per_cpu(exception_stacks, cpu),
565 sizeof(exception_stacks) / PAGE_SIZE,
566 PAGE_KERNEL);
567
568 __set_fixmap(get_cpu_entry_area_index(cpu, entry_trampoline),
569 __pa_symbol(_entry_trampoline), PAGE_KERNEL_RX);
570 #endif
571 }
572
573 void __init setup_cpu_entry_areas(void)
574 {
575 unsigned int cpu;
576
577 for_each_possible_cpu(cpu)
578 setup_cpu_entry_area(cpu);
579 }
580
581 /* Load the original GDT from the per-cpu structure */
582 void load_direct_gdt(int cpu)
583 {
584 struct desc_ptr gdt_descr;
585
586 gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
587 gdt_descr.size = GDT_SIZE - 1;
588 load_gdt(&gdt_descr);
589 }
590 EXPORT_SYMBOL_GPL(load_direct_gdt);
591
592 /* Load a fixmap remapping of the per-cpu GDT */
593 void load_fixmap_gdt(int cpu)
594 {
595 struct desc_ptr gdt_descr;
596
597 gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
598 gdt_descr.size = GDT_SIZE - 1;
599 load_gdt(&gdt_descr);
600 }
601 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
602
603 /*
604 * Current gdt points %fs at the "master" per-cpu area: after this,
605 * it's on the real one.
606 */
607 void switch_to_new_gdt(int cpu)
608 {
609 /* Load the original GDT */
610 load_direct_gdt(cpu);
611 /* Reload the per-cpu base */
612 load_percpu_segment(cpu);
613 }
614
615 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
616
617 static void get_model_name(struct cpuinfo_x86 *c)
618 {
619 unsigned int *v;
620 char *p, *q, *s;
621
622 if (c->extended_cpuid_level < 0x80000004)
623 return;
624
625 v = (unsigned int *)c->x86_model_id;
626 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
627 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
628 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
629 c->x86_model_id[48] = 0;
630
631 /* Trim whitespace */
632 p = q = s = &c->x86_model_id[0];
633
634 while (*p == ' ')
635 p++;
636
637 while (*p) {
638 /* Note the last non-whitespace index */
639 if (!isspace(*p))
640 s = q;
641
642 *q++ = *p++;
643 }
644
645 *(s + 1) = '\0';
646 }
647
648 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
649 {
650 unsigned int n, dummy, ebx, ecx, edx, l2size;
651
652 n = c->extended_cpuid_level;
653
654 if (n >= 0x80000005) {
655 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
656 c->x86_cache_size = (ecx>>24) + (edx>>24);
657 #ifdef CONFIG_X86_64
658 /* On K8 L1 TLB is inclusive, so don't count it */
659 c->x86_tlbsize = 0;
660 #endif
661 }
662
663 if (n < 0x80000006) /* Some chips just has a large L1. */
664 return;
665
666 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
667 l2size = ecx >> 16;
668
669 #ifdef CONFIG_X86_64
670 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
671 #else
672 /* do processor-specific cache resizing */
673 if (this_cpu->legacy_cache_size)
674 l2size = this_cpu->legacy_cache_size(c, l2size);
675
676 /* Allow user to override all this if necessary. */
677 if (cachesize_override != -1)
678 l2size = cachesize_override;
679
680 if (l2size == 0)
681 return; /* Again, no L2 cache is possible */
682 #endif
683
684 c->x86_cache_size = l2size;
685 }
686
687 u16 __read_mostly tlb_lli_4k[NR_INFO];
688 u16 __read_mostly tlb_lli_2m[NR_INFO];
689 u16 __read_mostly tlb_lli_4m[NR_INFO];
690 u16 __read_mostly tlb_lld_4k[NR_INFO];
691 u16 __read_mostly tlb_lld_2m[NR_INFO];
692 u16 __read_mostly tlb_lld_4m[NR_INFO];
693 u16 __read_mostly tlb_lld_1g[NR_INFO];
694
695 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
696 {
697 if (this_cpu->c_detect_tlb)
698 this_cpu->c_detect_tlb(c);
699
700 pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
701 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
702 tlb_lli_4m[ENTRIES]);
703
704 pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
705 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
706 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
707 }
708
709 void detect_ht(struct cpuinfo_x86 *c)
710 {
711 #ifdef CONFIG_SMP
712 u32 eax, ebx, ecx, edx;
713 int index_msb, core_bits;
714 static bool printed;
715
716 if (!cpu_has(c, X86_FEATURE_HT))
717 return;
718
719 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
720 goto out;
721
722 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
723 return;
724
725 cpuid(1, &eax, &ebx, &ecx, &edx);
726
727 smp_num_siblings = (ebx & 0xff0000) >> 16;
728
729 if (smp_num_siblings == 1) {
730 pr_info_once("CPU0: Hyper-Threading is disabled\n");
731 goto out;
732 }
733
734 if (smp_num_siblings <= 1)
735 goto out;
736
737 index_msb = get_count_order(smp_num_siblings);
738 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
739
740 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
741
742 index_msb = get_count_order(smp_num_siblings);
743
744 core_bits = get_count_order(c->x86_max_cores);
745
746 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
