]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/kernel/cpu/common.c
x86/iopl: Restrict iopl() permission scope
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kernel / cpu / common.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* cpu_feature_enabled() cannot be used this early */
3 #define USE_EARLY_PGTABLE_L5
4
5 #include <linux/memblock.h>
6 #include <linux/linkage.h>
7 #include <linux/bitops.h>
8 #include <linux/kernel.h>
9 #include <linux/export.h>
10 #include <linux/percpu.h>
11 #include <linux/string.h>
12 #include <linux/ctype.h>
13 #include <linux/delay.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/clock.h>
16 #include <linux/sched/task.h>
17 #include <linux/init.h>
18 #include <linux/kprobes.h>
19 #include <linux/kgdb.h>
20 #include <linux/smp.h>
21 #include <linux/io.h>
22 #include <linux/syscore_ops.h>
23
24 #include <asm/stackprotector.h>
25 #include <asm/perf_event.h>
26 #include <asm/mmu_context.h>
27 #include <asm/archrandom.h>
28 #include <asm/hypervisor.h>
29 #include <asm/processor.h>
30 #include <asm/tlbflush.h>
31 #include <asm/debugreg.h>
32 #include <asm/sections.h>
33 #include <asm/vsyscall.h>
34 #include <linux/topology.h>
35 #include <linux/cpumask.h>
36 #include <asm/pgtable.h>
37 #include <linux/atomic.h>
38 #include <asm/proto.h>
39 #include <asm/setup.h>
40 #include <asm/apic.h>
41 #include <asm/desc.h>
42 #include <asm/fpu/internal.h>
43 #include <asm/mtrr.h>
44 #include <asm/hwcap2.h>
45 #include <linux/numa.h>
46 #include <asm/asm.h>
47 #include <asm/bugs.h>
48 #include <asm/cpu.h>
49 #include <asm/mce.h>
50 #include <asm/msr.h>
51 #include <asm/pat.h>
52 #include <asm/microcode.h>
53 #include <asm/microcode_intel.h>
54 #include <asm/intel-family.h>
55 #include <asm/cpu_device_id.h>
56 #include <asm/uv/uv.h>
57
58 #include "cpu.h"
59
60 u32 elf_hwcap2 __read_mostly;
61
62 /* all of these masks are initialized in setup_cpu_local_masks() */
63 cpumask_var_t cpu_initialized_mask;
64 cpumask_var_t cpu_callout_mask;
65 cpumask_var_t cpu_callin_mask;
66
67 /* representing cpus for which sibling maps can be computed */
68 cpumask_var_t cpu_sibling_setup_mask;
69
70 /* Number of siblings per CPU package */
71 int smp_num_siblings = 1;
72 EXPORT_SYMBOL(smp_num_siblings);
73
74 /* Last level cache ID of each logical CPU */
75 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
76
77 /* correctly size the local cpu masks */
78 void __init setup_cpu_local_masks(void)
79 {
80 alloc_bootmem_cpumask_var(&cpu_initialized_mask);
81 alloc_bootmem_cpumask_var(&cpu_callin_mask);
82 alloc_bootmem_cpumask_var(&cpu_callout_mask);
83 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
84 }
85
86 static void default_init(struct cpuinfo_x86 *c)
87 {
88 #ifdef CONFIG_X86_64
89 cpu_detect_cache_sizes(c);
90 #else
91 /* Not much we can do here... */
92 /* Check if at least it has cpuid */
93 if (c->cpuid_level == -1) {
94 /* No cpuid. It must be an ancient CPU */
95 if (c->x86 == 4)
96 strcpy(c->x86_model_id, "486");
97 else if (c->x86 == 3)
98 strcpy(c->x86_model_id, "386");
99 }
100 #endif
101 }
102
103 static const struct cpu_dev default_cpu = {
104 .c_init = default_init,
105 .c_vendor = "Unknown",
106 .c_x86_vendor = X86_VENDOR_UNKNOWN,
107 };
108
109 static const struct cpu_dev *this_cpu = &default_cpu;
110
111 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
112 #ifdef CONFIG_X86_64
113 /*
114 * We need valid kernel segments for data and code in long mode too
115 * IRET will check the segment types kkeil 2000/10/28
116 * Also sysret mandates a special GDT layout
117 *
118 * TLS descriptors are currently at a different place compared to i386.
119 * Hopefully nobody expects them at a fixed place (Wine?)
120 */
121 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
122 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
123 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
124 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
125 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
126 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
127 #else
128 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
129 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
130 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
131 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
132 /*
133 * Segments used for calling PnP BIOS have byte granularity.
134 * They code segments and data segments have fixed 64k limits,
135 * the transfer segment sizes are set at run time.
136 */
137 /* 32-bit code */
138 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
139 /* 16-bit code */
140 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
141 /* 16-bit data */
142 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
143 /* 16-bit data */
144 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
145 /* 16-bit data */
146 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
147 /*
148 * The APM segments have byte granularity and their bases
149 * are set at run time. All have 64k limits.
150 */
151 /* 32-bit code */
152 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
153 /* 16-bit code */
154 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
155 /* data */
156 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
157
158 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
159 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
160 GDT_STACK_CANARY_INIT
161 #endif
162 } };
163 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
164
165 static int __init x86_mpx_setup(char *s)
166 {
167 /* require an exact match without trailing characters */
168 if (strlen(s))
169 return 0;
170
171 /* do not emit a message if the feature is not present */
172 if (!boot_cpu_has(X86_FEATURE_MPX))
173 return 1;
174
175 setup_clear_cpu_cap(X86_FEATURE_MPX);
176 pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n");
177 return 1;
178 }
179 __setup("nompx", x86_mpx_setup);
180
181 #ifdef CONFIG_X86_64
182 static int __init x86_nopcid_setup(char *s)
183 {
184 /* nopcid doesn't accept parameters */
185 if (s)
186 return -EINVAL;
187
188 /* do not emit a message if the feature is not present */
189 if (!boot_cpu_has(X86_FEATURE_PCID))
190 return 0;
191
192 setup_clear_cpu_cap(X86_FEATURE_PCID);
193 pr_info("nopcid: PCID feature disabled\n");
194 return 0;
195 }
196 early_param("nopcid", x86_nopcid_setup);
197 #endif
198
199 static int __init x86_noinvpcid_setup(char *s)
200 {
201 /* noinvpcid doesn't accept parameters */
202 if (s)
203 return -EINVAL;
204
205 /* do not emit a message if the feature is not present */
206 if (!boot_cpu_has(X86_FEATURE_INVPCID))
207 return 0;
208
209 setup_clear_cpu_cap(X86_FEATURE_INVPCID);
210 pr_info("noinvpcid: INVPCID feature disabled\n");
211 return 0;
212 }
213 early_param("noinvpcid", x86_noinvpcid_setup);
214
215 #ifdef CONFIG_X86_32
216 static int cachesize_override = -1;
217 static int disable_x86_serial_nr = 1;
218
219 static int __init cachesize_setup(char *str)
220 {
221 get_option(&str, &cachesize_override);
222 return 1;
223 }
224 __setup("cachesize=", cachesize_setup);
225
226 static int __init x86_sep_setup(char *s)
227 {
228 setup_clear_cpu_cap(X86_FEATURE_SEP);
229 return 1;
230 }
231 __setup("nosep", x86_sep_setup);
232
233 /* Standard macro to see if a specific flag is changeable */
234 static inline int flag_is_changeable_p(u32 flag)
235 {
236 u32 f1, f2;
237
238 /*
239 * Cyrix and IDT cpus allow disabling of CPUID
240 * so the code below may return different results
241 * when it is executed before and after enabling
242 * the CPUID. Add "volatile" to not allow gcc to
243 * optimize the subsequent calls to this function.
