]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kernel/cpu/common.c
x86: Fix excessive MSR print out when show_msr is not specified
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / cpu / common.c
1 #include <linux/bootmem.h>
2 #include <linux/linkage.h>
3 #include <linux/bitops.h>
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/percpu.h>
7 #include <linux/string.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/init.h>
11 #include <linux/kgdb.h>
12 #include <linux/smp.h>
13 #include <linux/io.h>
14
15 #include <asm/stackprotector.h>
16 #include <asm/perf_event.h>
17 #include <asm/mmu_context.h>
18 #include <asm/archrandom.h>
19 #include <asm/hypervisor.h>
20 #include <asm/processor.h>
21 #include <asm/sections.h>
22 #include <linux/topology.h>
23 #include <linux/cpumask.h>
24 #include <asm/pgtable.h>
25 #include <linux/atomic.h>
26 #include <asm/proto.h>
27 #include <asm/setup.h>
28 #include <asm/apic.h>
29 #include <asm/desc.h>
30 #include <asm/i387.h>
31 #include <asm/fpu-internal.h>
32 #include <asm/mtrr.h>
33 #include <linux/numa.h>
34 #include <asm/asm.h>
35 #include <asm/cpu.h>
36 #include <asm/mce.h>
37 #include <asm/msr.h>
38 #include <asm/pat.h>
39
40 #ifdef CONFIG_X86_LOCAL_APIC
41 #include <asm/uv/uv.h>
42 #endif
43
44 #include "cpu.h"
45
46 /* all of these masks are initialized in setup_cpu_local_masks() */
47 cpumask_var_t cpu_initialized_mask;
48 cpumask_var_t cpu_callout_mask;
49 cpumask_var_t cpu_callin_mask;
50
51 /* representing cpus for which sibling maps can be computed */
52 cpumask_var_t cpu_sibling_setup_mask;
53
54 /* correctly size the local cpu masks */
55 void __init setup_cpu_local_masks(void)
56 {
57 alloc_bootmem_cpumask_var(&cpu_initialized_mask);
58 alloc_bootmem_cpumask_var(&cpu_callin_mask);
59 alloc_bootmem_cpumask_var(&cpu_callout_mask);
60 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
61 }
62
63 static void __cpuinit default_init(struct cpuinfo_x86 *c)
64 {
65 #ifdef CONFIG_X86_64
66 cpu_detect_cache_sizes(c);
67 #else
68 /* Not much we can do here... */
69 /* Check if at least it has cpuid */
70 if (c->cpuid_level == -1) {
71 /* No cpuid. It must be an ancient CPU */
72 if (c->x86 == 4)
73 strcpy(c->x86_model_id, "486");
74 else if (c->x86 == 3)
75 strcpy(c->x86_model_id, "386");
76 }
77 #endif
78 }
79
80 static const struct cpu_dev __cpuinitconst default_cpu = {
81 .c_init = default_init,
82 .c_vendor = "Unknown",
83 .c_x86_vendor = X86_VENDOR_UNKNOWN,
84 };
85
86 static const struct cpu_dev *this_cpu __cpuinitdata = &default_cpu;
87
88 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
89 #ifdef CONFIG_X86_64
90 /*
91 * We need valid kernel segments for data and code in long mode too
92 * IRET will check the segment types kkeil 2000/10/28
93 * Also sysret mandates a special GDT layout
94 *
95 * TLS descriptors are currently at a different place compared to i386.
96 * Hopefully nobody expects them at a fixed place (Wine?)
97 */
98 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
99 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
100 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
101 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
102 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
103 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
104 #else
105 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
106 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
107 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
108 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
109 /*
110 * Segments used for calling PnP BIOS have byte granularity.
111 * They code segments and data segments have fixed 64k limits,
112 * the transfer segment sizes are set at run time.
113 */
114 /* 32-bit code */
115 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
116 /* 16-bit code */
117 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
118 /* 16-bit data */
119 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
120 /* 16-bit data */
121 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
122 /* 16-bit data */
123 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
124 /*
125 * The APM segments have byte granularity and their bases
126 * are set at run time. All have 64k limits.