747 ((1 << core_bits) - 1);
748
749 out:
750 if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
751 pr_info("CPU: Physical Processor ID: %d\n",
752 c->phys_proc_id);
753 pr_info("CPU: Processor Core ID: %d\n",
754 c->cpu_core_id);
755 printed = 1;
756 }
757 #endif
758 }
759
760 static void get_cpu_vendor(struct cpuinfo_x86 *c)
761 {
762 char *v = c->x86_vendor_id;
763 int i;
764
765 for (i = 0; i < X86_VENDOR_NUM; i++) {
766 if (!cpu_devs[i])
767 break;
768
769 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
770 (cpu_devs[i]->c_ident[1] &&
771 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
772
773 this_cpu = cpu_devs[i];
774 c->x86_vendor = this_cpu->c_x86_vendor;
775 return;
776 }
777 }
778
779 pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
780 "CPU: Your system may be unstable.\n", v);
781
782 c->x86_vendor = X86_VENDOR_UNKNOWN;
783 this_cpu = &default_cpu;
784 }
785
786 void cpu_detect(struct cpuinfo_x86 *c)
787 {
788 /* Get vendor name */
789 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
790 (unsigned int *)&c->x86_vendor_id[0],
791 (unsigned int *)&c->x86_vendor_id[8],
792 (unsigned int *)&c->x86_vendor_id[4]);
793
794 c->x86 = 4;
795 /* Intel-defined flags: level 0x00000001 */
796 if (c->cpuid_level >= 0x00000001) {
797 u32 junk, tfms, cap0, misc;
798
799 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
800 c->x86 = x86_family(tfms);
801 c->x86_model = x86_model(tfms);
802 c->x86_mask = x86_stepping(tfms);
803
804 if (cap0 & (1<<19)) {
805 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
806 c->x86_cache_alignment = c->x86_clflush_size;
807 }
808 }
809 }
810
811 static void apply_forced_caps(struct cpuinfo_x86 *c)
812 {
813 int i;
814
815 for (i = 0; i < NCAPINTS; i++) {
816 c->x86_capability[i] &= ~cpu_caps_cleared[i];
817 c->x86_capability[i] |= cpu_caps_set[i];
818 }
819 }
820
821 void get_cpu_cap(struct cpuinfo_x86 *c)
822 {
823 u32 eax, ebx, ecx, edx;
824
825 /* Intel-defined flags: level 0x00000001 */
826 if (c->cpuid_level >= 0x00000001) {
827 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
828
829 c->x86_capability[CPUID_1_ECX] = ecx;
830 c->x86_capability[CPUID_1_EDX] = edx;
831 }
832
833 /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
834 if (c->cpuid_level >= 0x00000006)
835 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
836
837 /* Additional Intel-defined flags: level 0x00000007 */
838 if (c->cpuid_level >= 0x00000007) {
839 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
840 c->x86_capability[CPUID_7_0_EBX] = ebx;
841 c->x86_capability[CPUID_7_ECX] = ecx;
842 }
843
844 /* Extended state features: level 0x0000000d */
845 if (c->cpuid_level >= 0x0000000d) {
846 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
847
848 c->x86_capability[CPUID_D_1_EAX] = eax;
849 }
850
851 /* Additional Intel-defined flags: level 0x0000000F */
852 if (c->cpuid_level >= 0x0000000F) {
853
854 /* QoS sub-leaf, EAX=0Fh, ECX=0 */
855 cpuid_count(0x0000000F, 0, &eax, &ebx, &ecx, &edx);
856 c->x86_capability[CPUID_F_0_EDX] = edx;
857
858 if (cpu_has(c, X86_FEATURE_CQM_LLC)) {
859 /* will be overridden if occupancy monitoring exists */
860 c->x86_cache_max_rmid = ebx;
861
862 /* QoS sub-leaf, EAX=0Fh, ECX=1 */
863 cpuid_count(0x0000000F, 1, &eax, &ebx, &ecx, &edx);
864 c->x86_capability[CPUID_F_1_EDX] = edx;
865
866 if ((cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC)) ||
867 ((cpu_has(c, X86_FEATURE_CQM_MBM_TOTAL)) ||
868 (cpu_has(c, X86_FEATURE_CQM_MBM_LOCAL)))) {
869 c->x86_cache_max_rmid = ecx;
870 c->x86_cache_occ_scale = ebx;
871 }
872 } else {
873 c->x86_cache_max_rmid = -1;
874 c->x86_cache_occ_scale = -1;
875 }
876 }
877
878 /* AMD-defined flags: level 0x80000001 */
879 eax = cpuid_eax(0x80000000);
880 c->extended_cpuid_level = eax;
881
882 if ((eax & 0xffff0000) == 0x80000000) {
883 if (eax >= 0x80000001) {
884 cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
885
886 c->x86_capability[CPUID_8000_0001_ECX] = ecx;
887 c->x86_capability[CPUID_8000_0001_EDX] = edx;
888 }
889 }
890
891 if (c->extended_cpuid_level >= 0x80000007) {
892 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
893
894 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
895 c->x86_power = edx;
896 }
897
898 if (c->extended_cpuid_level >= 0x80000008) {
899 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
900
901 c->x86_virt_bits = (eax >> 8) & 0xff;
902 c->x86_phys_bits = eax & 0xff;
903 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
904 }
905 #ifdef CONFIG_X86_32
906 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
907 c->x86_phys_bits = 36;
908 #endif
909
910 if (c->extended_cpuid_level >= 0x8000000a)
911 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
912
913 init_scattered_cpuid_features(c);
914
915 /*
916 * Clear/Set all flags overridden by options, after probe.
