]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/kernel/cpu/common.c
x86/speculation/l1tf: Add sysfs reporting for l1tf
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kernel / cpu / common.c
1 #include <linux/bootmem.h>
2 #include <linux/linkage.h>
3 #include <linux/bitops.h>
4 #include <linux/kernel.h>
5 #include <linux/export.h>
6 #include <linux/percpu.h>
7 #include <linux/string.h>
8 #include <linux/ctype.h>
9 #include <linux/delay.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/clock.h>
12 #include <linux/sched/task.h>
13 #include <linux/init.h>
14 #include <linux/kprobes.h>
15 #include <linux/kgdb.h>
16 #include <linux/smp.h>
17 #include <linux/io.h>
18 #include <linux/syscore_ops.h>
19
20 #include <asm/stackprotector.h>
21 #include <asm/perf_event.h>
22 #include <asm/mmu_context.h>
23 #include <asm/archrandom.h>
24 #include <asm/hypervisor.h>
25 #include <asm/processor.h>
26 #include <asm/tlbflush.h>
27 #include <asm/debugreg.h>
28 #include <asm/sections.h>
29 #include <asm/vsyscall.h>
30 #include <linux/topology.h>
31 #include <linux/cpumask.h>
32 #include <asm/pgtable.h>
33 #include <linux/atomic.h>
34 #include <asm/proto.h>
35 #include <asm/setup.h>
36 #include <asm/apic.h>
37 #include <asm/desc.h>
38 #include <asm/fpu/internal.h>
39 #include <asm/mtrr.h>
40 #include <asm/hwcap2.h>
41 #include <linux/numa.h>
42 #include <asm/asm.h>
43 #include <asm/bugs.h>
44 #include <asm/cpu.h>
45 #include <asm/mce.h>
46 #include <asm/msr.h>
47 #include <asm/pat.h>
48 #include <asm/microcode.h>
49 #include <asm/microcode_intel.h>
50 #include <asm/intel-family.h>
51 #include <asm/cpu_device_id.h>
52
53 #ifdef CONFIG_X86_LOCAL_APIC
54 #include <asm/uv/uv.h>
55 #endif
56
57 #include "cpu.h"
58
59 u32 elf_hwcap2 __read_mostly;
60
61 /* all of these masks are initialized in setup_cpu_local_masks() */
62 cpumask_var_t cpu_initialized_mask;
63 cpumask_var_t cpu_callout_mask;
64 cpumask_var_t cpu_callin_mask;
65
66 /* representing cpus for which sibling maps can be computed */
67 cpumask_var_t cpu_sibling_setup_mask;
68
69 /* Number of siblings per CPU package */
70 int smp_num_siblings = 1;
71 EXPORT_SYMBOL(smp_num_siblings);
72
73 /* Last level cache ID of each logical CPU */
74 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
75
76 /* correctly size the local cpu masks */
77 void __init setup_cpu_local_masks(void)
78 {
79 alloc_bootmem_cpumask_var(&cpu_initialized_mask);
80 alloc_bootmem_cpumask_var(&cpu_callin_mask);
81 alloc_bootmem_cpumask_var(&cpu_callout_mask);
82 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
83 }
84
85 static void default_init(struct cpuinfo_x86 *c)
86 {
87 #ifdef CONFIG_X86_64
88 cpu_detect_cache_sizes(c);
89 #else
90 /* Not much we can do here... */
91 /* Check if at least it has cpuid */
92 if (c->cpuid_level == -1) {
93 /* No cpuid. It must be an ancient CPU */
94 if (c->x86 == 4)
95 strcpy(c->x86_model_id, "486");
96 else if (c->x86 == 3)
97 strcpy(c->x86_model_id, "386");
98 }
99 #endif
100 }
101
102 static const struct cpu_dev default_cpu = {
103 .c_init = default_init,
104 .c_vendor = "Unknown",
105 .c_x86_vendor = X86_VENDOR_UNKNOWN,
106 };
107
108 static const struct cpu_dev *this_cpu = &default_cpu;
109
110 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
111 #ifdef CONFIG_X86_64
112 /*
113 * We need valid kernel segments for data and code in long mode too
114 * IRET will check the segment types kkeil 2000/10/28
115 * Also sysret mandates a special GDT layout
116 *
117 * TLS descriptors are currently at a different place compared to i386.
118 * Hopefully nobody expects them at a fixed place (Wine?)
119 */
120 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
121 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
122 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
123 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
124 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
125 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
126 #else
127 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
128 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
129 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
130 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
131 /*
132 * Segments used for calling PnP BIOS have byte granularity.
133 * They code segments and data segments have fixed 64k limits,
134 * the transfer segment sizes are set at run time.
135 */
136 /* 32-bit code */
137 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
138 /* 16-bit code */
139 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
140 /* 16-bit data */
141 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
142 /* 16-bit data */
143 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
144 /* 16-bit data */
145 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
146 /*
147 * The APM segments have byte granularity and their bases
148 * are set at run time. All have 64k limits.
149 */
150 /* 32-bit code */
151 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
152 /* 16-bit code */
153 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
154 /* data */
155 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
156
157 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
158 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
159 GDT_STACK_CANARY_INIT
160 #endif
161 } };
162 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
163
164 static int __init x86_mpx_setup(char *s)
165 {
166 /* require an exact match without trailing characters */
167 if (strlen(s))
168 return 0;
169
170 /* do not emit a message if the feature is not present */
171 if (!boot_cpu_has(X86_FEATURE_MPX))
172 return 1;
173
174 setup_clear_cpu_cap(X86_FEATURE_MPX);
175 pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n");
176 return 1;
177 }
178 __setup("nompx", x86_mpx_setup);
179
180 #ifdef CONFIG_X86_64
181 static int __init x86_nopcid_setup(char *s)
182 {
183 /* nopcid doesn't accept parameters */
184 if (s)
185 return -EINVAL;
186
187 /* do not emit a message if the feature is not present */
188 if (!boot_cpu_has(X86_FEATURE_PCID))
189 return 0;
190
191 setup_clear_cpu_cap(X86_FEATURE_PCID);
192 pr_info("nopcid: PCID feature disabled\n");
193 return 0;
194 }
195 early_param("nopcid", x86_nopcid_setup);
196 #endif
197
198 static int __init x86_noinvpcid_setup(char *s)
199 {
200 /* noinvpcid doesn't accept parameters */
201 if (s)
202 return -EINVAL;
203
204 /* do not emit a message if the feature is not present */
205 if (!boot_cpu_has(X86_FEATURE_INVPCID))
206 return 0;
207
208 setup_clear_cpu_cap(X86_FEATURE_INVPCID);
209 pr_info("noinvpcid: INVPCID feature disabled\n");
210 return 0;
211 }
212 early_param("noinvpcid", x86_noinvpcid_setup);
213
214 #ifdef CONFIG_X86_32
215 static int cachesize_override = -1;
216 static int disable_x86_serial_nr = 1;
217
218 static int __init cachesize_setup(char *str)
219 {
220 get_option(&str, &cachesize_override);
221 return 1;
222 }
223 __setup("cachesize=", cachesize_setup);
224
225 static int __init x86_sep_setup(char *s)
226 {
227 setup_clear_cpu_cap(X86_FEATURE_SEP);
228 return 1;
229 }
230 __setup("nosep", x86_sep_setup);
231
232 /* Standard macro to see if a specific flag is changeable */
233 static inline int flag_is_changeable_p(u32 flag)
234 {
235 u32 f1, f2;
236
237 /*
238 * Cyrix and IDT cpus allow disabling of CPUID
239 * so the code below may return different results
240 * when it is executed before and after enabling
241 * the CPUID. Add "volatile" to not allow gcc to
242 * optimize the subsequent calls to this function.
