]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kernel/cpu/common.c
spi: allow registering empty spi_board_info lists
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kernel / cpu / common.c
1 #include <linux/bootmem.h>
2 #include <linux/linkage.h>
3 #include <linux/bitops.h>
4 #include <linux/kernel.h>
5 #include <linux/export.h>
6 #include <linux/percpu.h>
7 #include <linux/string.h>
8 #include <linux/ctype.h>
9 #include <linux/delay.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/clock.h>
12 #include <linux/sched/task.h>
13 #include <linux/init.h>
14 #include <linux/kprobes.h>
15 #include <linux/kgdb.h>
16 #include <linux/smp.h>
17 #include <linux/io.h>
18 #include <linux/syscore_ops.h>
19
20 #include <asm/stackprotector.h>
21 #include <asm/perf_event.h>
22 #include <asm/mmu_context.h>
23 #include <asm/archrandom.h>
24 #include <asm/hypervisor.h>
25 #include <asm/processor.h>
26 #include <asm/tlbflush.h>
27 #include <asm/debugreg.h>
28 #include <asm/sections.h>
29 #include <asm/vsyscall.h>
30 #include <linux/topology.h>
31 #include <linux/cpumask.h>
32 #include <asm/pgtable.h>
33 #include <linux/atomic.h>
34 #include <asm/proto.h>
35 #include <asm/setup.h>
36 #include <asm/apic.h>
37 #include <asm/desc.h>
38 #include <asm/fpu/internal.h>
39 #include <asm/mtrr.h>
40 #include <asm/hwcap2.h>
41 #include <linux/numa.h>
42 #include <asm/asm.h>
43 #include <asm/bugs.h>
44 #include <asm/cpu.h>
45 #include <asm/mce.h>
46 #include <asm/msr.h>
47 #include <asm/pat.h>
48 #include <asm/microcode.h>
49 #include <asm/microcode_intel.h>
50
51 #ifdef CONFIG_X86_LOCAL_APIC
52 #include <asm/uv/uv.h>
53 #endif
54
55 #include "cpu.h"
56
57 u32 elf_hwcap2 __read_mostly;
58
59 /* all of these masks are initialized in setup_cpu_local_masks() */
60 cpumask_var_t cpu_initialized_mask;
61 cpumask_var_t cpu_callout_mask;
62 cpumask_var_t cpu_callin_mask;
63
64 /* representing cpus for which sibling maps can be computed */
65 cpumask_var_t cpu_sibling_setup_mask;
66
67 /* correctly size the local cpu masks */
68 void __init setup_cpu_local_masks(void)
69 {
70 alloc_bootmem_cpumask_var(&cpu_initialized_mask);
71 alloc_bootmem_cpumask_var(&cpu_callin_mask);
72 alloc_bootmem_cpumask_var(&cpu_callout_mask);
73 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
74 }
75
76 static void default_init(struct cpuinfo_x86 *c)
77 {
78 #ifdef CONFIG_X86_64
79 cpu_detect_cache_sizes(c);
80 #else
81 /* Not much we can do here... */
82 /* Check if at least it has cpuid */
83 if (c->cpuid_level == -1) {
84 /* No cpuid. It must be an ancient CPU */
85 if (c->x86 == 4)
86 strcpy(c->x86_model_id, "486");
87 else if (c->x86 == 3)
88 strcpy(c->x86_model_id, "386");
89 }
90 #endif
91 clear_sched_clock_stable();
92 }
93
94 static const struct cpu_dev default_cpu = {
95 .c_init = default_init,
96 .c_vendor = "Unknown",
97 .c_x86_vendor = X86_VENDOR_UNKNOWN,
98 };
99
100 static const struct cpu_dev *this_cpu = &default_cpu;
101
102 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
103 #ifdef CONFIG_X86_64
104 /*
105 * We need valid kernel segments for data and code in long mode too
106 * IRET will check the segment types kkeil 2000/10/28
107 * Also sysret mandates a special GDT layout
108 *
109 * TLS descriptors are currently at a different place compared to i386.
110 * Hopefully nobody expects them at a fixed place (Wine?)
111 */
112 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
113 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
114 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
115 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
116 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
117 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
118 #else
119 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
120 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
121 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
122 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
123 /*
124 * Segments used for calling PnP BIOS have byte granularity.
125 * They code segments and data segments have fixed 64k limits,
126 * the transfer segment sizes are set at run time.
127 */
128 /* 32-bit code */
129 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
130 /* 16-bit code */
131 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
132 /* 16-bit data */
133 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
134 /* 16-bit data */
135 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
136 /* 16-bit data */
137 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
138 /*
139 * The APM segments have byte granularity and their bases
140 * are set at run time. All have 64k limits.
141 */
142 /* 32-bit code */
143 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
144 /* 16-bit code */
145 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
146 /* data */
147 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
148
149 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
150 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
151 GDT_STACK_CANARY_INIT
152 #endif
153 } };
154 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
155
156 static int __init x86_mpx_setup(char *s)
157 {
158 /* require an exact match without trailing characters */
159 if (strlen(s))
160 return 0;
161
162 /* do not emit a message if the feature is not present */
163 if (!boot_cpu_has(X86_FEATURE_MPX))
164 return 1;
165
166 setup_clear_cpu_cap(X86_FEATURE_MPX);
167 pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n");
168 return 1;
169 }
170 __setup("nompx", x86_mpx_setup);
171
172 static int __init x86_noinvpcid_setup(char *s)
173 {
174 /* noinvpcid doesn't accept parameters */
175 if (s)
176 return -EINVAL;
177
178 /* do not emit a message if the feature is not present */
179 if (!boot_cpu_has(X86_FEATURE_INVPCID))
180 return 0;
181
182 setup_clear_cpu_cap(X86_FEATURE_INVPCID);
183 pr_info("noinvpcid: INVPCID feature disabled\n");
184 return 0;
185 }
186 early_param("noinvpcid", x86_noinvpcid_setup);
187
188 #ifdef CONFIG_X86_32
189 static int cachesize_override = -1;
190 static int disable_x86_serial_nr = 1;
191
192 static int __init cachesize_setup(char *str)
193 {
194 get_option(&str, &cachesize_override);
195 return 1;
196 }
197 __setup("cachesize=", cachesize_setup);
198
199 static int __init x86_sep_setup(char *s)
200 {
201 setup_clear_cpu_cap(X86_FEATURE_SEP);
202 return 1;
203 }
204 __setup("nosep", x86_sep_setup);
205
206 /* Standard macro to see if a specific flag is changeable */
207 static inline int flag_is_changeable_p(u32 flag)
208 {
209 u32 f1, f2;
210
211 /*
212 * Cyrix and IDT cpus allow disabling of CPUID
213 * so the code below may return different results
214 * when it is executed before and after enabling
215 * the CPUID. Add "volatile" to not allow gcc to
216 * optimize the subsequent calls to this function.