917 * This needs to happen each time we re-probe, which may happen
918 * several times during CPU initialization.
919 */
920 apply_forced_caps(c);
921 }
922
923 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
924 {
925 #ifdef CONFIG_X86_32
926 int i;
927
928 /*
929 * First of all, decide if this is a 486 or higher
930 * It's a 486 if we can modify the AC flag
931 */
932 if (flag_is_changeable_p(X86_EFLAGS_AC))
933 c->x86 = 4;
934 else
935 c->x86 = 3;
936
937 for (i = 0; i < X86_VENDOR_NUM; i++)
938 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
939 c->x86_vendor_id[0] = 0;
940 cpu_devs[i]->c_identify(c);
941 if (c->x86_vendor_id[0]) {
942 get_cpu_vendor(c);
943 break;
944 }
945 }
946 #endif
947 }
948
949 /*
950 * Do minimum CPU detection early.
951 * Fields really needed: vendor, cpuid_level, family, model, mask,
952 * cache alignment.
953 * The others are not touched to avoid unwanted side effects.
954 *
955 * WARNING: this function is only called on the BP. Don't add code here
956 * that is supposed to run on all CPUs.
957 */
958 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
959 {
960 #ifdef CONFIG_X86_64
961 c->x86_clflush_size = 64;
962 c->x86_phys_bits = 36;
963 c->x86_virt_bits = 48;
964 #else
965 c->x86_clflush_size = 32;
966 c->x86_phys_bits = 32;
967 c->x86_virt_bits = 32;
968 #endif
969 c->x86_cache_alignment = c->x86_clflush_size;
970
971 memset(&c->x86_capability, 0, sizeof c->x86_capability);
972 c->extended_cpuid_level = 0;
973
974 /* cyrix could have cpuid enabled via c_identify()*/
975 if (have_cpuid_p()) {
976 cpu_detect(c);
977 get_cpu_vendor(c);
978 get_cpu_cap(c);
979 setup_force_cpu_cap(X86_FEATURE_CPUID);
980
981 if (this_cpu->c_early_init)
982 this_cpu->c_early_init(c);
983
984 c->cpu_index = 0;
985 filter_cpuid_features(c, false);
986
987 if (this_cpu->c_bsp_init)
988 this_cpu->c_bsp_init(c);
989 } else {
990 identify_cpu_without_cpuid(c);
991 setup_clear_cpu_cap(X86_FEATURE_CPUID);
992 }
993
994 setup_force_cpu_cap(X86_FEATURE_ALWAYS);
995 fpu__init_system(c);
996 }
997
998 void __init early_cpu_init(void)
999 {
1000 const struct cpu_dev *const *cdev;
1001 int count = 0;
1002
1003 #ifdef CONFIG_PROCESSOR_SELECT
1004 pr_info("KERNEL supported cpus:\n");
1005 #endif
1006
1007 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1008 const struct cpu_dev *cpudev = *cdev;
1009
1010 if (count >= X86_VENDOR_NUM)
1011 break;
1012 cpu_devs[count] = cpudev;
1013 count++;
1014
1015 #ifdef CONFIG_PROCESSOR_SELECT
1016 {
1017 unsigned int j;
1018
1019 for (j = 0; j < 2; j++) {
1020 if (!cpudev->c_ident[j])
1021 continue;
1022 pr_info(" %s %s\n", cpudev->c_vendor,
1023 cpudev->c_ident[j]);
1024 }
1025 }
1026 #endif
1027 }
1028 early_identify_cpu(&boot_cpu_data);
1029 }
1030
1031 /*
1032 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1033 * unfortunately, that's not true in practice because of early VIA
1034 * chips and (more importantly) broken virtualizers that are not easy
1035 * to detect. In the latter case it doesn't even *fail* reliably, so
1036 * probing for it doesn't even work. Disable it completely on 32-bit
1037 * unless we can find a reliable way to detect all the broken cases.
