]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kernel/cpu/common.c
x86/fpu: Rename fpu-internal.h to fpu/internal.h
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kernel / cpu / common.c
1 #include <linux/bootmem.h>
2 #include <linux/linkage.h>
3 #include <linux/bitops.h>
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/percpu.h>
7 #include <linux/string.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/init.h>
11 #include <linux/kprobes.h>
12 #include <linux/kgdb.h>
13 #include <linux/smp.h>
14 #include <linux/io.h>
15
16 #include <asm/stackprotector.h>
17 #include <asm/perf_event.h>
18 #include <asm/mmu_context.h>
19 #include <asm/archrandom.h>
20 #include <asm/hypervisor.h>
21 #include <asm/processor.h>
22 #include <asm/tlbflush.h>
23 #include <asm/debugreg.h>
24 #include <asm/sections.h>
25 #include <asm/vsyscall.h>
26 #include <linux/topology.h>
27 #include <linux/cpumask.h>
28 #include <asm/pgtable.h>
29 #include <linux/atomic.h>
30 #include <asm/proto.h>
31 #include <asm/setup.h>
32 #include <asm/apic.h>
33 #include <asm/desc.h>
34 #include <asm/fpu/internal.h>
35 #include <asm/mtrr.h>
36 #include <linux/numa.h>
37 #include <asm/asm.h>
38 #include <asm/cpu.h>
39 #include <asm/mce.h>
40 #include <asm/msr.h>
41 #include <asm/pat.h>
42 #include <asm/microcode.h>
43 #include <asm/microcode_intel.h>
44
45 #ifdef CONFIG_X86_LOCAL_APIC
46 #include <asm/uv/uv.h>
47 #endif
48
49 #include "cpu.h"
50
51 /* all of these masks are initialized in setup_cpu_local_masks() */
52 cpumask_var_t cpu_initialized_mask;
53 cpumask_var_t cpu_callout_mask;
54 cpumask_var_t cpu_callin_mask;
55
56 /* representing cpus for which sibling maps can be computed */
57 cpumask_var_t cpu_sibling_setup_mask;
58
59 /* correctly size the local cpu masks */
60 void __init setup_cpu_local_masks(void)
61 {
62 alloc_bootmem_cpumask_var(&cpu_initialized_mask);
63 alloc_bootmem_cpumask_var(&cpu_callin_mask);
64 alloc_bootmem_cpumask_var(&cpu_callout_mask);
65 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
66 }
67
68 static void default_init(struct cpuinfo_x86 *c)
69 {
70 #ifdef CONFIG_X86_64
71 cpu_detect_cache_sizes(c);
72 #else
73 /* Not much we can do here... */
74 /* Check if at least it has cpuid */
75 if (c->cpuid_level == -1) {
76 /* No cpuid. It must be an ancient CPU */
77 if (c->x86 == 4)
78 strcpy(c->x86_model_id, "486");
79 else if (c->x86 == 3)
80 strcpy(c->x86_model_id, "386");
81 }
82 #endif
83 }
84
85 static const struct cpu_dev default_cpu = {
86 .c_init = default_init,
87 .c_vendor = "Unknown",
88 .c_x86_vendor = X86_VENDOR_UNKNOWN,
89 };
90
91 static const struct cpu_dev *this_cpu = &default_cpu;
92
93 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
94 #ifdef CONFIG_X86_64
95 /*
96 * We need valid kernel segments for data and code in long mode too
97 * IRET will check the segment types kkeil 2000/10/28
98 * Also sysret mandates a special GDT layout
99 *
100 * TLS descriptors are currently at a different place compared to i386.
101 * Hopefully nobody expects them at a fixed place (Wine?)
102 */
103 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
104 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
105 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
106 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
107 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
108 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
109 #else
110 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
111 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
112 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
113 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
114 /*
115 * Segments used for calling PnP BIOS have byte granularity.
116 * They code segments and data segments have fixed 64k limits,
117 * the transfer segment sizes are set at run time.
118 */
119 /* 32-bit code */
120 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
121 /* 16-bit code */
122 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
123 /* 16-bit data */
124 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
125 /* 16-bit data */
126 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
127 /* 16-bit data */
128 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
129 /*
130 * The APM segments have byte granularity and their bases
131 * are set at run time. All have 64k limits.
132 */
133 /* 32-bit code */
134 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
135 /* 16-bit code */
136 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
137 /* data */
138 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
139
140 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
141 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
142 GDT_STACK_CANARY_INIT
143 #endif
144 } };
145 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
146
147 static int __init x86_xsave_setup(char *s)
148 {
149 if (strlen(s))
150 return 0;
151 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
152 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
153 setup_clear_cpu_cap(X86_FEATURE_XSAVES);
154 setup_clear_cpu_cap(X86_FEATURE_AVX);
155 setup_clear_cpu_cap(X86_FEATURE_AVX2);
156 return 1;
157 }
158 __setup("noxsave", x86_xsave_setup);
159
160 static int __init x86_xsaveopt_setup(char *s)
161 {
162 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
163 return 1;
164 }
165 __setup("noxsaveopt", x86_xsaveopt_setup);
166
167 static int __init x86_xsaves_setup(char *s)
168 {
169 setup_clear_cpu_cap(X86_FEATURE_XSAVES);
170 return 1;
171 }
172 __setup("noxsaves", x86_xsaves_setup);
173
174 #ifdef CONFIG_X86_32
175 static int cachesize_override = -1;
176 static int disable_x86_serial_nr = 1;
177
178 static int __init cachesize_setup(char *str)
179 {
180 get_option(&str, &cachesize_override);
181 return 1;
182 }
183 __setup("cachesize=", cachesize_setup);
184
185 static int __init x86_fxsr_setup(char *s)
186 {
187 setup_clear_cpu_cap(X86_FEATURE_FXSR);
188 setup_clear_cpu_cap(X86_FEATURE_XMM);
189 return 1;
190 }
191 __setup("nofxsr", x86_fxsr_setup);
192
193 static int __init x86_sep_setup(char *s)
194 {
195 setup_clear_cpu_cap(X86_FEATURE_SEP);
196 return 1;
197 }
198 __setup("nosep", x86_sep_setup);
199
200 /* Standard macro to see if a specific flag is changeable */
201 static inline int flag_is_changeable_p(u32 flag)
202 {
203 u32 f1, f2;
204
205 /*
206 * Cyrix and IDT cpus allow disabling of CPUID
207 * so the code below may return different results
208 * when it is executed before and after enabling
209 * the CPUID. Add "volatile" to not allow gcc to
210 * optimize the subsequent calls to this function.