217 */
218 asm volatile ("pushfl \n\t"
219 "pushfl \n\t"
220 "popl %0 \n\t"
221 "movl %0, %1 \n\t"
222 "xorl %2, %0 \n\t"
223 "pushl %0 \n\t"
224 "popfl \n\t"
225 "pushfl \n\t"
226 "popl %0 \n\t"
227 "popfl \n\t"
228
229 : "=&r" (f1), "=&r" (f2)
230 : "ir" (flag));
231
232 return ((f1^f2) & flag) != 0;
233 }
234
235 /* Probe for the CPUID instruction */
236 int have_cpuid_p(void)
237 {
238 return flag_is_changeable_p(X86_EFLAGS_ID);
239 }
240
241 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
242 {
243 unsigned long lo, hi;
244
245 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
246 return;
247
248 /* Disable processor serial number: */
249
250 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
251 lo |= 0x200000;
252 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
253
254 pr_notice("CPU serial number disabled.\n");
255 clear_cpu_cap(c, X86_FEATURE_PN);
256
257 /* Disabling the serial number may affect the cpuid level */
258 c->cpuid_level = cpuid_eax(0);
259 }
260
261 static int __init x86_serial_nr_setup(char *s)
262 {
263 disable_x86_serial_nr = 0;
264 return 1;
265 }
266 __setup("serialnumber", x86_serial_nr_setup);
267 #else
268 static inline int flag_is_changeable_p(u32 flag)
269 {
270 return 1;
271 }
272 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
273 {
274 }
275 #endif
276
277 static __init int setup_disable_smep(char *arg)
278 {
279 setup_clear_cpu_cap(X86_FEATURE_SMEP);
280 /* Check for things that depend on SMEP being enabled: */
281 check_mpx_erratum(&boot_cpu_data);
282 return 1;
283 }
284 __setup("nosmep", setup_disable_smep);
285
286 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
287 {
288 if (cpu_has(c, X86_FEATURE_SMEP))
289 cr4_set_bits(X86_CR4_SMEP);
290 }
291
292 static __init int setup_disable_smap(char *arg)
293 {
294 setup_clear_cpu_cap(X86_FEATURE_SMAP);
295 return 1;
296 }
297 __setup("nosmap", setup_disable_smap);
298
299 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
300 {
301 unsigned long eflags = native_save_fl();
302
303 /* This should have been cleared long ago */
304 BUG_ON(eflags & X86_EFLAGS_AC);
305
306 if (cpu_has(c, X86_FEATURE_SMAP)) {
307 #ifdef CONFIG_X86_SMAP
308 cr4_set_bits(X86_CR4_SMAP);
309 #else
310 cr4_clear_bits(X86_CR4_SMAP);
311 #endif
312 }
313 }
314
315 /*
316 * Protection Keys are not available in 32-bit mode.
317 */
318 static bool pku_disabled;
319
320 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
321 {
322 /* check the boot processor, plus compile options for PKU: */
323 if (!cpu_feature_enabled(X86_FEATURE_PKU))
324 return;
325 /* checks the actual processor's cpuid bits: */
326 if (!cpu_has(c, X86_FEATURE_PKU))
327 return;
328 if (pku_disabled)
329 return;
330
331 cr4_set_bits(X86_CR4_PKE);
332 /*
333 * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
334 * cpuid bit to be set. We need to ensure that we
335 * update that bit in this CPU's "cpu_info".
336 */
337 get_cpu_cap(c);
338 }
339
340 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
341 static __init int setup_disable_pku(char *arg)
342 {
343 /*
344 * Do not clear the X86_FEATURE_PKU bit. All of the
345 * runtime checks are against OSPKE so clearing the
346 * bit does nothing.
347 *
348 * This way, we will see "pku" in cpuinfo, but not
349 * "ospke", which is exactly what we want. It shows
350 * that the CPU has PKU, but the OS has not enabled it.
351 * This happens to be exactly how a system would look
352 * if we disabled the config option.
353 */
354 pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
355 pku_disabled = true;
356 return 1;
357 }
358 __setup("nopku", setup_disable_pku);
359 #endif /* CONFIG_X86_64 */
360
361 /*
362 * Some CPU features depend on higher CPUID levels, which may not always
363 * be available due to CPUID level capping or broken virtualization
364 * software. Add those features to this table to auto-disable them.
365 */
366 struct cpuid_dependent_feature {
367 u32 feature;
368 u32 level;
369 };
370
371 static const struct cpuid_dependent_feature
372 cpuid_dependent_features[] = {
373 { X86_FEATURE_MWAIT, 0x00000005 },
374 { X86_FEATURE_DCA, 0x00000009 },
375 { X86_FEATURE_XSAVE, 0x0000000d },
376 { 0, 0 }
377 };
378
379 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
380 {
381 const struct cpuid_dependent_feature *df;
382
383 for (df = cpuid_dependent_features; df->feature; df++) {
384
385 if (!cpu_has(c, df->feature))
386 continue;
387 /*
388 * Note: cpuid_level is set to -1 if unavailable, but
389 * extended_extended_level is set to 0 if unavailable
390 * and the legitimate extended levels are all negative
391 * when signed; hence the weird messing around with
392 * signs here...
393 */
394 if (!((s32)df->level < 0 ?