243 */
244 asm volatile ("pushfl \n\t"
245 "pushfl \n\t"
246 "popl %0 \n\t"
247 "movl %0, %1 \n\t"
248 "xorl %2, %0 \n\t"
249 "pushl %0 \n\t"
250 "popfl \n\t"
251 "pushfl \n\t"
252 "popl %0 \n\t"
253 "popfl \n\t"
254
255 : "=&r" (f1), "=&r" (f2)
256 : "ir" (flag));
257
258 return ((f1^f2) & flag) != 0;
259 }
260
261 /* Probe for the CPUID instruction */
262 int have_cpuid_p(void)
263 {
264 return flag_is_changeable_p(X86_EFLAGS_ID);
265 }
266
267 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
268 {
269 unsigned long lo, hi;
270
271 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
272 return;
273
274 /* Disable processor serial number: */
275
276 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
277 lo |= 0x200000;
278 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
279
280 pr_notice("CPU serial number disabled.\n");
281 clear_cpu_cap(c, X86_FEATURE_PN);
282
283 /* Disabling the serial number may affect the cpuid level */
284 c->cpuid_level = cpuid_eax(0);
285 }
286
287 static int __init x86_serial_nr_setup(char *s)
288 {
289 disable_x86_serial_nr = 0;
290 return 1;
291 }
292 __setup("serialnumber", x86_serial_nr_setup);
293 #else
294 static inline int flag_is_changeable_p(u32 flag)
295 {
296 return 1;
297 }
298 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
299 {
300 }
301 #endif
302
303 static __init int setup_disable_smep(char *arg)
304 {
305 setup_clear_cpu_cap(X86_FEATURE_SMEP);
306 /* Check for things that depend on SMEP being enabled: */
307 check_mpx_erratum(&boot_cpu_data);
308 return 1;
309 }
310 __setup("nosmep", setup_disable_smep);
311
312 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
313 {
314 if (cpu_has(c, X86_FEATURE_SMEP))
315 cr4_set_bits(X86_CR4_SMEP);
316 }
317
318 static __init int setup_disable_smap(char *arg)
319 {
320 setup_clear_cpu_cap(X86_FEATURE_SMAP);
321 return 1;
322 }
323 __setup("nosmap", setup_disable_smap);
324
325 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
326 {
327 unsigned long eflags = native_save_fl();
328
329 /* This should have been cleared long ago */
330 BUG_ON(eflags & X86_EFLAGS_AC);
331
332 if (cpu_has(c, X86_FEATURE_SMAP)) {
333 #ifdef CONFIG_X86_SMAP
334 cr4_set_bits(X86_CR4_SMAP);
335 #else
336 cr4_clear_bits(X86_CR4_SMAP);
337 #endif
338 }
339 }
340
341 static __always_inline void setup_umip(struct cpuinfo_x86 *c)
342 {
343 /* Check the boot processor, plus build option for UMIP. */
344 if (!cpu_feature_enabled(X86_FEATURE_UMIP))
345 goto out;
346
347 /* Check the current processor's cpuid bits. */
348 if (!cpu_has(c, X86_FEATURE_UMIP))
349 goto out;
350
351 cr4_set_bits(X86_CR4_UMIP);
352
353 pr_info("x86/cpu: Activated the Intel User Mode Instruction Prevention (UMIP) CPU feature\n");
354
355 return;
356
357 out:
358 /*
359 * Make sure UMIP is disabled in case it was enabled in a
360 * previous boot (e.g., via kexec).
361 */
362 cr4_clear_bits(X86_CR4_UMIP);
363 }
364
365 /*
366 * Protection Keys are not available in 32-bit mode.
367 */
368 static bool pku_disabled;
369
370 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
371 {
372 /* check the boot processor, plus compile options for PKU: */
373 if (!cpu_feature_enabled(X86_FEATURE_PKU))
374 return;
375 /* checks the actual processor's cpuid bits: */
376 if (!cpu_has(c, X86_FEATURE_PKU))
377 return;
378 if (pku_disabled)
379 return;
380
381 cr4_set_bits(X86_CR4_PKE);
382 /*
383 * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
384 * cpuid bit to be set. We need to ensure that we
385 * update that bit in this CPU's "cpu_info".
386 */
387 get_cpu_cap(c);
388 }
389
390 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
391 static __init int setup_disable_pku(char *arg)
392 {
393 /*
394 * Do not clear the X86_FEATURE_PKU bit. All of the
395 * runtime checks are against OSPKE so clearing the
396 * bit does nothing.
397 *
398 * This way, we will see "pku" in cpuinfo, but not
399 * "ospke", which is exactly what we want. It shows
400 * that the CPU has PKU, but the OS has not enabled it.
401 * This happens to be exactly how a system would look
402 * if we disabled the config option.
403 */
404 pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
405 pku_disabled = true;
406 return 1;
407 }
408 __setup("nopku", setup_disable_pku);
409 #endif /* CONFIG_X86_64 */
410
411 /*
412 * Some CPU features depend on higher CPUID levels, which may not always
413 * be available due to CPUID level capping or broken virtualization
414 * software. Add those features to this table to auto-disable them.
415 */
416 struct cpuid_dependent_feature {
417 u32 feature;
418 u32 level;
419 };
420
421 static const struct cpuid_dependent_feature
422 cpuid_dependent_features[] = {
423 { X86_FEATURE_MWAIT, 0x00000005 },
424 { X86_FEATURE_DCA, 0x00000009 },
425 { X86_FEATURE_XSAVE, 0x0000000d },
426 { 0, 0 }
427 };
428
429 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
430 {
431 const struct cpuid_dependent_feature *df;
432
433 for (df = cpuid_dependent_features; df->feature; df++) {
434
435 if (!cpu_has(c, df->feature))
436 continue;
437 /*
438 * Note: cpuid_level is set to -1 if unavailable, but
439 * extended_extended_level is set to 0 if unavailable
440 * and the legitimate extended levels are all negative
441 * when signed; hence the weird messing around with
442 * signs here...
443 */
444 if (!((s32)df->level < 0 ?
445 (u32)df->level > (u32)c->extended_cpuid_level :
446 (s32)df->level > (s32)c->cpuid_level))
447 continue;
448
449 clear_cpu_cap(c, df->feature);
450 if (!warn)
451 continue;
452
453 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
454 x86_cap_flag(df->feature), df->level);
455 }
456 }
457
458 /*
459 * Naming convention should be: <Name> [(<Codename>)]
460 * This table only is used unless init_<vendor>() below doesn't set it;
461 * in particular, if CPUID levels 0x80000002..4 are supported, this
462 * isn't used
463 */
464
465 /* Look up CPU names by table lookup. */
466 static const char *table_lookup_model(struct cpuinfo_x86 *c)
467 {
468 #ifdef CONFIG_X86_32
469 const struct legacy_cpu_model_info *info;
470
471 if (c->x86_model >= 16)
472 return NULL; /* Range check */
473
474 if (!this_cpu)
475 return NULL;
476
477 info = this_cpu->legacy_models;
478
479 while (info->family) {
480 if (info->family == c->x86)
481 return info->model_names[c->x86_model];
482 info++;
483 }
484 #endif
485 return NULL; /* Not found */
486 }
487
488 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS];
489 __u32 cpu_caps_set[NCAPINTS + NBUGINTS];
490
491 void load_percpu_segment(int cpu)
492 {
493 #ifdef CONFIG_X86_32
494 loadsegment(fs, __KERNEL_PERCPU);
495 #else
496 __loadsegment_simple(gs, 0);
497 wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
498 #endif
499 load_stack_canary_segment();
500 }
501
502 #ifdef CONFIG_X86_32
503 /* The 32-bit entry code needs to find cpu_entry_area. */
504 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
505 #endif
506
507 #ifdef CONFIG_X86_64
508 /*
509 * Special IST stacks which the CPU switches to when it calls
510 * an IST-marked descriptor entry. Up to 7 stacks (hardware
511 * limit), all of them are 4K, except the debug stack which
512 * is 8K.