1038 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1039 */
1040 static void detect_nopl(struct cpuinfo_x86 *c)
1041 {
1042 #ifdef CONFIG_X86_32
1043 clear_cpu_cap(c, X86_FEATURE_NOPL);
1044 #else
1045 set_cpu_cap(c, X86_FEATURE_NOPL);
1046 #endif
1047 }
1048
1049 static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
1050 {
1051 #ifdef CONFIG_X86_64
1052 /*
1053 * Empirically, writing zero to a segment selector on AMD does
1054 * not clear the base, whereas writing zero to a segment
1055 * selector on Intel does clear the base. Intel's behavior
1056 * allows slightly faster context switches in the common case
1057 * where GS is unused by the prev and next threads.
1058 *
1059 * Since neither vendor documents this anywhere that I can see,
1060 * detect it directly instead of hardcoding the choice by
1061 * vendor.
1062 *
1063 * I've designated AMD's behavior as the "bug" because it's
1064 * counterintuitive and less friendly.
1065 */
1066
1067 unsigned long old_base, tmp;
1068 rdmsrl(MSR_FS_BASE, old_base);
1069 wrmsrl(MSR_FS_BASE, 1);
1070 loadsegment(fs, 0);
1071 rdmsrl(MSR_FS_BASE, tmp);
1072 if (tmp != 0)
1073 set_cpu_bug(c, X86_BUG_NULL_SEG);
1074 wrmsrl(MSR_FS_BASE, old_base);
1075 #endif
1076 }
1077
1078 static void generic_identify(struct cpuinfo_x86 *c)
1079 {
1080 c->extended_cpuid_level = 0;
1081
1082 if (!have_cpuid_p())
1083 identify_cpu_without_cpuid(c);
1084
1085 /* cyrix could have cpuid enabled via c_identify()*/
1086 if (!have_cpuid_p())
1087 return;
1088
1089 cpu_detect(c);
1090
1091 get_cpu_vendor(c);
1092
1093 get_cpu_cap(c);
1094
1095 if (c->cpuid_level >= 0x00000001) {
1096 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1097 #ifdef CONFIG_X86_32
1098 # ifdef CONFIG_SMP
1099 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1100 # else
1101 c->apicid = c->initial_apicid;
1102 # endif
1103 #endif
1104 c->phys_proc_id = c->initial_apicid;
1105 }
1106
1107 get_model_name(c); /* Default name */
1108
1109 detect_nopl(c);
1110
1111 detect_null_seg_behavior(c);
1112
1113 /*
1114 * ESPFIX is a strange bug. All real CPUs have it. Paravirt
1115 * systems that run Linux at CPL > 0 may or may not have the
1116 * issue, but, even if they have the issue, there's absolutely
1117 * nothing we can do about it because we can't use the real IRET
1118 * instruction.
1119 *
1120 * NB: For the time being, only 32-bit kernels support
1121 * X86_BUG_ESPFIX as such. 64-bit kernels directly choose
1122 * whether to apply espfix using paravirt hooks. If any
1123 * non-paravirt system ever shows up that does *not* have the
1124 * ESPFIX issue, we can change this.
1125 */
1126 #ifdef CONFIG_X86_32
1127 # ifdef CONFIG_PARAVIRT
1128 do {
1129 extern void native_iret(void);
1130 if (pv_cpu_ops.iret == native_iret)
1131 set_cpu_bug(c, X86_BUG_ESPFIX);
1132 } while (0);
1133 # else
1134 set_cpu_bug(c, X86_BUG_ESPFIX);
1135 # endif
1136 #endif
1137 }
1138
1139 static void x86_init_cache_qos(struct cpuinfo_x86 *c)
1140 {
1141 /*
1142 * The heavy lifting of max_rmid and cache_occ_scale are handled
1143 * in get_cpu_cap(). Here we just set the max_rmid for the boot_cpu
1144 * in case CQM bits really aren't there in this CPU.
1145 */
1146 if (c != &boot_cpu_data) {
1147 boot_cpu_data.x86_cache_max_rmid =
1148 min(boot_cpu_data.x86_cache_max_rmid,
1149 c->x86_cache_max_rmid);
1150 }
1151 }
1152
1153 /*
1154 * Validate that ACPI/mptables have the same information about the
1155 * effective APIC id and update the package map.