211 */
212 asm volatile ("pushfl \n\t"
213 "pushfl \n\t"
214 "popl %0 \n\t"
215 "movl %0, %1 \n\t"
216 "xorl %2, %0 \n\t"
217 "pushl %0 \n\t"
218 "popfl \n\t"
219 "pushfl \n\t"
220 "popl %0 \n\t"
221 "popfl \n\t"
222
223 : "=&r" (f1), "=&r" (f2)
224 : "ir" (flag));
225
226 return ((f1^f2) & flag) != 0;
227 }
228
229 /* Probe for the CPUID instruction */
230 int have_cpuid_p(void)
231 {
232 return flag_is_changeable_p(X86_EFLAGS_ID);
233 }
234
235 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
236 {
237 unsigned long lo, hi;
238
239 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
240 return;
241
242 /* Disable processor serial number: */
243
244 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
245 lo |= 0x200000;
246 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
247
248 printk(KERN_NOTICE "CPU serial number disabled.\n");
249 clear_cpu_cap(c, X86_FEATURE_PN);
250
251 /* Disabling the serial number may affect the cpuid level */
252 c->cpuid_level = cpuid_eax(0);
253 }
254
255 static int __init x86_serial_nr_setup(char *s)
256 {
257 disable_x86_serial_nr = 0;
258 return 1;
259 }
260 __setup("serialnumber", x86_serial_nr_setup);
261 #else
262 static inline int flag_is_changeable_p(u32 flag)
263 {
264 return 1;
265 }
266 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
267 {
268 }
269 #endif
270
271 static __init int setup_disable_smep(char *arg)
272 {
273 setup_clear_cpu_cap(X86_FEATURE_SMEP);
274 return 1;
275 }
276 __setup("nosmep", setup_disable_smep);
277
278 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
279 {
280 if (cpu_has(c, X86_FEATURE_SMEP))
281 cr4_set_bits(X86_CR4_SMEP);
282 }
283
284 static __init int setup_disable_smap(char *arg)
285 {
286 setup_clear_cpu_cap(X86_FEATURE_SMAP);
287 return 1;
288 }
289 __setup("nosmap", setup_disable_smap);
290
291 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
292 {
293 unsigned long eflags;
294
295 /* This should have been cleared long ago */
296 raw_local_save_flags(eflags);
297 BUG_ON(eflags & X86_EFLAGS_AC);
298
299 if (cpu_has(c, X86_FEATURE_SMAP)) {
300 #ifdef CONFIG_X86_SMAP
301 cr4_set_bits(X86_CR4_SMAP);
302 #else
303 cr4_clear_bits(X86_CR4_SMAP);
304 #endif
305 }
306 }
307
308 /*
309 * Some CPU features depend on higher CPUID levels, which may not always
310 * be available due to CPUID level capping or broken virtualization
311 * software. Add those features to this table to auto-disable them.
312 */
313 struct cpuid_dependent_feature {
314 u32 feature;
315 u32 level;
316 };
317
318 static const struct cpuid_dependent_feature
319 cpuid_dependent_features[] = {
320 { X86_FEATURE_MWAIT, 0x00000005 },
321 { X86_FEATURE_DCA, 0x00000009 },
322 { X86_FEATURE_XSAVE, 0x0000000d },
323 { 0, 0 }
324 };
325
326 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
327 {
328 const struct cpuid_dependent_feature *df;
329
330 for (df = cpuid_dependent_features; df->feature; df++) {
331
332 if (!cpu_has(c, df->feature))
333 continue;
334 /*
335 * Note: cpuid_level is set to -1 if unavailable, but
336 * extended_extended_level is set to 0 if unavailable
337 * and the legitimate extended levels are all negative
338 * when signed; hence the weird messing around with
339 * signs here...
340 */
341 if (!((s32)df->level < 0 ?
342 (u32)df->level > (u32)c->extended_cpuid_level :
343 (s32)df->level > (s32)c->cpuid_level))
344 continue;
345
346 clear_cpu_cap(c, df->feature);
347 if (!warn)
348 continue;
349
350 printk(KERN_WARNING
351 "CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
352 x86_cap_flag(df->feature), df->level);
353 }
354 }
355
356 /*
357 * Naming convention should be: <Name> [(<Codename>)]
358 * This table only is used unless init_<vendor>() below doesn't set it;
359 * in particular, if CPUID levels 0x80000002..4 are supported, this
360 * isn't used
361 */
362
363 /* Look up CPU names by table lookup. */
364 static const char *table_lookup_model(struct cpuinfo_x86 *c)
365 {
366 #ifdef CONFIG_X86_32
367 const struct legacy_cpu_model_info *info;
368
369 if (c->x86_model >= 16)
370 return NULL; /* Range check */
371
372 if (!this_cpu)
373 return NULL;
374
375 info = this_cpu->legacy_models;
376
377 while (info->family) {
378 if (info->family == c->x86)
379 return info->model_names[c->x86_model];
380 info++;
381 }
382 #endif
383 return NULL; /* Not found */
384 }
385
386 __u32 cpu_caps_cleared[NCAPINTS];
387 __u32 cpu_caps_set[NCAPINTS];
388
389 void load_percpu_segment(int cpu)
390 {
391 #ifdef CONFIG_X86_32
392 loadsegment(fs, __KERNEL_PERCPU);
393 #else
394 loadsegment(gs, 0);
395 wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
396 #endif
397 load_stack_canary_segment();
398 }
399
400 /*
401 * Current gdt points %fs at the "master" per-cpu area: after this,
402 * it's on the real one.
