]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kernel/cpu/common.c
x86/entry/64: Allocate and enable the SYSENTER stack
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / cpu / common.c
1 #include <linux/bootmem.h>
2 #include <linux/linkage.h>
3 #include <linux/bitops.h>
4 #include <linux/kernel.h>
5 #include <linux/export.h>
6 #include <linux/percpu.h>
7 #include <linux/string.h>
8 #include <linux/ctype.h>
9 #include <linux/delay.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/clock.h>
12 #include <linux/sched/task.h>
13 #include <linux/init.h>
14 #include <linux/kprobes.h>
15 #include <linux/kgdb.h>
16 #include <linux/smp.h>
17 #include <linux/io.h>
18 #include <linux/syscore_ops.h>
19
20 #include <asm/stackprotector.h>
21 #include <asm/perf_event.h>
22 #include <asm/mmu_context.h>
23 #include <asm/archrandom.h>
24 #include <asm/hypervisor.h>
25 #include <asm/processor.h>
26 #include <asm/tlbflush.h>
27 #include <asm/debugreg.h>
28 #include <asm/sections.h>
29 #include <asm/vsyscall.h>
30 #include <linux/topology.h>
31 #include <linux/cpumask.h>
32 #include <asm/pgtable.h>
33 #include <linux/atomic.h>
34 #include <asm/proto.h>
35 #include <asm/setup.h>
36 #include <asm/apic.h>
37 #include <asm/desc.h>
38 #include <asm/fpu/internal.h>
39 #include <asm/mtrr.h>
40 #include <asm/hwcap2.h>
41 #include <linux/numa.h>
42 #include <asm/asm.h>
43 #include <asm/bugs.h>
44 #include <asm/cpu.h>
45 #include <asm/mce.h>
46 #include <asm/msr.h>
47 #include <asm/pat.h>
48 #include <asm/microcode.h>
49 #include <asm/microcode_intel.h>
50
51 #ifdef CONFIG_X86_LOCAL_APIC
52 #include <asm/uv/uv.h>
53 #endif
54
55 #include "cpu.h"
56
57 u32 elf_hwcap2 __read_mostly;
58
59 /* all of these masks are initialized in setup_cpu_local_masks() */
60 cpumask_var_t cpu_initialized_mask;
61 cpumask_var_t cpu_callout_mask;
62 cpumask_var_t cpu_callin_mask;
63
64 /* representing cpus for which sibling maps can be computed */
65 cpumask_var_t cpu_sibling_setup_mask;
66
67 /* correctly size the local cpu masks */
68 void __init setup_cpu_local_masks(void)
69 {
70 alloc_bootmem_cpumask_var(&cpu_initialized_mask);
71 alloc_bootmem_cpumask_var(&cpu_callin_mask);
72 alloc_bootmem_cpumask_var(&cpu_callout_mask);
73 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
74 }
75
76 static void default_init(struct cpuinfo_x86 *c)
77 {
78 #ifdef CONFIG_X86_64
79 cpu_detect_cache_sizes(c);
80 #else
81 /* Not much we can do here... */
82 /* Check if at least it has cpuid */
83 if (c->cpuid_level == -1) {
84 /* No cpuid. It must be an ancient CPU */
85 if (c->x86 == 4)
86 strcpy(c->x86_model_id, "486");
87 else if (c->x86 == 3)
88 strcpy(c->x86_model_id, "386");
89 }
90 #endif
91 }
92
93 static const struct cpu_dev default_cpu = {
94 .c_init = default_init,
95 .c_vendor = "Unknown",
96 .c_x86_vendor = X86_VENDOR_UNKNOWN,
97 };
98
99 static const struct cpu_dev *this_cpu = &default_cpu;
100
101 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
102 #ifdef CONFIG_X86_64
103 /*
104 * We need valid kernel segments for data and code in long mode too
105 * IRET will check the segment types kkeil 2000/10/28
106 * Also sysret mandates a special GDT layout
107 *
108 * TLS descriptors are currently at a different place compared to i386.
109 * Hopefully nobody expects them at a fixed place (Wine?)
110 */
111 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
112 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
113 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
114 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
115 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
116 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
117 #else
118 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
119 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
120 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
121 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
122 /*
123 * Segments used for calling PnP BIOS have byte granularity.
124 * They code segments and data segments have fixed 64k limits,
125 * the transfer segment sizes are set at run time.
126 */
127 /* 32-bit code */
128 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
129 /* 16-bit code */
130 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
131 /* 16-bit data */
132 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
133 /* 16-bit data */
134 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
135 /* 16-bit data */
136 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
137 /*
138 * The APM segments have byte granularity and their bases
139 * are set at run time. All have 64k limits.
140 */
141 /* 32-bit code */
142 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
143 /* 16-bit code */
144 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
145 /* data */
146 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
147
148 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
149 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
150 GDT_STACK_CANARY_INIT
151 #endif
152 } };
153 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
154
155 static int __init x86_mpx_setup(char *s)
156 {
157 /* require an exact match without trailing characters */
158 if (strlen(s))
159 return 0;
160
161 /* do not emit a message if the feature is not present */
162 if (!boot_cpu_has(X86_FEATURE_MPX))
163 return 1;
164
165 setup_clear_cpu_cap(X86_FEATURE_MPX);
166 pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n");
167 return 1;
168 }
169 __setup("nompx", x86_mpx_setup);
170
171 #ifdef CONFIG_X86_64
172 static int __init x86_nopcid_setup(char *s)
173 {
174 /* nopcid doesn't accept parameters */
175 if (s)
176 return -EINVAL;
177
178 /* do not emit a message if the feature is not present */
179 if (!boot_cpu_has(X86_FEATURE_PCID))
180 return 0;
181
182 setup_clear_cpu_cap(X86_FEATURE_PCID);
183 pr_info("nopcid: PCID feature disabled\n");
184 return 0;
185 }
186 early_param("nopcid", x86_nopcid_setup);
187 #endif
188
189 static int __init x86_noinvpcid_setup(char *s)
190 {
191 /* noinvpcid doesn't accept parameters */
192 if (s)
193 return -EINVAL;
194
195 /* do not emit a message if the feature is not present */
196 if (!boot_cpu_has(X86_FEATURE_INVPCID))
197 return 0;
198
199 setup_clear_cpu_cap(X86_FEATURE_INVPCID);
200 pr_info("noinvpcid: INVPCID feature disabled\n");
201 return 0;
202 }
203 early_param("noinvpcid", x86_noinvpcid_setup);
204
205 #ifdef CONFIG_X86_32
206 static int cachesize_override = -1;
207 static int disable_x86_serial_nr = 1;
208
209 static int __init cachesize_setup(char *str)
210 {
211 get_option(&str, &cachesize_override);
212 return 1;
213 }
214 __setup("cachesize=", cachesize_setup);
215
216 static int __init x86_sep_setup(char *s)
217 {
218 setup_clear_cpu_cap(X86_FEATURE_SEP);
219 return 1;
220 }
221 __setup("nosep", x86_sep_setup);
222
223 /* Standard macro to see if a specific flag is changeable */
224 static inline int flag_is_changeable_p(u32 flag)
225 {
226 u32 f1, f2;
227
228 /*
229 * Cyrix and IDT cpus allow disabling of CPUID
230 * so the code below may return different results
231 * when it is executed before and after enabling
232 * the CPUID. Add "volatile" to not allow gcc to
233 * optimize the subsequent calls to this function.