1156 */
1157 static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1158 {
1159 #ifdef CONFIG_SMP
1160 unsigned int apicid, cpu = smp_processor_id();
1161
1162 apicid = apic->cpu_present_to_apicid(cpu);
1163
1164 if (apicid != c->apicid) {
1165 pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1166 cpu, apicid, c->initial_apicid);
1167 }
1168 BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1169 #else
1170 c->logical_proc_id = 0;
1171 #endif
1172 }
1173
1174 /*
1175 * This does the hard work of actually picking apart the CPU stuff...
1176 */
1177 static void identify_cpu(struct cpuinfo_x86 *c)
1178 {
1179 int i;
1180
1181 c->loops_per_jiffy = loops_per_jiffy;
1182 c->x86_cache_size = -1;
1183 c->x86_vendor = X86_VENDOR_UNKNOWN;
1184 c->x86_model = c->x86_mask = 0; /* So far unknown... */
1185 c->x86_vendor_id[0] = '\0'; /* Unset */
1186 c->x86_model_id[0] = '\0'; /* Unset */
1187 c->x86_max_cores = 1;
1188 c->x86_coreid_bits = 0;
1189 c->cu_id = 0xff;
1190 #ifdef CONFIG_X86_64
1191 c->x86_clflush_size = 64;
1192 c->x86_phys_bits = 36;
1193 c->x86_virt_bits = 48;
1194 #else
1195 c->cpuid_level = -1; /* CPUID not detected */
1196 c->x86_clflush_size = 32;
1197 c->x86_phys_bits = 32;
1198 c->x86_virt_bits = 32;
1199 #endif
1200 c->x86_cache_alignment = c->x86_clflush_size;
1201 memset(&c->x86_capability, 0, sizeof c->x86_capability);
1202
1203 generic_identify(c);
1204
1205 if (this_cpu->c_identify)
1206 this_cpu->c_identify(c);
1207
1208 /* Clear/Set all flags overridden by options, after probe */
1209 apply_forced_caps(c);
1210
1211 #ifdef CONFIG_X86_64
1212 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1213 #endif
1214
1215 /*
1216 * Vendor-specific initialization. In this section we
1217 * canonicalize the feature flags, meaning if there are
1218 * features a certain CPU supports which CPUID doesn't
1219 * tell us, CPUID claiming incorrect flags, or other bugs,
1220 * we handle them here.
1221 *
1222 * At the end of this section, c->x86_capability better
1223 * indicate the features this CPU genuinely supports!
1224 */
1225 if (this_cpu->c_init)
1226 this_cpu->c_init(c);
1227
1228 /* Disable the PN if appropriate */
1229 squash_the_stupid_serial_number(c);
1230
1231 /* Set up SMEP/SMAP */
1232 setup_smep(c);
1233 setup_smap(c);
1234
1235 /*
1236 * The vendor-specific functions might have changed features.
1237 * Now we do "generic changes."
1238 */
1239
1240 /* Filter out anything that depends on CPUID levels we don't have */
1241 filter_cpuid_features(c, true);
1242
1243 /* If the model name is still unset, do table lookup. */
1244 if (!c->x86_model_id[0]) {
1245 const char *p;
1246 p = table_lookup_model(c);
1247 if (p)
1248 strcpy(c->x86_model_id, p);
1249 else
1250 /* Last resort... */
1251 sprintf(c->x86_model_id, "%02x/%02x",
1252 c->x86, c->x86_model);
1253 }
1254
1255 #ifdef CONFIG_X86_64
1256 detect_ht(c);
1257 #endif
1258
1259 x86_init_rdrand(c);
1260 x86_init_cache_qos(c);
1261 setup_pku(c);
1262
1263 /*
1264 * Clear/Set all flags overridden by options, need do it
1265 * before following smp all cpus cap AND.
1266 */
1267 apply_forced_caps(c);
1268
1269 /*
1270 * On SMP, boot_cpu_data holds the common feature set between
1271 * all CPUs; so make sure that we indicate which features are
1272 * common between the CPUs. The first time this routine gets
1273 * executed, c == &boot_cpu_data.