513 */
514 static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
515 [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ,
516 [DEBUG_STACK - 1] = DEBUG_STKSZ
517 };
518 #endif
519
520 /* Load the original GDT from the per-cpu structure */
521 void load_direct_gdt(int cpu)
522 {
523 struct desc_ptr gdt_descr;
524
525 gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
526 gdt_descr.size = GDT_SIZE - 1;
527 load_gdt(&gdt_descr);
528 }
529 EXPORT_SYMBOL_GPL(load_direct_gdt);
530
531 /* Load a fixmap remapping of the per-cpu GDT */
532 void load_fixmap_gdt(int cpu)
533 {
534 struct desc_ptr gdt_descr;
535
536 gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
537 gdt_descr.size = GDT_SIZE - 1;
538 load_gdt(&gdt_descr);
539 }
540 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
541
542 /*
543 * Current gdt points %fs at the "master" per-cpu area: after this,
544 * it's on the real one.
545 */
546 void switch_to_new_gdt(int cpu)
547 {
548 /* Load the original GDT */
549 load_direct_gdt(cpu);
550 /* Reload the per-cpu base */
551 load_percpu_segment(cpu);
552 }
553
554 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
555
556 static void get_model_name(struct cpuinfo_x86 *c)
557 {
558 unsigned int *v;
559 char *p, *q, *s;
560
561 if (c->extended_cpuid_level < 0x80000004)
562 return;
563
564 v = (unsigned int *)c->x86_model_id;
565 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
566 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
567 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
568 c->x86_model_id[48] = 0;
569
570 /* Trim whitespace */
571 p = q = s = &c->x86_model_id[0];
572
573 while (*p == ' ')
574 p++;
575
576 while (*p) {
577 /* Note the last non-whitespace index */
578 if (!isspace(*p))
579 s = q;
580
581 *q++ = *p++;
582 }
583
584 *(s + 1) = '\0';
585 }
586
587 void detect_num_cpu_cores(struct cpuinfo_x86 *c)
588 {
589 unsigned int eax, ebx, ecx, edx;
590
591 c->x86_max_cores = 1;
592 if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
593 return;
594
595 cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
596 if (eax & 0x1f)
597 c->x86_max_cores = (eax >> 26) + 1;
598 }
599
600 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
601 {
602 unsigned int n, dummy, ebx, ecx, edx, l2size;
603
604 n = c->extended_cpuid_level;
605
606 if (n >= 0x80000005) {
607 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
608 c->x86_cache_size = (ecx>>24) + (edx>>24);
609 #ifdef CONFIG_X86_64
610 /* On K8 L1 TLB is inclusive, so don't count it */
611 c->x86_tlbsize = 0;
612 #endif
613 }
614
615 if (n < 0x80000006) /* Some chips just has a large L1. */
616 return;
617
618 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
619 l2size = ecx >> 16;
620
621 #ifdef CONFIG_X86_64
622 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
623 #else
624 /* do processor-specific cache resizing */
625 if (this_cpu->legacy_cache_size)
626 l2size = this_cpu->legacy_cache_size(c, l2size);
627
628 /* Allow user to override all this if necessary. */
629 if (cachesize_override != -1)
630 l2size = cachesize_override;
631
632 if (l2size == 0)
633 return; /* Again, no L2 cache is possible */
634 #endif
635
636 c->x86_cache_size = l2size;
637 }
638
639 u16 __read_mostly tlb_lli_4k[NR_INFO];
640 u16 __read_mostly tlb_lli_2m[NR_INFO];
641 u16 __read_mostly tlb_lli_4m[NR_INFO];
642 u16 __read_mostly tlb_lld_4k[NR_INFO];
643 u16 __read_mostly tlb_lld_2m[NR_INFO];
644 u16 __read_mostly tlb_lld_4m[NR_INFO];
645 u16 __read_mostly tlb_lld_1g[NR_INFO];
646
647 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
648 {
649 if (this_cpu->c_detect_tlb)
650 this_cpu->c_detect_tlb(c);
651
652 pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
653 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
654 tlb_lli_4m[ENTRIES]);
655
656 pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
657 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
658 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
659 }
660
661 void detect_ht(struct cpuinfo_x86 *c)
662 {
663 #ifdef CONFIG_SMP
664 u32 eax, ebx, ecx, edx;
665 int index_msb, core_bits;
666 static bool printed;
667
668 if (!cpu_has(c, X86_FEATURE_HT))
669 return;
670
671 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
672 goto out;
673
674 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
675 return;
676
677 cpuid(1, &eax, &ebx, &ecx, &edx);
678
679 smp_num_siblings = (ebx & 0xff0000) >> 16;
680
681 if (smp_num_siblings == 1) {
682 pr_info_once("CPU0: Hyper-Threading is disabled\n");
683 goto out;
684 }
685
686 if (smp_num_siblings <= 1)
687 goto out;
688
689 index_msb = get_count_order(smp_num_siblings);
690 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
691
692 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
693
694 index_msb = get_count_order(smp_num_siblings);
695
696 core_bits = get_count_order(c->x86_max_cores);
697
698 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
699 ((1 << core_bits) - 1);
700
701 out:
702 if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
703 pr_info("CPU: Physical Processor ID: %d\n",
704 c->phys_proc_id);
705 pr_info("CPU: Processor Core ID: %d\n",
706 c->cpu_core_id);
707 printed = 1;
708 }
709 #endif
710 }
711
712 static void get_cpu_vendor(struct cpuinfo_x86 *c)
713 {
714 char *v = c->x86_vendor_id;
715 int i;
716
717 for (i = 0; i < X86_VENDOR_NUM; i++) {
718 if (!cpu_devs[i])
719 break;
720
721 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
722 (cpu_devs[i]->c_ident[1] &&
723 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
724
725 this_cpu = cpu_devs[i];
726 c->x86_vendor = this_cpu->c_x86_vendor;
727 return;
728 }
729 }
730
731 pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
732 "CPU: Your system may be unstable.\n", v);
733
734 c->x86_vendor = X86_VENDOR_UNKNOWN;
735 this_cpu = &default_cpu;
736 }
737
738 void cpu_detect(struct cpuinfo_x86 *c)
739 {
740 /* Get vendor name */
741 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
742 (unsigned int *)&c->x86_vendor_id[0],
743 (unsigned int *)&c->x86_vendor_id[8],
744 (unsigned int *)&c->x86_vendor_id[4]);
745
746 c->x86 = 4;
747 /* Intel-defined flags: level 0x00000001 */
748 if (c->cpuid_level >= 0x00000001) {
749 u32 junk, tfms, cap0, misc;
750
751 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
752 c->x86 = x86_family(tfms);
753 c->x86_model = x86_model(tfms);
754 c->x86_stepping = x86_stepping(tfms);
755
756 if (cap0 & (1<<19)) {
757 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
758 c->x86_cache_alignment = c->x86_clflush_size;
759 }
760 }
761 }
762
763 static void apply_forced_caps(struct cpuinfo_x86 *c)
764 {
765 int i;
766
767 for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
768 c->x86_capability[i] &= ~cpu_caps_cleared[i];
769 c->x86_capability[i] |= cpu_caps_set[i];
770 }
771 }
772
773 static void init_speculation_control(struct cpuinfo_x86 *c)
774 {
775 /*
776 * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
777 * and they also have a different bit for STIBP support. Also,
778 * a hypervisor might have set the individual AMD bits even on
779 * Intel CPUs, for finer-grained selection of what's available.