234 */
235 asm volatile ("pushfl \n\t"
236 "pushfl \n\t"
237 "popl %0 \n\t"
238 "movl %0, %1 \n\t"
239 "xorl %2, %0 \n\t"
240 "pushl %0 \n\t"
241 "popfl \n\t"
242 "pushfl \n\t"
243 "popl %0 \n\t"
244 "popfl \n\t"
245
246 : "=&r" (f1), "=&r" (f2)
247 : "ir" (flag));
248
249 return ((f1^f2) & flag) != 0;
250 }
251
252 /* Probe for the CPUID instruction */
253 int have_cpuid_p(void)
254 {
255 return flag_is_changeable_p(X86_EFLAGS_ID);
256 }
257
258 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
259 {
260 unsigned long lo, hi;
261
262 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
263 return;
264
265 /* Disable processor serial number: */
266
267 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
268 lo |= 0x200000;
269 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
270
271 pr_notice("CPU serial number disabled.\n");
272 clear_cpu_cap(c, X86_FEATURE_PN);
273
274 /* Disabling the serial number may affect the cpuid level */
275 c->cpuid_level = cpuid_eax(0);
276 }
277
278 static int __init x86_serial_nr_setup(char *s)
279 {
280 disable_x86_serial_nr = 0;
281 return 1;
282 }
283 __setup("serialnumber", x86_serial_nr_setup);
284 #else
285 static inline int flag_is_changeable_p(u32 flag)
286 {
287 return 1;
288 }
289 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
290 {
291 }
292 #endif
293
294 static __init int setup_disable_smep(char *arg)
295 {
296 setup_clear_cpu_cap(X86_FEATURE_SMEP);
297 /* Check for things that depend on SMEP being enabled: */
298 check_mpx_erratum(&boot_cpu_data);
299 return 1;
300 }
301 __setup("nosmep", setup_disable_smep);
302
303 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
304 {
305 if (cpu_has(c, X86_FEATURE_SMEP))
306 cr4_set_bits(X86_CR4_SMEP);
307 }
308
309 static __init int setup_disable_smap(char *arg)
310 {
311 setup_clear_cpu_cap(X86_FEATURE_SMAP);
312 return 1;
313 }
314 __setup("nosmap", setup_disable_smap);
315
316 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
317 {
318 unsigned long eflags = native_save_fl();
319
320 /* This should have been cleared long ago */
321 BUG_ON(eflags & X86_EFLAGS_AC);
322
323 if (cpu_has(c, X86_FEATURE_SMAP)) {
324 #ifdef CONFIG_X86_SMAP
325 cr4_set_bits(X86_CR4_SMAP);
326 #else
327 cr4_clear_bits(X86_CR4_SMAP);
328 #endif
329 }
330 }
331
332 /*
333 * Protection Keys are not available in 32-bit mode.
334 */
335 static bool pku_disabled;
336
337 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
338 {
339 /* check the boot processor, plus compile options for PKU: */
340 if (!cpu_feature_enabled(X86_FEATURE_PKU))
341 return;
342 /* checks the actual processor's cpuid bits: */
343 if (!cpu_has(c, X86_FEATURE_PKU))
344 return;
345 if (pku_disabled)
346 return;
347
348 cr4_set_bits(X86_CR4_PKE);
349 /*
350 * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
351 * cpuid bit to be set. We need to ensure that we
352 * update that bit in this CPU's "cpu_info".
353 */
354 get_cpu_cap(c);
355 }
356
357 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
358 static __init int setup_disable_pku(char *arg)
359 {
360 /*
361 * Do not clear the X86_FEATURE_PKU bit. All of the
362 * runtime checks are against OSPKE so clearing the
363 * bit does nothing.
364 *
365 * This way, we will see "pku" in cpuinfo, but not
366 * "ospke", which is exactly what we want. It shows
367 * that the CPU has PKU, but the OS has not enabled it.
368 * This happens to be exactly how a system would look
369 * if we disabled the config option.
370 */
371 pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
372 pku_disabled = true;
373 return 1;
374 }
375 __setup("nopku", setup_disable_pku);
376 #endif /* CONFIG_X86_64 */
377
378 /*
379 * Some CPU features depend on higher CPUID levels, which may not always
380 * be available due to CPUID level capping or broken virtualization
381 * software. Add those features to this table to auto-disable them.
382 */
383 struct cpuid_dependent_feature {
384 u32 feature;
385 u32 level;
386 };
387
388 static const struct cpuid_dependent_feature
389 cpuid_dependent_features[] = {
390 { X86_FEATURE_MWAIT, 0x00000005 },
391 { X86_FEATURE_DCA, 0x00000009 },
392 { X86_FEATURE_XSAVE, 0x0000000d },
393 { 0, 0 }
394 };
395
396 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
397 {
398 const struct cpuid_dependent_feature *df;
399
400 for (df = cpuid_dependent_features; df->feature; df++) {
401
402 if (!cpu_has(c, df->feature))
403 continue;
404 /*
405 * Note: cpuid_level is set to -1 if unavailable, but
406 * extended_extended_level is set to 0 if unavailable
407 * and the legitimate extended levels are all negative
408 * when signed; hence the weird messing around with
409 * signs here...
410 */
411 if (!((s32)df->level < 0 ?