1274 */
1275 if (c != &boot_cpu_data) {
1276 /* AND the already accumulated flags with these */
1277 for (i = 0; i < NCAPINTS; i++)
1278 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1279
1280 /* OR, i.e. replicate the bug flags */
1281 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1282 c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1283 }
1284
1285 /* Init Machine Check Exception if available. */
1286 mcheck_cpu_init(c);
1287
1288 select_idle_routine(c);
1289
1290 #ifdef CONFIG_NUMA
1291 numa_add_cpu(smp_processor_id());
1292 #endif
1293 }
1294
1295 /*
1296 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1297 * on 32-bit kernels:
1298 */
1299 #ifdef CONFIG_X86_32
1300 void enable_sep_cpu(void)
1301 {
1302 struct tss_struct *tss;
1303 int cpu;
1304
1305 if (!boot_cpu_has(X86_FEATURE_SEP))
1306 return;
1307
1308 cpu = get_cpu();
1309 tss = &per_cpu(cpu_tss_rw, cpu);
1310
1311 /*
1312 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1313 * see the big comment in struct x86_hw_tss's definition.
1314 */
1315
1316 tss->x86_tss.ss1 = __KERNEL_CS;
1317 wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1318 wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_SYSENTER_stack(cpu) + 1), 0);
1319 wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1320
1321 put_cpu();
1322 }
1323 #endif
1324
1325 void __init identify_boot_cpu(void)
1326 {
1327 identify_cpu(&boot_cpu_data);
1328 #ifdef CONFIG_X86_32
1329 sysenter_setup();
1330 enable_sep_cpu();
1331 #endif
1332 cpu_detect_tlb(&boot_cpu_data);
1333 }
1334
1335 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1336 {
1337 BUG_ON(c == &boot_cpu_data);
1338 identify_cpu(c);
1339 #ifdef CONFIG_X86_32
1340 enable_sep_cpu();
1341 #endif
1342 mtrr_ap_init();
1343 validate_apic_and_package_id(c);
1344 }
1345
1346 static __init int setup_noclflush(char *arg)
1347 {
1348 setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1349 setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1350 return 1;
1351 }
1352 __setup("noclflush", setup_noclflush);
1353
1354 void print_cpu_info(struct cpuinfo_x86 *c)
1355 {
1356 const char *vendor = NULL;
1357
1358 if (c->x86_vendor < X86_VENDOR_NUM) {
1359 vendor = this_cpu->c_vendor;
1360 } else {
1361 if (c->cpuid_level >= 0)
1362 vendor = c->x86_vendor_id;
1363 }
1364
1365 if (vendor && !strstr(c->x86_model_id, vendor))
1366 pr_cont("%s ", vendor);
1367
1368 if (c->x86_model_id[0])
1369 pr_cont("%s", c->x86_model_id);
1370 else
1371 pr_cont("%d86", c->x86);
1372
1373 pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1374
1375 if (c->x86_mask || c->cpuid_level >= 0)
1376 pr_cont(", stepping: 0x%x)\n", c->x86_mask);
1377 else
1378 pr_cont(")\n");
1379 }
1380
1381 /*
1382 * clearcpuid= was already parsed in fpu__init_parse_early_param.
1383 * But we need to keep a dummy __setup around otherwise it would
1384 * show up as an environment variable for init.
1385 */
1386 static __init int setup_clearcpuid(char *arg)
1387 {
1388 return 1;
1389 }
1390 __setup("clearcpuid=", setup_clearcpuid);
1391
1392 #ifdef CONFIG_X86_64
1393 struct desc_ptr idt_descr __ro_after_init = {
1394 .size = NR_VECTORS * 16 - 1,
1395 .address = (unsigned long) idt_table,
1396 };
1397 const struct desc_ptr debug_idt_descr = {
1398 .size = NR_VECTORS * 16 - 1,
1399 .address = (unsigned long) debug_idt_table,
1400 };
1401
1402 DEFINE_PER_CPU_FIRST(union irq_stack_union,
1403 irq_stack_union) __aligned(PAGE_SIZE) __visible;
1404
1405 /*
1406 * The following percpu variables are hot. Align current_task to
1407 * cacheline size such that they fall in the same cacheline.
1408 */
1409 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1410 &init_task;
1411 EXPORT_PER_CPU_SYMBOL(current_task);
1412
1413 DEFINE_PER_CPU(char *, irq_stack_ptr) =
1414 init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE;
1415
1416 DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1417
1418 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1419 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1420
1421 /* May not be marked __init: used by software suspend */
1422 void syscall_init(void)
1423 {
1424 extern char _entry_trampoline[];
1425 extern char entry_SYSCALL_64_trampoline[];
1426
1427 int cpu = smp_processor_id();
1428 unsigned long SYSCALL64_entry_trampoline =
1429 (unsigned long)get_cpu_entry_area(cpu)->entry_trampoline +
1430 (entry_SYSCALL_64_trampoline - _entry_trampoline);
1431
1432 wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1433 wrmsrl(MSR_LSTAR, SYSCALL64_entry_trampoline);
1434
1435 #ifdef CONFIG_IA32_EMULATION
1436 wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1437 /*
1438 * This only works on Intel CPUs.
