]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kernel/cpu/common.c
Merge commit '63cc8c75156462d4b42cbdd76c293b7eee7ddbfe':
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / cpu / common.c
1 #include <linux/init.h>
2 #include <linux/string.h>
3 #include <linux/delay.h>
4 #include <linux/smp.h>
5 #include <linux/module.h>
6 #include <linux/percpu.h>
7 #include <linux/bootmem.h>
8 #include <asm/processor.h>
9 #include <asm/i387.h>
10 #include <asm/msr.h>
11 #include <asm/io.h>
12 #include <asm/mmu_context.h>
13 #include <asm/mtrr.h>
14 #include <asm/mce.h>
15 #include <asm/pat.h>
16 #include <asm/asm.h>
17 #ifdef CONFIG_X86_LOCAL_APIC
18 #include <asm/mpspec.h>
19 #include <asm/apic.h>
20 #include <mach_apic.h>
21 #endif
22
23 #include "cpu.h"
24
25 static struct cpu_dev *this_cpu __cpuinitdata;
26
27 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
28 [GDT_ENTRY_KERNEL_CS] = { { { 0x0000ffff, 0x00cf9a00 } } },
29 [GDT_ENTRY_KERNEL_DS] = { { { 0x0000ffff, 0x00cf9200 } } },
30 [GDT_ENTRY_DEFAULT_USER_CS] = { { { 0x0000ffff, 0x00cffa00 } } },
31 [GDT_ENTRY_DEFAULT_USER_DS] = { { { 0x0000ffff, 0x00cff200 } } },
32 /*
33 * Segments used for calling PnP BIOS have byte granularity.
34 * They code segments and data segments have fixed 64k limits,
35 * the transfer segment sizes are set at run time.
36 */
37 /* 32-bit code */
38 [GDT_ENTRY_PNPBIOS_CS32] = { { { 0x0000ffff, 0x00409a00 } } },
39 /* 16-bit code */
40 [GDT_ENTRY_PNPBIOS_CS16] = { { { 0x0000ffff, 0x00009a00 } } },
41 /* 16-bit data */
42 [GDT_ENTRY_PNPBIOS_DS] = { { { 0x0000ffff, 0x00009200 } } },
43 /* 16-bit data */
44 [GDT_ENTRY_PNPBIOS_TS1] = { { { 0x00000000, 0x00009200 } } },
45 /* 16-bit data */
46 [GDT_ENTRY_PNPBIOS_TS2] = { { { 0x00000000, 0x00009200 } } },
47 /*
48 * The APM segments have byte granularity and their bases
49 * are set at run time. All have 64k limits.
50 */
51 /* 32-bit code */
52 [GDT_ENTRY_APMBIOS_BASE] = { { { 0x0000ffff, 0x00409a00 } } },
53 /* 16-bit code */
54 [GDT_ENTRY_APMBIOS_BASE+1] = { { { 0x0000ffff, 0x00009a00 } } },
55 /* data */
56 [GDT_ENTRY_APMBIOS_BASE+2] = { { { 0x0000ffff, 0x00409200 } } },
57
58 [GDT_ENTRY_ESPFIX_SS] = { { { 0x00000000, 0x00c09200 } } },
59 [GDT_ENTRY_PERCPU] = { { { 0x00000000, 0x00000000 } } },
60 } };
61 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
62
63 static int cachesize_override __cpuinitdata = -1;
64 static int disable_x86_serial_nr __cpuinitdata = 1;
65
66 static int __init cachesize_setup(char *str)
67 {
68 get_option(&str, &cachesize_override);
69 return 1;
70 }
71 __setup("cachesize=", cachesize_setup);
72
73 /*
74 * Naming convention should be: <Name> [(<Codename>)]
75 * This table only is used unless init_<vendor>() below doesn't set it;
76 * in particular, if CPUID levels 0x80000002..4 are supported, this isn't used
77 *
78 */
79
80 /* Look up CPU names by table lookup. */
81 static char __cpuinit *table_lookup_model(struct cpuinfo_x86 *c)
82 {
83 struct cpu_model_info *info;
84
85 if (c->x86_model >= 16)
86 return NULL; /* Range check */
87
88 if (!this_cpu)
89 return NULL;
90
91 info = this_cpu->c_models;
92
93 while (info && info->family) {
94 if (info->family == c->x86)
95 return info->model_names[c->x86_model];
96 info++;
97 }
98 return NULL; /* Not found */
99 }
100
101 static int __init x86_fxsr_setup(char *s)
102 {
103 setup_clear_cpu_cap(X86_FEATURE_FXSR);
104 setup_clear_cpu_cap(X86_FEATURE_XMM);
105 return 1;
106 }
107 __setup("nofxsr", x86_fxsr_setup);
108
109 static int __init x86_sep_setup(char *s)
110 {
111 setup_clear_cpu_cap(X86_FEATURE_SEP);
112 return 1;
113 }
114 __setup("nosep", x86_sep_setup);
115
116 /* Standard macro to see if a specific flag is changeable */
117 static inline int flag_is_changeable_p(u32 flag)
118 {
119 u32 f1, f2;
120
121 asm("pushfl\n\t"