412 (u32)df->level > (u32)c->extended_cpuid_level :
413 (s32)df->level > (s32)c->cpuid_level))
414 continue;
415
416 clear_cpu_cap(c, df->feature);
417 if (!warn)
418 continue;
419
420 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
421 x86_cap_flag(df->feature), df->level);
422 }
423 }
424
425 /*
426 * Naming convention should be: <Name> [(<Codename>)]
427 * This table only is used unless init_<vendor>() below doesn't set it;
428 * in particular, if CPUID levels 0x80000002..4 are supported, this
429 * isn't used
430 */
431
432 /* Look up CPU names by table lookup. */
433 static const char *table_lookup_model(struct cpuinfo_x86 *c)
434 {
435 #ifdef CONFIG_X86_32
436 const struct legacy_cpu_model_info *info;
437
438 if (c->x86_model >= 16)
439 return NULL; /* Range check */
440
441 if (!this_cpu)
442 return NULL;
443
444 info = this_cpu->legacy_models;
445
446 while (info->family) {
447 if (info->family == c->x86)
448 return info->model_names[c->x86_model];
449 info++;
450 }
451 #endif
452 return NULL; /* Not found */
453 }
454
455 __u32 cpu_caps_cleared[NCAPINTS];
456 __u32 cpu_caps_set[NCAPINTS];
457
458 void load_percpu_segment(int cpu)
459 {
460 #ifdef CONFIG_X86_32
461 loadsegment(fs, __KERNEL_PERCPU);
462 #else
463 __loadsegment_simple(gs, 0);
464 wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
465 #endif
466 load_stack_canary_segment();
467 }
468
469 /* Setup the fixmap mapping only once per-processor */
470 static inline void setup_fixmap_gdt(int cpu)
471 {
472 #ifdef CONFIG_X86_64
473 /* On 64-bit systems, we use a read-only fixmap GDT. */
474 pgprot_t prot = PAGE_KERNEL_RO;
475 #else
476 /*
477 * On native 32-bit systems, the GDT cannot be read-only because
478 * our double fault handler uses a task gate, and entering through
479 * a task gate needs to change an available TSS to busy. If the GDT
480 * is read-only, that will triple fault.
481 *
482 * On Xen PV, the GDT must be read-only because the hypervisor requires
483 * it.
484 */
485 pgprot_t prot = boot_cpu_has(X86_FEATURE_XENPV) ?
486 PAGE_KERNEL_RO : PAGE_KERNEL;
487 #endif
488
489 __set_fixmap(get_cpu_gdt_ro_index(cpu), get_cpu_gdt_paddr(cpu), prot);
490 }
491
492 /* Load the original GDT from the per-cpu structure */
493 void load_direct_gdt(int cpu)
494 {
495 struct desc_ptr gdt_descr;
496
497 gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
498 gdt_descr.size = GDT_SIZE - 1;
499 load_gdt(&gdt_descr);
500 }
501 EXPORT_SYMBOL_GPL(load_direct_gdt);
502
503 /* Load a fixmap remapping of the per-cpu GDT */
504 void load_fixmap_gdt(int cpu)
505 {
506 struct desc_ptr gdt_descr;
507
508 gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
509 gdt_descr.size = GDT_SIZE - 1;
510 load_gdt(&gdt_descr);
511 }
512 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
513
514 /*
515 * Current gdt points %fs at the "master" per-cpu area: after this,
516 * it's on the real one.
517 */
518 void switch_to_new_gdt(int cpu)
519 {
520 /* Load the original GDT */
521 load_direct_gdt(cpu);
522 /* Reload the per-cpu base */
523 load_percpu_segment(cpu);
524 }
525
526 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
527
528 static void get_model_name(struct cpuinfo_x86 *c)
529 {
530 unsigned int *v;
531 char *p, *q, *s;
532
533 if (c->extended_cpuid_level < 0x80000004)
534 return;
535
536 v = (unsigned int *)c->x86_model_id;
537 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
538 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
539 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
540 c->x86_model_id[48] = 0;
541
542 /* Trim whitespace */
543 p = q = s = &c->x86_model_id[0];
544
545 while (*p == ' ')
546 p++;
547
548 while (*p) {
549 /* Note the last non-whitespace index */
550 if (!isspace(*p))
551 s = q;
552
553 *q++ = *p++;
554 }
555
556 *(s + 1) = '\0';
557 }
558
559 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
560 {
561 unsigned int n, dummy, ebx, ecx, edx, l2size;
562
563 n = c->extended_cpuid_level;
564
565 if (n >= 0x80000005) {
566 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
567 c->x86_cache_size = (ecx>>24) + (edx>>24);
568 #ifdef CONFIG_X86_64
569 /* On K8 L1 TLB is inclusive, so don't count it */
570 c->x86_tlbsize = 0;
571 #endif
572 }
573
574 if (n < 0x80000006) /* Some chips just has a large L1. */
575 return;
576
577 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
578 l2size = ecx >> 16;
579
580 #ifdef CONFIG_X86_64
581 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
582 #else
583 /* do processor-specific cache resizing */
584 if (this_cpu->legacy_cache_size)
585 l2size = this_cpu->legacy_cache_size(c, l2size);
586
587 /* Allow user to override all this if necessary. */
588 if (cachesize_override != -1)
589 l2size = cachesize_override;
590
591 if (l2size == 0)
592 return; /* Again, no L2 cache is possible */
593 #endif
594
595 c->x86_cache_size = l2size;
596 }
597
598 u16 __read_mostly tlb_lli_4k[NR_INFO];
599 u16 __read_mostly tlb_lli_2m[NR_INFO];
600 u16 __read_mostly tlb_lli_4m[NR_INFO];
601 u16 __read_mostly tlb_lld_4k[NR_INFO];
602 u16 __read_mostly tlb_lld_2m[NR_INFO];
603 u16 __read_mostly tlb_lld_4m[NR_INFO];
604 u16 __read_mostly tlb_lld_1g[NR_INFO];
605
606 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
607 {
608 if (this_cpu->c_detect_tlb)
609 this_cpu->c_detect_tlb(c);
610
611 pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
612 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
613 tlb_lli_4m[ENTRIES]);
614
615 pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
616 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
617 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
618 }
619
620 void detect_ht(struct cpuinfo_x86 *c)
621 {
622 #ifdef CONFIG_SMP
623 u32 eax, ebx, ecx, edx;
624 int index_msb, core_bits;
625 static bool printed;
626
627 if (!cpu_has(c, X86_FEATURE_HT))
628 return;
629
630 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
631 goto out;
632
633 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
634 return;
635
636 cpuid(1, &eax, &ebx, &ecx, &edx);
637
638 smp_num_siblings = (ebx & 0xff0000) >> 16;
639