403 */
404 void switch_to_new_gdt(int cpu)
405 {
406 struct desc_ptr gdt_descr;
407
408 gdt_descr.address = (long)get_cpu_gdt_table(cpu);
409 gdt_descr.size = GDT_SIZE - 1;
410 load_gdt(&gdt_descr);
411 /* Reload the per-cpu base */
412
413 load_percpu_segment(cpu);
414 }
415
416 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
417
418 static void get_model_name(struct cpuinfo_x86 *c)
419 {
420 unsigned int *v;
421 char *p, *q;
422
423 if (c->extended_cpuid_level < 0x80000004)
424 return;
425
426 v = (unsigned int *)c->x86_model_id;
427 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
428 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
429 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
430 c->x86_model_id[48] = 0;
431
432 /*
433 * Intel chips right-justify this string for some dumb reason;
434 * undo that brain damage:
435 */
436 p = q = &c->x86_model_id[0];
437 while (*p == ' ')
438 p++;
439 if (p != q) {
440 while (*p)
441 *q++ = *p++;
442 while (q <= &c->x86_model_id[48])
443 *q++ = '\0'; /* Zero-pad the rest */
444 }
445 }
446
447 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
448 {
449 unsigned int n, dummy, ebx, ecx, edx, l2size;
450
451 n = c->extended_cpuid_level;
452
453 if (n >= 0x80000005) {
454 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
455 c->x86_cache_size = (ecx>>24) + (edx>>24);
456 #ifdef CONFIG_X86_64
457 /* On K8 L1 TLB is inclusive, so don't count it */
458 c->x86_tlbsize = 0;
459 #endif
460 }
461
462 if (n < 0x80000006) /* Some chips just has a large L1. */
463 return;
464
465 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
466 l2size = ecx >> 16;
467
468 #ifdef CONFIG_X86_64
469 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
470 #else
471 /* do processor-specific cache resizing */
472 if (this_cpu->legacy_cache_size)
473 l2size = this_cpu->legacy_cache_size(c, l2size);
474
475 /* Allow user to override all this if necessary. */
476 if (cachesize_override != -1)
477 l2size = cachesize_override;
478
479 if (l2size == 0)
480 return; /* Again, no L2 cache is possible */
481 #endif
482
483 c->x86_cache_size = l2size;
484 }
485
486 u16 __read_mostly tlb_lli_4k[NR_INFO];
487 u16 __read_mostly tlb_lli_2m[NR_INFO];
488 u16 __read_mostly tlb_lli_4m[NR_INFO];
489 u16 __read_mostly tlb_lld_4k[NR_INFO];
490 u16 __read_mostly tlb_lld_2m[NR_INFO];
491 u16 __read_mostly tlb_lld_4m[NR_INFO];
492 u16 __read_mostly tlb_lld_1g[NR_INFO];
493
494 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
495 {
496 if (this_cpu->c_detect_tlb)
497 this_cpu->c_detect_tlb(c);
498
499 pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
500 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
501 tlb_lli_4m[ENTRIES]);
502
503 pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
504 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
505 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
506 }
507
508 void detect_ht(struct cpuinfo_x86 *c)
509 {
510 #ifdef CONFIG_X86_HT
511 u32 eax, ebx, ecx, edx;
512 int index_msb, core_bits;
513 static bool printed;
514
515 if (!cpu_has(c, X86_FEATURE_HT))
516 return;
517
518 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
519 goto out;
520
521 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
522 return;
523
524 cpuid(1, &eax, &ebx, &ecx, &edx);
525
526 smp_num_siblings = (ebx & 0xff0000) >> 16;
527
528 if (smp_num_siblings == 1) {
529 printk_once(KERN_INFO "CPU0: Hyper-Threading is disabled\n");
530 goto out;
531 }
532
533 if (smp_num_siblings <= 1)
534 goto out;
535
536 index_msb = get_count_order(smp_num_siblings);
537 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
538
539 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
540
541 index_msb = get_count_order(smp_num_siblings);
542
543 core_bits = get_count_order(c->x86_max_cores);
544
545 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
546 ((1 << core_bits) - 1);
547
548 out:
549 if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
550 printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
551 c->phys_proc_id);
552 printk(KERN_INFO "CPU: Processor Core ID: %d\n",
553 c->cpu_core_id);
554 printed = 1;
555 }
556 #endif
557 }
558
559 static void get_cpu_vendor(struct cpuinfo_x86 *c)
560 {
561 char *v = c->x86_vendor_id;
562 int i;
563
564 for (i = 0; i < X86_VENDOR_NUM; i++) {
565 if (!cpu_devs[i])
566 break;
567
568 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
569 (cpu_devs[i]->c_ident[1] &&