395 (u32)df->level > (u32)c->extended_cpuid_level :
396 (s32)df->level > (s32)c->cpuid_level))
397 continue;
398
399 clear_cpu_cap(c, df->feature);
400 if (!warn)
401 continue;
402
403 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
404 x86_cap_flag(df->feature), df->level);
405 }
406 }
407
408 /*
409 * Naming convention should be: <Name> [(<Codename>)]
410 * This table only is used unless init_<vendor>() below doesn't set it;
411 * in particular, if CPUID levels 0x80000002..4 are supported, this
412 * isn't used
413 */
414
415 /* Look up CPU names by table lookup. */
416 static const char *table_lookup_model(struct cpuinfo_x86 *c)
417 {
418 #ifdef CONFIG_X86_32
419 const struct legacy_cpu_model_info *info;
420
421 if (c->x86_model >= 16)
422 return NULL; /* Range check */
423
424 if (!this_cpu)
425 return NULL;
426
427 info = this_cpu->legacy_models;
428
429 while (info->family) {
430 if (info->family == c->x86)
431 return info->model_names[c->x86_model];
432 info++;
433 }
434 #endif
435 return NULL; /* Not found */
436 }
437
438 __u32 cpu_caps_cleared[NCAPINTS];
439 __u32 cpu_caps_set[NCAPINTS];
440
441 void load_percpu_segment(int cpu)
442 {
443 #ifdef CONFIG_X86_32
444 loadsegment(fs, __KERNEL_PERCPU);
445 #else
446 __loadsegment_simple(gs, 0);
447 wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
448 #endif
449 load_stack_canary_segment();
450 }
451
452 /*
453 * Current gdt points %fs at the "master" per-cpu area: after this,
454 * it's on the real one.
455 */
456 void switch_to_new_gdt(int cpu)
457 {
458 struct desc_ptr gdt_descr;
459
460 gdt_descr.address = (long)get_cpu_gdt_table(cpu);
461 gdt_descr.size = GDT_SIZE - 1;
462 load_gdt(&gdt_descr);
463 /* Reload the per-cpu base */
464
465 load_percpu_segment(cpu);
466 }
467
468 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
469
470 static void get_model_name(struct cpuinfo_x86 *c)
471 {
472 unsigned int *v;
473 char *p, *q, *s;
474
475 if (c->extended_cpuid_level < 0x80000004)
476 return;
477
478 v = (unsigned int *)c->x86_model_id;
479 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
480 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
481 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
482 c->x86_model_id[48] = 0;
483
484 /* Trim whitespace */
485 p = q = s = &c->x86_model_id[0];
486
487 while (*p == ' ')
488 p++;
489
490 while (*p) {
491 /* Note the last non-whitespace index */
492 if (!isspace(*p))
493 s = q;
494
495 *q++ = *p++;
496 }
497
498 *(s + 1) = '\0';
499 }
500
501 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
502 {
503 unsigned int n, dummy, ebx, ecx, edx, l2size;
504
505 n = c->extended_cpuid_level;
506
507 if (n >= 0x80000005) {
508 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
509 c->x86_cache_size = (ecx>>24) + (edx>>24);
510 #ifdef CONFIG_X86_64
511 /* On K8 L1 TLB is inclusive, so don't count it */
512 c->x86_tlbsize = 0;
513 #endif
514 }
515
516 if (n < 0x80000006) /* Some chips just has a large L1. */
517 return;
518
519 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
520 l2size = ecx >> 16;
521
522 #ifdef CONFIG_X86_64
523 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
524 #else
525 /* do processor-specific cache resizing */
526 if (this_cpu->legacy_cache_size)
527 l2size = this_cpu->legacy_cache_size(c, l2size);
528
529 /* Allow user to override all this if necessary. */
530 if (cachesize_override != -1)
531 l2size = cachesize_override;
532
533 if (l2size == 0)
534 return; /* Again, no L2 cache is possible */
535 #endif
536
537 c->x86_cache_size = l2size;
538 }
539
540 u16 __read_mostly tlb_lli_4k[NR_INFO];
541 u16 __read_mostly tlb_lli_2m[NR_INFO];
542 u16 __read_mostly tlb_lli_4m[NR_INFO];
543 u16 __read_mostly tlb_lld_4k[NR_INFO];
544 u16 __read_mostly tlb_lld_2m[NR_INFO];
545 u16 __read_mostly tlb_lld_4m[NR_INFO];
546 u16 __read_mostly tlb_lld_1g[NR_INFO];
547
548 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
549 {
550 if (this_cpu->c_detect_tlb)
551 this_cpu->c_detect_tlb(c);
552
553 pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
554 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
555 tlb_lli_4m[ENTRIES]);
556
557 pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
558 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
559 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
560 }
561
562 void detect_ht(struct cpuinfo_x86 *c)
563 {
564 #ifdef CONFIG_SMP
565 u32 eax, ebx, ecx, edx;
566 int index_msb, core_bits;
567 static bool printed;
568
569 if (!cpu_has(c, X86_FEATURE_HT))
570 return;
571
572 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
573 goto out;
574
575 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
576 return;
577
578 cpuid(1, &eax, &ebx, &ecx, &edx);
579
580 smp_num_siblings = (ebx & 0xff0000) >> 16;
581
582 if (smp_num_siblings == 1) {
583 pr_info_once("CPU0: Hyper-Threading is disabled\n");
584 goto out;
585 }
586
587 if (smp_num_siblings <= 1)
588 goto out;
589
590 index_msb = get_count_order(smp_num_siblings);
591 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
592
593 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
594
595 index_msb = get_count_order(smp_num_siblings);
596
597 core_bits = get_count_order(c->x86_max_cores);
598
599 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
600 ((1 << core_bits) - 1);
601
602 out:
603 if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
604 pr_info("CPU: Physical Processor ID: %d\n",
605 c->phys_proc_id);
606 pr_info("CPU: Processor Core ID: %d\n",
607 c->cpu_core_id);
608 printed = 1;
609 }
610 #endif
611 }
612