640 if (smp_num_siblings == 1) {
641 pr_info_once("CPU0: Hyper-Threading is disabled\n");
642 goto out;
643 }
644
645 if (smp_num_siblings <= 1)
646 goto out;
647
648 index_msb = get_count_order(smp_num_siblings);
649 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
650
651 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
652
653 index_msb = get_count_order(smp_num_siblings);
654
655 core_bits = get_count_order(c->x86_max_cores);
656
657 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
658 ((1 << core_bits) - 1);
659
660 out:
661 if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
662 pr_info("CPU: Physical Processor ID: %d\n",
663 c->phys_proc_id);
664 pr_info("CPU: Processor Core ID: %d\n",
665 c->cpu_core_id);
666 printed = 1;
667 }
668 #endif
669 }
670
671 static void get_cpu_vendor(struct cpuinfo_x86 *c)
672 {
673 char *v = c->x86_vendor_id;
674 int i;
675
676 for (i = 0; i < X86_VENDOR_NUM; i++) {
677 if (!cpu_devs[i])
678 break;
679
680 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
681 (cpu_devs[i]->c_ident[1] &&
682 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
683
684 this_cpu = cpu_devs[i];
685 c->x86_vendor = this_cpu->c_x86_vendor;
686 return;
687 }
688 }
689
690 pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
691 "CPU: Your system may be unstable.\n", v);
692
693 c->x86_vendor = X86_VENDOR_UNKNOWN;
694 this_cpu = &default_cpu;
695 }
696
697 void cpu_detect(struct cpuinfo_x86 *c)
698 {
699 /* Get vendor name */
700 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
701 (unsigned int *)&c->x86_vendor_id[0],
702 (unsigned int *)&c->x86_vendor_id[8],
703 (unsigned int *)&c->x86_vendor_id[4]);
704
705 c->x86 = 4;
706 /* Intel-defined flags: level 0x00000001 */
707 if (c->cpuid_level >= 0x00000001) {
708 u32 junk, tfms, cap0, misc;
709
710 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
711 c->x86 = x86_family(tfms);
712 c->x86_model = x86_model(tfms);
713 c->x86_mask = x86_stepping(tfms);
714
715 if (cap0 & (1<<19)) {
716 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
717 c->x86_cache_alignment = c->x86_clflush_size;
718 }
719 }
720 }
721
722 static void apply_forced_caps(struct cpuinfo_x86 *c)
723 {
724 int i;
725
726 for (i = 0; i < NCAPINTS; i++) {
727 c->x86_capability[i] &= ~cpu_caps_cleared[i];
728 c->x86_capability[i] |= cpu_caps_set[i];
729 }
730 }
731
732 void get_cpu_cap(struct cpuinfo_x86 *c)
733 {
734 u32 eax, ebx, ecx, edx;
735
736 /* Intel-defined flags: level 0x00000001 */
737 if (c->cpuid_level >= 0x00000001) {
738 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
739
740 c->x86_capability[CPUID_1_ECX] = ecx;
741 c->x86_capability[CPUID_1_EDX] = edx;
742 }
743
744 /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
745 if (c->cpuid_level >= 0x00000006)
746 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
747
748 /* Additional Intel-defined flags: level 0x00000007 */
749 if (c->cpuid_level >= 0x00000007) {
750 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
751 c->x86_capability[CPUID_7_0_EBX] = ebx;
752 c->x86_capability[CPUID_7_ECX] = ecx;
753 }
754
755 /* Extended state features: level 0x0000000d */
756 if (c->cpuid_level >= 0x0000000d) {
757 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
758
759 c->x86_capability[CPUID_D_1_EAX] = eax;
760 }
761
762 /* Additional Intel-defined flags: level 0x0000000F */
763 if (c->cpuid_level >= 0x0000000F) {
764
765 /* QoS sub-leaf, EAX=0Fh, ECX=0 */
766 cpuid_count(0x0000000F, 0, &eax, &ebx, &ecx, &edx);
767 c->x86_capability[CPUID_F_0_EDX] = edx;
768
769 if (cpu_has(c, X86_FEATURE_CQM_LLC)) {
770 /* will be overridden if occupancy monitoring exists */
771 c->x86_cache_max_rmid = ebx;
772
773 /* QoS sub-leaf, EAX=0Fh, ECX=1 */
774 cpuid_count(0x0000000F, 1, &eax, &ebx, &ecx, &edx);
775 c->x86_capability[CPUID_F_1_EDX] = edx;
776
777 if ((cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC)) ||
778 ((cpu_has(c, X86_FEATURE_CQM_MBM_TOTAL)) ||
779 (cpu_has(c, X86_FEATURE_CQM_MBM_LOCAL)))) {
780 c->x86_cache_max_rmid = ecx;
781 c->x86_cache_occ_scale = ebx;
782 }
783 } else {
784 c->x86_cache_max_rmid = -1;
785 c->x86_cache_occ_scale = -1;
786 }
787 }
788
789 /* AMD-defined flags: level 0x80000001 */
790 eax = cpuid_eax(0x80000000);
791 c->extended_cpuid_level = eax;
792
793 if ((eax & 0xffff0000) == 0x80000000) {
794 if (eax >= 0x80000001) {
795 cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
796
797 c->x86_capability[CPUID_8000_0001_ECX] = ecx;
798 c->x86_capability[CPUID_8000_0001_EDX] = edx;
799 }
800 }
801
802 if (c->extended_cpuid_level >= 0x80000007) {
803 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
804
805 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
806 c->x86_power = edx;
807 }
808
809 if (c->extended_cpuid_level >= 0x80000008) {
810 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
811
812 c->x86_virt_bits = (eax >> 8) & 0xff;
813 c->x86_phys_bits = eax & 0xff;
814 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
815 }
816 #ifdef CONFIG_X86_32
817 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
818 c->x86_phys_bits = 36;
819 #endif
820
821 if (c->extended_cpuid_level >= 0x8000000a)
822 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
823
824 init_scattered_cpuid_features(c);
825
826 /*
827 * Clear/Set all flags overridden by options, after probe.
828 * This needs to happen each time we re-probe, which may happen
829 * several times during CPU initialization.
830 */
831 apply_forced_caps(c);
832 }
833
834 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
835 {
836 #ifdef CONFIG_X86_32
837 int i;
838
839 /*
840 * First of all, decide if this is a 486 or higher
841 * It's a 486 if we can modify the AC flag
842 */
843 if (flag_is_changeable_p(X86_EFLAGS_AC))
844 c->x86 = 4;
845 else
846 c->x86 = 3;
847
848 for (i = 0; i < X86_VENDOR_NUM; i++)
849 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
850 c->x86_vendor_id[0] = 0;
851 cpu_devs[i]->c_identify(c);
852 if (c->x86_vendor_id[0]) {
853 get_cpu_vendor(c);
854 break;
855 }
856 }
857 #endif
858 }
859
860 /*
861 * Do minimum CPU detection early.