570 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
571
572 this_cpu = cpu_devs[i];
573 c->x86_vendor = this_cpu->c_x86_vendor;
574 return;
575 }
576 }
577
578 printk_once(KERN_ERR
579 "CPU: vendor_id '%s' unknown, using generic init.\n" \
580 "CPU: Your system may be unstable.\n", v);
581
582 c->x86_vendor = X86_VENDOR_UNKNOWN;
583 this_cpu = &default_cpu;
584 }
585
586 void cpu_detect(struct cpuinfo_x86 *c)
587 {
588 /* Get vendor name */
589 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
590 (unsigned int *)&c->x86_vendor_id[0],
591 (unsigned int *)&c->x86_vendor_id[8],
592 (unsigned int *)&c->x86_vendor_id[4]);
593
594 c->x86 = 4;
595 /* Intel-defined flags: level 0x00000001 */
596 if (c->cpuid_level >= 0x00000001) {
597 u32 junk, tfms, cap0, misc;
598
599 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
600 c->x86 = (tfms >> 8) & 0xf;
601 c->x86_model = (tfms >> 4) & 0xf;
602 c->x86_mask = tfms & 0xf;
603
604 if (c->x86 == 0xf)
605 c->x86 += (tfms >> 20) & 0xff;
606 if (c->x86 >= 0x6)
607 c->x86_model += ((tfms >> 16) & 0xf) << 4;
608
609 if (cap0 & (1<<19)) {
610 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
611 c->x86_cache_alignment = c->x86_clflush_size;
612 }
613 }
614 }
615
616 void get_cpu_cap(struct cpuinfo_x86 *c)
617 {
618 u32 tfms, xlvl;
619 u32 ebx;
620
621 /* Intel-defined flags: level 0x00000001 */
622 if (c->cpuid_level >= 0x00000001) {
623 u32 capability, excap;
624
625 cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
626 c->x86_capability[0] = capability;
627 c->x86_capability[4] = excap;
628 }
629
630 /* Additional Intel-defined flags: level 0x00000007 */
631 if (c->cpuid_level >= 0x00000007) {
632 u32 eax, ebx, ecx, edx;
633
634 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
635
636 c->x86_capability[9] = ebx;
637 }
638
639 /* Extended state features: level 0x0000000d */
640 if (c->cpuid_level >= 0x0000000d) {
641 u32 eax, ebx, ecx, edx;
642
643 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
644
645 c->x86_capability[10] = eax;
646 }
647
648 /* Additional Intel-defined flags: level 0x0000000F */
649 if (c->cpuid_level >= 0x0000000F) {
650 u32 eax, ebx, ecx, edx;
651
652 /* QoS sub-leaf, EAX=0Fh, ECX=0 */
653 cpuid_count(0x0000000F, 0, &eax, &ebx, &ecx, &edx);
654 c->x86_capability[11] = edx;
655 if (cpu_has(c, X86_FEATURE_CQM_LLC)) {
656 /* will be overridden if occupancy monitoring exists */
657 c->x86_cache_max_rmid = ebx;
658
659 /* QoS sub-leaf, EAX=0Fh, ECX=1 */
660 cpuid_count(0x0000000F, 1, &eax, &ebx, &ecx, &edx);
661 c->x86_capability[12] = edx;
662 if (cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC)) {
663 c->x86_cache_max_rmid = ecx;
664 c->x86_cache_occ_scale = ebx;
665 }
666 } else {
667 c->x86_cache_max_rmid = -1;
668 c->x86_cache_occ_scale = -1;
669 }
670 }
671
672 /* AMD-defined flags: level 0x80000001 */
673 xlvl = cpuid_eax(0x80000000);
674 c->extended_cpuid_level = xlvl;
675
676 if ((xlvl & 0xffff0000) == 0x80000000) {
677 if (xlvl >= 0x80000001) {
678 c->x86_capability[1] = cpuid_edx(0x80000001);
679 c->x86_capability[6] = cpuid_ecx(0x80000001);
680 }
681 }
682
683 if (c->extended_cpuid_level >= 0x80000008) {
684 u32 eax = cpuid_eax(0x80000008);
685
686 c->x86_virt_bits = (eax >> 8) & 0xff;
687 c->x86_phys_bits = eax & 0xff;
688 }
689 #ifdef CONFIG_X86_32
690 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
691 c->x86_phys_bits = 36;
692 #endif
693
694 if (c->extended_cpuid_level >= 0x80000007)
695 c->x86_power = cpuid_edx(0x80000007);
696
697 init_scattered_cpuid_features(c);
698 }
699
700 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
701 {
702 #ifdef CONFIG_X86_32
703 int i;
704
705 /*
706 * First of all, decide if this is a 486 or higher
707 * It's a 486 if we can modify the AC flag
708 */
709 if (flag_is_changeable_p(X86_EFLAGS_AC))
710 c->x86 = 4;
711 else
712 c->x86 = 3;
713
714 for (i = 0; i < X86_VENDOR_NUM; i++)
715 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
716 c->x86_vendor_id[0] = 0;
717 cpu_devs[i]->c_identify(c);
718 if (c->x86_vendor_id[0]) {
719 get_cpu_vendor(c);
720 break;
721 }
722 }
723 #endif
724 }
725
726 /*
727 * Do minimum CPU detection early.
728 * Fields really needed: vendor, cpuid_level, family, model, mask,
729 * cache alignment.
730 * The others are not touched to avoid unwanted side effects.
731 *
732 * WARNING: this function is only called on the BP. Don't add code here
733 * that is supposed to run on all CPUs.