1439 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1440 * This does not cause SYSENTER to jump to the wrong location, because
1441 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1442 */
1443 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1444 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_SYSENTER_stack(cpu) + 1));
1445 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1446 #else
1447 wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1448 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1449 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1450 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1451 #endif
1452
1453 /* Flags to clear on syscall */
1454 wrmsrl(MSR_SYSCALL_MASK,
1455 X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1456 X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1457 }
1458
1459 /*
1460 * Copies of the original ist values from the tss are only accessed during
1461 * debugging, no special alignment required.
1462 */
1463 DEFINE_PER_CPU(struct orig_ist, orig_ist);
1464
1465 static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
1466 DEFINE_PER_CPU(int, debug_stack_usage);
1467
1468 int is_debug_stack(unsigned long addr)
1469 {
1470 return __this_cpu_read(debug_stack_usage) ||
1471 (addr <= __this_cpu_read(debug_stack_addr) &&
1472 addr > (__this_cpu_read(debug_stack_addr) - DEBUG_STKSZ));
1473 }
1474 NOKPROBE_SYMBOL(is_debug_stack);
1475
1476 DEFINE_PER_CPU(u32, debug_idt_ctr);
1477
1478 void debug_stack_set_zero(void)
1479 {
1480 this_cpu_inc(debug_idt_ctr);
1481 load_current_idt();
1482 }
1483 NOKPROBE_SYMBOL(debug_stack_set_zero);
1484
1485 void debug_stack_reset(void)
1486 {
1487 if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
1488 return;
1489 if (this_cpu_dec_return(debug_idt_ctr) == 0)
1490 load_current_idt();
1491 }
1492 NOKPROBE_SYMBOL(debug_stack_reset);
1493
1494 #else /* CONFIG_X86_64 */
1495
1496 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1497 EXPORT_PER_CPU_SYMBOL(current_task);
1498 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1499 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1500
1501 /*
1502 * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1503 * the top of the kernel stack. Use an extra percpu variable to track the
1504 * top of the kernel stack directly.
1505 */
1506 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1507 (unsigned long)&init_thread_union + THREAD_SIZE;
1508 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1509
1510 #ifdef CONFIG_CC_STACKPROTECTOR
1511 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1512 #endif
1513
1514 #endif /* CONFIG_X86_64 */
1515
1516 /*
1517 * Clear all 6 debug registers:
1518 */
1519 static void clear_all_debug_regs(void)
1520 {
1521 int i;
1522
1523 for (i = 0; i < 8; i++) {
1524 /* Ignore db4, db5 */
1525 if ((i == 4) || (i == 5))
1526 continue;
1527
1528 set_debugreg(0, i);
1529 }
1530 }
1531
1532 #ifdef CONFIG_KGDB
1533 /*
1534 * Restore debug regs if using kgdbwait and you have a kernel debugger
1535 * connection established.
1536 */
1537 static void dbg_restore_debug_regs(void)
1538 {
1539 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1540 arch_kgdb_ops.correct_hw_break();
1541 }
1542 #else /* ! CONFIG_KGDB */
1543 #define dbg_restore_debug_regs()
1544 #endif /* ! CONFIG_KGDB */
1545
1546 static void wait_for_master_cpu(int cpu)
1547 {
1548 #ifdef CONFIG_SMP
1549 /*
1550 * wait for ACK from master CPU before continuing
1551 * with AP initialization
1552 */
1553 WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1554 while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1555 cpu_relax();
1556 #endif
1557 }
1558
1559 /*
1560 * cpu_init() initializes state that is per-CPU. Some data is already
1561 * initialized (naturally) in the bootstrap process, such as the GDT
1562 * and IDT. We reload them nevertheless, this function acts as a
1563 * 'CPU state barrier', nothing should get across.
1564 * A lot of state is already set up in PDA init for 64 bit
1565 */
1566 #ifdef CONFIG_X86_64
1567
1568 void cpu_init(void)
1569 {
1570 struct orig_ist *oist;
1571 struct task_struct *me;
1572 struct tss_struct *t;
1573 unsigned long v;
1574 int cpu = raw_smp_processor_id();
1575 int i;
1576
1577 wait_for_master_cpu(cpu);
1578
1579 /*
1580 * Initialize the CR4 shadow before doing anything that could
1581 * try to read it.