127 */
128 /* 32-bit code */
129 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
130 /* 16-bit code */
131 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
132 /* data */
133 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
134
135 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
136 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
137 GDT_STACK_CANARY_INIT
138 #endif
139 } };
140 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
141
142 static int __init x86_xsave_setup(char *s)
143 {
144 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
145 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
146 return 1;
147 }
148 __setup("noxsave", x86_xsave_setup);
149
150 static int __init x86_xsaveopt_setup(char *s)
151 {
152 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
153 return 1;
154 }
155 __setup("noxsaveopt", x86_xsaveopt_setup);
156
157 #ifdef CONFIG_X86_32
158 static int cachesize_override __cpuinitdata = -1;
159 static int disable_x86_serial_nr __cpuinitdata = 1;
160
161 static int __init cachesize_setup(char *str)
162 {
163 get_option(&str, &cachesize_override);
164 return 1;
165 }
166 __setup("cachesize=", cachesize_setup);
167
168 static int __init x86_fxsr_setup(char *s)
169 {
170 setup_clear_cpu_cap(X86_FEATURE_FXSR);
171 setup_clear_cpu_cap(X86_FEATURE_XMM);
172 return 1;
173 }
174 __setup("nofxsr", x86_fxsr_setup);
175
176 static int __init x86_sep_setup(char *s)
177 {
178 setup_clear_cpu_cap(X86_FEATURE_SEP);
179 return 1;
180 }
181 __setup("nosep", x86_sep_setup);
182
183 /* Standard macro to see if a specific flag is changeable */
184 static inline int flag_is_changeable_p(u32 flag)
185 {
186 u32 f1, f2;
187
188 /*
189 * Cyrix and IDT cpus allow disabling of CPUID
190 * so the code below may return different results
191 * when it is executed before and after enabling
192 * the CPUID. Add "volatile" to not allow gcc to
193 * optimize the subsequent calls to this function.
194 */
195 asm volatile ("pushfl \n\t"
196 "pushfl \n\t"
197 "popl %0 \n\t"
198 "movl %0, %1 \n\t"
199 "xorl %2, %0 \n\t"
200 "pushl %0 \n\t"
201 "popfl \n\t"
202 "pushfl \n\t"
203 "popl %0 \n\t"
204 "popfl \n\t"
205
206 : "=&r" (f1), "=&r" (f2)
207 : "ir" (flag));
208
209 return ((f1^f2) & flag) != 0;
210 }
211
212 /* Probe for the CPUID instruction */
213 static int __cpuinit have_cpuid_p(void)
214 {
215 return flag_is_changeable_p(X86_EFLAGS_ID);
216 }
217
218 static void __cpuinit squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
219 {
220 unsigned long lo, hi;
221
222 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
223 return;
224
225 /* Disable processor serial number: */
226
227 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
228 lo |= 0x200000;
229 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
230
231 printk(KERN_NOTICE "CPU serial number disabled.\n");
232 clear_cpu_cap(c, X86_FEATURE_PN);
233
234 /* Disabling the serial number may affect the cpuid level */
235 c->cpuid_level = cpuid_eax(0);
236 }
237
238 static int __init x86_serial_nr_setup(char *s)
239 {
240 disable_x86_serial_nr = 0;
241 return 1;
242 }
243 __setup("serialnumber", x86_serial_nr_setup);
244 #else
245 static inline int flag_is_changeable_p(u32 flag)
246 {
247 return 1;
248 }
249 /* Probe for the CPUID instruction */
250 static inline int have_cpuid_p(void)
251 {
252 return 1;
253 }
254 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
255 {
256 }
257 #endif
258
259 static int disable_smep __cpuinitdata;
260 static __init int setup_disable_smep(char *arg)
261 {
262 disable_smep = 1;
263 return 1;
264 }
265 __setup("nosmep", setup_disable_smep);
266
267 static __cpuinit void setup_smep(struct cpuinfo_x86 *c)
268 {
269 if (cpu_has(c, X86_FEATURE_SMEP)) {
270 if (unlikely(disable_smep)) {
271 setup_clear_cpu_cap(X86_FEATURE_SMEP);
272 clear_in_cr4(X86_CR4_SMEP);
273 } else
274 set_in_cr4(X86_CR4_SMEP);
275 }
276 }
277
278 /*
279 * Some CPU features depend on higher CPUID levels, which may not always
280 * be available due to CPUID level capping or broken virtualization
281 * software. Add those features to this table to auto-disable them.