613 static void get_cpu_vendor(struct cpuinfo_x86 *c)
614 {
615 char *v = c->x86_vendor_id;
616 int i;
617
618 for (i = 0; i < X86_VENDOR_NUM; i++) {
619 if (!cpu_devs[i])
620 break;
621
622 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
623 (cpu_devs[i]->c_ident[1] &&
624 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
625
626 this_cpu = cpu_devs[i];
627 c->x86_vendor = this_cpu->c_x86_vendor;
628 return;
629 }
630 }
631
632 pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
633 "CPU: Your system may be unstable.\n", v);
634
635 c->x86_vendor = X86_VENDOR_UNKNOWN;
636 this_cpu = &default_cpu;
637 }
638
639 void cpu_detect(struct cpuinfo_x86 *c)
640 {
641 /* Get vendor name */
642 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
643 (unsigned int *)&c->x86_vendor_id[0],
644 (unsigned int *)&c->x86_vendor_id[8],
645 (unsigned int *)&c->x86_vendor_id[4]);
646
647 c->x86 = 4;
648 /* Intel-defined flags: level 0x00000001 */
649 if (c->cpuid_level >= 0x00000001) {
650 u32 junk, tfms, cap0, misc;
651
652 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
653 c->x86 = x86_family(tfms);
654 c->x86_model = x86_model(tfms);
655 c->x86_mask = x86_stepping(tfms);
656
657 if (cap0 & (1<<19)) {
658 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
659 c->x86_cache_alignment = c->x86_clflush_size;
660 }
661 }
662 }
663
664 static void apply_forced_caps(struct cpuinfo_x86 *c)
665 {
666 int i;
667
668 for (i = 0; i < NCAPINTS; i++) {
669 c->x86_capability[i] &= ~cpu_caps_cleared[i];
670 c->x86_capability[i] |= cpu_caps_set[i];
671 }
672 }
673
674 void get_cpu_cap(struct cpuinfo_x86 *c)
675 {
676 u32 eax, ebx, ecx, edx;
677
678 /* Intel-defined flags: level 0x00000001 */
679 if (c->cpuid_level >= 0x00000001) {
680 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
681
682 c->x86_capability[CPUID_1_ECX] = ecx;
683 c->x86_capability[CPUID_1_EDX] = edx;
684 }
685
686 /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
687 if (c->cpuid_level >= 0x00000006)
688 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
689
690 /* Additional Intel-defined flags: level 0x00000007 */
691 if (c->cpuid_level >= 0x00000007) {
692 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
693 c->x86_capability[CPUID_7_0_EBX] = ebx;
694 c->x86_capability[CPUID_7_ECX] = ecx;
695 }
696
697 /* Extended state features: level 0x0000000d */
698 if (c->cpuid_level >= 0x0000000d) {
699 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
700
701 c->x86_capability[CPUID_D_1_EAX] = eax;
702 }
703
704 /* Additional Intel-defined flags: level 0x0000000F */
705 if (c->cpuid_level >= 0x0000000F) {
706
707 /* QoS sub-leaf, EAX=0Fh, ECX=0 */
708 cpuid_count(0x0000000F, 0, &eax, &ebx, &ecx, &edx);
709 c->x86_capability[CPUID_F_0_EDX] = edx;
710
711 if (cpu_has(c, X86_FEATURE_CQM_LLC)) {
712 /* will be overridden if occupancy monitoring exists */
713 c->x86_cache_max_rmid = ebx;
714
715 /* QoS sub-leaf, EAX=0Fh, ECX=1 */
716 cpuid_count(0x0000000F, 1, &eax, &ebx, &ecx, &edx);
717 c->x86_capability[CPUID_F_1_EDX] = edx;
718
719 if ((cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC)) ||
720 ((cpu_has(c, X86_FEATURE_CQM_MBM_TOTAL)) ||
721 (cpu_has(c, X86_FEATURE_CQM_MBM_LOCAL)))) {
722 c->x86_cache_max_rmid = ecx;
723 c->x86_cache_occ_scale = ebx;
724 }
725 } else {
726 c->x86_cache_max_rmid = -1;
727 c->x86_cache_occ_scale = -1;
728 }
729 }
730
731 /* AMD-defined flags: level 0x80000001 */
732 eax = cpuid_eax(0x80000000);
733 c->extended_cpuid_level = eax;
734
735 if ((eax & 0xffff0000) == 0x80000000) {
736 if (eax >= 0x80000001) {
737 cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
738
739 c->x86_capability[CPUID_8000_0001_ECX] = ecx;
740 c->x86_capability[CPUID_8000_0001_EDX] = edx;
741 }
742 }
743
744 if (c->extended_cpuid_level >= 0x80000007) {
745 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
746
747 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
748 c->x86_power = edx;
749 }
750
751 if (c->extended_cpuid_level >= 0x80000008) {
752 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
753
754 c->x86_virt_bits = (eax >> 8) & 0xff;
755 c->x86_phys_bits = eax & 0xff;
756 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
757 }
758 #ifdef CONFIG_X86_32
759 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
760 c->x86_phys_bits = 36;
761 #endif
762
763 if (c->extended_cpuid_level >= 0x8000000a)
764 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
765
766 init_scattered_cpuid_features(c);
767
768 /*
769 * Clear/Set all flags overridden by options, after probe.
770 * This needs to happen each time we re-probe, which may happen
771 * several times during CPU initialization.
772 */
773 apply_forced_caps(c);
774 }
775
776 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
777 {
778 #ifdef CONFIG_X86_32
779 int i;
780
781 /*
782 * First of all, decide if this is a 486 or higher
783 * It's a 486 if we can modify the AC flag
784 */
785 if (flag_is_changeable_p(X86_EFLAGS_AC))
786 c->x86 = 4;
787 else
788 c->x86 = 3;
789
790 for (i = 0; i < X86_VENDOR_NUM; i++)
791 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
792 c->x86_vendor_id[0] = 0;
793 cpu_devs[i]->c_identify(c);
794 if (c->x86_vendor_id[0]) {
795 get_cpu_vendor(c);
796 break;
797 }
798 }
799 #endif
800 }
801
802 /*
803 * Do minimum CPU detection early.
804 * Fields really needed: vendor, cpuid_level, family, model, mask,
805 * cache alignment.
806 * The others are not touched to avoid unwanted side effects.
807 *
808 * WARNING: this function is only called on the BP. Don't add code here
809 * that is supposed to run on all CPUs.