862 * Fields really needed: vendor, cpuid_level, family, model, mask,
863 * cache alignment.
864 * The others are not touched to avoid unwanted side effects.
865 *
866 * WARNING: this function is only called on the BP. Don't add code here
867 * that is supposed to run on all CPUs.
868 */
869 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
870 {
871 #ifdef CONFIG_X86_64
872 c->x86_clflush_size = 64;
873 c->x86_phys_bits = 36;
874 c->x86_virt_bits = 48;
875 #else
876 c->x86_clflush_size = 32;
877 c->x86_phys_bits = 32;
878 c->x86_virt_bits = 32;
879 #endif
880 c->x86_cache_alignment = c->x86_clflush_size;
881
882 memset(&c->x86_capability, 0, sizeof c->x86_capability);
883 c->extended_cpuid_level = 0;
884
885 /* cyrix could have cpuid enabled via c_identify()*/
886 if (have_cpuid_p()) {
887 cpu_detect(c);
888 get_cpu_vendor(c);
889 get_cpu_cap(c);
890 setup_force_cpu_cap(X86_FEATURE_CPUID);
891
892 if (this_cpu->c_early_init)
893 this_cpu->c_early_init(c);
894
895 c->cpu_index = 0;
896 filter_cpuid_features(c, false);
897
898 if (this_cpu->c_bsp_init)
899 this_cpu->c_bsp_init(c);
900 } else {
901 identify_cpu_without_cpuid(c);
902 setup_clear_cpu_cap(X86_FEATURE_CPUID);
903 }
904
905 setup_force_cpu_cap(X86_FEATURE_ALWAYS);
906 fpu__init_system(c);
907 }
908
909 void __init early_cpu_init(void)
910 {
911 const struct cpu_dev *const *cdev;
912 int count = 0;
913
914 #ifdef CONFIG_PROCESSOR_SELECT
915 pr_info("KERNEL supported cpus:\n");
916 #endif
917
918 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
919 const struct cpu_dev *cpudev = *cdev;
920
921 if (count >= X86_VENDOR_NUM)
922 break;
923 cpu_devs[count] = cpudev;
924 count++;
925
926 #ifdef CONFIG_PROCESSOR_SELECT
927 {
928 unsigned int j;
929
930 for (j = 0; j < 2; j++) {
931 if (!cpudev->c_ident[j])
932 continue;
933 pr_info(" %s %s\n", cpudev->c_vendor,
934 cpudev->c_ident[j]);
935 }
936 }
937 #endif
938 }
939 early_identify_cpu(&boot_cpu_data);
940 }
941
942 /*
943 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
944 * unfortunately, that's not true in practice because of early VIA
945 * chips and (more importantly) broken virtualizers that are not easy
946 * to detect. In the latter case it doesn't even *fail* reliably, so
947 * probing for it doesn't even work. Disable it completely on 32-bit
948 * unless we can find a reliable way to detect all the broken cases.
949 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
950 */
951 static void detect_nopl(struct cpuinfo_x86 *c)
952 {
953 #ifdef CONFIG_X86_32
954 clear_cpu_cap(c, X86_FEATURE_NOPL);
955 #else
956 set_cpu_cap(c, X86_FEATURE_NOPL);
957 #endif
958 }
959
960 static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
961 {
962 #ifdef CONFIG_X86_64
963 /*
964 * Empirically, writing zero to a segment selector on AMD does
965 * not clear the base, whereas writing zero to a segment
966 * selector on Intel does clear the base. Intel's behavior
967 * allows slightly faster context switches in the common case
968 * where GS is unused by the prev and next threads.
969 *
970 * Since neither vendor documents this anywhere that I can see,
971 * detect it directly instead of hardcoding the choice by
972 * vendor.
973 *
974 * I've designated AMD's behavior as the "bug" because it's
975 * counterintuitive and less friendly.
976 */
977
978 unsigned long old_base, tmp;
979 rdmsrl(MSR_FS_BASE, old_base);
980 wrmsrl(MSR_FS_BASE, 1);
981 loadsegment(fs, 0);
982 rdmsrl(MSR_FS_BASE, tmp);
983 if (tmp != 0)
984 set_cpu_bug(c, X86_BUG_NULL_SEG);
985 wrmsrl(MSR_FS_BASE, old_base);
986 #endif
987 }
988
989 static void generic_identify(struct cpuinfo_x86 *c)
990 {
991 c->extended_cpuid_level = 0;
992
993 if (!have_cpuid_p())
994 identify_cpu_without_cpuid(c);
995
996 /* cyrix could have cpuid enabled via c_identify()*/
997 if (!have_cpuid_p())
998 return;
999
1000 cpu_detect(c);
1001
1002 get_cpu_vendor(c);
1003
1004 get_cpu_cap(c);
1005
1006 if (c->cpuid_level >= 0x00000001) {
1007 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1008 #ifdef CONFIG_X86_32
1009 # ifdef CONFIG_SMP
1010 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1011 # else
1012 c->apicid = c->initial_apicid;
1013 # endif
1014 #endif
1015 c->phys_proc_id = c->initial_apicid;
1016 }
1017
1018 get_model_name(c); /* Default name */
1019
1020 detect_nopl(c);
1021
1022 detect_null_seg_behavior(c);
1023
1024 /*
1025 * ESPFIX is a strange bug. All real CPUs have it. Paravirt
1026 * systems that run Linux at CPL > 0 may or may not have the
1027 * issue, but, even if they have the issue, there's absolutely
1028 * nothing we can do about it because we can't use the real IRET
1029 * instruction.
1030 *
1031 * NB: For the time being, only 32-bit kernels support
1032 * X86_BUG_ESPFIX as such. 64-bit kernels directly choose
1033 * whether to apply espfix using paravirt hooks. If any
1034 * non-paravirt system ever shows up that does *not* have the
1035 * ESPFIX issue, we can change this.