780 */
781 if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
782 set_cpu_cap(c, X86_FEATURE_IBRS);
783 set_cpu_cap(c, X86_FEATURE_IBPB);
784 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
785 }
786
787 if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
788 set_cpu_cap(c, X86_FEATURE_STIBP);
789
790 if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
791 cpu_has(c, X86_FEATURE_VIRT_SSBD))
792 set_cpu_cap(c, X86_FEATURE_SSBD);
793
794 if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
795 set_cpu_cap(c, X86_FEATURE_IBRS);
796 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
797 }
798
799 if (cpu_has(c, X86_FEATURE_AMD_IBPB))
800 set_cpu_cap(c, X86_FEATURE_IBPB);
801
802 if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
803 set_cpu_cap(c, X86_FEATURE_STIBP);
804 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
805 }
806
807 if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
808 set_cpu_cap(c, X86_FEATURE_SSBD);
809 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
810 clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
811 }
812 }
813
814 void get_cpu_cap(struct cpuinfo_x86 *c)
815 {
816 u32 eax, ebx, ecx, edx;
817
818 /* Intel-defined flags: level 0x00000001 */
819 if (c->cpuid_level >= 0x00000001) {
820 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
821
822 c->x86_capability[CPUID_1_ECX] = ecx;
823 c->x86_capability[CPUID_1_EDX] = edx;
824 }
825
826 /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
827 if (c->cpuid_level >= 0x00000006)
828 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
829
830 /* Additional Intel-defined flags: level 0x00000007 */
831 if (c->cpuid_level >= 0x00000007) {
832 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
833 c->x86_capability[CPUID_7_0_EBX] = ebx;
834 c->x86_capability[CPUID_7_ECX] = ecx;
835 c->x86_capability[CPUID_7_EDX] = edx;
836 }
837
838 /* Extended state features: level 0x0000000d */
839 if (c->cpuid_level >= 0x0000000d) {
840 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
841
842 c->x86_capability[CPUID_D_1_EAX] = eax;
843 }
844
845 /* Additional Intel-defined flags: level 0x0000000F */
846 if (c->cpuid_level >= 0x0000000F) {
847
848 /* QoS sub-leaf, EAX=0Fh, ECX=0 */
849 cpuid_count(0x0000000F, 0, &eax, &ebx, &ecx, &edx);
850 c->x86_capability[CPUID_F_0_EDX] = edx;
851
852 if (cpu_has(c, X86_FEATURE_CQM_LLC)) {
853 /* will be overridden if occupancy monitoring exists */
854 c->x86_cache_max_rmid = ebx;
855
856 /* QoS sub-leaf, EAX=0Fh, ECX=1 */
857 cpuid_count(0x0000000F, 1, &eax, &ebx, &ecx, &edx);
858 c->x86_capability[CPUID_F_1_EDX] = edx;
859
860 if ((cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC)) ||
861 ((cpu_has(c, X86_FEATURE_CQM_MBM_TOTAL)) ||
862 (cpu_has(c, X86_FEATURE_CQM_MBM_LOCAL)))) {
863 c->x86_cache_max_rmid = ecx;
864 c->x86_cache_occ_scale = ebx;
865 }
866 } else {
867 c->x86_cache_max_rmid = -1;
868 c->x86_cache_occ_scale = -1;
869 }
870 }
871
872 /* AMD-defined flags: level 0x80000001 */
873 eax = cpuid_eax(0x80000000);
874 c->extended_cpuid_level = eax;
875
876 if ((eax & 0xffff0000) == 0x80000000) {
877 if (eax >= 0x80000001) {
878 cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
879
880 c->x86_capability[CPUID_8000_0001_ECX] = ecx;
881 c->x86_capability[CPUID_8000_0001_EDX] = edx;
882 }
883 }
884
885 if (c->extended_cpuid_level >= 0x80000007) {
886 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
887
888 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
889 c->x86_power = edx;
890 }
891
892 if (c->extended_cpuid_level >= 0x80000008) {
893 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
894 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
895 }
896
897 if (c->extended_cpuid_level >= 0x8000000a)
898 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
899
900 init_scattered_cpuid_features(c);
901 init_speculation_control(c);
902
903 /*
904 * Clear/Set all flags overridden by options, after probe.
905 * This needs to happen each time we re-probe, which may happen
906 * several times during CPU initialization.
907 */
908 apply_forced_caps(c);
909 }
910
911 static void get_cpu_address_sizes(struct cpuinfo_x86 *c)
912 {
913 u32 eax, ebx, ecx, edx;
914
915 if (c->extended_cpuid_level >= 0x80000008) {
916 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
917
918 c->x86_virt_bits = (eax >> 8) & 0xff;
919 c->x86_phys_bits = eax & 0xff;
920 }
921 #ifdef CONFIG_X86_32
922 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
923 c->x86_phys_bits = 36;
924 #endif
925 }
926
927 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
928 {
929 #ifdef CONFIG_X86_32
930 int i;
931
932 /*
933 * First of all, decide if this is a 486 or higher
934 * It's a 486 if we can modify the AC flag
935 */
936 if (flag_is_changeable_p(X86_EFLAGS_AC))
937 c->x86 = 4;
938 else
939 c->x86 = 3;
940
941 for (i = 0; i < X86_VENDOR_NUM; i++)
942 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
943 c->x86_vendor_id[0] = 0;
944 cpu_devs[i]->c_identify(c);
945 if (c->x86_vendor_id[0]) {
946 get_cpu_vendor(c);
947 break;
948 }
949 }
950 #endif
951 }
952
953 static const __initconst struct x86_cpu_id cpu_no_speculation[] = {
954 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_CEDARVIEW, X86_FEATURE_ANY },
955 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_CLOVERVIEW, X86_FEATURE_ANY },
956 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_LINCROFT, X86_FEATURE_ANY },
957 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_PENWELL, X86_FEATURE_ANY },
958 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_PINEVIEW, X86_FEATURE_ANY },
959 { X86_VENDOR_CENTAUR, 5 },
960 { X86_VENDOR_INTEL, 5 },
961 { X86_VENDOR_NSC, 5 },
962 { X86_VENDOR_ANY, 4 },
963 {}
964 };
965
966 static const __initconst struct x86_cpu_id cpu_no_meltdown[] = {
967 { X86_VENDOR_AMD },
968 {}
969 };
970
971 /* Only list CPUs which speculate but are non susceptible to SSB */
972 static const __initconst struct x86_cpu_id cpu_no_spec_store_bypass[] = {
973 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_SILVERMONT1 },
974 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_AIRMONT },
975 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_SILVERMONT2 },
976 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_MERRIFIELD },
977 { X86_VENDOR_INTEL, 6, INTEL_FAM6_CORE_YONAH },