244 */
245 asm volatile ("pushfl \n\t"
246 "pushfl \n\t"
247 "popl %0 \n\t"
248 "movl %0, %1 \n\t"
249 "xorl %2, %0 \n\t"
250 "pushl %0 \n\t"
251 "popfl \n\t"
252 "pushfl \n\t"
253 "popl %0 \n\t"
254 "popfl \n\t"
255
256 : "=&r" (f1), "=&r" (f2)
257 : "ir" (flag));
258
259 return ((f1^f2) & flag) != 0;
260 }
261
262 /* Probe for the CPUID instruction */
263 int have_cpuid_p(void)
264 {
265 return flag_is_changeable_p(X86_EFLAGS_ID);
266 }
267
268 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
269 {
270 unsigned long lo, hi;
271
272 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
273 return;
274
275 /* Disable processor serial number: */
276
277 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
278 lo |= 0x200000;
279 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
280
281 pr_notice("CPU serial number disabled.\n");
282 clear_cpu_cap(c, X86_FEATURE_PN);
283
284 /* Disabling the serial number may affect the cpuid level */
285 c->cpuid_level = cpuid_eax(0);
286 }
287
288 static int __init x86_serial_nr_setup(char *s)
289 {
290 disable_x86_serial_nr = 0;
291 return 1;
292 }
293 __setup("serialnumber", x86_serial_nr_setup);
294 #else
295 static inline int flag_is_changeable_p(u32 flag)
296 {
297 return 1;
298 }
299 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
300 {
301 }
302 #endif
303
304 static __init int setup_disable_smep(char *arg)
305 {
306 setup_clear_cpu_cap(X86_FEATURE_SMEP);
307 /* Check for things that depend on SMEP being enabled: */
308 check_mpx_erratum(&boot_cpu_data);
309 return 1;
310 }
311 __setup("nosmep", setup_disable_smep);
312
313 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
314 {
315 if (cpu_has(c, X86_FEATURE_SMEP))
316 cr4_set_bits(X86_CR4_SMEP);
317 }
318
319 static __init int setup_disable_smap(char *arg)
320 {
321 setup_clear_cpu_cap(X86_FEATURE_SMAP);
322 return 1;
323 }
324 __setup("nosmap", setup_disable_smap);
325
326 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
327 {
328 unsigned long eflags = native_save_fl();
329
330 /* This should have been cleared long ago */
331 BUG_ON(eflags & X86_EFLAGS_AC);
332
333 if (cpu_has(c, X86_FEATURE_SMAP)) {
334 #ifdef CONFIG_X86_SMAP
335 cr4_set_bits(X86_CR4_SMAP);
336 #else
337 cr4_clear_bits(X86_CR4_SMAP);
338 #endif
339 }
340 }
341
342 static __always_inline void setup_umip(struct cpuinfo_x86 *c)
343 {
344 /* Check the boot processor, plus build option for UMIP. */
345 if (!cpu_feature_enabled(X86_FEATURE_UMIP))
346 goto out;
347
348 /* Check the current processor's cpuid bits. */
349 if (!cpu_has(c, X86_FEATURE_UMIP))
350 goto out;
351
352 cr4_set_bits(X86_CR4_UMIP);
353
354 pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
355
356 return;
357
358 out:
359 /*
360 * Make sure UMIP is disabled in case it was enabled in a
361 * previous boot (e.g., via kexec).
362 */
363 cr4_clear_bits(X86_CR4_UMIP);
364 }
365
366 static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
367 static unsigned long cr4_pinned_bits __ro_after_init;
368
369 void native_write_cr0(unsigned long val)
370 {
371 unsigned long bits_missing = 0;
372
373 set_register:
374 asm volatile("mov %0,%%cr0": "+r" (val), "+m" (__force_order));
375
376 if (static_branch_likely(&cr_pinning)) {
377 if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
378 bits_missing = X86_CR0_WP;
379 val |= bits_missing;
380 goto set_register;
381 }
382 /* Warn after we've set the missing bits. */
383 WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
384 }
385 }
386 EXPORT_SYMBOL(native_write_cr0);
387
388 void native_write_cr4(unsigned long val)
389 {
390 unsigned long bits_missing = 0;
391
392 set_register:
393 asm volatile("mov %0,%%cr4": "+r" (val), "+m" (cr4_pinned_bits));
394
395 if (static_branch_likely(&cr_pinning)) {
396 if (unlikely((val & cr4_pinned_bits) != cr4_pinned_bits)) {
397 bits_missing = ~val & cr4_pinned_bits;
398 val |= bits_missing;
399 goto set_register;
400 }
401 /* Warn after we've set the missing bits. */
402 WARN_ONCE(bits_missing, "CR4 bits went missing: %lx!?\n",
403 bits_missing);
404 }
405 }
406 EXPORT_SYMBOL(native_write_cr4);
407
408 void cr4_init(void)
409 {
410 unsigned long cr4 = __read_cr4();
411
412 if (boot_cpu_has(X86_FEATURE_PCID))
413 cr4 |= X86_CR4_PCIDE;
414 if (static_branch_likely(&cr_pinning))
415 cr4 |= cr4_pinned_bits;
416
417 __write_cr4(cr4);
418
419 /* Initialize cr4 shadow for this CPU. */
420 this_cpu_write(cpu_tlbstate.cr4, cr4);
421 }
422
423 /*
424 * Once CPU feature detection is finished (and boot params have been
425 * parsed), record any of the sensitive CR bits that are set, and
426 * enable CR pinning.
427 */
428 static void __init setup_cr_pinning(void)
429 {
430 unsigned long mask;
431
432 mask = (X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP);
433 cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & mask;
434 static_key_enable(&cr_pinning.key);
435 }
436
437 /*
438 * Protection Keys are not available in 32-bit mode.
439 */
440 static bool pku_disabled;
441
442 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
443 {
444 struct pkru_state *pk;
445
446 /* check the boot processor, plus compile options for PKU: */
447 if (!cpu_feature_enabled(X86_FEATURE_PKU))
448 return;
449 /* checks the actual processor's cpuid bits: */
450 if (!cpu_has(c, X86_FEATURE_PKU))
451 return;
452 if (pku_disabled)
453 return;
454
455 cr4_set_bits(X86_CR4_PKE);
456 pk = get_xsave_addr(&init_fpstate.xsave, XFEATURE_PKRU);
457 if (pk)
458 pk->pkru = init_pkru_value;
459 /*
460 * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
461 * cpuid bit to be set. We need to ensure that we
462 * update that bit in this CPU's "cpu_info".
463 */
464 get_cpu_cap(c);
465 }
466
467 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
468 static __init int setup_disable_pku(char *arg)
469 {
470 /*
471 * Do not clear the X86_FEATURE_PKU bit. All of the
472 * runtime checks are against OSPKE so clearing the
473 * bit does nothing.
474 *
475 * This way, we will see "pku" in cpuinfo, but not
476 * "ospke", which is exactly what we want. It shows
477 * that the CPU has PKU, but the OS has not enabled it.
478 * This happens to be exactly how a system would look
479 * if we disabled the config option.
480 */
481 pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
482 pku_disabled = true;
483 return 1;
484 }
485 __setup("nopku", setup_disable_pku);
486 #endif /* CONFIG_X86_64 */
487
488 /*
489 * Some CPU features depend on higher CPUID levels, which may not always
490 * be available due to CPUID level capping or broken virtualization
491 * software. Add those features to this table to auto-disable them.