810 */
811 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
812 {
813 #ifdef CONFIG_X86_64
814 c->x86_clflush_size = 64;
815 c->x86_phys_bits = 36;
816 c->x86_virt_bits = 48;
817 #else
818 c->x86_clflush_size = 32;
819 c->x86_phys_bits = 32;
820 c->x86_virt_bits = 32;
821 #endif
822 c->x86_cache_alignment = c->x86_clflush_size;
823
824 memset(&c->x86_capability, 0, sizeof c->x86_capability);
825 c->extended_cpuid_level = 0;
826
827 /* cyrix could have cpuid enabled via c_identify()*/
828 if (have_cpuid_p()) {
829 cpu_detect(c);
830 get_cpu_vendor(c);
831 get_cpu_cap(c);
832 setup_force_cpu_cap(X86_FEATURE_CPUID);
833
834 if (this_cpu->c_early_init)
835 this_cpu->c_early_init(c);
836
837 c->cpu_index = 0;
838 filter_cpuid_features(c, false);
839
840 if (this_cpu->c_bsp_init)
841 this_cpu->c_bsp_init(c);
842 } else {
843 identify_cpu_without_cpuid(c);
844 setup_clear_cpu_cap(X86_FEATURE_CPUID);
845 }
846
847 setup_force_cpu_cap(X86_FEATURE_ALWAYS);
848 fpu__init_system(c);
849 }
850
851 void __init early_cpu_init(void)
852 {
853 const struct cpu_dev *const *cdev;
854 int count = 0;
855
856 #ifdef CONFIG_PROCESSOR_SELECT
857 pr_info("KERNEL supported cpus:\n");
858 #endif
859
860 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
861 const struct cpu_dev *cpudev = *cdev;
862
863 if (count >= X86_VENDOR_NUM)
864 break;
865 cpu_devs[count] = cpudev;
866 count++;
867
868 #ifdef CONFIG_PROCESSOR_SELECT
869 {
870 unsigned int j;
871
872 for (j = 0; j < 2; j++) {
873 if (!cpudev->c_ident[j])
874 continue;
875 pr_info(" %s %s\n", cpudev->c_vendor,
876 cpudev->c_ident[j]);
877 }
878 }
879 #endif
880 }
881 early_identify_cpu(&boot_cpu_data);
882 }
883
884 /*
885 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
886 * unfortunately, that's not true in practice because of early VIA
887 * chips and (more importantly) broken virtualizers that are not easy
888 * to detect. In the latter case it doesn't even *fail* reliably, so
889 * probing for it doesn't even work. Disable it completely on 32-bit
890 * unless we can find a reliable way to detect all the broken cases.
891 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
892 */
893 static void detect_nopl(struct cpuinfo_x86 *c)
894 {
895 #ifdef CONFIG_X86_32
896 clear_cpu_cap(c, X86_FEATURE_NOPL);
897 #else
898 set_cpu_cap(c, X86_FEATURE_NOPL);
899 #endif
900 }
901
902 static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
903 {
904 #ifdef CONFIG_X86_64
905 /*
906 * Empirically, writing zero to a segment selector on AMD does
907 * not clear the base, whereas writing zero to a segment
908 * selector on Intel does clear the base. Intel's behavior
909 * allows slightly faster context switches in the common case
910 * where GS is unused by the prev and next threads.
911 *
912 * Since neither vendor documents this anywhere that I can see,
913 * detect it directly instead of hardcoding the choice by
914 * vendor.
915 *
916 * I've designated AMD's behavior as the "bug" because it's
917 * counterintuitive and less friendly.
918 */
919
920 unsigned long old_base, tmp;
921 rdmsrl(MSR_FS_BASE, old_base);
922 wrmsrl(MSR_FS_BASE, 1);
923 loadsegment(fs, 0);
924 rdmsrl(MSR_FS_BASE, tmp);
925 if (tmp != 0)
926 set_cpu_bug(c, X86_BUG_NULL_SEG);
927 wrmsrl(MSR_FS_BASE, old_base);
928 #endif
929 }
930
931 static void generic_identify(struct cpuinfo_x86 *c)
932 {
933 c->extended_cpuid_level = 0;
934
935 if (!have_cpuid_p())
936 identify_cpu_without_cpuid(c);
937
938 /* cyrix could have cpuid enabled via c_identify()*/
939 if (!have_cpuid_p())
940 return;
941
942 cpu_detect(c);
943
944 get_cpu_vendor(c);
945
946 get_cpu_cap(c);
947
948 if (c->cpuid_level >= 0x00000001) {
949 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
950 #ifdef CONFIG_X86_32
951 # ifdef CONFIG_SMP
952 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
953 # else
954 c->apicid = c->initial_apicid;
955 # endif
956 #endif
957 c->phys_proc_id = c->initial_apicid;
958 }
959
960 get_model_name(c); /* Default name */
961
962 detect_nopl(c);
963
964 detect_null_seg_behavior(c);
965
966 /*
967 * ESPFIX is a strange bug. All real CPUs have it. Paravirt
968 * systems that run Linux at CPL > 0 may or may not have the
969 * issue, but, even if they have the issue, there's absolutely
970 * nothing we can do about it because we can't use the real IRET
971 * instruction.
972 *
973 * NB: For the time being, only 32-bit kernels support
974 * X86_BUG_ESPFIX as such. 64-bit kernels directly choose
975 * whether to apply espfix using paravirt hooks. If any
976 * non-paravirt system ever shows up that does *not* have the
977 * ESPFIX issue, we can change this.
978 */
979 #ifdef CONFIG_X86_32
980 # ifdef CONFIG_PARAVIRT
981 do {
982 extern void native_iret(void);
983 if (pv_cpu_ops.iret == native_iret)
984 set_cpu_bug(c, X86_BUG_ESPFIX);
985 } while (0);
986 # else
987 set_cpu_bug(c, X86_BUG_ESPFIX);
988 # endif
989 #endif
990 }
991
992 static void x86_init_cache_qos(struct cpuinfo_x86 *c)
993 {
994 /*
995 * The heavy lifting of max_rmid and cache_occ_scale are handled
996 * in get_cpu_cap(). Here we just set the max_rmid for the boot_cpu
997 * in case CQM bits really aren't there in this CPU.