1036 */
1037 #ifdef CONFIG_X86_32
1038 # ifdef CONFIG_PARAVIRT
1039 do {
1040 extern void native_iret(void);
1041 if (pv_cpu_ops.iret == native_iret)
1042 set_cpu_bug(c, X86_BUG_ESPFIX);
1043 } while (0);
1044 # else
1045 set_cpu_bug(c, X86_BUG_ESPFIX);
1046 # endif
1047 #endif
1048 }
1049
1050 static void x86_init_cache_qos(struct cpuinfo_x86 *c)
1051 {
1052 /*
1053 * The heavy lifting of max_rmid and cache_occ_scale are handled
1054 * in get_cpu_cap(). Here we just set the max_rmid for the boot_cpu
1055 * in case CQM bits really aren't there in this CPU.
1056 */
1057 if (c != &boot_cpu_data) {
1058 boot_cpu_data.x86_cache_max_rmid =
1059 min(boot_cpu_data.x86_cache_max_rmid,
1060 c->x86_cache_max_rmid);
1061 }
1062 }
1063
1064 /*
1065 * Validate that ACPI/mptables have the same information about the
1066 * effective APIC id and update the package map.
1067 */
1068 static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1069 {
1070 #ifdef CONFIG_SMP
1071 unsigned int apicid, cpu = smp_processor_id();
1072
1073 apicid = apic->cpu_present_to_apicid(cpu);
1074
1075 if (apicid != c->apicid) {
1076 pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1077 cpu, apicid, c->initial_apicid);
1078 }
1079 BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1080 #else
1081 c->logical_proc_id = 0;
1082 #endif
1083 }
1084
1085 /*
1086 * This does the hard work of actually picking apart the CPU stuff...
1087 */
1088 static void identify_cpu(struct cpuinfo_x86 *c)
1089 {
1090 int i;
1091
1092 c->loops_per_jiffy = loops_per_jiffy;
1093 c->x86_cache_size = -1;
1094 c->x86_vendor = X86_VENDOR_UNKNOWN;
1095 c->x86_model = c->x86_mask = 0; /* So far unknown... */
1096 c->x86_vendor_id[0] = '\0'; /* Unset */
1097 c->x86_model_id[0] = '\0'; /* Unset */
1098 c->x86_max_cores = 1;
1099 c->x86_coreid_bits = 0;
1100 c->cu_id = 0xff;
1101 #ifdef CONFIG_X86_64
1102 c->x86_clflush_size = 64;
1103 c->x86_phys_bits = 36;
1104 c->x86_virt_bits = 48;
1105 #else
1106 c->cpuid_level = -1; /* CPUID not detected */
1107 c->x86_clflush_size = 32;
1108 c->x86_phys_bits = 32;
1109 c->x86_virt_bits = 32;
1110 #endif
1111 c->x86_cache_alignment = c->x86_clflush_size;
1112 memset(&c->x86_capability, 0, sizeof c->x86_capability);
1113
1114 generic_identify(c);
1115
1116 if (this_cpu->c_identify)
1117 this_cpu->c_identify(c);
1118
1119 /* Clear/Set all flags overridden by options, after probe */
1120 apply_forced_caps(c);
1121
1122 #ifdef CONFIG_X86_64
1123 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1124 #endif
1125
1126 /*
1127 * Vendor-specific initialization. In this section we
1128 * canonicalize the feature flags, meaning if there are
1129 * features a certain CPU supports which CPUID doesn't
1130 * tell us, CPUID claiming incorrect flags, or other bugs,
1131 * we handle them here.
1132 *
1133 * At the end of this section, c->x86_capability better
1134 * indicate the features this CPU genuinely supports!
1135 */
1136 if (this_cpu->c_init)
1137 this_cpu->c_init(c);
1138
1139 /* Disable the PN if appropriate */
1140 squash_the_stupid_serial_number(c);
1141
1142 /* Set up SMEP/SMAP */
1143 setup_smep(c);
1144 setup_smap(c);
1145
1146 /*
1147 * The vendor-specific functions might have changed features.
1148 * Now we do "generic changes."
1149 */
1150
1151 /* Filter out anything that depends on CPUID levels we don't have */
1152 filter_cpuid_features(c, true);
1153
1154 /* If the model name is still unset, do table lookup. */
1155 if (!c->x86_model_id[0]) {
1156 const char *p;
1157 p = table_lookup_model(c);
1158 if (p)
1159 strcpy(c->x86_model_id, p);
1160 else
1161 /* Last resort... */
1162 sprintf(c->x86_model_id, "%02x/%02x",
1163 c->x86, c->x86_model);
1164 }
1165
1166 #ifdef CONFIG_X86_64
1167 detect_ht(c);
1168 #endif
1169
1170 x86_init_rdrand(c);
1171 x86_init_cache_qos(c);
1172 setup_pku(c);
1173
1174 /*
1175 * Clear/Set all flags overridden by options, need do it
1176 * before following smp all cpus cap AND.
1177 */
1178 apply_forced_caps(c);
1179
1180 /*
1181 * On SMP, boot_cpu_data holds the common feature set between
1182 * all CPUs; so make sure that we indicate which features are
1183 * common between the CPUs. The first time this routine gets
1184 * executed, c == &boot_cpu_data.
1185 */
1186 if (c != &boot_cpu_data) {
1187 /* AND the already accumulated flags with these */
1188 for (i = 0; i < NCAPINTS; i++)
1189 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1190
1191 /* OR, i.e. replicate the bug flags */
1192 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1193 c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1194 }
1195
1196 /* Init Machine Check Exception if available. */
1197 mcheck_cpu_init(c);
1198
1199 select_idle_routine(c);
1200
1201 #ifdef CONFIG_NUMA
1202 numa_add_cpu(smp_processor_id());
1203 #endif
1204 }
1205
1206 /*
1207 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1208 * on 32-bit kernels:
1209 */
1210 #ifdef CONFIG_X86_32
1211 void enable_sep_cpu(void)
1212 {
1213 struct tss_struct *tss;
1214 int cpu;
1215
1216 if (!boot_cpu_has(X86_FEATURE_SEP))
1217 return;
1218
1219 cpu = get_cpu();
1220 tss = &per_cpu(cpu_tss, cpu);
1221
1222 /*
1223 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1224 * see the big comment in struct x86_hw_tss's definition.