492 */
493 struct cpuid_dependent_feature {
494 u32 feature;
495 u32 level;
496 };
497
498 static const struct cpuid_dependent_feature
499 cpuid_dependent_features[] = {
500 { X86_FEATURE_MWAIT, 0x00000005 },
501 { X86_FEATURE_DCA, 0x00000009 },
502 { X86_FEATURE_XSAVE, 0x0000000d },
503 { 0, 0 }
504 };
505
506 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
507 {
508 const struct cpuid_dependent_feature *df;
509
510 for (df = cpuid_dependent_features; df->feature; df++) {
511
512 if (!cpu_has(c, df->feature))
513 continue;
514 /*
515 * Note: cpuid_level is set to -1 if unavailable, but
516 * extended_extended_level is set to 0 if unavailable
517 * and the legitimate extended levels are all negative
518 * when signed; hence the weird messing around with
519 * signs here...
520 */
521 if (!((s32)df->level < 0 ?
522 (u32)df->level > (u32)c->extended_cpuid_level :
523 (s32)df->level > (s32)c->cpuid_level))
524 continue;
525
526 clear_cpu_cap(c, df->feature);
527 if (!warn)
528 continue;
529
530 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
531 x86_cap_flag(df->feature), df->level);
532 }
533 }
534
535 /*
536 * Naming convention should be: <Name> [(<Codename>)]
537 * This table only is used unless init_<vendor>() below doesn't set it;
538 * in particular, if CPUID levels 0x80000002..4 are supported, this
539 * isn't used
540 */
541
542 /* Look up CPU names by table lookup. */
543 static const char *table_lookup_model(struct cpuinfo_x86 *c)
544 {
545 #ifdef CONFIG_X86_32
546 const struct legacy_cpu_model_info *info;
547
548 if (c->x86_model >= 16)
549 return NULL; /* Range check */
550
551 if (!this_cpu)
552 return NULL;
553
554 info = this_cpu->legacy_models;
555
556 while (info->family) {
557 if (info->family == c->x86)
558 return info->model_names[c->x86_model];
559 info++;
560 }
561 #endif
562 return NULL; /* Not found */
563 }
564
565 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS];
566 __u32 cpu_caps_set[NCAPINTS + NBUGINTS];
567
568 void load_percpu_segment(int cpu)
569 {
570 #ifdef CONFIG_X86_32
571 loadsegment(fs, __KERNEL_PERCPU);
572 #else
573 __loadsegment_simple(gs, 0);
574 wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
575 #endif
576 load_stack_canary_segment();
577 }
578
579 #ifdef CONFIG_X86_32
580 /* The 32-bit entry code needs to find cpu_entry_area. */
581 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
582 #endif
583
584 /* Load the original GDT from the per-cpu structure */
585 void load_direct_gdt(int cpu)
586 {
587 struct desc_ptr gdt_descr;
588
589 gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
590 gdt_descr.size = GDT_SIZE - 1;
591 load_gdt(&gdt_descr);
592 }
593 EXPORT_SYMBOL_GPL(load_direct_gdt);
594
595 /* Load a fixmap remapping of the per-cpu GDT */
596 void load_fixmap_gdt(int cpu)
597 {
598 struct desc_ptr gdt_descr;
599
600 gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
601 gdt_descr.size = GDT_SIZE - 1;
602 load_gdt(&gdt_descr);
603 }
604 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
605
606 /*
607 * Current gdt points %fs at the "master" per-cpu area: after this,
608 * it's on the real one.
609 */
610 void switch_to_new_gdt(int cpu)
611 {
612 /* Load the original GDT */
613 load_direct_gdt(cpu);
614 /* Reload the per-cpu base */
615 load_percpu_segment(cpu);
616 }
617
618 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
619
620 static void get_model_name(struct cpuinfo_x86 *c)
621 {
622 unsigned int *v;
623 char *p, *q, *s;
624
625 if (c->extended_cpuid_level < 0x80000004)
626 return;
627
628 v = (unsigned int *)c->x86_model_id;
629 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
630 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
631 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
632 c->x86_model_id[48] = 0;
633
634 /* Trim whitespace */
635 p = q = s = &c->x86_model_id[0];
636
637 while (*p == ' ')
638 p++;
639
640 while (*p) {
641 /* Note the last non-whitespace index */
642 if (!isspace(*p))
643 s = q;
644
645 *q++ = *p++;
646 }
647
648 *(s + 1) = '\0';
649 }
650
651 void detect_num_cpu_cores(struct cpuinfo_x86 *c)
652 {
653 unsigned int eax, ebx, ecx, edx;
654
655 c->x86_max_cores = 1;
656 if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
657 return;
658
659 cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
660 if (eax & 0x1f)
661 c->x86_max_cores = (eax >> 26) + 1;
662 }
663
664 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
665 {
666 unsigned int n, dummy, ebx, ecx, edx, l2size;
667
668 n = c->extended_cpuid_level;
669
670 if (n >= 0x80000005) {
671 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
672 c->x86_cache_size = (ecx>>24) + (edx>>24);
673 #ifdef CONFIG_X86_64
674 /* On K8 L1 TLB is inclusive, so don't count it */
675 c->x86_tlbsize = 0;
676 #endif
677 }
678
679 if (n < 0x80000006) /* Some chips just has a large L1. */
680 return;
681
682 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
683 l2size = ecx >> 16;
684
685 #ifdef CONFIG_X86_64
686 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
687 #else
688 /* do processor-specific cache resizing */
689 if (this_cpu->legacy_cache_size)
690 l2size = this_cpu->legacy_cache_size(c, l2size);
691
692 /* Allow user to override all this if necessary. */
693 if (cachesize_override != -1)
694 l2size = cachesize_override;
695
696 if (l2size == 0)
697 return; /* Again, no L2 cache is possible */
698 #endif
699
700 c->x86_cache_size = l2size;
701 }
702
703 u16 __read_mostly tlb_lli_4k[NR_INFO];
704 u16 __read_mostly tlb_lli_2m[NR_INFO];
705 u16 __read_mostly tlb_lli_4m[NR_INFO];
706 u16 __read_mostly tlb_lld_4k[NR_INFO];
707 u16 __read_mostly tlb_lld_2m[NR_INFO];
708 u16 __read_mostly tlb_lld_4m[NR_INFO];
709 u16 __read_mostly tlb_lld_1g[NR_INFO];
710
711 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
712 {
713 if (this_cpu->c_detect_tlb)
714 this_cpu->c_detect_tlb(c);
715
716 pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
717 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
718 tlb_lli_4m[ENTRIES]);
719
720 pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
721 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
722 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
723 }
724
725 int detect_ht_early(struct cpuinfo_x86 *c)
726 {
727 #ifdef CONFIG_SMP
728 u32 eax, ebx, ecx, edx;
729
730 if (!cpu_has(c, X86_FEATURE_HT))
731 return -1;
732
733 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
734 return -1;
735
736 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
737 return -1;
738
739 cpuid(1, &eax, &ebx, &ecx, &edx);
740
741 smp_num_siblings = (ebx & 0xff0000) >> 16;
742 if (smp_num_siblings == 1)
743 pr_info_once("CPU0: Hyper-Threading is disabled\n");
744 #endif
745 return 0;
746 }
747
748 void detect_ht(struct cpuinfo_x86 *c)
749 {
750 #ifdef CONFIG_SMP
751 int index_msb, core_bits;
752
753 if (detect_ht_early(c) < 0)
754 return;
755
756 index_msb = get_count_order(smp_num_siblings);
757 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
758
759 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
760
761 index_msb = get_count_order(smp_num_siblings);
762
763 core_bits = get_count_order(c->x86_max_cores);
764
765 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
766 ((1 << core_bits) - 1);
767 #endif
768 }
769
770 static void get_cpu_vendor(struct cpuinfo_x86 *c)
771 {
772 char *v = c->x86_vendor_id;
773 int i;
774
775 for (i = 0; i < X86_VENDOR_NUM; i++) {
776 if (!cpu_devs[i])
777 break;
778
779 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
780 (cpu_devs[i]->c_ident[1] &&
781 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
782
783 this_cpu = cpu_devs[i];
784 c->x86_vendor = this_cpu->c_x86_vendor;
785 return;
786 }
787 }
788
789 pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
790 "CPU: Your system may be unstable.\n", v);
791
792 c->x86_vendor = X86_VENDOR_UNKNOWN;
793 this_cpu = &default_cpu;
794 }
795
796 void cpu_detect(struct cpuinfo_x86 *c)
797 {
798 /* Get vendor name */
799 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
800 (unsigned int *)&c->x86_vendor_id[0],
801 (unsigned int *)&c->x86_vendor_id[8],
802 (unsigned int *)&c->x86_vendor_id[4]);
803
804 c->x86 = 4;
805 /* Intel-defined flags: level 0x00000001 */
806 if (c->cpuid_level >= 0x00000001) {
807 u32 junk, tfms, cap0, misc;
808
809 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
810 c->x86 = x86_family(tfms);
811 c->x86_model = x86_model(tfms);
812 c->x86_stepping = x86_stepping(tfms);
813
814 if (cap0 & (1<<19)) {
815 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
816 c->x86_cache_alignment = c->x86_clflush_size;
817 }
818 }
819 }
820
821 static void apply_forced_caps(struct cpuinfo_x86 *c)
822 {
823 int i;
824
825 for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
826 c->x86_capability[i] &= ~cpu_caps_cleared[i];
827 c->x86_capability[i] |= cpu_caps_set[i];
828 }
829 }
830
831 static void init_speculation_control(struct cpuinfo_x86 *c)
832 {
833 /*
834 * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
835 * and they also have a different bit for STIBP support. Also,
836 * a hypervisor might have set the individual AMD bits even on
837 * Intel CPUs, for finer-grained selection of what's available.