282 */
283 struct cpuid_dependent_feature {
284 u32 feature;
285 u32 level;
286 };
287
288 static const struct cpuid_dependent_feature __cpuinitconst
289 cpuid_dependent_features[] = {
290 { X86_FEATURE_MWAIT, 0x00000005 },
291 { X86_FEATURE_DCA, 0x00000009 },
292 { X86_FEATURE_XSAVE, 0x0000000d },
293 { 0, 0 }
294 };
295
296 static void __cpuinit filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
297 {
298 const struct cpuid_dependent_feature *df;
299
300 for (df = cpuid_dependent_features; df->feature; df++) {
301
302 if (!cpu_has(c, df->feature))
303 continue;
304 /*
305 * Note: cpuid_level is set to -1 if unavailable, but
306 * extended_extended_level is set to 0 if unavailable
307 * and the legitimate extended levels are all negative
308 * when signed; hence the weird messing around with
309 * signs here...
310 */
311 if (!((s32)df->level < 0 ?
312 (u32)df->level > (u32)c->extended_cpuid_level :
313 (s32)df->level > (s32)c->cpuid_level))
314 continue;
315
316 clear_cpu_cap(c, df->feature);
317 if (!warn)
318 continue;
319
320 printk(KERN_WARNING
321 "CPU: CPU feature %s disabled, no CPUID level 0x%x\n",
322 x86_cap_flags[df->feature], df->level);
323 }
324 }
325
326 /*
327 * Naming convention should be: <Name> [(<Codename>)]
328 * This table only is used unless init_<vendor>() below doesn't set it;
329 * in particular, if CPUID levels 0x80000002..4 are supported, this
330 * isn't used
331 */
332
333 /* Look up CPU names by table lookup. */
334 static const char *__cpuinit table_lookup_model(struct cpuinfo_x86 *c)
335 {
336 const struct cpu_model_info *info;
337
338 if (c->x86_model >= 16)
339 return NULL; /* Range check */
340
341 if (!this_cpu)
342 return NULL;
343
344 info = this_cpu->c_models;
345
346 while (info && info->family) {
347 if (info->family == c->x86)
348 return info->model_names[c->x86_model];
349 info++;
350 }
351 return NULL; /* Not found */
352 }
353
354 __u32 cpu_caps_cleared[NCAPINTS] __cpuinitdata;
355 __u32 cpu_caps_set[NCAPINTS] __cpuinitdata;
356
357 void load_percpu_segment(int cpu)
358 {
359 #ifdef CONFIG_X86_32
360 loadsegment(fs, __KERNEL_PERCPU);
361 #else
362 loadsegment(gs, 0);
363 wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
364 #endif
365 load_stack_canary_segment();
366 }
367
368 /*
369 * Current gdt points %fs at the "master" per-cpu area: after this,
370 * it's on the real one.