1582 */
1583 cr4_init_shadow();
1584
1585 if (cpu)
1586 load_ucode_ap();
1587
1588 t = &per_cpu(cpu_tss_rw, cpu);
1589 oist = &per_cpu(orig_ist, cpu);
1590
1591 #ifdef CONFIG_NUMA
1592 if (this_cpu_read(numa_node) == 0 &&
1593 early_cpu_to_node(cpu) != NUMA_NO_NODE)
1594 set_numa_node(early_cpu_to_node(cpu));
1595 #endif
1596
1597 me = current;
1598
1599 pr_debug("Initializing CPU#%d\n", cpu);
1600
1601 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1602
1603 /*
1604 * Initialize the per-CPU GDT with the boot GDT,
1605 * and set up the GDT descriptor:
1606 */
1607
1608 switch_to_new_gdt(cpu);
1609 loadsegment(fs, 0);
1610
1611 load_current_idt();
1612
1613 memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1614 syscall_init();
1615
1616 wrmsrl(MSR_FS_BASE, 0);
1617 wrmsrl(MSR_KERNEL_GS_BASE, 0);
1618 barrier();
1619
1620 x86_configure_nx();
1621 x2apic_setup();
1622
1623 /*
1624 * set up and load the per-CPU TSS
1625 */
1626 if (!oist->ist[0]) {
1627 char *estacks = get_cpu_entry_area(cpu)->exception_stacks;
1628
1629 for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1630 estacks += exception_stack_sizes[v];
1631 oist->ist[v] = t->x86_tss.ist[v] =
1632 (unsigned long)estacks;
1633 if (v == DEBUG_STACK-1)
1634 per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
1635 }
1636 }
1637
1638 t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
1639
1640 /*
1641 * <= is required because the CPU will access up to
1642 * 8 bits beyond the end of the IO permission bitmap.
1643 */
1644 for (i = 0; i <= IO_BITMAP_LONGS; i++)
1645 t->io_bitmap[i] = ~0UL;
1646
1647 mmgrab(&init_mm);
1648 me->active_mm = &init_mm;
1649 BUG_ON(me->mm);
1650 enter_lazy_tlb(&init_mm, me);
1651
1652 /*
1653 * Initialize the TSS. sp0 points to the entry trampoline stack
1654 * regardless of what task is running.
1655 */
1656 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1657 load_TR_desc();
1658 load_sp0((unsigned long)(cpu_SYSENTER_stack(cpu) + 1));
1659
1660 load_mm_ldt(&init_mm);
1661
1662 clear_all_debug_regs();
1663 dbg_restore_debug_regs();
1664
1665 fpu__init_cpu();
1666
1667 if (is_uv_system())
1668 uv_cpu_init();
1669
1670 load_fixmap_gdt(cpu);
1671 }
1672
1673 #else
1674
1675 void cpu_init(void)
1676 {
1677 int cpu = smp_processor_id();
1678 struct task_struct *curr = current;
1679 struct tss_struct *t = &per_cpu(cpu_tss_rw, cpu);
1680
1681 wait_for_master_cpu(cpu);
1682
1683 /*
1684 * Initialize the CR4 shadow before doing anything that could
1685 * try to read it.
1686 */
1687 cr4_init_shadow();
1688
1689 show_ucode_info_early();
1690
1691 pr_info("Initializing CPU#%d\n", cpu);
1692
1693 if (cpu_feature_enabled(X86_FEATURE_VME) ||
1694 boot_cpu_has(X86_FEATURE_TSC) ||
1695 boot_cpu_has(X86_FEATURE_DE))
1696 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1697
1698 load_current_idt();
1699 switch_to_new_gdt(cpu);
1700
1701 /*
1702 * Set up and load the per-CPU TSS and LDT
1703 */
1704 mmgrab(&init_mm);
1705 curr->active_mm = &init_mm;
1706 BUG_ON(curr->mm);
1707 enter_lazy_tlb(&init_mm, curr);
1708
1709 /*
1710 * Initialize the TSS. Don't bother initializing sp0, as the initial
1711 * task never enters user mode.
1712 */
1713 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1714 load_TR_desc();
1715
1716 load_mm_ldt(&init_mm);
1717
1718 t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
1719
1720 #ifdef CONFIG_DOUBLEFAULT
1721 /* Set up doublefault TSS pointer in the GDT */
1722 __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1723 #endif
1724
1725 clear_all_debug_regs();
1726 dbg_restore_debug_regs();
1727
1728 fpu__init_cpu();
1729
1730 load_fixmap_gdt(cpu);
1731 }
1732 #endif
1733
1734 static void bsp_resume(void)
1735 {
1736 if (this_cpu->c_bsp_resume)
1737 this_cpu->c_bsp_resume(&boot_cpu_data);
1738 }
1739
1740 static struct syscore_ops cpu_syscore_ops = {
1741 .resume = bsp_resume,
1742 };
1743
1744 static int __init init_cpu_syscore(void)
1745 {
1746 register_syscore_ops(&cpu_syscore_ops);
1747 return 0;
1748 }
1749 core_initcall(init_cpu_syscore);