998 */
999 if (c != &boot_cpu_data) {
1000 boot_cpu_data.x86_cache_max_rmid =
1001 min(boot_cpu_data.x86_cache_max_rmid,
1002 c->x86_cache_max_rmid);
1003 }
1004 }
1005
1006 /*
1007 * Validate that ACPI/mptables have the same information about the
1008 * effective APIC id and update the package map.
1009 */
1010 static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1011 {
1012 #ifdef CONFIG_SMP
1013 unsigned int apicid, cpu = smp_processor_id();
1014
1015 apicid = apic->cpu_present_to_apicid(cpu);
1016
1017 if (apicid != c->apicid) {
1018 pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1019 cpu, apicid, c->initial_apicid);
1020 }
1021 BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1022 #else
1023 c->logical_proc_id = 0;
1024 #endif
1025 }
1026
1027 /*
1028 * This does the hard work of actually picking apart the CPU stuff...
1029 */
1030 static void identify_cpu(struct cpuinfo_x86 *c)
1031 {
1032 int i;
1033
1034 c->loops_per_jiffy = loops_per_jiffy;
1035 c->x86_cache_size = -1;
1036 c->x86_vendor = X86_VENDOR_UNKNOWN;
1037 c->x86_model = c->x86_mask = 0; /* So far unknown... */
1038 c->x86_vendor_id[0] = '\0'; /* Unset */
1039 c->x86_model_id[0] = '\0'; /* Unset */
1040 c->x86_max_cores = 1;
1041 c->x86_coreid_bits = 0;
1042 c->cu_id = 0xff;
1043 #ifdef CONFIG_X86_64
1044 c->x86_clflush_size = 64;
1045 c->x86_phys_bits = 36;
1046 c->x86_virt_bits = 48;
1047 #else
1048 c->cpuid_level = -1; /* CPUID not detected */
1049 c->x86_clflush_size = 32;
1050 c->x86_phys_bits = 32;
1051 c->x86_virt_bits = 32;
1052 #endif
1053 c->x86_cache_alignment = c->x86_clflush_size;
1054 memset(&c->x86_capability, 0, sizeof c->x86_capability);
1055
1056 generic_identify(c);
1057
1058 if (this_cpu->c_identify)
1059 this_cpu->c_identify(c);
1060
1061 /* Clear/Set all flags overridden by options, after probe */
1062 apply_forced_caps(c);
1063
1064 #ifdef CONFIG_X86_64
1065 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1066 #endif
1067
1068 /*
1069 * Vendor-specific initialization. In this section we
1070 * canonicalize the feature flags, meaning if there are
1071 * features a certain CPU supports which CPUID doesn't
1072 * tell us, CPUID claiming incorrect flags, or other bugs,
1073 * we handle them here.
1074 *
1075 * At the end of this section, c->x86_capability better
1076 * indicate the features this CPU genuinely supports!
1077 */
1078 if (this_cpu->c_init)
1079 this_cpu->c_init(c);
1080 else
1081 clear_sched_clock_stable();
1082
1083 /* Disable the PN if appropriate */
1084 squash_the_stupid_serial_number(c);
1085
1086 /* Set up SMEP/SMAP */
1087 setup_smep(c);
1088 setup_smap(c);
1089
1090 /*
1091 * The vendor-specific functions might have changed features.
1092 * Now we do "generic changes."
1093 */
1094
1095 /* Filter out anything that depends on CPUID levels we don't have */
1096 filter_cpuid_features(c, true);
1097
1098 /* If the model name is still unset, do table lookup. */
1099 if (!c->x86_model_id[0]) {
1100 const char *p;
1101 p = table_lookup_model(c);
1102 if (p)
1103 strcpy(c->x86_model_id, p);
1104 else
1105 /* Last resort... */
1106 sprintf(c->x86_model_id, "%02x/%02x",
1107 c->x86, c->x86_model);
1108 }
1109
1110 #ifdef CONFIG_X86_64
1111 detect_ht(c);
1112 #endif
1113
1114 init_hypervisor(c);
1115 x86_init_rdrand(c);
1116 x86_init_cache_qos(c);
1117 setup_pku(c);
1118
1119 /*
1120 * Clear/Set all flags overridden by options, need do it
1121 * before following smp all cpus cap AND.
1122 */
1123 apply_forced_caps(c);
1124
1125 /*
1126 * On SMP, boot_cpu_data holds the common feature set between
1127 * all CPUs; so make sure that we indicate which features are
1128 * common between the CPUs. The first time this routine gets
1129 * executed, c == &boot_cpu_data.
1130 */
1131 if (c != &boot_cpu_data) {
1132 /* AND the already accumulated flags with these */
1133 for (i = 0; i < NCAPINTS; i++)
1134 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1135
1136 /* OR, i.e. replicate the bug flags */
1137 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1138 c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1139 }
1140
1141 /* Init Machine Check Exception if available. */
1142 mcheck_cpu_init(c);
1143
1144 select_idle_routine(c);
1145
1146 #ifdef CONFIG_NUMA
1147 numa_add_cpu(smp_processor_id());
1148 #endif
1149 }
1150
1151 /*
1152 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1153 * on 32-bit kernels:
1154 */
1155 #ifdef CONFIG_X86_32
1156 void enable_sep_cpu(void)
1157 {
1158 struct tss_struct *tss;
1159 int cpu;
1160
1161 if (!boot_cpu_has(X86_FEATURE_SEP))
1162 return;
1163
1164 cpu = get_cpu();
1165 tss = &per_cpu(cpu_tss, cpu);
1166
1167 /*
1168 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1169 * see the big comment in struct x86_hw_tss's definition.