838 */
839 if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
840 set_cpu_cap(c, X86_FEATURE_IBRS);
841 set_cpu_cap(c, X86_FEATURE_IBPB);
842 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
843 }
844
845 if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
846 set_cpu_cap(c, X86_FEATURE_STIBP);
847
848 if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
849 cpu_has(c, X86_FEATURE_VIRT_SSBD))
850 set_cpu_cap(c, X86_FEATURE_SSBD);
851
852 if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
853 set_cpu_cap(c, X86_FEATURE_IBRS);
854 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
855 }
856
857 if (cpu_has(c, X86_FEATURE_AMD_IBPB))
858 set_cpu_cap(c, X86_FEATURE_IBPB);
859
860 if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
861 set_cpu_cap(c, X86_FEATURE_STIBP);
862 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
863 }
864
865 if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
866 set_cpu_cap(c, X86_FEATURE_SSBD);
867 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
868 clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
869 }
870 }
871
872 static void init_cqm(struct cpuinfo_x86 *c)
873 {
874 if (!cpu_has(c, X86_FEATURE_CQM_LLC)) {
875 c->x86_cache_max_rmid = -1;
876 c->x86_cache_occ_scale = -1;
877 return;
878 }
879
880 /* will be overridden if occupancy monitoring exists */
881 c->x86_cache_max_rmid = cpuid_ebx(0xf);
882
883 if (cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC) ||
884 cpu_has(c, X86_FEATURE_CQM_MBM_TOTAL) ||
885 cpu_has(c, X86_FEATURE_CQM_MBM_LOCAL)) {
886 u32 eax, ebx, ecx, edx;
887
888 /* QoS sub-leaf, EAX=0Fh, ECX=1 */
889 cpuid_count(0xf, 1, &eax, &ebx, &ecx, &edx);
890
891 c->x86_cache_max_rmid = ecx;
892 c->x86_cache_occ_scale = ebx;
893 }
894 }
895
896 void get_cpu_cap(struct cpuinfo_x86 *c)
897 {
898 u32 eax, ebx, ecx, edx;
899
900 /* Intel-defined flags: level 0x00000001 */
901 if (c->cpuid_level >= 0x00000001) {
902 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
903
904 c->x86_capability[CPUID_1_ECX] = ecx;
905 c->x86_capability[CPUID_1_EDX] = edx;
906 }
907
908 /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
909 if (c->cpuid_level >= 0x00000006)
910 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
911
912 /* Additional Intel-defined flags: level 0x00000007 */
913 if (c->cpuid_level >= 0x00000007) {
914 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
915 c->x86_capability[CPUID_7_0_EBX] = ebx;
916 c->x86_capability[CPUID_7_ECX] = ecx;
917 c->x86_capability[CPUID_7_EDX] = edx;
918
919 /* Check valid sub-leaf index before accessing it */
920 if (eax >= 1) {
921 cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
922 c->x86_capability[CPUID_7_1_EAX] = eax;
923 }
924 }
925
926 /* Extended state features: level 0x0000000d */
927 if (c->cpuid_level >= 0x0000000d) {
928 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
929
930 c->x86_capability[CPUID_D_1_EAX] = eax;
931 }
932
933 /* AMD-defined flags: level 0x80000001 */
934 eax = cpuid_eax(0x80000000);
935 c->extended_cpuid_level = eax;
936
937 if ((eax & 0xffff0000) == 0x80000000) {
938 if (eax >= 0x80000001) {
939 cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
940
941 c->x86_capability[CPUID_8000_0001_ECX] = ecx;
942 c->x86_capability[CPUID_8000_0001_EDX] = edx;
943 }
944 }
945
946 if (c->extended_cpuid_level >= 0x80000007) {
947 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
948
949 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
950 c->x86_power = edx;
951 }
952
953 if (c->extended_cpuid_level >= 0x80000008) {
954 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
955 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
956 }
957
958 if (c->extended_cpuid_level >= 0x8000000a)
959 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
960
961 init_scattered_cpuid_features(c);
962 init_speculation_control(c);
963 init_cqm(c);
964
965 /*
966 * Clear/Set all flags overridden by options, after probe.
967 * This needs to happen each time we re-probe, which may happen
968 * several times during CPU initialization.