122 "pushfl\n\t"
123 "popl %0\n\t"
124 "movl %0,%1\n\t"
125 "xorl %2,%0\n\t"
126 "pushl %0\n\t"
127 "popfl\n\t"
128 "pushfl\n\t"
129 "popl %0\n\t"
130 "popfl\n\t"
131 : "=&r" (f1), "=&r" (f2)
132 : "ir" (flag));
133
134 return ((f1^f2) & flag) != 0;
135 }
136
137 /* Probe for the CPUID instruction */
138 static int __cpuinit have_cpuid_p(void)
139 {
140 return flag_is_changeable_p(X86_EFLAGS_ID);
141 }
142
143 static void __cpuinit squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
144 {
145 if (cpu_has(c, X86_FEATURE_PN) && disable_x86_serial_nr) {
146 /* Disable processor serial number */
147 unsigned long lo, hi;
148 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
149 lo |= 0x200000;
150 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
151 printk(KERN_NOTICE "CPU serial number disabled.\n");
152 clear_cpu_cap(c, X86_FEATURE_PN);
153
154 /* Disabling the serial number may affect the cpuid level */
155 c->cpuid_level = cpuid_eax(0);
156 }
157 }
158
159 static int __init x86_serial_nr_setup(char *s)
160 {
161 disable_x86_serial_nr = 0;
162 return 1;
163 }
164 __setup("serialnumber", x86_serial_nr_setup);
165
166 __u32 cleared_cpu_caps[NCAPINTS] __cpuinitdata;
167
168 /* Current gdt points %fs at the "master" per-cpu area: after this,
169 * it's on the real one. */
170 void switch_to_new_gdt(void)
171 {
172 struct desc_ptr gdt_descr;
173
174 gdt_descr.address = (long)get_cpu_gdt_table(smp_processor_id());
175 gdt_descr.size = GDT_SIZE - 1;
176 load_gdt(&gdt_descr);
177 asm("mov %0, %%fs" : : "r" (__KERNEL_PERCPU) : "memory");
178 }
179
180 static struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
181
182 static void __cpuinit default_init(struct cpuinfo_x86 *c)
183 {
184 /* Not much we can do here... */
185 /* Check if at least it has cpuid */
186 if (c->cpuid_level == -1) {
187 /* No cpuid. It must be an ancient CPU */
188 if (c->x86 == 4)
189 strcpy(c->x86_model_id, "486");
190 else if (c->x86 == 3)
191 strcpy(c->x86_model_id, "386");
192 }
193 }
194
195 static struct cpu_dev __cpuinitdata default_cpu = {
196 .c_init = default_init,
197 .c_vendor = "Unknown",
198 .c_x86_vendor = X86_VENDOR_UNKNOWN,
199 };
200
201 int __cpuinit get_model_name(struct cpuinfo_x86 *c)
202 {
203 unsigned int *v;
204 char *p, *q;
205
206 if (c->extended_cpuid_level < 0x80000004)
207 return 0;
208
209 v = (unsigned int *) c->x86_model_id;
210 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
211 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
212 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
213 c->x86_model_id[48] = 0;
214
215 /* Intel chips right-justify this string for some dumb reason;
216 undo that brain damage */
217 p = q = &c->x86_model_id[0];
218 while (*p == ' ')
219 p++;
220 if (p != q) {
221 while (*p)
222 *q++ = *p++;
223 while (q <= &c->x86_model_id[48])
224 *q++ = '\0'; /* Zero-pad the rest */
225 }
226
227 return 1;
228 }
229
230 void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
231 {
232 unsigned int n, dummy, ebx, ecx, edx, l2size;
233
234 n = c->extended_cpuid_level;
235
236 if (n >= 0x80000005) {
237 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
238 printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n",
239 edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
240 c->x86_cache_size = (ecx>>24) + (edx>>24);
241 }
242
243 if (n < 0x80000006) /* Some chips just has a large L1. */
244 return;
245
246 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
247 l2size = ecx >> 16;
248
249 /* do processor-specific cache resizing */
250 if (this_cpu->c_size_cache)
251 l2size = this_cpu->c_size_cache(c, l2size);
252
253 /* Allow user to override all this if necessary. */
254 if (cachesize_override != -1)
255 l2size = cachesize_override;
256
257 if (l2size == 0)