1170 */
1171
1172 tss->x86_tss.ss1 = __KERNEL_CS;
1173 wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1174
1175 wrmsr(MSR_IA32_SYSENTER_ESP,
1176 (unsigned long)tss + offsetofend(struct tss_struct, SYSENTER_stack),
1177 0);
1178
1179 wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1180
1181 put_cpu();
1182 }
1183 #endif
1184
1185 void __init identify_boot_cpu(void)
1186 {
1187 identify_cpu(&boot_cpu_data);
1188 #ifdef CONFIG_X86_32
1189 sysenter_setup();
1190 enable_sep_cpu();
1191 #endif
1192 cpu_detect_tlb(&boot_cpu_data);
1193 }
1194
1195 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1196 {
1197 BUG_ON(c == &boot_cpu_data);
1198 identify_cpu(c);
1199 #ifdef CONFIG_X86_32
1200 enable_sep_cpu();
1201 #endif
1202 mtrr_ap_init();
1203 validate_apic_and_package_id(c);
1204 }
1205
1206 static __init int setup_noclflush(char *arg)
1207 {
1208 setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1209 setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1210 return 1;
1211 }
1212 __setup("noclflush", setup_noclflush);
1213
1214 void print_cpu_info(struct cpuinfo_x86 *c)
1215 {
1216 const char *vendor = NULL;
1217
1218 if (c->x86_vendor < X86_VENDOR_NUM) {
1219 vendor = this_cpu->c_vendor;
1220 } else {
1221 if (c->cpuid_level >= 0)
1222 vendor = c->x86_vendor_id;
1223 }
1224
1225 if (vendor && !strstr(c->x86_model_id, vendor))
1226 pr_cont("%s ", vendor);
1227
1228 if (c->x86_model_id[0])
1229 pr_cont("%s", c->x86_model_id);
1230 else
1231 pr_cont("%d86", c->x86);
1232
1233 pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1234
1235 if (c->x86_mask || c->cpuid_level >= 0)
1236 pr_cont(", stepping: 0x%x)\n", c->x86_mask);
1237 else
1238 pr_cont(")\n");
1239 }
1240
1241 static __init int setup_disablecpuid(char *arg)
1242 {
1243 int bit;
1244
1245 if (get_option(&arg, &bit) && bit >= 0 && bit < NCAPINTS * 32)
1246 setup_clear_cpu_cap(bit);
1247 else
1248 return 0;
1249
1250 return 1;
1251 }
1252 __setup("clearcpuid=", setup_disablecpuid);
1253
1254 #ifdef CONFIG_X86_64
1255 struct desc_ptr idt_descr __ro_after_init = {
1256 .size = NR_VECTORS * 16 - 1,
1257 .address = (unsigned long) idt_table,
1258 };
1259 const struct desc_ptr debug_idt_descr = {
1260 .size = NR_VECTORS * 16 - 1,
1261 .address = (unsigned long) debug_idt_table,
1262 };
1263
1264 DEFINE_PER_CPU_FIRST(union irq_stack_union,
1265 irq_stack_union) __aligned(PAGE_SIZE) __visible;
1266
1267 /*
1268 * The following percpu variables are hot. Align current_task to
1269 * cacheline size such that they fall in the same cacheline.
1270 */
1271 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1272 &init_task;
1273 EXPORT_PER_CPU_SYMBOL(current_task);
1274
1275 DEFINE_PER_CPU(char *, irq_stack_ptr) =
1276 init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE;
1277
1278 DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1279
1280 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1281 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1282
1283 /*
1284 * Special IST stacks which the CPU switches to when it calls
1285 * an IST-marked descriptor entry. Up to 7 stacks (hardware
1286 * limit), all of them are 4K, except the debug stack which
1287 * is 8K.
1288 */
1289 static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
1290 [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ,
1291 [DEBUG_STACK - 1] = DEBUG_STKSZ
1292 };
1293
1294 static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
1295 [(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]);
1296
1297 /* May not be marked __init: used by software suspend */
1298 void syscall_init(void)
1299 {
1300 wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1301 wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1302
1303 #ifdef CONFIG_IA32_EMULATION
1304 wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1305 /*
1306 * This only works on Intel CPUs.
1307 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1308 * This does not cause SYSENTER to jump to the wrong location, because
1309 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1310 */
1311 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1312 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1313 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1314 #else
1315 wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1316 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1317 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1318 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1319 #endif
1320
1321 /* Flags to clear on syscall */
1322 wrmsrl(MSR_SYSCALL_MASK,
1323 X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1324 X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1325 }
1326
1327 /*
1328 * Copies of the original ist values from the tss are only accessed during
1329 * debugging, no special alignment required.
1330 */
1331 DEFINE_PER_CPU(struct orig_ist, orig_ist);
1332
1333 static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
1334 DEFINE_PER_CPU(int, debug_stack_usage);
1335
1336 int is_debug_stack(unsigned long addr)
1337 {
1338 return __this_cpu_read(debug_stack_usage) ||
1339 (addr <= __this_cpu_read(debug_stack_addr) &&
1340 addr > (__this_cpu_read(debug_stack_addr) - DEBUG_STKSZ));
1341 }
1342 NOKPROBE_SYMBOL(is_debug_stack);
1343
1344 DEFINE_PER_CPU(u32, debug_idt_ctr);
1345
1346 void debug_stack_set_zero(void)
1347 {
1348 this_cpu_inc(debug_idt_ctr);
1349 load_current_idt();
1350 }
1351 NOKPROBE_SYMBOL(debug_stack_set_zero);
1352
1353 void debug_stack_reset(void)
1354 {
1355 if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
1356 return;
1357 if (this_cpu_dec_return(debug_idt_ctr) == 0)
1358 load_current_idt();
1359 }
1360 NOKPROBE_SYMBOL(debug_stack_reset);
1361
1362 #else /* CONFIG_X86_64 */
1363
1364 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1365 EXPORT_PER_CPU_SYMBOL(current_task);
1366 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1367 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1368
1369 /*
1370 * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1371 * the top of the kernel stack. Use an extra percpu variable to track the
1372 * top of the kernel stack directly.
1373 */
1374 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1375 (unsigned long)&init_thread_union + THREAD_SIZE;
1376 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1377
1378 #ifdef CONFIG_CC_STACKPROTECTOR
1379 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1380 #endif
1381
1382 #endif /* CONFIG_X86_64 */
1383
1384 /*
1385 * Clear all 6 debug registers:
1386 */
1387 static void clear_all_debug_regs(void)
1388 {
1389 int i;
1390
1391 for (i = 0; i < 8; i++) {
1392 /* Ignore db4, db5 */
1393 if ((i == 4) || (i == 5))
1394 continue;
1395
1396 set_debugreg(0, i);
1397 }
1398 }
1399
1400 #ifdef CONFIG_KGDB
1401 /*
1402 * Restore debug regs if using kgdbwait and you have a kernel debugger
1403 * connection established.