969 */
970 apply_forced_caps(c);
971 }
972
973 void get_cpu_address_sizes(struct cpuinfo_x86 *c)
974 {
975 u32 eax, ebx, ecx, edx;
976
977 if (c->extended_cpuid_level >= 0x80000008) {
978 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
979
980 c->x86_virt_bits = (eax >> 8) & 0xff;
981 c->x86_phys_bits = eax & 0xff;
982 }
983 #ifdef CONFIG_X86_32
984 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
985 c->x86_phys_bits = 36;
986 #endif
987 c->x86_cache_bits = c->x86_phys_bits;
988 }
989
990 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
991 {
992 #ifdef CONFIG_X86_32
993 int i;
994
995 /*
996 * First of all, decide if this is a 486 or higher
997 * It's a 486 if we can modify the AC flag
998 */
999 if (flag_is_changeable_p(X86_EFLAGS_AC))
1000 c->x86 = 4;
1001 else
1002 c->x86 = 3;
1003
1004 for (i = 0; i < X86_VENDOR_NUM; i++)
1005 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
1006 c->x86_vendor_id[0] = 0;
1007 cpu_devs[i]->c_identify(c);
1008 if (c->x86_vendor_id[0]) {
1009 get_cpu_vendor(c);
1010 break;
1011 }
1012 }
1013 #endif
1014 }
1015
1016 #define NO_SPECULATION BIT(0)
1017 #define NO_MELTDOWN BIT(1)
1018 #define NO_SSB BIT(2)
1019 #define NO_L1TF BIT(3)
1020 #define NO_MDS BIT(4)
1021 #define MSBDS_ONLY BIT(5)
1022 #define NO_SWAPGS BIT(6)
1023
1024 #define VULNWL(_vendor, _family, _model, _whitelist) \
1025 { X86_VENDOR_##_vendor, _family, _model, X86_FEATURE_ANY, _whitelist }
1026
1027 #define VULNWL_INTEL(model, whitelist) \
1028 VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
1029
1030 #define VULNWL_AMD(family, whitelist) \
1031 VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
1032
1033 #define VULNWL_HYGON(family, whitelist) \
1034 VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
1035
1036 static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
1037 VULNWL(ANY, 4, X86_MODEL_ANY, NO_SPECULATION),
1038 VULNWL(CENTAUR, 5, X86_MODEL_ANY, NO_SPECULATION),
1039 VULNWL(INTEL, 5, X86_MODEL_ANY, NO_SPECULATION),
1040 VULNWL(NSC, 5, X86_MODEL_ANY, NO_SPECULATION),
1041
1042 /* Intel Family 6 */
1043 VULNWL_INTEL(ATOM_SALTWELL, NO_SPECULATION),
1044 VULNWL_INTEL(ATOM_SALTWELL_TABLET, NO_SPECULATION),
1045 VULNWL_INTEL(ATOM_SALTWELL_MID, NO_SPECULATION),
1046 VULNWL_INTEL(ATOM_BONNELL, NO_SPECULATION),
1047 VULNWL_INTEL(ATOM_BONNELL_MID, NO_SPECULATION),
1048
1049 VULNWL_INTEL(ATOM_SILVERMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS),
1050 VULNWL_INTEL(ATOM_SILVERMONT_D, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS),
1051 VULNWL_INTEL(ATOM_SILVERMONT_MID, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS),
1052 VULNWL_INTEL(ATOM_AIRMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS),
1053 VULNWL_INTEL(XEON_PHI_KNL, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS),
1054 VULNWL_INTEL(XEON_PHI_KNM, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS),
1055
1056 VULNWL_INTEL(CORE_YONAH, NO_SSB),
1057
1058 VULNWL_INTEL(ATOM_AIRMONT_MID, NO_L1TF | MSBDS_ONLY | NO_SWAPGS),
1059 VULNWL_INTEL(ATOM_AIRMONT_NP, NO_L1TF | NO_SWAPGS),
1060
1061 VULNWL_INTEL(ATOM_GOLDMONT, NO_MDS | NO_L1TF | NO_SWAPGS),
1062 VULNWL_INTEL(ATOM_GOLDMONT_D, NO_MDS | NO_L1TF | NO_SWAPGS),
1063 VULNWL_INTEL(ATOM_GOLDMONT_PLUS, NO_MDS | NO_L1TF | NO_SWAPGS),
1064
1065 /*
1066 * Technically, swapgs isn't serializing on AMD (despite it previously
1067 * being documented as such in the APM). But according to AMD, %gs is
1068 * updated non-speculatively, and the issuing of %gs-relative memory
1069 * operands will be blocked until the %gs update completes, which is
1070 * good enough for our purposes.
1071 */
1072
1073 /* AMD Family 0xf - 0x12 */
1074 VULNWL_AMD(0x0f, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS),
1075 VULNWL_AMD(0x10, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS),
1076 VULNWL_AMD(0x11, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS),
1077 VULNWL_AMD(0x12, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS),
1078
1079 /* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
1080 VULNWL_AMD(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS),
1081 VULNWL_HYGON(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS),
1082 {}
1083 };
1084
1085 static bool __init cpu_matches(unsigned long which)
1086 {
1087 const struct x86_cpu_id *m = x86_match_cpu(cpu_vuln_whitelist);
1088
1089 return m && !!(m->driver_data & which);
1090 }
1091
1092 static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1093 {
1094 u64 ia32_cap = 0;
1095
1096 if (cpu_matches(NO_SPECULATION))
1097 return;
1098
1099 setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1100 setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1101
1102 if (cpu_has(c, X86_FEATURE_ARCH_CAPABILITIES))
1103 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
1104
1105 if (!cpu_matches(NO_SSB) && !(ia32_cap & ARCH_CAP_SSB_NO) &&
1106 !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1107 setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1108
1109 if (ia32_cap & ARCH_CAP_IBRS_ALL)
1110 setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1111
1112 if (!cpu_matches(NO_MDS) && !(ia32_cap & ARCH_CAP_MDS_NO)) {
1113 setup_force_cpu_bug(X86_BUG_MDS);
1114 if (cpu_matches(MSBDS_ONLY))
1115 setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1116 }
1117
1118 if (!cpu_matches(NO_SWAPGS))
1119 setup_force_cpu_bug(X86_BUG_SWAPGS);
1120
1121 if (cpu_matches(NO_MELTDOWN))
1122 return;
1123
1124 /* Rogue Data Cache Load? No! */
1125 if (ia32_cap & ARCH_CAP_RDCL_NO)
1126 return;
1127
1128 setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1129
1130 if (cpu_matches(NO_L1TF))
1131 return;
1132
1133 setup_force_cpu_bug(X86_BUG_L1TF);
1134 }
1135
1136 /*
1137 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1138 * unfortunately, that's not true in practice because of early VIA
1139 * chips and (more importantly) broken virtualizers that are not easy
1140 * to detect. In the latter case it doesn't even *fail* reliably, so
1141 * probing for it doesn't even work. Disable it completely on 32-bit
1142 * unless we can find a reliable way to detect all the broken cases.
1143 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1144 */
1145 static void detect_nopl(void)
1146 {
1147 #ifdef CONFIG_X86_32
1148 setup_clear_cpu_cap(X86_FEATURE_NOPL);
1149 #else
1150 setup_force_cpu_cap(X86_FEATURE_NOPL);
1151 #endif
1152 }
1153
1154 /*
1155 * Do minimum CPU detection early.
1156 * Fields really needed: vendor, cpuid_level, family, model, mask,
1157 * cache alignment.
1158 * The others are not touched to avoid unwanted side effects.
1159 *
1160 * WARNING: this function is only called on the boot CPU. Don't add code
1161 * here that is supposed to run on all CPUs.
1162 */
1163 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1164 {
1165 #ifdef CONFIG_X86_64
1166 c->x86_clflush_size = 64;
1167 c->x86_phys_bits = 36;
1168 c->x86_virt_bits = 48;
1169 #else
1170 c->x86_clflush_size = 32;
1171 c->x86_phys_bits = 32;
1172 c->x86_virt_bits = 32;
1173 #endif
1174 c->x86_cache_alignment = c->x86_clflush_size;
1175
1176 memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1177 c->extended_cpuid_level = 0;
1178
1179 if (!have_cpuid_p())
1180 identify_cpu_without_cpuid(c);
1181
1182 /* cyrix could have cpuid enabled via c_identify()*/
1183 if (have_cpuid_p()) {
1184 cpu_detect(c);
1185 get_cpu_vendor(c);
1186 get_cpu_cap(c);
1187 get_cpu_address_sizes(c);
1188 setup_force_cpu_cap(X86_FEATURE_CPUID);
1189
1190 if (this_cpu->c_early_init)
1191 this_cpu->c_early_init(c);
1192
1193 c->cpu_index = 0;
1194 filter_cpuid_features(c, false);
1195
1196 if (this_cpu->c_bsp_init)
1197 this_cpu->c_bsp_init(c);
1198 } else {
1199 setup_clear_cpu_cap(X86_FEATURE_CPUID);
1200 }
1201
1202 setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1203
1204 cpu_set_bug_bits(c);
1205
1206 fpu__init_system(c);
1207
1208 #ifdef CONFIG_X86_32
1209 /*
1210 * Regardless of whether PCID is enumerated, the SDM says
1211 * that it can't be enabled in 32-bit mode.