258 return; /* Again, no L2 cache is possible */
259
260 c->x86_cache_size = l2size;
261
262 printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
263 l2size, ecx & 0xFF);
264 }
265
266 #ifdef CONFIG_X86_HT
267 void __cpuinit detect_ht(struct cpuinfo_x86 *c)
268 {
269 u32 eax, ebx, ecx, edx;
270 int index_msb, core_bits;
271
272 if (!cpu_has(c, X86_FEATURE_HT))
273 return;
274
275 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
276 goto out;
277
278 cpuid(1, &eax, &ebx, &ecx, &edx);
279
280 smp_num_siblings = (ebx & 0xff0000) >> 16;
281
282 if (smp_num_siblings == 1) {
283 printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
284 } else if (smp_num_siblings > 1) {
285
286 if (smp_num_siblings > NR_CPUS) {
287 printk(KERN_WARNING "CPU: Unsupported number of siblings %d",
288 smp_num_siblings);
289 smp_num_siblings = 1;
290 return;
291 }
292
293 index_msb = get_count_order(smp_num_siblings);
294 c->phys_proc_id = phys_pkg_id(c->initial_apicid, index_msb);
295
296
297 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
298
299 index_msb = get_count_order(smp_num_siblings);
300
301 core_bits = get_count_order(c->x86_max_cores);
302
303 c->cpu_core_id = phys_pkg_id(c->initial_apicid, index_msb) &
304 ((1 << core_bits) - 1);
305 }
306
307 out:
308 if ((c->x86_max_cores * smp_num_siblings) > 1) {
309 printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
310 c->phys_proc_id);
311 printk(KERN_INFO "CPU: Processor Core ID: %d\n",
312 c->cpu_core_id);
313 }
314 }
315 #endif
316
317 static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
318 {
319 char *v = c->x86_vendor_id;
320 int i;
321 static int printed;
322
323 for (i = 0; i < X86_VENDOR_NUM; i++) {
324 if (!cpu_devs[i])
325 break;
326
327 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
328 (cpu_devs[i]->c_ident[1] &&
329 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
330 this_cpu = cpu_devs[i];
331 c->x86_vendor = this_cpu->c_x86_vendor;
332 return;
333 }
334 }
335
336 if (!printed) {
337 printed++;
338 printk(KERN_ERR "CPU: Vendor unknown, using generic init.\n");
339 printk(KERN_ERR "CPU: Your system may be unstable.\n");
340 }
341
342 c->x86_vendor = X86_VENDOR_UNKNOWN;
343 this_cpu = &default_cpu;
344 }
345
346 void __cpuinit cpu_detect(struct cpuinfo_x86 *c)
347 {
348 /* Get vendor name */
349 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
350 (unsigned int *)&c->x86_vendor_id[0],
351 (unsigned int *)&c->x86_vendor_id[8],
352 (unsigned int *)&c->x86_vendor_id[4]);
353
354 c->x86 = 4;
355 /* Intel-defined flags: level 0x00000001 */
356 if (c->cpuid_level >= 0x00000001) {
357 u32 junk, tfms, cap0, misc;
358 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
359 c->x86 = (tfms >> 8) & 0xf;
360 c->x86_model = (tfms >> 4) & 0xf;
361 c->x86_mask = tfms & 0xf;
362 if (c->x86 == 0xf)
363 c->x86 += (tfms >> 20) & 0xff;
364 if (c->x86 >= 0x6)
365 c->x86_model += ((tfms >> 16) & 0xf) << 4;
366 if (cap0 & (1<<19)) {
367 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
368 c->x86_cache_alignment = c->x86_clflush_size;
369 }
370 }
371 }
372
373 static void __cpuinit get_cpu_cap(struct cpuinfo_x86 *c)
374 {
375 u32 tfms, xlvl;
376 u32 ebx;
377
378 /* Intel-defined flags: level 0x00000001 */
379 if (c->cpuid_level >= 0x00000001) {
380 u32 capability, excap;
381 cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
382 c->x86_capability[0] = capability;
383 c->x86_capability[4] = excap;
384 }
385
386 /* AMD-defined flags: level 0x80000001 */
387 xlvl = cpuid_eax(0x80000000);
388 c->extended_cpuid_level = xlvl;
389 if ((xlvl & 0xffff0000) == 0x80000000) {
390 if (xlvl >= 0x80000001) {
391 c->x86_capability[1] = cpuid_edx(0x80000001);
392 c->x86_capability[6] = cpuid_ecx(0x80000001);
393 }
394 }
395 }
396 /*
397 * Do minimum CPU detection early.