978 { X86_VENDOR_INTEL, 6, INTEL_FAM6_XEON_PHI_KNL },
979 { X86_VENDOR_INTEL, 6, INTEL_FAM6_XEON_PHI_KNM },
980 { X86_VENDOR_AMD, 0x12, },
981 { X86_VENDOR_AMD, 0x11, },
982 { X86_VENDOR_AMD, 0x10, },
983 { X86_VENDOR_AMD, 0xf, },
984 {}
985 };
986
987 static const __initconst struct x86_cpu_id cpu_no_l1tf[] = {
988 /* in addition to cpu_no_speculation */
989 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_SILVERMONT1 },
990 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_SILVERMONT2 },
991 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_AIRMONT },
992 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_MERRIFIELD },
993 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_MOOREFIELD },
994 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_GOLDMONT },
995 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_DENVERTON },
996 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_GEMINI_LAKE },
997 { X86_VENDOR_INTEL, 6, INTEL_FAM6_XEON_PHI_KNL },
998 { X86_VENDOR_INTEL, 6, INTEL_FAM6_XEON_PHI_KNM },
999 {}
1000 };
1001
1002 static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1003 {
1004 u64 ia32_cap = 0;
1005
1006 if (x86_match_cpu(cpu_no_speculation))
1007 return;
1008
1009 setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1010 setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1011
1012 if (cpu_has(c, X86_FEATURE_ARCH_CAPABILITIES))
1013 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
1014
1015 if (!x86_match_cpu(cpu_no_spec_store_bypass) &&
1016 !(ia32_cap & ARCH_CAP_SSB_NO) &&
1017 !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1018 setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1019
1020 if (x86_match_cpu(cpu_no_meltdown))
1021 return;
1022
1023 /* Rogue Data Cache Load? No! */
1024 if (ia32_cap & ARCH_CAP_RDCL_NO)
1025 return;
1026
1027 setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1028
1029 if (x86_match_cpu(cpu_no_l1tf))
1030 return;
1031
1032 setup_force_cpu_bug(X86_BUG_L1TF);
1033 }
1034
1035 /*
1036 * Do minimum CPU detection early.
1037 * Fields really needed: vendor, cpuid_level, family, model, mask,
1038 * cache alignment.
1039 * The others are not touched to avoid unwanted side effects.
1040 *
1041 * WARNING: this function is only called on the boot CPU. Don't add code
1042 * here that is supposed to run on all CPUs.
1043 */
1044 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1045 {
1046 #ifdef CONFIG_X86_64
1047 c->x86_clflush_size = 64;
1048 c->x86_phys_bits = 36;
1049 c->x86_virt_bits = 48;
1050 #else
1051 c->x86_clflush_size = 32;
1052 c->x86_phys_bits = 32;
1053 c->x86_virt_bits = 32;
1054 #endif
1055 c->x86_cache_alignment = c->x86_clflush_size;
1056
1057 memset(&c->x86_capability, 0, sizeof c->x86_capability);
1058 c->extended_cpuid_level = 0;
1059
1060 /* cyrix could have cpuid enabled via c_identify()*/
1061 if (have_cpuid_p()) {
1062 cpu_detect(c);
1063 get_cpu_vendor(c);
1064 get_cpu_cap(c);
1065 get_cpu_address_sizes(c);
1066 setup_force_cpu_cap(X86_FEATURE_CPUID);
1067
1068 if (this_cpu->c_early_init)
1069 this_cpu->c_early_init(c);
1070
1071 c->cpu_index = 0;
1072 filter_cpuid_features(c, false);
1073
1074 if (this_cpu->c_bsp_init)
1075 this_cpu->c_bsp_init(c);
1076 } else {
1077 identify_cpu_without_cpuid(c);
1078 setup_clear_cpu_cap(X86_FEATURE_CPUID);
1079 }
1080
1081 setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1082
1083 cpu_set_bug_bits(c);
1084
1085 fpu__init_system(c);
1086
1087 #ifdef CONFIG_X86_32
1088 /*
1089 * Regardless of whether PCID is enumerated, the SDM says
1090 * that it can't be enabled in 32-bit mode.
1091 */
1092 setup_clear_cpu_cap(X86_FEATURE_PCID);
1093 #endif
1094
1095 /*
1096 * Later in the boot process pgtable_l5_enabled() relies on
1097 * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1098 * enabled by this point we need to clear the feature bit to avoid
1099 * false-positives at the later stage.
1100 *
1101 * pgtable_l5_enabled() can be false here for several reasons:
1102 * - 5-level paging is disabled compile-time;
1103 * - it's 32-bit kernel;
1104 * - machine doesn't support 5-level paging;
1105 * - user specified 'no5lvl' in kernel command line.
1106 */
1107 if (!pgtable_l5_enabled())
1108 setup_clear_cpu_cap(X86_FEATURE_LA57);
1109 }
1110
1111 void __init early_cpu_init(void)
1112 {
1113 const struct cpu_dev *const *cdev;
1114 int count = 0;
1115
1116 #ifdef CONFIG_PROCESSOR_SELECT
1117 pr_info("KERNEL supported cpus:\n");
1118 #endif
1119
1120 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1121 const struct cpu_dev *cpudev = *cdev;
1122
1123 if (count >= X86_VENDOR_NUM)
1124 break;
1125 cpu_devs[count] = cpudev;
1126 count++;
1127
1128 #ifdef CONFIG_PROCESSOR_SELECT
1129 {
1130 unsigned int j;
1131
1132 for (j = 0; j < 2; j++) {
1133 if (!cpudev->c_ident[j])
1134 continue;
1135 pr_info(" %s %s\n", cpudev->c_vendor,
1136 cpudev->c_ident[j]);
1137 }
1138 }
1139 #endif
1140 }
1141 early_identify_cpu(&boot_cpu_data);
1142 }
1143
1144 /*
1145 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1146 * unfortunately, that's not true in practice because of early VIA
1147 * chips and (more importantly) broken virtualizers that are not easy
1148 * to detect. In the latter case it doesn't even *fail* reliably, so
1149 * probing for it doesn't even work. Disable it completely on 32-bit
1150 * unless we can find a reliable way to detect all the broken cases.
1151 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1152 */
1153 static void detect_nopl(struct cpuinfo_x86 *c)
1154 {
1155 #ifdef CONFIG_X86_32
1156 clear_cpu_cap(c, X86_FEATURE_NOPL);
1157 #else
1158 set_cpu_cap(c, X86_FEATURE_NOPL);
1159 #endif
1160 }
1161
1162 static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
1163 {
1164 #ifdef CONFIG_X86_64
1165 /*
1166 * Empirically, writing zero to a segment selector on AMD does
1167 * not clear the base, whereas writing zero to a segment
1168 * selector on Intel does clear the base. Intel's behavior
1169 * allows slightly faster context switches in the common case
1170 * where GS is unused by the prev and next threads.
1171 *
1172 * Since neither vendor documents this anywhere that I can see,
1173 * detect it directly instead of hardcoding the choice by
1174 * vendor.
1175 *
1176 * I've designated AMD's behavior as the "bug" because it's
1177 * counterintuitive and less friendly.