1225 */
1226
1227 tss->x86_tss.ss1 = __KERNEL_CS;
1228 wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1229
1230 wrmsr(MSR_IA32_SYSENTER_ESP,
1231 (unsigned long)tss + offsetofend(struct tss_struct, SYSENTER_stack),
1232 0);
1233
1234 wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1235
1236 put_cpu();
1237 }
1238 #endif
1239
1240 void __init identify_boot_cpu(void)
1241 {
1242 identify_cpu(&boot_cpu_data);
1243 #ifdef CONFIG_X86_32
1244 sysenter_setup();
1245 enable_sep_cpu();
1246 #endif
1247 cpu_detect_tlb(&boot_cpu_data);
1248 }
1249
1250 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1251 {
1252 BUG_ON(c == &boot_cpu_data);
1253 identify_cpu(c);
1254 #ifdef CONFIG_X86_32
1255 enable_sep_cpu();
1256 #endif
1257 mtrr_ap_init();
1258 validate_apic_and_package_id(c);
1259 }
1260
1261 static __init int setup_noclflush(char *arg)
1262 {
1263 setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1264 setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1265 return 1;
1266 }
1267 __setup("noclflush", setup_noclflush);
1268
1269 void print_cpu_info(struct cpuinfo_x86 *c)
1270 {
1271 const char *vendor = NULL;
1272
1273 if (c->x86_vendor < X86_VENDOR_NUM) {
1274 vendor = this_cpu->c_vendor;
1275 } else {
1276 if (c->cpuid_level >= 0)
1277 vendor = c->x86_vendor_id;
1278 }
1279
1280 if (vendor && !strstr(c->x86_model_id, vendor))
1281 pr_cont("%s ", vendor);
1282
1283 if (c->x86_model_id[0])
1284 pr_cont("%s", c->x86_model_id);
1285 else
1286 pr_cont("%d86", c->x86);
1287
1288 pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1289
1290 if (c->x86_mask || c->cpuid_level >= 0)
1291 pr_cont(", stepping: 0x%x)\n", c->x86_mask);
1292 else
1293 pr_cont(")\n");
1294 }
1295
1296 /*
1297 * clearcpuid= was already parsed in fpu__init_parse_early_param.
1298 * But we need to keep a dummy __setup around otherwise it would
1299 * show up as an environment variable for init.
1300 */
1301 static __init int setup_clearcpuid(char *arg)
1302 {
1303 return 1;
1304 }
1305 __setup("clearcpuid=", setup_clearcpuid);
1306
1307 #ifdef CONFIG_X86_64
1308 struct desc_ptr idt_descr __ro_after_init = {
1309 .size = NR_VECTORS * 16 - 1,
1310 .address = (unsigned long) idt_table,
1311 };
1312 const struct desc_ptr debug_idt_descr = {
1313 .size = NR_VECTORS * 16 - 1,
1314 .address = (unsigned long) debug_idt_table,
1315 };
1316
1317 DEFINE_PER_CPU_FIRST(union irq_stack_union,
1318 irq_stack_union) __aligned(PAGE_SIZE) __visible;
1319
1320 /*
1321 * The following percpu variables are hot. Align current_task to
1322 * cacheline size such that they fall in the same cacheline.
1323 */
1324 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1325 &init_task;
1326 EXPORT_PER_CPU_SYMBOL(current_task);
1327
1328 DEFINE_PER_CPU(char *, irq_stack_ptr) =
1329 init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE;
1330
1331 DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1332
1333 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1334 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1335
1336 /*
1337 * Special IST stacks which the CPU switches to when it calls
1338 * an IST-marked descriptor entry. Up to 7 stacks (hardware
1339 * limit), all of them are 4K, except the debug stack which
1340 * is 8K.
1341 */
1342 static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
1343 [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ,
1344 [DEBUG_STACK - 1] = DEBUG_STKSZ
1345 };
1346
1347 static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
1348 [(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]);
1349
1350 /* May not be marked __init: used by software suspend */
1351 void syscall_init(void)
1352 {
1353 wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1354 wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1355
1356 #ifdef CONFIG_IA32_EMULATION
1357 wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1358 /*
1359 * This only works on Intel CPUs.
1360 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1361 * This does not cause SYSENTER to jump to the wrong location, because
1362 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1363 */
1364 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1365 wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
1366 (unsigned long)this_cpu_ptr(&cpu_tss) +
1367 offsetofend(struct tss_struct, SYSENTER_stack));
1368 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1369 #else
1370 wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1371 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1372 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1373 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1374 #endif
1375
1376 /* Flags to clear on syscall */
1377 wrmsrl(MSR_SYSCALL_MASK,
1378 X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1379 X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1380 }
1381
1382 /*
1383 * Copies of the original ist values from the tss are only accessed during
1384 * debugging, no special alignment required.
1385 */
1386 DEFINE_PER_CPU(struct orig_ist, orig_ist);
1387
1388 static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
1389 DEFINE_PER_CPU(int, debug_stack_usage);
1390
1391 int is_debug_stack(unsigned long addr)
1392 {
1393 return __this_cpu_read(debug_stack_usage) ||
1394 (addr <= __this_cpu_read(debug_stack_addr) &&
1395 addr > (__this_cpu_read(debug_stack_addr) - DEBUG_STKSZ));
1396 }
1397 NOKPROBE_SYMBOL(is_debug_stack);
1398
1399 DEFINE_PER_CPU(u32, debug_idt_ctr);
1400
1401 void debug_stack_set_zero(void)
1402 {
1403 this_cpu_inc(debug_idt_ctr);
1404 load_current_idt();
1405 }
1406 NOKPROBE_SYMBOL(debug_stack_set_zero);
1407
1408 void debug_stack_reset(void)
1409 {
1410 if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
1411 return;
1412 if (this_cpu_dec_return(debug_idt_ctr) == 0)
1413 load_current_idt();
1414 }
1415 NOKPROBE_SYMBOL(debug_stack_reset);
1416
1417 #else /* CONFIG_X86_64 */
1418
1419 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1420 EXPORT_PER_CPU_SYMBOL(current_task);
1421 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1422 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1423
1424 /*
1425 * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1426 * the top of the kernel stack. Use an extra percpu variable to track the
1427 * top of the kernel stack directly.
1428 */
1429 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1430 (unsigned long)&init_thread_union + THREAD_SIZE;
1431 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1432
1433 #ifdef CONFIG_CC_STACKPROTECTOR
1434 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1435 #endif
1436
1437 #endif /* CONFIG_X86_64 */
1438
1439 /*
1440 * Clear all 6 debug registers:
1441 */
1442 static void clear_all_debug_regs(void)
1443 {
1444 int i;
1445
1446 for (i = 0; i < 8; i++) {
1447 /* Ignore db4, db5 */
1448 if ((i == 4) || (i == 5))
1449 continue;
1450
1451 set_debugreg(0, i);
1452 }
1453 }
1454
1455 #ifdef CONFIG_KGDB
1456 /*
1457 * Restore debug regs if using kgdbwait and you have a kernel debugger
1458 * connection established.