371 */
372 void switch_to_new_gdt(int cpu)
373 {
374 struct desc_ptr gdt_descr;
375
376 gdt_descr.address = (long)get_cpu_gdt_table(cpu);
377 gdt_descr.size = GDT_SIZE - 1;
378 load_gdt(&gdt_descr);
379 /* Reload the per-cpu base */
380
381 load_percpu_segment(cpu);
382 }
383
384 static const struct cpu_dev *__cpuinitdata cpu_devs[X86_VENDOR_NUM] = {};
385
386 static void __cpuinit get_model_name(struct cpuinfo_x86 *c)
387 {
388 unsigned int *v;
389 char *p, *q;
390
391 if (c->extended_cpuid_level < 0x80000004)
392 return;
393
394 v = (unsigned int *)c->x86_model_id;
395 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
396 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
397 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
398 c->x86_model_id[48] = 0;
399
400 /*
401 * Intel chips right-justify this string for some dumb reason;
402 * undo that brain damage:
403 */
404 p = q = &c->x86_model_id[0];
405 while (*p == ' ')
406 p++;
407 if (p != q) {
408 while (*p)
409 *q++ = *p++;
410 while (q <= &c->x86_model_id[48])
411 *q++ = '\0'; /* Zero-pad the rest */
412 }
413 }
414
415 void __cpuinit cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
416 {
417 unsigned int n, dummy, ebx, ecx, edx, l2size;
418
419 n = c->extended_cpuid_level;
420
421 if (n >= 0x80000005) {
422 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
423 c->x86_cache_size = (ecx>>24) + (edx>>24);
424 #ifdef CONFIG_X86_64
425 /* On K8 L1 TLB is inclusive, so don't count it */
426 c->x86_tlbsize = 0;
427 #endif
428 }
429
430 if (n < 0x80000006) /* Some chips just has a large L1. */
431 return;
432
433 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
434 l2size = ecx >> 16;
435
436 #ifdef CONFIG_X86_64
437 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
438 #else
439 /* do processor-specific cache resizing */
440 if (this_cpu->c_size_cache)
441 l2size = this_cpu->c_size_cache(c, l2size);
442
443 /* Allow user to override all this if necessary. */
444 if (cachesize_override != -1)
445 l2size = cachesize_override;
446
447 if (l2size == 0)
448 return; /* Again, no L2 cache is possible */
449 #endif
450
451 c->x86_cache_size = l2size;
452 }
453
454 void __cpuinit detect_ht(struct cpuinfo_x86 *c)
455 {
456 #ifdef CONFIG_X86_HT
457 u32 eax, ebx, ecx, edx;
458 int index_msb, core_bits;
459 static bool printed;
460
461 if (!cpu_has(c, X86_FEATURE_HT))
462 return;
463
464 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
465 goto out;
466
467 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
468 return;
469
470 cpuid(1, &eax, &ebx, &ecx, &edx);
471
472 smp_num_siblings = (ebx & 0xff0000) >> 16;
473
474 if (smp_num_siblings == 1) {
475 printk_once(KERN_INFO "CPU0: Hyper-Threading is disabled\n");
476 goto out;
477 }
478
479 if (smp_num_siblings <= 1)
480 goto out;
481
482 index_msb = get_count_order(smp_num_siblings);
483 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
484
485 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
486
487 index_msb = get_count_order(smp_num_siblings);
488
489 core_bits = get_count_order(c->x86_max_cores);
490
491 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
492 ((1 << core_bits) - 1);
493
494 out:
495 if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
496 printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
497 c->phys_proc_id);
498 printk(KERN_INFO "CPU: Processor Core ID: %d\n",
499 c->cpu_core_id);
500 printed = 1;
501 }
502 #endif
503 }
504
505 static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
506 {
507 char *v = c->x86_vendor_id;
508 int i;
509
510 for (i = 0; i < X86_VENDOR_NUM; i++) {