1212 */
1213 setup_clear_cpu_cap(X86_FEATURE_PCID);
1214 #endif
1215
1216 /*
1217 * Later in the boot process pgtable_l5_enabled() relies on
1218 * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1219 * enabled by this point we need to clear the feature bit to avoid
1220 * false-positives at the later stage.
1221 *
1222 * pgtable_l5_enabled() can be false here for several reasons:
1223 * - 5-level paging is disabled compile-time;
1224 * - it's 32-bit kernel;
1225 * - machine doesn't support 5-level paging;
1226 * - user specified 'no5lvl' in kernel command line.
1227 */
1228 if (!pgtable_l5_enabled())
1229 setup_clear_cpu_cap(X86_FEATURE_LA57);
1230
1231 detect_nopl();
1232 }
1233
1234 void __init early_cpu_init(void)
1235 {
1236 const struct cpu_dev *const *cdev;
1237 int count = 0;
1238
1239 #ifdef CONFIG_PROCESSOR_SELECT
1240 pr_info("KERNEL supported cpus:\n");
1241 #endif
1242
1243 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1244 const struct cpu_dev *cpudev = *cdev;
1245
1246 if (count >= X86_VENDOR_NUM)
1247 break;
1248 cpu_devs[count] = cpudev;
1249 count++;
1250
1251 #ifdef CONFIG_PROCESSOR_SELECT
1252 {
1253 unsigned int j;
1254
1255 for (j = 0; j < 2; j++) {
1256 if (!cpudev->c_ident[j])
1257 continue;
1258 pr_info(" %s %s\n", cpudev->c_vendor,
1259 cpudev->c_ident[j]);
1260 }
1261 }
1262 #endif
1263 }
1264 early_identify_cpu(&boot_cpu_data);
1265 }
1266
1267 static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
1268 {
1269 #ifdef CONFIG_X86_64
1270 /*
1271 * Empirically, writing zero to a segment selector on AMD does
1272 * not clear the base, whereas writing zero to a segment
1273 * selector on Intel does clear the base. Intel's behavior
1274 * allows slightly faster context switches in the common case
1275 * where GS is unused by the prev and next threads.
1276 *
1277 * Since neither vendor documents this anywhere that I can see,
1278 * detect it directly instead of hardcoding the choice by
1279 * vendor.
1280 *
1281 * I've designated AMD's behavior as the "bug" because it's
1282 * counterintuitive and less friendly.
1283 */
1284
1285 unsigned long old_base, tmp;
1286 rdmsrl(MSR_FS_BASE, old_base);
1287 wrmsrl(MSR_FS_BASE, 1);
1288 loadsegment(fs, 0);
1289 rdmsrl(MSR_FS_BASE, tmp);
1290 if (tmp != 0)
1291 set_cpu_bug(c, X86_BUG_NULL_SEG);
1292 wrmsrl(MSR_FS_BASE, old_base);
1293 #endif
1294 }
1295
1296 static void generic_identify(struct cpuinfo_x86 *c)
1297 {
1298 c->extended_cpuid_level = 0;
1299
1300 if (!have_cpuid_p())
1301 identify_cpu_without_cpuid(c);
1302
1303 /* cyrix could have cpuid enabled via c_identify()*/
1304 if (!have_cpuid_p())
1305 return;
1306
1307 cpu_detect(c);
1308
1309 get_cpu_vendor(c);
1310
1311 get_cpu_cap(c);
1312
1313 get_cpu_address_sizes(c);
1314
1315 if (c->cpuid_level >= 0x00000001) {
1316 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1317 #ifdef CONFIG_X86_32
1318 # ifdef CONFIG_SMP
1319 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1320 # else
1321 c->apicid = c->initial_apicid;
1322 # endif
1323 #endif
1324 c->phys_proc_id = c->initial_apicid;
1325 }
1326
1327 get_model_name(c); /* Default name */
1328
1329 detect_null_seg_behavior(c);
1330
1331 /*
1332 * ESPFIX is a strange bug. All real CPUs have it. Paravirt
1333 * systems that run Linux at CPL > 0 may or may not have the
1334 * issue, but, even if they have the issue, there's absolutely
1335 * nothing we can do about it because we can't use the real IRET
1336 * instruction.
1337 *
1338 * NB: For the time being, only 32-bit kernels support
1339 * X86_BUG_ESPFIX as such. 64-bit kernels directly choose
1340 * whether to apply espfix using paravirt hooks. If any
1341 * non-paravirt system ever shows up that does *not* have the
1342 * ESPFIX issue, we can change this.
1343 */
1344 #ifdef CONFIG_X86_32
1345 # ifdef CONFIG_PARAVIRT_XXL
1346 do {
1347 extern void native_iret(void);
1348 if (pv_ops.cpu.iret == native_iret)
1349 set_cpu_bug(c, X86_BUG_ESPFIX);
1350 } while (0);
1351 # else
1352 set_cpu_bug(c, X86_BUG_ESPFIX);
1353 # endif
1354 #endif
1355 }
1356
1357 static void x86_init_cache_qos(struct cpuinfo_x86 *c)
1358 {
1359 /*
1360 * The heavy lifting of max_rmid and cache_occ_scale are handled
1361 * in get_cpu_cap(). Here we just set the max_rmid for the boot_cpu
1362 * in case CQM bits really aren't there in this CPU.
1363 */
1364 if (c != &boot_cpu_data) {
1365 boot_cpu_data.x86_cache_max_rmid =
1366 min(boot_cpu_data.x86_cache_max_rmid,
1367 c->x86_cache_max_rmid);
1368 }
1369 }
1370
1371 /*
1372 * Validate that ACPI/mptables have the same information about the
1373 * effective APIC id and update the package map.
1374 */
1375 static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1376 {
1377 #ifdef CONFIG_SMP
1378 unsigned int apicid, cpu = smp_processor_id();
1379
1380 apicid = apic->cpu_present_to_apicid(cpu);
1381
1382 if (apicid != c->apicid) {
1383 pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1384 cpu, apicid, c->initial_apicid);
1385 }
1386 BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1387 BUG_ON(topology_update_die_map(c->cpu_die_id, cpu));
1388 #else
1389 c->logical_proc_id = 0;
1390 #endif
1391 }
1392
1393 /*
1394 * This does the hard work of actually picking apart the CPU stuff...
1395 */
1396 static void identify_cpu(struct cpuinfo_x86 *c)
1397 {
1398 int i;
1399
1400 c->loops_per_jiffy = loops_per_jiffy;
1401 c->x86_cache_size = 0;
1402 c->x86_vendor = X86_VENDOR_UNKNOWN;
1403 c->x86_model = c->x86_stepping = 0; /* So far unknown... */
1404 c->x86_vendor_id[0] = '\0'; /* Unset */
1405 c->x86_model_id[0] = '\0'; /* Unset */
1406 c->x86_max_cores = 1;
1407 c->x86_coreid_bits = 0;
1408 c->cu_id = 0xff;
1409 #ifdef CONFIG_X86_64
1410 c->x86_clflush_size = 64;
1411 c->x86_phys_bits = 36;
1412 c->x86_virt_bits = 48;
1413 #else
1414 c->cpuid_level = -1; /* CPUID not detected */
1415 c->x86_clflush_size = 32;
1416 c->x86_phys_bits = 32;
1417 c->x86_virt_bits = 32;
1418 #endif
1419 c->x86_cache_alignment = c->x86_clflush_size;
1420 memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1421
1422 generic_identify(c);
1423
1424 if (this_cpu->c_identify)
1425 this_cpu->c_identify(c);
1426
1427 /* Clear/Set all flags overridden by options, after probe */
1428 apply_forced_caps(c);
1429
1430 #ifdef CONFIG_X86_64
1431 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1432 #endif
1433
1434 /*
1435 * Vendor-specific initialization. In this section we
1436 * canonicalize the feature flags, meaning if there are
1437 * features a certain CPU supports which CPUID doesn't
1438 * tell us, CPUID claiming incorrect flags, or other bugs,
1439 * we handle them here.