398 * Fields really needed: vendor, cpuid_level, family, model, mask,
399 * cache alignment.
400 * The others are not touched to avoid unwanted side effects.
401 *
402 * WARNING: this function is only called on the BP. Don't add code here
403 * that is supposed to run on all CPUs.
404 */
405 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
406 {
407 c->x86_clflush_size = 32;
408 c->x86_cache_alignment = c->x86_clflush_size;
409
410 if (!have_cpuid_p())
411 return;
412
413 memset(&c->x86_capability, 0, sizeof c->x86_capability);
414
415 c->extended_cpuid_level = 0;
416
417 cpu_detect(c);
418
419 get_cpu_vendor(c);
420
421 get_cpu_cap(c);
422
423 if (this_cpu->c_early_init)
424 this_cpu->c_early_init(c);
425
426 validate_pat_support(c);
427 }
428
429 void __init early_cpu_init(void)
430 {
431 struct cpu_dev **cdev;
432 int count = 0;
433
434 printk("KERNEL supported cpus:\n");
435 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
436 struct cpu_dev *cpudev = *cdev;
437 unsigned int j;
438
439 if (count >= X86_VENDOR_NUM)
440 break;
441 cpu_devs[count] = cpudev;
442 count++;
443
444 for (j = 0; j < 2; j++) {
445 if (!cpudev->c_ident[j])
446 continue;
447 printk(" %s %s\n", cpudev->c_vendor,
448 cpudev->c_ident[j]);
449 }
450 }
451
452 early_identify_cpu(&boot_cpu_data);
453 }
454
455 /*
456 * The NOPL instruction is supposed to exist on all CPUs with
457 * family >= 6, unfortunately, that's not true in practice because
458 * of early VIA chips and (more importantly) broken virtualizers that
459 * are not easy to detect. Hence, probe for it based on first
460 * principles.
461 */
462 static void __cpuinit detect_nopl(struct cpuinfo_x86 *c)
463 {
464 const u32 nopl_signature = 0x888c53b1; /* Random number */
465 u32 has_nopl = nopl_signature;
466
467 clear_cpu_cap(c, X86_FEATURE_NOPL);
468 if (c->x86 >= 6) {
469 asm volatile("\n"
470 "1: .byte 0x0f,0x1f,0xc0\n" /* nopl %eax */
471 "2:\n"
472 " .section .fixup,\"ax\"\n"
473 "3: xor %0,%0\n"
474 " jmp 2b\n"
475 " .previous\n"
476 _ASM_EXTABLE(1b,3b)
477 : "+a" (has_nopl));
478
479 if (has_nopl == nopl_signature)
480 set_cpu_cap(c, X86_FEATURE_NOPL);
481 }
482 }
483
484 static void __cpuinit generic_identify(struct cpuinfo_x86 *c)
485 {
486 if (!have_cpuid_p())
487 return;
488
489 c->extended_cpuid_level = 0;
490
491 cpu_detect(c);
492
493 get_cpu_vendor(c);
494
495 get_cpu_cap(c);
496
497 if (c->cpuid_level >= 0x00000001) {
498 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
499 #ifdef CONFIG_X86_HT
500 c->apicid = phys_pkg_id(c->initial_apicid, 0);
501 c->phys_proc_id = c->initial_apicid;
502 #else
503 c->apicid = c->initial_apicid;
504 #endif
505 }
506
507 if (c->extended_cpuid_level >= 0x80000004)
508 get_model_name(c); /* Default name */
509
510 init_scattered_cpuid_features(c);
511 detect_nopl(c);
512 }
513
514 /*
515 * This does the hard work of actually picking apart the CPU stuff...