511 if (!cpu_devs[i])
512 break;
513
514 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
515 (cpu_devs[i]->c_ident[1] &&
516 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
517
518 this_cpu = cpu_devs[i];
519 c->x86_vendor = this_cpu->c_x86_vendor;
520 return;
521 }
522 }
523
524 printk_once(KERN_ERR
525 "CPU: vendor_id '%s' unknown, using generic init.\n" \
526 "CPU: Your system may be unstable.\n", v);
527
528 c->x86_vendor = X86_VENDOR_UNKNOWN;
529 this_cpu = &default_cpu;
530 }
531
532 void __cpuinit cpu_detect(struct cpuinfo_x86 *c)
533 {
534 /* Get vendor name */
535 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
536 (unsigned int *)&c->x86_vendor_id[0],
537 (unsigned int *)&c->x86_vendor_id[8],
538 (unsigned int *)&c->x86_vendor_id[4]);
539
540 c->x86 = 4;
541 /* Intel-defined flags: level 0x00000001 */
542 if (c->cpuid_level >= 0x00000001) {
543 u32 junk, tfms, cap0, misc;
544
545 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
546 c->x86 = (tfms >> 8) & 0xf;
547 c->x86_model = (tfms >> 4) & 0xf;
548 c->x86_mask = tfms & 0xf;
549
550 if (c->x86 == 0xf)
551 c->x86 += (tfms >> 20) & 0xff;
552 if (c->x86 >= 0x6)
553 c->x86_model += ((tfms >> 16) & 0xf) << 4;
554
555 if (cap0 & (1<<19)) {
556 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
557 c->x86_cache_alignment = c->x86_clflush_size;
558 }
559 }
560 }
561
562 void __cpuinit get_cpu_cap(struct cpuinfo_x86 *c)
563 {
564 u32 tfms, xlvl;
565 u32 ebx;
566
567 /* Intel-defined flags: level 0x00000001 */
568 if (c->cpuid_level >= 0x00000001) {
569 u32 capability, excap;
570
571 cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
572 c->x86_capability[0] = capability;
573 c->x86_capability[4] = excap;
574 }
575
576 /* Additional Intel-defined flags: level 0x00000007 */
577 if (c->cpuid_level >= 0x00000007) {
578 u32 eax, ebx, ecx, edx;
579
580 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
581
582 c->x86_capability[9] = ebx;
583 }
584
585 /* AMD-defined flags: level 0x80000001 */
586 xlvl = cpuid_eax(0x80000000);
587 c->extended_cpuid_level = xlvl;
588
589 if ((xlvl & 0xffff0000) == 0x80000000) {
590 if (xlvl >= 0x80000001) {
591 c->x86_capability[1] = cpuid_edx(0x80000001);
592 c->x86_capability[6] = cpuid_ecx(0x80000001);
593 }
594 }
595
596 if (c->extended_cpuid_level >= 0x80000008) {
597 u32 eax = cpuid_eax(0x80000008);
598
599 c->x86_virt_bits = (eax >> 8) & 0xff;
600 c->x86_phys_bits = eax & 0xff;
601 }
602 #ifdef CONFIG_X86_32
603 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
604 c->x86_phys_bits = 36;
605 #endif
606
607 if (c->extended_cpuid_level >= 0x80000007)
608 c->x86_power = cpuid_edx(0x80000007);
609
610 init_scattered_cpuid_features(c);
611 }
612
613 static void __cpuinit identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
614 {
615 #ifdef CONFIG_X86_32
616 int i;
617
618 /*
619 * First of all, decide if this is a 486 or higher
620 * It's a 486 if we can modify the AC flag
621 */
622 if (flag_is_changeable_p(X86_EFLAGS_AC))
623 c->x86 = 4;
624 else
625 c->x86 = 3;
626
627 for (i = 0; i < X86_VENDOR_NUM; i++)
628 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
629 c->x86_vendor_id[0] = 0;
630 cpu_devs[i]->c_identify(c);
631 if (c->x86_vendor_id[0]) {
632 get_cpu_vendor(c);
633 break;
634 }
635 }
636 #endif
637 }
638
639 /*
640 * Do minimum CPU detection early.
641 * Fields really needed: vendor, cpuid_level, family, model, mask,
642 * cache alignment.
643 * The others are not touched to avoid unwanted side effects.
644 *
645 * WARNING: this function is only called on the BP. Don't add code here
646 * that is supposed to run on all CPUs.