1440 *
1441 * At the end of this section, c->x86_capability better
1442 * indicate the features this CPU genuinely supports!
1443 */
1444 if (this_cpu->c_init)
1445 this_cpu->c_init(c);
1446
1447 /* Disable the PN if appropriate */
1448 squash_the_stupid_serial_number(c);
1449
1450 /* Set up SMEP/SMAP/UMIP */
1451 setup_smep(c);
1452 setup_smap(c);
1453 setup_umip(c);
1454
1455 /*
1456 * The vendor-specific functions might have changed features.
1457 * Now we do "generic changes."
1458 */
1459
1460 /* Filter out anything that depends on CPUID levels we don't have */
1461 filter_cpuid_features(c, true);
1462
1463 /* If the model name is still unset, do table lookup. */
1464 if (!c->x86_model_id[0]) {
1465 const char *p;
1466 p = table_lookup_model(c);
1467 if (p)
1468 strcpy(c->x86_model_id, p);
1469 else
1470 /* Last resort... */
1471 sprintf(c->x86_model_id, "%02x/%02x",
1472 c->x86, c->x86_model);
1473 }
1474
1475 #ifdef CONFIG_X86_64
1476 detect_ht(c);
1477 #endif
1478
1479 x86_init_rdrand(c);
1480 x86_init_cache_qos(c);
1481 setup_pku(c);
1482
1483 /*
1484 * Clear/Set all flags overridden by options, need do it
1485 * before following smp all cpus cap AND.
1486 */
1487 apply_forced_caps(c);
1488
1489 /*
1490 * On SMP, boot_cpu_data holds the common feature set between
1491 * all CPUs; so make sure that we indicate which features are
1492 * common between the CPUs. The first time this routine gets
1493 * executed, c == &boot_cpu_data.
1494 */
1495 if (c != &boot_cpu_data) {
1496 /* AND the already accumulated flags with these */
1497 for (i = 0; i < NCAPINTS; i++)
1498 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1499
1500 /* OR, i.e. replicate the bug flags */
1501 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1502 c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1503 }
1504
1505 /* Init Machine Check Exception if available. */
1506 mcheck_cpu_init(c);
1507
1508 select_idle_routine(c);
1509
1510 #ifdef CONFIG_NUMA
1511 numa_add_cpu(smp_processor_id());
1512 #endif
1513 }
1514
1515 /*
1516 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1517 * on 32-bit kernels:
1518 */
1519 #ifdef CONFIG_X86_32
1520 void enable_sep_cpu(void)
1521 {
1522 struct tss_struct *tss;
1523 int cpu;
1524
1525 if (!boot_cpu_has(X86_FEATURE_SEP))
1526 return;
1527
1528 cpu = get_cpu();
1529 tss = &per_cpu(cpu_tss_rw, cpu);
1530
1531 /*
1532 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1533 * see the big comment in struct x86_hw_tss's definition.
1534 */
1535
1536 tss->x86_tss.ss1 = __KERNEL_CS;
1537 wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1538 wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1539 wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1540
1541 put_cpu();
1542 }
1543 #endif
1544
1545 void __init identify_boot_cpu(void)
1546 {
1547 identify_cpu(&boot_cpu_data);
1548 #ifdef CONFIG_X86_32
1549 sysenter_setup();
1550 enable_sep_cpu();
1551 #endif
1552 cpu_detect_tlb(&boot_cpu_data);
1553 setup_cr_pinning();
1554 }
1555
1556 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1557 {
1558 BUG_ON(c == &boot_cpu_data);
1559 identify_cpu(c);
1560 #ifdef CONFIG_X86_32
1561 enable_sep_cpu();
1562 #endif
1563 mtrr_ap_init();
1564 validate_apic_and_package_id(c);
1565 x86_spec_ctrl_setup_ap();
1566 }
1567
1568 static __init int setup_noclflush(char *arg)
1569 {
1570 setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1571 setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1572 return 1;
1573 }
1574 __setup("noclflush", setup_noclflush);
1575
1576 void print_cpu_info(struct cpuinfo_x86 *c)
1577 {
1578 const char *vendor = NULL;
1579
1580 if (c->x86_vendor < X86_VENDOR_NUM) {
1581 vendor = this_cpu->c_vendor;
1582 } else {
1583 if (c->cpuid_level >= 0)
1584 vendor = c->x86_vendor_id;
1585 }
1586
1587 if (vendor && !strstr(c->x86_model_id, vendor))
1588 pr_cont("%s ", vendor);
1589
1590 if (c->x86_model_id[0])
1591 pr_cont("%s", c->x86_model_id);
1592 else
1593 pr_cont("%d86", c->x86);
1594
1595 pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1596
1597 if (c->x86_stepping || c->cpuid_level >= 0)
1598 pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
1599 else
1600 pr_cont(")\n");
1601 }
1602
1603 /*
1604 * clearcpuid= was already parsed in fpu__init_parse_early_param.
1605 * But we need to keep a dummy __setup around otherwise it would
1606 * show up as an environment variable for init.
1607 */
1608 static __init int setup_clearcpuid(char *arg)
1609 {
1610 return 1;
1611 }
1612 __setup("clearcpuid=", setup_clearcpuid);
1613
1614 #ifdef CONFIG_X86_64
1615 DEFINE_PER_CPU_FIRST(struct fixed_percpu_data,
1616 fixed_percpu_data) __aligned(PAGE_SIZE) __visible;
1617 EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data);
1618
1619 /*
1620 * The following percpu variables are hot. Align current_task to
1621 * cacheline size such that they fall in the same cacheline.
1622 */
1623 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1624 &init_task;
1625 EXPORT_PER_CPU_SYMBOL(current_task);
1626
1627 DEFINE_PER_CPU(struct irq_stack *, hardirq_stack_ptr);
1628 DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1629
1630 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1631 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1632
1633 /* May not be marked __init: used by software suspend */
1634 void syscall_init(void)
1635 {
1636 wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1637 wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1638
1639 #ifdef CONFIG_IA32_EMULATION
1640 wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1641 /*
1642 * This only works on Intel CPUs.
1643 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1644 * This does not cause SYSENTER to jump to the wrong location, because
1645 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1646 */
1647 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1648 wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
1649 (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
1650 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1651 #else
1652 wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1653 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1654 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1655 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1656 #endif
1657
1658 /* Flags to clear on syscall */
1659 wrmsrl(MSR_SYSCALL_MASK,
1660 X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1661 X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1662 }
1663
1664 DEFINE_PER_CPU(int, debug_stack_usage);
1665 DEFINE_PER_CPU(u32, debug_idt_ctr);
1666
1667 void debug_stack_set_zero(void)
1668 {
1669 this_cpu_inc(debug_idt_ctr);
1670 load_current_idt();
1671 }
1672 NOKPROBE_SYMBOL(debug_stack_set_zero);
1673
1674 void debug_stack_reset(void)
1675 {
1676 if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
1677 return;
1678 if (this_cpu_dec_return(debug_idt_ctr) == 0)
1679 load_current_idt();
1680 }
1681 NOKPROBE_SYMBOL(debug_stack_reset);
1682
1683 #else /* CONFIG_X86_64 */
1684
1685 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1686 EXPORT_PER_CPU_SYMBOL(current_task);
1687 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1688 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1689
1690 /*
1691 * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1692 * the top of the kernel stack. Use an extra percpu variable to track the
1693 * top of the kernel stack directly.