1404 */
1405 static void dbg_restore_debug_regs(void)
1406 {
1407 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1408 arch_kgdb_ops.correct_hw_break();
1409 }
1410 #else /* ! CONFIG_KGDB */
1411 #define dbg_restore_debug_regs()
1412 #endif /* ! CONFIG_KGDB */
1413
1414 static void wait_for_master_cpu(int cpu)
1415 {
1416 #ifdef CONFIG_SMP
1417 /*
1418 * wait for ACK from master CPU before continuing
1419 * with AP initialization
1420 */
1421 WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1422 while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1423 cpu_relax();
1424 #endif
1425 }
1426
1427 /*
1428 * cpu_init() initializes state that is per-CPU. Some data is already
1429 * initialized (naturally) in the bootstrap process, such as the GDT
1430 * and IDT. We reload them nevertheless, this function acts as a
1431 * 'CPU state barrier', nothing should get across.
1432 * A lot of state is already set up in PDA init for 64 bit
1433 */
1434 #ifdef CONFIG_X86_64
1435
1436 void cpu_init(void)
1437 {
1438 struct orig_ist *oist;
1439 struct task_struct *me;
1440 struct tss_struct *t;
1441 unsigned long v;
1442 int cpu = raw_smp_processor_id();
1443 int i;
1444
1445 wait_for_master_cpu(cpu);
1446
1447 /*
1448 * Initialize the CR4 shadow before doing anything that could
1449 * try to read it.
1450 */
1451 cr4_init_shadow();
1452
1453 if (cpu)
1454 load_ucode_ap();
1455
1456 t = &per_cpu(cpu_tss, cpu);
1457 oist = &per_cpu(orig_ist, cpu);
1458
1459 #ifdef CONFIG_NUMA
1460 if (this_cpu_read(numa_node) == 0 &&
1461 early_cpu_to_node(cpu) != NUMA_NO_NODE)
1462 set_numa_node(early_cpu_to_node(cpu));
1463 #endif
1464
1465 me = current;
1466
1467 pr_debug("Initializing CPU#%d\n", cpu);
1468
1469 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1470
1471 /*
1472 * Initialize the per-CPU GDT with the boot GDT,
1473 * and set up the GDT descriptor:
1474 */
1475
1476 switch_to_new_gdt(cpu);
1477 loadsegment(fs, 0);
1478
1479 load_current_idt();
1480
1481 memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1482 syscall_init();
1483
1484 wrmsrl(MSR_FS_BASE, 0);
1485 wrmsrl(MSR_KERNEL_GS_BASE, 0);
1486 barrier();
1487
1488 x86_configure_nx();
1489 x2apic_setup();
1490
1491 /*
1492 * set up and load the per-CPU TSS
1493 */
1494 if (!oist->ist[0]) {
1495 char *estacks = per_cpu(exception_stacks, cpu);
1496
1497 for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1498 estacks += exception_stack_sizes[v];
1499 oist->ist[v] = t->x86_tss.ist[v] =
1500 (unsigned long)estacks;
1501 if (v == DEBUG_STACK-1)
1502 per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
1503 }
1504 }
1505
1506 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1507
1508 /*
1509 * <= is required because the CPU will access up to
1510 * 8 bits beyond the end of the IO permission bitmap.
1511 */
1512 for (i = 0; i <= IO_BITMAP_LONGS; i++)
1513 t->io_bitmap[i] = ~0UL;
1514
1515 mmgrab(&init_mm);
1516 me->active_mm = &init_mm;
1517 BUG_ON(me->mm);
1518 enter_lazy_tlb(&init_mm, me);
1519
1520 load_sp0(t, &current->thread);
1521 set_tss_desc(cpu, t);
1522 load_TR_desc();
1523 load_mm_ldt(&init_mm);
1524
1525 clear_all_debug_regs();
1526 dbg_restore_debug_regs();
1527
1528 fpu__init_cpu();
1529
1530 if (is_uv_system())
1531 uv_cpu_init();
1532 }
1533
1534 #else
1535
1536 void cpu_init(void)
1537 {
1538 int cpu = smp_processor_id();
1539 struct task_struct *curr = current;
1540 struct tss_struct *t = &per_cpu(cpu_tss, cpu);
1541 struct thread_struct *thread = &curr->thread;
1542
1543 wait_for_master_cpu(cpu);
1544
1545 /*
1546 * Initialize the CR4 shadow before doing anything that could
1547 * try to read it.
1548 */
1549 cr4_init_shadow();
1550
1551 show_ucode_info_early();
1552
1553 pr_info("Initializing CPU#%d\n", cpu);
1554
1555 if (cpu_feature_enabled(X86_FEATURE_VME) ||
1556 boot_cpu_has(X86_FEATURE_TSC) ||
1557 boot_cpu_has(X86_FEATURE_DE))
1558 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1559
1560 load_current_idt();
1561 switch_to_new_gdt(cpu);
1562
1563 /*
1564 * Set up and load the per-CPU TSS and LDT
1565 */
1566 mmgrab(&init_mm);
1567 curr->active_mm = &init_mm;
1568 BUG_ON(curr->mm);
1569 enter_lazy_tlb(&init_mm, curr);
1570
1571 load_sp0(t, thread);
1572 set_tss_desc(cpu, t);
1573 load_TR_desc();
1574 load_mm_ldt(&init_mm);
1575
1576 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1577
1578 #ifdef CONFIG_DOUBLEFAULT
1579 /* Set up doublefault TSS pointer in the GDT */
1580 __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1581 #endif
1582
1583 clear_all_debug_regs();
1584 dbg_restore_debug_regs();
1585
1586 fpu__init_cpu();
1587 }
1588 #endif
1589
1590 static void bsp_resume(void)
1591 {
1592 if (this_cpu->c_bsp_resume)
1593 this_cpu->c_bsp_resume(&boot_cpu_data);
1594 }
1595
1596 static struct syscore_ops cpu_syscore_ops = {
1597 .resume = bsp_resume,
1598 };
1599
1600 static int __init init_cpu_syscore(void)
1601 {
1602 register_syscore_ops(&cpu_syscore_ops);
1603 return 0;
1604 }
1605 core_initcall(init_cpu_syscore);