647 */
648 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
649 {
650 #ifdef CONFIG_X86_64
651 c->x86_clflush_size = 64;
652 c->x86_phys_bits = 36;
653 c->x86_virt_bits = 48;
654 #else
655 c->x86_clflush_size = 32;
656 c->x86_phys_bits = 32;
657 c->x86_virt_bits = 32;
658 #endif
659 c->x86_cache_alignment = c->x86_clflush_size;
660
661 memset(&c->x86_capability, 0, sizeof c->x86_capability);
662 c->extended_cpuid_level = 0;
663
664 if (!have_cpuid_p())
665 identify_cpu_without_cpuid(c);
666
667 /* cyrix could have cpuid enabled via c_identify()*/
668 if (!have_cpuid_p())
669 return;
670
671 cpu_detect(c);
672
673 get_cpu_vendor(c);
674
675 get_cpu_cap(c);
676
677 if (this_cpu->c_early_init)
678 this_cpu->c_early_init(c);
679
680 c->cpu_index = 0;
681 filter_cpuid_features(c, false);
682
683 setup_smep(c);
684
685 if (this_cpu->c_bsp_init)
686 this_cpu->c_bsp_init(c);
687 }
688
689 void __init early_cpu_init(void)
690 {
691 const struct cpu_dev *const *cdev;
692 int count = 0;
693
694 #ifdef CONFIG_PROCESSOR_SELECT
695 printk(KERN_INFO "KERNEL supported cpus:\n");
696 #endif
697
698 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
699 const struct cpu_dev *cpudev = *cdev;
700
701 if (count >= X86_VENDOR_NUM)
702 break;
703 cpu_devs[count] = cpudev;
704 count++;
705
706 #ifdef CONFIG_PROCESSOR_SELECT
707 {
708 unsigned int j;
709
710 for (j = 0; j < 2; j++) {
711 if (!cpudev->c_ident[j])
712 continue;
713 printk(KERN_INFO " %s %s\n", cpudev->c_vendor,
714 cpudev->c_ident[j]);
715 }
716 }
717 #endif
718 }
719 early_identify_cpu(&boot_cpu_data);
720 }
721
722 /*
723 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
724 * unfortunately, that's not true in practice because of early VIA
725 * chips and (more importantly) broken virtualizers that are not easy
726 * to detect. In the latter case it doesn't even *fail* reliably, so
727 * probing for it doesn't even work. Disable it completely on 32-bit
728 * unless we can find a reliable way to detect all the broken cases.
729 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
730 */
731 static void __cpuinit detect_nopl(struct cpuinfo_x86 *c)
732 {
733 #ifdef CONFIG_X86_32
734 clear_cpu_cap(c, X86_FEATURE_NOPL);
735 #else
736 set_cpu_cap(c, X86_FEATURE_NOPL);
737 #endif
738 }
739
740 static void __cpuinit generic_identify(struct cpuinfo_x86 *c)
741 {
742 c->extended_cpuid_level = 0;
743
744 if (!have_cpuid_p())
745 identify_cpu_without_cpuid(c);
746
747 /* cyrix could have cpuid enabled via c_identify()*/
748 if (!have_cpuid_p())
749 return;
750
751 cpu_detect(c);
752
753 get_cpu_vendor(c);
754
755 get_cpu_cap(c);
756
757 if (c->cpuid_level >= 0x00000001) {
758 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
759 #ifdef CONFIG_X86_32
760 # ifdef CONFIG_X86_HT
761 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
762 # else
763 c->apicid = c->initial_apicid;
764 # endif
765 #endif
766 c->phys_proc_id = c->initial_apicid;
767 }
768
769 setup_smep(c);
770
771 get_model_name(c); /* Default name */
772
773 detect_nopl(c);
774 }
775
776 /*
777 * This does the hard work of actually picking apart the CPU stuff...