734 */
735 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
736 {
737 #ifdef CONFIG_X86_64
738 c->x86_clflush_size = 64;
739 c->x86_phys_bits = 36;
740 c->x86_virt_bits = 48;
741 #else
742 c->x86_clflush_size = 32;
743 c->x86_phys_bits = 32;
744 c->x86_virt_bits = 32;
745 #endif
746 c->x86_cache_alignment = c->x86_clflush_size;
747
748 memset(&c->x86_capability, 0, sizeof c->x86_capability);
749 c->extended_cpuid_level = 0;
750
751 if (!have_cpuid_p())
752 identify_cpu_without_cpuid(c);
753
754 /* cyrix could have cpuid enabled via c_identify()*/
755 if (!have_cpuid_p())
756 return;
757
758 cpu_detect(c);
759 get_cpu_vendor(c);
760 get_cpu_cap(c);
761 fpu__detect(c);
762
763 if (this_cpu->c_early_init)
764 this_cpu->c_early_init(c);
765
766 c->cpu_index = 0;
767 filter_cpuid_features(c, false);
768
769 if (this_cpu->c_bsp_init)
770 this_cpu->c_bsp_init(c);
771
772 setup_force_cpu_cap(X86_FEATURE_ALWAYS);
773 }
774
775 void __init early_cpu_init(void)
776 {
777 const struct cpu_dev *const *cdev;
778 int count = 0;
779
780 #ifdef CONFIG_PROCESSOR_SELECT
781 printk(KERN_INFO "KERNEL supported cpus:\n");
782 #endif
783
784 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
785 const struct cpu_dev *cpudev = *cdev;
786
787 if (count >= X86_VENDOR_NUM)
788 break;
789 cpu_devs[count] = cpudev;
790 count++;
791
792 #ifdef CONFIG_PROCESSOR_SELECT
793 {
794 unsigned int j;
795
796 for (j = 0; j < 2; j++) {
797 if (!cpudev->c_ident[j])
798 continue;
799 printk(KERN_INFO " %s %s\n", cpudev->c_vendor,
800 cpudev->c_ident[j]);
801 }
802 }
803 #endif
804 }
805 early_identify_cpu(&boot_cpu_data);
806 }
807
808 /*
809 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
810 * unfortunately, that's not true in practice because of early VIA
811 * chips and (more importantly) broken virtualizers that are not easy
812 * to detect. In the latter case it doesn't even *fail* reliably, so
813 * probing for it doesn't even work. Disable it completely on 32-bit
814 * unless we can find a reliable way to detect all the broken cases.
815 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
816 */
817 static void detect_nopl(struct cpuinfo_x86 *c)
818 {
819 #ifdef CONFIG_X86_32
820 clear_cpu_cap(c, X86_FEATURE_NOPL);
821 #else
822 set_cpu_cap(c, X86_FEATURE_NOPL);
823 #endif
824 }
825
826 static void generic_identify(struct cpuinfo_x86 *c)
827 {
828 c->extended_cpuid_level = 0;
829
830 if (!have_cpuid_p())
831 identify_cpu_without_cpuid(c);
832
833 /* cyrix could have cpuid enabled via c_identify()*/
834 if (!have_cpuid_p())
835 return;
836
837 cpu_detect(c);
838
839 get_cpu_vendor(c);
840
841 get_cpu_cap(c);
842
843 if (c->cpuid_level >= 0x00000001) {
844 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
845 #ifdef CONFIG_X86_32
846 # ifdef CONFIG_X86_HT
847 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
848 # else
849 c->apicid = c->initial_apicid;
850 # endif
851 #endif
852 c->phys_proc_id = c->initial_apicid;
853 }
854
855 get_model_name(c); /* Default name */
856
857 detect_nopl(c);
858 }
859
860 static void x86_init_cache_qos(struct cpuinfo_x86 *c)
861 {
862 /*
863 * The heavy lifting of max_rmid and cache_occ_scale are handled
864 * in get_cpu_cap(). Here we just set the max_rmid for the boot_cpu
865 * in case CQM bits really aren't there in this CPU.
866 */
867 if (c != &boot_cpu_data) {
868 boot_cpu_data.x86_cache_max_rmid =
869 min(boot_cpu_data.x86_cache_max_rmid,
870 c->x86_cache_max_rmid);
871 }
872 }
873
874 /*
875 * This does the hard work of actually picking apart the CPU stuff...
876 */
877 static void identify_cpu(struct cpuinfo_x86 *c)
878 {
879 int i;
880
881 c->loops_per_jiffy = loops_per_jiffy;
882 c->x86_cache_size = -1;
883 c->x86_vendor = X86_VENDOR_UNKNOWN;
884 c->x86_model = c->x86_mask = 0; /* So far unknown... */
885 c->x86_vendor_id[0] = '\0'; /* Unset */
886 c->x86_model_id[0] = '\0'; /* Unset */
887 c->x86_max_cores = 1;
888 c->x86_coreid_bits = 0;
889 #ifdef CONFIG_X86_64
890 c->x86_clflush_size = 64;
891 c->x86_phys_bits = 36;
892 c->x86_virt_bits = 48;
893 #else
894 c->cpuid_level = -1; /* CPUID not detected */
895 c->x86_clflush_size = 32;
896 c->x86_phys_bits = 32;
897 c->x86_virt_bits = 32;
898 #endif
899 c->x86_cache_alignment = c->x86_clflush_size;
900 memset(&c->x86_capability, 0, sizeof c->x86_capability);
901
902 generic_identify(c);
903
904 if (this_cpu->c_identify)
905 this_cpu->c_identify(c);
906
907 /* Clear/Set all flags overriden by options, after probe */
908 for (i = 0; i < NCAPINTS; i++) {
909 c->x86_capability[i] &= ~cpu_caps_cleared[i];
910 c->x86_capability[i] |= cpu_caps_set[i];
911 }
912
913 #ifdef CONFIG_X86_64
914 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
915 #endif
916
917 /*
918 * Vendor-specific initialization. In this section we
919 * canonicalize the feature flags, meaning if there are
920 * features a certain CPU supports which CPUID doesn't
921 * tell us, CPUID claiming incorrect flags, or other bugs,
922 * we handle them here.
923 *
924 * At the end of this section, c->x86_capability better
925 * indicate the features this CPU genuinely supports!
926 */
927 if (this_cpu->c_init)
928 this_cpu->c_init(c);
929
930 /* Disable the PN if appropriate */
931 squash_the_stupid_serial_number(c);
932
933 /* Set up SMEP/SMAP */
934 setup_smep(c);
935 setup_smap(c);
936
937 /*
938 * The vendor-specific functions might have changed features.
939 * Now we do "generic changes."