1178 */
1179
1180 unsigned long old_base, tmp;
1181 rdmsrl(MSR_FS_BASE, old_base);
1182 wrmsrl(MSR_FS_BASE, 1);
1183 loadsegment(fs, 0);
1184 rdmsrl(MSR_FS_BASE, tmp);
1185 if (tmp != 0)
1186 set_cpu_bug(c, X86_BUG_NULL_SEG);
1187 wrmsrl(MSR_FS_BASE, old_base);
1188 #endif
1189 }
1190
1191 static void generic_identify(struct cpuinfo_x86 *c)
1192 {
1193 c->extended_cpuid_level = 0;
1194
1195 if (!have_cpuid_p())
1196 identify_cpu_without_cpuid(c);
1197
1198 /* cyrix could have cpuid enabled via c_identify()*/
1199 if (!have_cpuid_p())
1200 return;
1201
1202 cpu_detect(c);
1203
1204 get_cpu_vendor(c);
1205
1206 get_cpu_cap(c);
1207
1208 get_cpu_address_sizes(c);
1209
1210 if (c->cpuid_level >= 0x00000001) {
1211 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1212 #ifdef CONFIG_X86_32
1213 # ifdef CONFIG_SMP
1214 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1215 # else
1216 c->apicid = c->initial_apicid;
1217 # endif
1218 #endif
1219 c->phys_proc_id = c->initial_apicid;
1220 }
1221
1222 get_model_name(c); /* Default name */
1223
1224 detect_nopl(c);
1225
1226 detect_null_seg_behavior(c);
1227
1228 /*
1229 * ESPFIX is a strange bug. All real CPUs have it. Paravirt
1230 * systems that run Linux at CPL > 0 may or may not have the
1231 * issue, but, even if they have the issue, there's absolutely
1232 * nothing we can do about it because we can't use the real IRET
1233 * instruction.
1234 *
1235 * NB: For the time being, only 32-bit kernels support
1236 * X86_BUG_ESPFIX as such. 64-bit kernels directly choose
1237 * whether to apply espfix using paravirt hooks. If any
1238 * non-paravirt system ever shows up that does *not* have the
1239 * ESPFIX issue, we can change this.
1240 */
1241 #ifdef CONFIG_X86_32
1242 # ifdef CONFIG_PARAVIRT
1243 do {
1244 extern void native_iret(void);
1245 if (pv_cpu_ops.iret == native_iret)
1246 set_cpu_bug(c, X86_BUG_ESPFIX);
1247 } while (0);
1248 # else
1249 set_cpu_bug(c, X86_BUG_ESPFIX);
1250 # endif
1251 #endif
1252 }
1253
1254 static void x86_init_cache_qos(struct cpuinfo_x86 *c)
1255 {
1256 /*
1257 * The heavy lifting of max_rmid and cache_occ_scale are handled
1258 * in get_cpu_cap(). Here we just set the max_rmid for the boot_cpu
1259 * in case CQM bits really aren't there in this CPU.
1260 */
1261 if (c != &boot_cpu_data) {
1262 boot_cpu_data.x86_cache_max_rmid =
1263 min(boot_cpu_data.x86_cache_max_rmid,
1264 c->x86_cache_max_rmid);
1265 }
1266 }
1267
1268 /*
1269 * Validate that ACPI/mptables have the same information about the
1270 * effective APIC id and update the package map.
1271 */
1272 static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1273 {
1274 #ifdef CONFIG_SMP
1275 unsigned int apicid, cpu = smp_processor_id();
1276
1277 apicid = apic->cpu_present_to_apicid(cpu);
1278
1279 if (apicid != c->apicid) {
1280 pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1281 cpu, apicid, c->initial_apicid);
1282 }
1283 BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1284 #else
1285 c->logical_proc_id = 0;
1286 #endif
1287 }
1288
1289 /*
1290 * This does the hard work of actually picking apart the CPU stuff...
1291 */
1292 static void identify_cpu(struct cpuinfo_x86 *c)
1293 {
1294 int i;
1295
1296 c->loops_per_jiffy = loops_per_jiffy;
1297 c->x86_cache_size = 0;
1298 c->x86_vendor = X86_VENDOR_UNKNOWN;
1299 c->x86_model = c->x86_stepping = 0; /* So far unknown... */
1300 c->x86_vendor_id[0] = '\0'; /* Unset */
1301 c->x86_model_id[0] = '\0'; /* Unset */
1302 c->x86_max_cores = 1;
1303 c->x86_coreid_bits = 0;
1304 c->cu_id = 0xff;
1305 #ifdef CONFIG_X86_64
1306 c->x86_clflush_size = 64;
1307 c->x86_phys_bits = 36;
1308 c->x86_virt_bits = 48;
1309 #else
1310 c->cpuid_level = -1; /* CPUID not detected */
1311 c->x86_clflush_size = 32;
1312 c->x86_phys_bits = 32;
1313 c->x86_virt_bits = 32;
1314 #endif
1315 c->x86_cache_alignment = c->x86_clflush_size;
1316 memset(&c->x86_capability, 0, sizeof c->x86_capability);
1317
1318 generic_identify(c);
1319
1320 if (this_cpu->c_identify)
1321 this_cpu->c_identify(c);
1322
1323 /* Clear/Set all flags overridden by options, after probe */
1324 apply_forced_caps(c);
1325
1326 #ifdef CONFIG_X86_64
1327 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1328 #endif
1329
1330 /*
1331 * Vendor-specific initialization. In this section we
1332 * canonicalize the feature flags, meaning if there are
1333 * features a certain CPU supports which CPUID doesn't
1334 * tell us, CPUID claiming incorrect flags, or other bugs,
1335 * we handle them here.
1336 *
1337 * At the end of this section, c->x86_capability better
1338 * indicate the features this CPU genuinely supports!
1339 */
1340 if (this_cpu->c_init)
1341 this_cpu->c_init(c);
1342
1343 /* Disable the PN if appropriate */
1344 squash_the_stupid_serial_number(c);
1345
1346 /* Set up SMEP/SMAP/UMIP */
1347 setup_smep(c);
1348 setup_smap(c);
1349 setup_umip(c);
1350
1351 /*
1352 * The vendor-specific functions might have changed features.
1353 * Now we do "generic changes."
1354 */
1355
1356 /* Filter out anything that depends on CPUID levels we don't have */
1357 filter_cpuid_features(c, true);
1358
1359 /* If the model name is still unset, do table lookup. */
1360 if (!c->x86_model_id[0]) {
1361 const char *p;
1362 p = table_lookup_model(c);
1363 if (p)
1364 strcpy(c->x86_model_id, p);
1365 else
1366 /* Last resort... */
1367 sprintf(c->x86_model_id, "%02x/%02x",
1368 c->x86, c->x86_model);
1369 }
1370
1371 #ifdef CONFIG_X86_64
1372 detect_ht(c);
1373 #endif
1374
1375 x86_init_rdrand(c);
1376 x86_init_cache_qos(c);
1377 setup_pku(c);
1378
1379 /*
1380 * Clear/Set all flags overridden by options, need do it
1381 * before following smp all cpus cap AND.
1382 */
1383 apply_forced_caps(c);
1384
1385 /*
1386 * On SMP, boot_cpu_data holds the common feature set between
1387 * all CPUs; so make sure that we indicate which features are
1388 * common between the CPUs. The first time this routine gets
1389 * executed, c == &boot_cpu_data.