1694 */
1695 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1696 (unsigned long)&init_thread_union + THREAD_SIZE;
1697 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1698
1699 #ifdef CONFIG_STACKPROTECTOR
1700 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1701 #endif
1702
1703 #endif /* CONFIG_X86_64 */
1704
1705 /*
1706 * Clear all 6 debug registers:
1707 */
1708 static void clear_all_debug_regs(void)
1709 {
1710 int i;
1711
1712 for (i = 0; i < 8; i++) {
1713 /* Ignore db4, db5 */
1714 if ((i == 4) || (i == 5))
1715 continue;
1716
1717 set_debugreg(0, i);
1718 }
1719 }
1720
1721 #ifdef CONFIG_KGDB
1722 /*
1723 * Restore debug regs if using kgdbwait and you have a kernel debugger
1724 * connection established.
1725 */
1726 static void dbg_restore_debug_regs(void)
1727 {
1728 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1729 arch_kgdb_ops.correct_hw_break();
1730 }
1731 #else /* ! CONFIG_KGDB */
1732 #define dbg_restore_debug_regs()
1733 #endif /* ! CONFIG_KGDB */
1734
1735 static void wait_for_master_cpu(int cpu)
1736 {
1737 #ifdef CONFIG_SMP
1738 /*
1739 * wait for ACK from master CPU before continuing
1740 * with AP initialization
1741 */
1742 WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1743 while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1744 cpu_relax();
1745 #endif
1746 }
1747
1748 #ifdef CONFIG_X86_64
1749 static inline void setup_getcpu(int cpu)
1750 {
1751 unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
1752 struct desc_struct d = { };
1753
1754 if (boot_cpu_has(X86_FEATURE_RDTSCP))
1755 write_rdtscp_aux(cpudata);
1756
1757 /* Store CPU and node number in limit. */
1758 d.limit0 = cpudata;
1759 d.limit1 = cpudata >> 16;
1760
1761 d.type = 5; /* RO data, expand down, accessed */
1762 d.dpl = 3; /* Visible to user code */
1763 d.s = 1; /* Not a system segment */
1764 d.p = 1; /* Present */
1765 d.d = 1; /* 32-bit */
1766
1767 write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
1768 }
1769
1770 static inline void ucode_cpu_init(int cpu)
1771 {
1772 if (cpu)
1773 load_ucode_ap();
1774 }
1775
1776 static inline void tss_setup_ist(struct tss_struct *tss)
1777 {
1778 /* Set up the per-CPU TSS IST stacks */
1779 tss->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
1780 tss->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
1781 tss->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
1782 tss->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
1783 }
1784
1785 static inline void gdt_setup_doublefault_tss(int cpu) { }
1786
1787 #else /* CONFIG_X86_64 */
1788
1789 static inline void setup_getcpu(int cpu) { }
1790
1791 static inline void ucode_cpu_init(int cpu)
1792 {
1793 show_ucode_info_early();
1794 }
1795
1796 static inline void tss_setup_ist(struct tss_struct *tss) { }
1797
1798 static inline void gdt_setup_doublefault_tss(int cpu)
1799 {
1800 #ifdef CONFIG_DOUBLEFAULT
1801 /* Set up the doublefault TSS pointer in the GDT */
1802 __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1803 #endif
1804 }
1805 #endif /* !CONFIG_X86_64 */
1806
1807 /*
1808 * cpu_init() initializes state that is per-CPU. Some data is already
1809 * initialized (naturally) in the bootstrap process, such as the GDT
1810 * and IDT. We reload them nevertheless, this function acts as a
1811 * 'CPU state barrier', nothing should get across.
1812 */
1813 void cpu_init(void)
1814 {
1815 struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
1816 struct task_struct *cur = current;
1817 int cpu = raw_smp_processor_id();
1818
1819 wait_for_master_cpu(cpu);
1820
1821 ucode_cpu_init(cpu);
1822
1823 #ifdef CONFIG_NUMA
1824 if (this_cpu_read(numa_node) == 0 &&
1825 early_cpu_to_node(cpu) != NUMA_NO_NODE)
1826 set_numa_node(early_cpu_to_node(cpu));
1827 #endif
1828 setup_getcpu(cpu);
1829
1830 pr_debug("Initializing CPU#%d\n", cpu);
1831
1832 if (IS_ENABLED(CONFIG_X86_64) || cpu_feature_enabled(X86_FEATURE_VME) ||
1833 boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE))
1834 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1835
1836 /*
1837 * Initialize the per-CPU GDT with the boot GDT,
1838 * and set up the GDT descriptor:
1839 */
1840 switch_to_new_gdt(cpu);
1841 load_current_idt();
1842
1843 if (IS_ENABLED(CONFIG_X86_64)) {
1844 loadsegment(fs, 0);
1845 memset(cur->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1846 syscall_init();
1847
1848 wrmsrl(MSR_FS_BASE, 0);
1849 wrmsrl(MSR_KERNEL_GS_BASE, 0);
1850 barrier();
1851
1852 x2apic_setup();
1853 }
1854
1855 mmgrab(&init_mm);
1856 cur->active_mm = &init_mm;
1857 BUG_ON(cur->mm);
1858 initialize_tlbstate_and_flush();
1859 enter_lazy_tlb(&init_mm, cur);
1860
1861 /* Initialize the TSS. */
1862 tss_setup_ist(tss);
1863 tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID;
1864 tss->io_bitmap.prev_max = 0;
1865 tss->io_bitmap.prev_sequence = 0;
1866 memset(tss->io_bitmap.bitmap, 0xff, sizeof(tss->io_bitmap.bitmap));
1867 /*
1868 * Invalidate the extra array entry past the end of the all
1869 * permission bitmap as required by the hardware.
1870 */
1871 tss->io_bitmap.mapall[IO_BITMAP_LONGS] = ~0UL;
1872 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1873
1874 load_TR_desc();
1875 /*
1876 * sp0 points to the entry trampoline stack regardless of what task
1877 * is running.
1878 */
1879 load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
1880
1881 load_mm_ldt(&init_mm);
1882
1883 clear_all_debug_regs();
1884 dbg_restore_debug_regs();
1885
1886 gdt_setup_doublefault_tss(cpu);
1887
1888 fpu__init_cpu();
1889
1890 if (is_uv_system())
1891 uv_cpu_init();
1892
1893 load_fixmap_gdt(cpu);
1894 }
1895
1896 /*
1897 * The microcode loader calls this upon late microcode load to recheck features,
1898 * only when microcode has been updated. Caller holds microcode_mutex and CPU
1899 * hotplug lock.
1900 */
1901 void microcode_check(void)
1902 {
1903 struct cpuinfo_x86 info;
1904
1905 perf_check_microcode();
1906
1907 /* Reload CPUID max function as it might've changed. */
1908 info.cpuid_level = cpuid_eax(0);
1909
1910 /*
1911 * Copy all capability leafs to pick up the synthetic ones so that
1912 * memcmp() below doesn't fail on that. The ones coming from CPUID will
1913 * get overwritten in get_cpu_cap().
1914 */
1915 memcpy(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability));
1916
1917 get_cpu_cap(&info);
1918
1919 if (!memcmp(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability)))
1920 return;
1921
1922 pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
1923 pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
1924 }
1925
1926 /*
1927 * Invoked from core CPU hotplug code after hotplug operations
1928 */
1929 void arch_smt_update(void)
1930 {
1931 /* Handle the speculative execution misfeatures */
1932 cpu_bugs_smt_update();
1933 /* Check whether IPI broadcasting can be enabled */
1934 apic_smt_update();
1935 }