940 */
941
942 /* Filter out anything that depends on CPUID levels we don't have */
943 filter_cpuid_features(c, true);
944
945 /* If the model name is still unset, do table lookup. */
946 if (!c->x86_model_id[0]) {
947 const char *p;
948 p = table_lookup_model(c);
949 if (p)
950 strcpy(c->x86_model_id, p);
951 else
952 /* Last resort... */
953 sprintf(c->x86_model_id, "%02x/%02x",
954 c->x86, c->x86_model);
955 }
956
957 #ifdef CONFIG_X86_64
958 detect_ht(c);
959 #endif
960
961 init_hypervisor(c);
962 x86_init_rdrand(c);
963 x86_init_cache_qos(c);
964
965 /*
966 * Clear/Set all flags overriden by options, need do it
967 * before following smp all cpus cap AND.
968 */
969 for (i = 0; i < NCAPINTS; i++) {
970 c->x86_capability[i] &= ~cpu_caps_cleared[i];
971 c->x86_capability[i] |= cpu_caps_set[i];
972 }
973
974 /*
975 * On SMP, boot_cpu_data holds the common feature set between
976 * all CPUs; so make sure that we indicate which features are
977 * common between the CPUs. The first time this routine gets
978 * executed, c == &boot_cpu_data.
979 */
980 if (c != &boot_cpu_data) {
981 /* AND the already accumulated flags with these */
982 for (i = 0; i < NCAPINTS; i++)
983 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
984
985 /* OR, i.e. replicate the bug flags */
986 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
987 c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
988 }
989
990 /* Init Machine Check Exception if available. */
991 mcheck_cpu_init(c);
992
993 select_idle_routine(c);
994
995 #ifdef CONFIG_NUMA
996 numa_add_cpu(smp_processor_id());
997 #endif
998 }
999
1000 /*
1001 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1002 * on 32-bit kernels:
1003 */
1004 #ifdef CONFIG_X86_32
1005 void enable_sep_cpu(void)
1006 {
1007 struct tss_struct *tss;
1008 int cpu;
1009
1010 cpu = get_cpu();
1011 tss = &per_cpu(cpu_tss, cpu);
1012
1013 if (!boot_cpu_has(X86_FEATURE_SEP))
1014 goto out;
1015
1016 /*
1017 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1018 * see the big comment in struct x86_hw_tss's definition.
1019 */
1020
1021 tss->x86_tss.ss1 = __KERNEL_CS;
1022 wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1023
1024 wrmsr(MSR_IA32_SYSENTER_ESP,
1025 (unsigned long)tss + offsetofend(struct tss_struct, SYSENTER_stack),
1026 0);
1027
1028 wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)ia32_sysenter_target, 0);
1029
1030 out:
1031 put_cpu();
1032 }
1033 #endif
1034
1035 void __init identify_boot_cpu(void)
1036 {
1037 identify_cpu(&boot_cpu_data);
1038 init_amd_e400_c1e_mask();
1039 #ifdef CONFIG_X86_32
1040 sysenter_setup();
1041 enable_sep_cpu();
1042 #endif
1043 cpu_detect_tlb(&boot_cpu_data);
1044 }
1045
1046 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1047 {
1048 BUG_ON(c == &boot_cpu_data);
1049 identify_cpu(c);
1050 #ifdef CONFIG_X86_32
1051 enable_sep_cpu();
1052 #endif
1053 mtrr_ap_init();
1054 }
1055
1056 struct msr_range {
1057 unsigned min;
1058 unsigned max;
1059 };
1060
1061 static const struct msr_range msr_range_array[] = {
1062 { 0x00000000, 0x00000418},
1063 { 0xc0000000, 0xc000040b},
1064 { 0xc0010000, 0xc0010142},
1065 { 0xc0011000, 0xc001103b},
1066 };
1067
1068 static void __print_cpu_msr(void)
1069 {
1070 unsigned index_min, index_max;
1071 unsigned index;
1072 u64 val;
1073 int i;
1074
1075 for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
1076 index_min = msr_range_array[i].min;
1077 index_max = msr_range_array[i].max;
1078
1079 for (index = index_min; index < index_max; index++) {
1080 if (rdmsrl_safe(index, &val))
1081 continue;
1082 printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
1083 }
1084 }
1085 }
1086
1087 static int show_msr;
1088
1089 static __init int setup_show_msr(char *arg)
1090 {
1091 int num;
1092
1093 get_option(&arg, &num);
1094
1095 if (num > 0)
1096 show_msr = num;
1097 return 1;
1098 }
1099 __setup("show_msr=", setup_show_msr);
1100
1101 static __init int setup_noclflush(char *arg)
1102 {
1103 setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1104 setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1105 return 1;
1106 }
1107 __setup("noclflush", setup_noclflush);
1108
1109 void print_cpu_info(struct cpuinfo_x86 *c)
1110 {
1111 const char *vendor = NULL;
1112
1113 if (c->x86_vendor < X86_VENDOR_NUM) {
1114 vendor = this_cpu->c_vendor;
1115 } else {
1116 if (c->cpuid_level >= 0)
1117 vendor = c->x86_vendor_id;
1118 }
1119
1120 if (vendor && !strstr(c->x86_model_id, vendor))
1121 printk(KERN_CONT "%s ", vendor);
1122
1123 if (c->x86_model_id[0])
1124 printk(KERN_CONT "%s", strim(c->x86_model_id));
1125 else
1126 printk(KERN_CONT "%d86", c->x86);
1127
1128 printk(KERN_CONT " (fam: %02x, model: %02x", c->x86, c->x86_model);
1129
1130 if (c->x86_mask || c->cpuid_level >= 0)
1131 printk(KERN_CONT ", stepping: %02x)\n", c->x86_mask);
1132 else
1133 printk(KERN_CONT ")\n");
1134
1135 print_cpu_msr(c);
1136 }
1137
1138 void print_cpu_msr(struct cpuinfo_x86 *c)
1139 {
1140 if (c->cpu_index < show_msr)
1141 __print_cpu_msr();
1142 }
1143
1144 static __init int setup_disablecpuid(char *arg)
1145 {
1146 int bit;
1147
1148 if (get_option(&arg, &bit) && bit < NCAPINTS*32)
1149 setup_clear_cpu_cap(bit);
1150 else
1151 return 0;
1152
1153 return 1;
1154 }
1155 __setup("clearcpuid=", setup_disablecpuid);
1156
1157 DEFINE_PER_CPU(unsigned long, kernel_stack) =
1158 (unsigned long)&init_thread_union + THREAD_SIZE;
1159 EXPORT_PER_CPU_SYMBOL(kernel_stack);
1160
1161 #ifdef CONFIG_X86_64
1162 struct desc_ptr idt_descr = { NR_VECTORS * 16 - 1, (unsigned long) idt_table };
1163 struct desc_ptr debug_idt_descr = { NR_VECTORS * 16 - 1,
1164 (unsigned long) debug_idt_table };
1165
1166 DEFINE_PER_CPU_FIRST(union irq_stack_union,
1167 irq_stack_union) __aligned(PAGE_SIZE) __visible;
1168
1169 /*
1170 * The following percpu variables are hot. Align current_task to
1171 * cacheline size such that they fall in the same cacheline.