1390 */
1391 if (c != &boot_cpu_data) {
1392 /* AND the already accumulated flags with these */
1393 for (i = 0; i < NCAPINTS; i++)
1394 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1395
1396 /* OR, i.e. replicate the bug flags */
1397 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1398 c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1399 }
1400
1401 /* Init Machine Check Exception if available. */
1402 mcheck_cpu_init(c);
1403
1404 select_idle_routine(c);
1405
1406 #ifdef CONFIG_NUMA
1407 numa_add_cpu(smp_processor_id());
1408 #endif
1409 }
1410
1411 /*
1412 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1413 * on 32-bit kernels:
1414 */
1415 #ifdef CONFIG_X86_32
1416 void enable_sep_cpu(void)
1417 {
1418 struct tss_struct *tss;
1419 int cpu;
1420
1421 if (!boot_cpu_has(X86_FEATURE_SEP))
1422 return;
1423
1424 cpu = get_cpu();
1425 tss = &per_cpu(cpu_tss_rw, cpu);
1426
1427 /*
1428 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1429 * see the big comment in struct x86_hw_tss's definition.
1430 */
1431
1432 tss->x86_tss.ss1 = __KERNEL_CS;
1433 wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1434 wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1435 wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1436
1437 put_cpu();
1438 }
1439 #endif
1440
1441 void __init identify_boot_cpu(void)
1442 {
1443 identify_cpu(&boot_cpu_data);
1444 #ifdef CONFIG_X86_32
1445 sysenter_setup();
1446 enable_sep_cpu();
1447 #endif
1448 cpu_detect_tlb(&boot_cpu_data);
1449 }
1450
1451 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1452 {
1453 BUG_ON(c == &boot_cpu_data);
1454 identify_cpu(c);
1455 #ifdef CONFIG_X86_32
1456 enable_sep_cpu();
1457 #endif
1458 mtrr_ap_init();
1459 validate_apic_and_package_id(c);
1460 x86_spec_ctrl_setup_ap();
1461 }
1462
1463 static __init int setup_noclflush(char *arg)
1464 {
1465 setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1466 setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1467 return 1;
1468 }
1469 __setup("noclflush", setup_noclflush);
1470
1471 void print_cpu_info(struct cpuinfo_x86 *c)
1472 {
1473 const char *vendor = NULL;
1474
1475 if (c->x86_vendor < X86_VENDOR_NUM) {
1476 vendor = this_cpu->c_vendor;
1477 } else {
1478 if (c->cpuid_level >= 0)
1479 vendor = c->x86_vendor_id;
1480 }
1481
1482 if (vendor && !strstr(c->x86_model_id, vendor))
1483 pr_cont("%s ", vendor);
1484
1485 if (c->x86_model_id[0])
1486 pr_cont("%s", c->x86_model_id);
1487 else
1488 pr_cont("%d86", c->x86);
1489
1490 pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1491
1492 if (c->x86_stepping || c->cpuid_level >= 0)
1493 pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
1494 else
1495 pr_cont(")\n");
1496 }
1497
1498 /*
1499 * clearcpuid= was already parsed in fpu__init_parse_early_param.
1500 * But we need to keep a dummy __setup around otherwise it would
1501 * show up as an environment variable for init.
1502 */
1503 static __init int setup_clearcpuid(char *arg)
1504 {
1505 return 1;
1506 }
1507 __setup("clearcpuid=", setup_clearcpuid);
1508
1509 #ifdef CONFIG_X86_64
1510 DEFINE_PER_CPU_FIRST(union irq_stack_union,
1511 irq_stack_union) __aligned(PAGE_SIZE) __visible;
1512 EXPORT_PER_CPU_SYMBOL_GPL(irq_stack_union);
1513
1514 /*
1515 * The following percpu variables are hot. Align current_task to
1516 * cacheline size such that they fall in the same cacheline.
1517 */
1518 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1519 &init_task;
1520 EXPORT_PER_CPU_SYMBOL(current_task);
1521
1522 DEFINE_PER_CPU(char *, irq_stack_ptr) =
1523 init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE;
1524
1525 DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1526
1527 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1528 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1529
1530 /* May not be marked __init: used by software suspend */
1531 void syscall_init(void)
1532 {
1533 extern char _entry_trampoline[];
1534 extern char entry_SYSCALL_64_trampoline[];
1535
1536 int cpu = smp_processor_id();
1537 unsigned long SYSCALL64_entry_trampoline =
1538 (unsigned long)get_cpu_entry_area(cpu)->entry_trampoline +
1539 (entry_SYSCALL_64_trampoline - _entry_trampoline);
1540
1541 wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1542 if (static_cpu_has(X86_FEATURE_PTI))
1543 wrmsrl(MSR_LSTAR, SYSCALL64_entry_trampoline);
1544 else
1545 wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1546
1547 #ifdef CONFIG_IA32_EMULATION
1548 wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1549 /*
1550 * This only works on Intel CPUs.
1551 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1552 * This does not cause SYSENTER to jump to the wrong location, because
1553 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1554 */
1555 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1556 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1));
1557 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1558 #else
1559 wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1560 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1561 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1562 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1563 #endif
1564
1565 /* Flags to clear on syscall */
1566 wrmsrl(MSR_SYSCALL_MASK,
1567 X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1568 X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1569 }
1570
1571 /*
1572 * Copies of the original ist values from the tss are only accessed during
1573 * debugging, no special alignment required.
1574 */
1575 DEFINE_PER_CPU(struct orig_ist, orig_ist);
1576
1577 static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
1578 DEFINE_PER_CPU(int, debug_stack_usage);
1579
1580 int is_debug_stack(unsigned long addr)
1581 {
1582 return __this_cpu_read(debug_stack_usage) ||
1583 (addr <= __this_cpu_read(debug_stack_addr) &&
1584 addr > (__this_cpu_read(debug_stack_addr) - DEBUG_STKSZ));
1585 }
1586 NOKPROBE_SYMBOL(is_debug_stack);
1587
1588 DEFINE_PER_CPU(u32, debug_idt_ctr);
1589
1590 void debug_stack_set_zero(void)
1591 {
1592 this_cpu_inc(debug_idt_ctr);
1593 load_current_idt();
1594 }
1595 NOKPROBE_SYMBOL(debug_stack_set_zero);
1596
1597 void debug_stack_reset(void)
1598 {
1599 if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
1600 return;
1601 if (this_cpu_dec_return(debug_idt_ctr) == 0)
1602 load_current_idt();
1603 }
1604 NOKPROBE_SYMBOL(debug_stack_reset);
1605
1606 #else /* CONFIG_X86_64 */
1607
1608 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1609 EXPORT_PER_CPU_SYMBOL(current_task);
1610 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1611 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1612
1613 /*
1614 * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1615 * the top of the kernel stack. Use an extra percpu variable to track the
1616 * top of the kernel stack directly.
1617 */
1618 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1619 (unsigned long)&init_thread_union + THREAD_SIZE;
1620 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1621
1622 #ifdef CONFIG_STACKPROTECTOR
1623 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1624 #endif
1625
1626 #endif /* CONFIG_X86_64 */
1627
1628 /*
1629 * Clear all 6 debug registers:
1630 */
1631 static void clear_all_debug_regs(void)
1632 {
1633 int i;
1634
1635 for (i = 0; i < 8; i++) {
1636 /* Ignore db4, db5 */
1637 if ((i == 4) || (i == 5))
1638 continue;
1639
1640 set_debugreg(0, i);
1641 }
1642 }
1643
1644 #ifdef CONFIG_KGDB
1645 /*
1646 * Restore debug regs if using kgdbwait and you have a kernel debugger
1647 * connection established.