516 */
517 static void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
518 {
519 int i;
520
521 c->loops_per_jiffy = loops_per_jiffy;
522 c->x86_cache_size = -1;
523 c->x86_vendor = X86_VENDOR_UNKNOWN;
524 c->cpuid_level = -1; /* CPUID not detected */
525 c->x86_model = c->x86_mask = 0; /* So far unknown... */
526 c->x86_vendor_id[0] = '\0'; /* Unset */
527 c->x86_model_id[0] = '\0'; /* Unset */
528 c->x86_max_cores = 1;
529 c->x86_clflush_size = 32;
530 memset(&c->x86_capability, 0, sizeof c->x86_capability);
531
532 if (!have_cpuid_p()) {
533 /*
534 * First of all, decide if this is a 486 or higher
535 * It's a 486 if we can modify the AC flag
536 */
537 if (flag_is_changeable_p(X86_EFLAGS_AC))
538 c->x86 = 4;
539 else
540 c->x86 = 3;
541 }
542
543 generic_identify(c);
544
545 if (this_cpu->c_identify)
546 this_cpu->c_identify(c);
547
548 /*
549 * Vendor-specific initialization. In this section we
550 * canonicalize the feature flags, meaning if there are
551 * features a certain CPU supports which CPUID doesn't
552 * tell us, CPUID claiming incorrect flags, or other bugs,
553 * we handle them here.
554 *
555 * At the end of this section, c->x86_capability better
556 * indicate the features this CPU genuinely supports!
557 */
558 if (this_cpu->c_init)
559 this_cpu->c_init(c);
560
561 /* Disable the PN if appropriate */
562 squash_the_stupid_serial_number(c);
563
564 /*
565 * The vendor-specific functions might have changed features. Now
566 * we do "generic changes."
567 */
568
569 /* If the model name is still unset, do table lookup. */
570 if (!c->x86_model_id[0]) {
571 char *p;
572 p = table_lookup_model(c);
573 if (p)
574 strcpy(c->x86_model_id, p);
575 else
576 /* Last resort... */
577 sprintf(c->x86_model_id, "%02x/%02x",
578 c->x86, c->x86_model);
579 }
580
581 /*
582 * On SMP, boot_cpu_data holds the common feature set between
583 * all CPUs; so make sure that we indicate which features are
584 * common between the CPUs. The first time this routine gets
585 * executed, c == &boot_cpu_data.
586 */
587 if (c != &boot_cpu_data) {
588 /* AND the already accumulated flags with these */
589 for (i = 0; i < NCAPINTS; i++)
590 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
591 }
592
593 /* Clear all flags overriden by options */
594 for (i = 0; i < NCAPINTS; i++)
595 c->x86_capability[i] &= ~cleared_cpu_caps[i];
596
597 /* Init Machine Check Exception if available. */
598 mcheck_init(c);
599
600 select_idle_routine(c);
601 }
602
603 void __init identify_boot_cpu(void)
604 {
605 identify_cpu(&boot_cpu_data);
606 sysenter_setup();
607 enable_sep_cpu();
608 }
609
610 void __cpuinit identify_secondary_cpu(struct cpuinfo_x86 *c)
611 {
612 BUG_ON(c == &boot_cpu_data);
613 identify_cpu(c);
614 enable_sep_cpu();
615 mtrr_ap_init();
616 }
617
618 struct msr_range {
619 unsigned min;
620 unsigned max;
621 };
622
623 static struct msr_range msr_range_array[] __cpuinitdata = {
624 { 0x00000000, 0x00000418},
625 { 0xc0000000, 0xc000040b},
626 { 0xc0010000, 0xc0010142},
627 { 0xc0011000, 0xc001103b},
628 };
629
630 static void __cpuinit print_cpu_msr(void)
631 {
632 unsigned index;
633 u64 val;
634 int i;
635 unsigned index_min, index_max;
636
637 for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
638 index_min = msr_range_array[i].min;
639 index_max = msr_range_array[i].max;
640 for (index = index_min; index < index_max; index++) {
641 if (rdmsrl_amd_safe(index, &val))
642 continue;
643 printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
644 }
645 }
646 }
647
648 static int show_msr __cpuinitdata;
649 static __init int setup_show_msr(char *arg)
650 {
651 int num;
652
653 get_option(&arg, &num);
654
655 if (num > 0)
656 show_msr = num;
657 return 1;
658 }
659 __setup("show_msr=", setup_show_msr);