1172 */
1173 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1174 &init_task;
1175 EXPORT_PER_CPU_SYMBOL(current_task);
1176
1177 DEFINE_PER_CPU(char *, irq_stack_ptr) =
1178 init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64;
1179
1180 DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1181
1182 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1183 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1184
1185 /*
1186 * Special IST stacks which the CPU switches to when it calls
1187 * an IST-marked descriptor entry. Up to 7 stacks (hardware
1188 * limit), all of them are 4K, except the debug stack which
1189 * is 8K.
1190 */
1191 static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
1192 [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ,
1193 [DEBUG_STACK - 1] = DEBUG_STKSZ
1194 };
1195
1196 static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
1197 [(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]);
1198
1199 /* May not be marked __init: used by software suspend */
1200 void syscall_init(void)
1201 {
1202 /*
1203 * LSTAR and STAR live in a bit strange symbiosis.
1204 * They both write to the same internal register. STAR allows to
1205 * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
1206 */
1207 wrmsrl(MSR_STAR, ((u64)__USER32_CS)<<48 | ((u64)__KERNEL_CS)<<32);
1208 wrmsrl(MSR_LSTAR, system_call);
1209
1210 #ifdef CONFIG_IA32_EMULATION
1211 wrmsrl(MSR_CSTAR, ia32_cstar_target);
1212 /*
1213 * This only works on Intel CPUs.
1214 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1215 * This does not cause SYSENTER to jump to the wrong location, because
1216 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1217 */
1218 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1219 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1220 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)ia32_sysenter_target);
1221 #else
1222 wrmsrl(MSR_CSTAR, ignore_sysret);
1223 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1224 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1225 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1226 #endif
1227
1228 /* Flags to clear on syscall */
1229 wrmsrl(MSR_SYSCALL_MASK,
1230 X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1231 X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1232 }
1233
1234 /*
1235 * Copies of the original ist values from the tss are only accessed during
1236 * debugging, no special alignment required.
1237 */
1238 DEFINE_PER_CPU(struct orig_ist, orig_ist);
1239
1240 static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
1241 DEFINE_PER_CPU(int, debug_stack_usage);
1242
1243 int is_debug_stack(unsigned long addr)
1244 {
1245 return __this_cpu_read(debug_stack_usage) ||
1246 (addr <= __this_cpu_read(debug_stack_addr) &&
1247 addr > (__this_cpu_read(debug_stack_addr) - DEBUG_STKSZ));
1248 }
1249 NOKPROBE_SYMBOL(is_debug_stack);
1250
1251 DEFINE_PER_CPU(u32, debug_idt_ctr);
1252
1253 void debug_stack_set_zero(void)
1254 {
1255 this_cpu_inc(debug_idt_ctr);
1256 load_current_idt();
1257 }
1258 NOKPROBE_SYMBOL(debug_stack_set_zero);
1259
1260 void debug_stack_reset(void)
1261 {
1262 if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
1263 return;
1264 if (this_cpu_dec_return(debug_idt_ctr) == 0)
1265 load_current_idt();
1266 }
1267 NOKPROBE_SYMBOL(debug_stack_reset);
1268
1269 #else /* CONFIG_X86_64 */
1270
1271 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1272 EXPORT_PER_CPU_SYMBOL(current_task);
1273 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1274 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1275
1276 /*
1277 * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1278 * the top of the kernel stack. Use an extra percpu variable to track the
1279 * top of the kernel stack directly.
1280 */
1281 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1282 (unsigned long)&init_thread_union + THREAD_SIZE;
1283 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1284
1285 #ifdef CONFIG_CC_STACKPROTECTOR
1286 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1287 #endif
1288
1289 #endif /* CONFIG_X86_64 */
1290
1291 /*
1292 * Clear all 6 debug registers:
1293 */
1294 static void clear_all_debug_regs(void)
1295 {
1296 int i;
1297
1298 for (i = 0; i < 8; i++) {
1299 /* Ignore db4, db5 */
1300 if ((i == 4) || (i == 5))
1301 continue;
1302
1303 set_debugreg(0, i);
1304 }
1305 }
1306
1307 #ifdef CONFIG_KGDB
1308 /*
1309 * Restore debug regs if using kgdbwait and you have a kernel debugger
1310 * connection established.