1459 */
1460 static void dbg_restore_debug_regs(void)
1461 {
1462 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1463 arch_kgdb_ops.correct_hw_break();
1464 }
1465 #else /* ! CONFIG_KGDB */
1466 #define dbg_restore_debug_regs()
1467 #endif /* ! CONFIG_KGDB */
1468
1469 static void wait_for_master_cpu(int cpu)
1470 {
1471 #ifdef CONFIG_SMP
1472 /*
1473 * wait for ACK from master CPU before continuing
1474 * with AP initialization
1475 */
1476 WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1477 while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1478 cpu_relax();
1479 #endif
1480 }
1481
1482 /*
1483 * cpu_init() initializes state that is per-CPU. Some data is already
1484 * initialized (naturally) in the bootstrap process, such as the GDT
1485 * and IDT. We reload them nevertheless, this function acts as a
1486 * 'CPU state barrier', nothing should get across.
1487 * A lot of state is already set up in PDA init for 64 bit
1488 */
1489 #ifdef CONFIG_X86_64
1490
1491 void cpu_init(void)
1492 {
1493 struct orig_ist *oist;
1494 struct task_struct *me;
1495 struct tss_struct *t;
1496 unsigned long v;
1497 int cpu = raw_smp_processor_id();
1498 int i;
1499
1500 wait_for_master_cpu(cpu);
1501
1502 /*
1503 * Initialize the CR4 shadow before doing anything that could
1504 * try to read it.
1505 */
1506 cr4_init_shadow();
1507
1508 if (cpu)
1509 load_ucode_ap();
1510
1511 t = &per_cpu(cpu_tss, cpu);
1512 oist = &per_cpu(orig_ist, cpu);
1513
1514 #ifdef CONFIG_NUMA
1515 if (this_cpu_read(numa_node) == 0 &&
1516 early_cpu_to_node(cpu) != NUMA_NO_NODE)
1517 set_numa_node(early_cpu_to_node(cpu));
1518 #endif
1519
1520 me = current;
1521
1522 pr_debug("Initializing CPU#%d\n", cpu);
1523
1524 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1525
1526 /*
1527 * Initialize the per-CPU GDT with the boot GDT,
1528 * and set up the GDT descriptor:
1529 */
1530
1531 switch_to_new_gdt(cpu);
1532 loadsegment(fs, 0);
1533
1534 load_current_idt();
1535
1536 memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1537 syscall_init();
1538
1539 wrmsrl(MSR_FS_BASE, 0);
1540 wrmsrl(MSR_KERNEL_GS_BASE, 0);
1541 barrier();
1542
1543 x86_configure_nx();
1544 x2apic_setup();
1545
1546 /*
1547 * set up and load the per-CPU TSS
1548 */
1549 if (!oist->ist[0]) {
1550 char *estacks = per_cpu(exception_stacks, cpu);
1551
1552 for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1553 estacks += exception_stack_sizes[v];
1554 oist->ist[v] = t->x86_tss.ist[v] =
1555 (unsigned long)estacks;
1556 if (v == DEBUG_STACK-1)
1557 per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
1558 }
1559 }
1560
1561 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1562
1563 /*
1564 * <= is required because the CPU will access up to
1565 * 8 bits beyond the end of the IO permission bitmap.
1566 */
1567 for (i = 0; i <= IO_BITMAP_LONGS; i++)
1568 t->io_bitmap[i] = ~0UL;
1569
1570 mmgrab(&init_mm);
1571 me->active_mm = &init_mm;
1572 BUG_ON(me->mm);
1573 enter_lazy_tlb(&init_mm, me);
1574
1575 /*
1576 * Initialize the TSS. Don't bother initializing sp0, as the initial
1577 * task never enters user mode.
1578 */
1579 set_tss_desc(cpu, t);
1580 load_TR_desc();
1581
1582 load_mm_ldt(&init_mm);
1583
1584 clear_all_debug_regs();
1585 dbg_restore_debug_regs();
1586
1587 fpu__init_cpu();
1588
1589 if (is_uv_system())
1590 uv_cpu_init();
1591
1592 setup_fixmap_gdt(cpu);
1593 load_fixmap_gdt(cpu);
1594 }
1595
1596 #else
1597
1598 void cpu_init(void)
1599 {
1600 int cpu = smp_processor_id();
1601 struct task_struct *curr = current;
1602 struct tss_struct *t = &per_cpu(cpu_tss, cpu);
1603
1604 wait_for_master_cpu(cpu);
1605
1606 /*
1607 * Initialize the CR4 shadow before doing anything that could
1608 * try to read it.
1609 */
1610 cr4_init_shadow();
1611
1612 show_ucode_info_early();
1613
1614 pr_info("Initializing CPU#%d\n", cpu);
1615
1616 if (cpu_feature_enabled(X86_FEATURE_VME) ||
1617 boot_cpu_has(X86_FEATURE_TSC) ||
1618 boot_cpu_has(X86_FEATURE_DE))
1619 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1620
1621 load_current_idt();
1622 switch_to_new_gdt(cpu);
1623
1624 /*
1625 * Set up and load the per-CPU TSS and LDT
1626 */
1627 mmgrab(&init_mm);
1628 curr->active_mm = &init_mm;
1629 BUG_ON(curr->mm);
1630 enter_lazy_tlb(&init_mm, curr);
1631
1632 /*
1633 * Initialize the TSS. Don't bother initializing sp0, as the initial
1634 * task never enters user mode.
1635 */
1636 set_tss_desc(cpu, t);
1637 load_TR_desc();
1638
1639 load_mm_ldt(&init_mm);
1640
1641 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1642
1643 #ifdef CONFIG_DOUBLEFAULT
1644 /* Set up doublefault TSS pointer in the GDT */
1645 __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1646 #endif
1647
1648 clear_all_debug_regs();
1649 dbg_restore_debug_regs();
1650
1651 fpu__init_cpu();
1652
1653 setup_fixmap_gdt(cpu);
1654 load_fixmap_gdt(cpu);
1655 }
1656 #endif
1657
1658 static void bsp_resume(void)
1659 {
1660 if (this_cpu->c_bsp_resume)
1661 this_cpu->c_bsp_resume(&boot_cpu_data);
1662 }
1663
1664 static struct syscore_ops cpu_syscore_ops = {
1665 .resume = bsp_resume,
1666 };
1667
1668 static int __init init_cpu_syscore(void)
1669 {
1670 register_syscore_ops(&cpu_syscore_ops);
1671 return 0;
1672 }
1673 core_initcall(init_cpu_syscore);