660
661 static __init int setup_noclflush(char *arg)
662 {
663 setup_clear_cpu_cap(X86_FEATURE_CLFLSH);
664 return 1;
665 }
666 __setup("noclflush", setup_noclflush);
667
668 void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
669 {
670 char *vendor = NULL;
671
672 if (c->x86_vendor < X86_VENDOR_NUM)
673 vendor = this_cpu->c_vendor;
674 else if (c->cpuid_level >= 0)
675 vendor = c->x86_vendor_id;
676
677 if (vendor && strncmp(c->x86_model_id, vendor, strlen(vendor)))
678 printk(KERN_CONT "%s ", vendor);
679
680 if (c->x86_model_id[0])
681 printk(KERN_CONT "%s", c->x86_model_id);
682 else
683 printk(KERN_CONT "%d86", c->x86);
684
685 if (c->x86_mask || c->cpuid_level >= 0)
686 printk(KERN_CONT " stepping %02x\n", c->x86_mask);
687 else
688 printk(KERN_CONT "\n");
689
690 #ifdef CONFIG_SMP
691 if (c->cpu_index < show_msr)
692 print_cpu_msr();
693 #else
694 if (show_msr)
695 print_cpu_msr();
696 #endif
697 }
698
699 static __init int setup_disablecpuid(char *arg)
700 {
701 int bit;
702 if (get_option(&arg, &bit) && bit < NCAPINTS*32)
703 setup_clear_cpu_cap(bit);
704 else
705 return 0;
706 return 1;
707 }
708 __setup("clearcpuid=", setup_disablecpuid);
709
710 cpumask_t cpu_initialized __cpuinitdata = CPU_MASK_NONE;
711
712 /* Make sure %fs is initialized properly in idle threads */
713 struct pt_regs * __cpuinit idle_regs(struct pt_regs *regs)
714 {
715 memset(regs, 0, sizeof(struct pt_regs));
716 regs->fs = __KERNEL_PERCPU;
717 return regs;
718 }
719
720 /*
721 * cpu_init() initializes state that is per-CPU. Some data is already
722 * initialized (naturally) in the bootstrap process, such as the GDT
723 * and IDT. We reload them nevertheless, this function acts as a
724 * 'CPU state barrier', nothing should get across.
725 */
726 void __cpuinit cpu_init(void)
727 {
728 int cpu = smp_processor_id();
729 struct task_struct *curr = current;
730 struct tss_struct *t = &per_cpu(init_tss, cpu);
731 struct thread_struct *thread = &curr->thread;
732
733 if (cpu_test_and_set(cpu, cpu_initialized)) {
734 printk(KERN_WARNING "CPU#%d already initialized!\n", cpu);
735 for (;;) local_irq_enable();
736 }
737
738 printk(KERN_INFO "Initializing CPU#%d\n", cpu);
739
740 if (cpu_has_vme || cpu_has_tsc || cpu_has_de)
741 clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
742
743 load_idt(&idt_descr);
744 switch_to_new_gdt();
745
746 /*
747 * Set up and load the per-CPU TSS and LDT
748 */
749 atomic_inc(&init_mm.mm_count);
750 curr->active_mm = &init_mm;
751 if (curr->mm)
752 BUG();
753 enter_lazy_tlb(&init_mm, curr);
754
755 load_sp0(t, thread);
756 set_tss_desc(cpu, t);
757 load_TR_desc();
758 load_LDT(&init_mm.context);
759
760 #ifdef CONFIG_DOUBLEFAULT
761 /* Set up doublefault TSS pointer in the GDT */
762 __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
763 #endif
764
765 /* Clear %gs. */
766 asm volatile ("mov %0, %%gs" : : "r" (0));
767
768 /* Clear all 6 debug registers: */
769 set_debugreg(0, 0);
770 set_debugreg(0, 1);
771 set_debugreg(0, 2);
772 set_debugreg(0, 3);
773 set_debugreg(0, 6);
774 set_debugreg(0, 7);
775
776 /*
777 * Force FPU initialization:
778 */
779 if (cpu_has_xsave)
780 current_thread_info()->status = TS_XSAVE;
781 else
782 current_thread_info()->status = 0;
783 clear_used_math();
784 mxcsr_feature_mask_init();
785
786 /*
787 * Boot processor to setup the FP and extended state context info.
788 */
789 if (!smp_processor_id())
790 init_thread_xstate();
791
792 xsave_init();
793 }
794
795 #ifdef CONFIG_HOTPLUG_CPU
796 void __cpuinit cpu_uninit(void)
797 {
798 int cpu = raw_smp_processor_id();
799 cpu_clear(cpu, cpu_initialized);
800
801 /* lazy TLB state */
802 per_cpu(cpu_tlbstate, cpu).state = 0;
803 per_cpu(cpu_tlbstate, cpu).active_mm = &init_mm;
804 }
805 #endif