1311 */
1312 static void dbg_restore_debug_regs(void)
1313 {
1314 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1315 arch_kgdb_ops.correct_hw_break();
1316 }
1317 #else /* ! CONFIG_KGDB */
1318 #define dbg_restore_debug_regs()
1319 #endif /* ! CONFIG_KGDB */
1320
1321 static void wait_for_master_cpu(int cpu)
1322 {
1323 #ifdef CONFIG_SMP
1324 /*
1325 * wait for ACK from master CPU before continuing
1326 * with AP initialization
1327 */
1328 WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1329 while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1330 cpu_relax();
1331 #endif
1332 }
1333
1334 /*
1335 * cpu_init() initializes state that is per-CPU. Some data is already
1336 * initialized (naturally) in the bootstrap process, such as the GDT
1337 * and IDT. We reload them nevertheless, this function acts as a
1338 * 'CPU state barrier', nothing should get across.
1339 * A lot of state is already set up in PDA init for 64 bit
1340 */
1341 #ifdef CONFIG_X86_64
1342
1343 void cpu_init(void)
1344 {
1345 struct orig_ist *oist;
1346 struct task_struct *me;
1347 struct tss_struct *t;
1348 unsigned long v;
1349 int cpu = stack_smp_processor_id();
1350 int i;
1351
1352 wait_for_master_cpu(cpu);
1353
1354 /*
1355 * Initialize the CR4 shadow before doing anything that could
1356 * try to read it.
1357 */
1358 cr4_init_shadow();
1359
1360 /*
1361 * Load microcode on this cpu if a valid microcode is available.
1362 * This is early microcode loading procedure.
1363 */
1364 load_ucode_ap();
1365
1366 t = &per_cpu(cpu_tss, cpu);
1367 oist = &per_cpu(orig_ist, cpu);
1368
1369 #ifdef CONFIG_NUMA
1370 if (this_cpu_read(numa_node) == 0 &&
1371 early_cpu_to_node(cpu) != NUMA_NO_NODE)
1372 set_numa_node(early_cpu_to_node(cpu));
1373 #endif
1374
1375 me = current;
1376
1377 pr_debug("Initializing CPU#%d\n", cpu);
1378
1379 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1380
1381 /*
1382 * Initialize the per-CPU GDT with the boot GDT,
1383 * and set up the GDT descriptor:
1384 */
1385
1386 switch_to_new_gdt(cpu);
1387 loadsegment(fs, 0);
1388
1389 load_current_idt();
1390
1391 memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1392 syscall_init();
1393
1394 wrmsrl(MSR_FS_BASE, 0);
1395 wrmsrl(MSR_KERNEL_GS_BASE, 0);
1396 barrier();
1397
1398 x86_configure_nx();
1399 x2apic_setup();
1400
1401 /*
1402 * set up and load the per-CPU TSS
1403 */
1404 if (!oist->ist[0]) {
1405 char *estacks = per_cpu(exception_stacks, cpu);
1406
1407 for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1408 estacks += exception_stack_sizes[v];
1409 oist->ist[v] = t->x86_tss.ist[v] =
1410 (unsigned long)estacks;
1411 if (v == DEBUG_STACK-1)
1412 per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
1413 }
1414 }
1415
1416 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1417
1418 /*
1419 * <= is required because the CPU will access up to
1420 * 8 bits beyond the end of the IO permission bitmap.
1421 */
1422 for (i = 0; i <= IO_BITMAP_LONGS; i++)
1423 t->io_bitmap[i] = ~0UL;
1424
1425 atomic_inc(&init_mm.mm_count);
1426 me->active_mm = &init_mm;
1427 BUG_ON(me->mm);
1428 enter_lazy_tlb(&init_mm, me);
1429
1430 load_sp0(t, &current->thread);
1431 set_tss_desc(cpu, t);
1432 load_TR_desc();
1433 load_LDT(&init_mm.context);
1434
1435 clear_all_debug_regs();
1436 dbg_restore_debug_regs();
1437
1438 fpu__cpu_init();
1439
1440 if (is_uv_system())
1441 uv_cpu_init();
1442 }
1443
1444 #else
1445
1446 void cpu_init(void)
1447 {
1448 int cpu = smp_processor_id();
1449 struct task_struct *curr = current;
1450 struct tss_struct *t = &per_cpu(cpu_tss, cpu);
1451 struct thread_struct *thread = &curr->thread;
1452
1453 wait_for_master_cpu(cpu);
1454
1455 /*
1456 * Initialize the CR4 shadow before doing anything that could
1457 * try to read it.
1458 */
1459 cr4_init_shadow();
1460
1461 show_ucode_info_early();
1462
1463 printk(KERN_INFO "Initializing CPU#%d\n", cpu);
1464
1465 if (cpu_feature_enabled(X86_FEATURE_VME) || cpu_has_tsc || cpu_has_de)
1466 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1467
1468 load_current_idt();
1469 switch_to_new_gdt(cpu);
1470
1471 /*
1472 * Set up and load the per-CPU TSS and LDT
1473 */
1474 atomic_inc(&init_mm.mm_count);
1475 curr->active_mm = &init_mm;
1476 BUG_ON(curr->mm);
1477 enter_lazy_tlb(&init_mm, curr);
1478
1479 load_sp0(t, thread);
1480 set_tss_desc(cpu, t);
1481 load_TR_desc();
1482 load_LDT(&init_mm.context);
1483
1484 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1485
1486 #ifdef CONFIG_DOUBLEFAULT
1487 /* Set up doublefault TSS pointer in the GDT */
1488 __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1489 #endif
1490
1491 clear_all_debug_regs();
1492 dbg_restore_debug_regs();
1493
1494 fpu__cpu_init();
1495 }
1496 #endif
1497
1498 #ifdef CONFIG_X86_DEBUG_STATIC_CPU_HAS
1499 void warn_pre_alternatives(void)
1500 {
1501 WARN(1, "You're using static_cpu_has before alternatives have run!\n");
1502 }
1503 EXPORT_SYMBOL_GPL(warn_pre_alternatives);
1504 #endif
1505
1506 inline bool __static_cpu_has_safe(u16 bit)
1507 {
1508 return boot_cpu_has(bit);
1509 }
1510 EXPORT_SYMBOL_GPL(__static_cpu_has_safe);