1648 */
1649 static void dbg_restore_debug_regs(void)
1650 {
1651 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1652 arch_kgdb_ops.correct_hw_break();
1653 }
1654 #else /* ! CONFIG_KGDB */
1655 #define dbg_restore_debug_regs()
1656 #endif /* ! CONFIG_KGDB */
1657
1658 static void wait_for_master_cpu(int cpu)
1659 {
1660 #ifdef CONFIG_SMP
1661 /*
1662 * wait for ACK from master CPU before continuing
1663 * with AP initialization
1664 */
1665 WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1666 while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1667 cpu_relax();
1668 #endif
1669 }
1670
1671 /*
1672 * cpu_init() initializes state that is per-CPU. Some data is already
1673 * initialized (naturally) in the bootstrap process, such as the GDT
1674 * and IDT. We reload them nevertheless, this function acts as a
1675 * 'CPU state barrier', nothing should get across.
1676 * A lot of state is already set up in PDA init for 64 bit
1677 */
1678 #ifdef CONFIG_X86_64
1679
1680 void cpu_init(void)
1681 {
1682 struct orig_ist *oist;
1683 struct task_struct *me;
1684 struct tss_struct *t;
1685 unsigned long v;
1686 int cpu = raw_smp_processor_id();
1687 int i;
1688
1689 wait_for_master_cpu(cpu);
1690
1691 /*
1692 * Initialize the CR4 shadow before doing anything that could
1693 * try to read it.
1694 */
1695 cr4_init_shadow();
1696
1697 if (cpu)
1698 load_ucode_ap();
1699
1700 t = &per_cpu(cpu_tss_rw, cpu);
1701 oist = &per_cpu(orig_ist, cpu);
1702
1703 #ifdef CONFIG_NUMA
1704 if (this_cpu_read(numa_node) == 0 &&
1705 early_cpu_to_node(cpu) != NUMA_NO_NODE)
1706 set_numa_node(early_cpu_to_node(cpu));
1707 #endif
1708
1709 me = current;
1710
1711 pr_debug("Initializing CPU#%d\n", cpu);
1712
1713 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1714
1715 /*
1716 * Initialize the per-CPU GDT with the boot GDT,
1717 * and set up the GDT descriptor:
1718 */
1719
1720 switch_to_new_gdt(cpu);
1721 loadsegment(fs, 0);
1722
1723 load_current_idt();
1724
1725 memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1726 syscall_init();
1727
1728 wrmsrl(MSR_FS_BASE, 0);
1729 wrmsrl(MSR_KERNEL_GS_BASE, 0);
1730 barrier();
1731
1732 x86_configure_nx();
1733 x2apic_setup();
1734
1735 /*
1736 * set up and load the per-CPU TSS
1737 */
1738 if (!oist->ist[0]) {
1739 char *estacks = get_cpu_entry_area(cpu)->exception_stacks;
1740
1741 for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1742 estacks += exception_stack_sizes[v];
1743 oist->ist[v] = t->x86_tss.ist[v] =
1744 (unsigned long)estacks;
1745 if (v == DEBUG_STACK-1)
1746 per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
1747 }
1748 }
1749
1750 t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
1751
1752 /*
1753 * <= is required because the CPU will access up to
1754 * 8 bits beyond the end of the IO permission bitmap.
1755 */
1756 for (i = 0; i <= IO_BITMAP_LONGS; i++)
1757 t->io_bitmap[i] = ~0UL;
1758
1759 mmgrab(&init_mm);
1760 me->active_mm = &init_mm;
1761 BUG_ON(me->mm);
1762 initialize_tlbstate_and_flush();
1763 enter_lazy_tlb(&init_mm, me);
1764
1765 /*
1766 * Initialize the TSS. sp0 points to the entry trampoline stack
1767 * regardless of what task is running.
1768 */
1769 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1770 load_TR_desc();
1771 load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
1772
1773 load_mm_ldt(&init_mm);
1774
1775 clear_all_debug_regs();
1776 dbg_restore_debug_regs();
1777
1778 fpu__init_cpu();
1779
1780 if (is_uv_system())
1781 uv_cpu_init();
1782
1783 load_fixmap_gdt(cpu);
1784 }
1785
1786 #else
1787
1788 void cpu_init(void)
1789 {
1790 int cpu = smp_processor_id();
1791 struct task_struct *curr = current;
1792 struct tss_struct *t = &per_cpu(cpu_tss_rw, cpu);
1793
1794 wait_for_master_cpu(cpu);
1795
1796 /*
1797 * Initialize the CR4 shadow before doing anything that could
1798 * try to read it.
1799 */
1800 cr4_init_shadow();
1801
1802 show_ucode_info_early();
1803
1804 pr_info("Initializing CPU#%d\n", cpu);
1805
1806 if (cpu_feature_enabled(X86_FEATURE_VME) ||
1807 boot_cpu_has(X86_FEATURE_TSC) ||
1808 boot_cpu_has(X86_FEATURE_DE))
1809 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1810
1811 load_current_idt();
1812 switch_to_new_gdt(cpu);
1813
1814 /*
1815 * Set up and load the per-CPU TSS and LDT
1816 */
1817 mmgrab(&init_mm);
1818 curr->active_mm = &init_mm;
1819 BUG_ON(curr->mm);
1820 initialize_tlbstate_and_flush();
1821 enter_lazy_tlb(&init_mm, curr);
1822
1823 /*
1824 * Initialize the TSS. Don't bother initializing sp0, as the initial
1825 * task never enters user mode.
1826 */
1827 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1828 load_TR_desc();
1829
1830 load_mm_ldt(&init_mm);
1831
1832 t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
1833
1834 #ifdef CONFIG_DOUBLEFAULT
1835 /* Set up doublefault TSS pointer in the GDT */
1836 __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1837 #endif
1838
1839 clear_all_debug_regs();
1840 dbg_restore_debug_regs();
1841
1842 fpu__init_cpu();
1843
1844 load_fixmap_gdt(cpu);
1845 }
1846 #endif
1847
1848 static void bsp_resume(void)
1849 {
1850 if (this_cpu->c_bsp_resume)
1851 this_cpu->c_bsp_resume(&boot_cpu_data);
1852 }
1853
1854 static struct syscore_ops cpu_syscore_ops = {
1855 .resume = bsp_resume,
1856 };
1857
1858 static int __init init_cpu_syscore(void)
1859 {
1860 register_syscore_ops(&cpu_syscore_ops);
1861 return 0;
1862 }
1863 core_initcall(init_cpu_syscore);
1864
1865 /*
1866 * The microcode loader calls this upon late microcode load to recheck features,
1867 * only when microcode has been updated. Caller holds microcode_mutex and CPU
1868 * hotplug lock.
1869 */
1870 void microcode_check(void)
1871 {
1872 struct cpuinfo_x86 info;
1873
1874 perf_check_microcode();
1875
1876 /* Reload CPUID max function as it might've changed. */
1877 info.cpuid_level = cpuid_eax(0);
1878
1879 /*
1880 * Copy all capability leafs to pick up the synthetic ones so that
1881 * memcmp() below doesn't fail on that. The ones coming from CPUID will
1882 * get overwritten in get_cpu_cap().
1883 */
1884 memcpy(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability));
1885
1886 get_cpu_cap(&info);
1887
1888 if (!memcmp(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability)))
1889 return;
1890
1891 pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
1892 pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
1893 }