778 */
779 static void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
780 {
781 int i;
782
783 c->loops_per_jiffy = loops_per_jiffy;
784 c->x86_cache_size = -1;
785 c->x86_vendor = X86_VENDOR_UNKNOWN;
786 c->x86_model = c->x86_mask = 0; /* So far unknown... */
787 c->x86_vendor_id[0] = '\0'; /* Unset */
788 c->x86_model_id[0] = '\0'; /* Unset */
789 c->x86_max_cores = 1;
790 c->x86_coreid_bits = 0;
791 #ifdef CONFIG_X86_64
792 c->x86_clflush_size = 64;
793 c->x86_phys_bits = 36;
794 c->x86_virt_bits = 48;
795 #else
796 c->cpuid_level = -1; /* CPUID not detected */
797 c->x86_clflush_size = 32;
798 c->x86_phys_bits = 32;
799 c->x86_virt_bits = 32;
800 #endif
801 c->x86_cache_alignment = c->x86_clflush_size;
802 memset(&c->x86_capability, 0, sizeof c->x86_capability);
803
804 generic_identify(c);
805
806 if (this_cpu->c_identify)
807 this_cpu->c_identify(c);
808
809 /* Clear/Set all flags overriden by options, after probe */
810 for (i = 0; i < NCAPINTS; i++) {
811 c->x86_capability[i] &= ~cpu_caps_cleared[i];
812 c->x86_capability[i] |= cpu_caps_set[i];
813 }
814
815 #ifdef CONFIG_X86_64
816 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
817 #endif
818
819 /*
820 * Vendor-specific initialization. In this section we
821 * canonicalize the feature flags, meaning if there are
822 * features a certain CPU supports which CPUID doesn't
823 * tell us, CPUID claiming incorrect flags, or other bugs,
824 * we handle them here.
825 *
826 * At the end of this section, c->x86_capability better
827 * indicate the features this CPU genuinely supports!
828 */
829 if (this_cpu->c_init)
830 this_cpu->c_init(c);
831
832 /* Disable the PN if appropriate */
833 squash_the_stupid_serial_number(c);
834
835 /*
836 * The vendor-specific functions might have changed features.
837 * Now we do "generic changes."
838 */
839
840 /* Filter out anything that depends on CPUID levels we don't have */
841 filter_cpuid_features(c, true);
842
843 /* If the model name is still unset, do table lookup. */
844 if (!c->x86_model_id[0]) {
845 const char *p;
846 p = table_lookup_model(c);
847 if (p)
848 strcpy(c->x86_model_id, p);
849 else
850 /* Last resort... */
851 sprintf(c->x86_model_id, "%02x/%02x",
852 c->x86, c->x86_model);
853 }
854
855 #ifdef CONFIG_X86_64
856 detect_ht(c);
857 #endif
858
859 init_hypervisor(c);
860 x86_init_rdrand(c);
861
862 /*
863 * Clear/Set all flags overriden by options, need do it
864 * before following smp all cpus cap AND.
865 */
866 for (i = 0; i < NCAPINTS; i++) {
867 c->x86_capability[i] &= ~cpu_caps_cleared[i];
868 c->x86_capability[i] |= cpu_caps_set[i];
869 }
870
871 /*
872 * On SMP, boot_cpu_data holds the common feature set between
873 * all CPUs; so make sure that we indicate which features are
874 * common between the CPUs. The first time this routine gets
875 * executed, c == &boot_cpu_data.
876 */
877 if (c != &boot_cpu_data) {
878 /* AND the already accumulated flags with these */
879 for (i = 0; i < NCAPINTS; i++)
880 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
881 }
882
883 /* Init Machine Check Exception if available. */
884 mcheck_cpu_init(c);
885
886 select_idle_routine(c);
887
888 #ifdef CONFIG_NUMA
889 numa_add_cpu(smp_processor_id());
890 #endif
891 }
892
893 #ifdef CONFIG_X86_64
894 static void vgetcpu_set_mode(void)
895 {
896 if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP))
897 vgetcpu_mode = VGETCPU_RDTSCP;
898 else
899 vgetcpu_mode = VGETCPU_LSL;
900 }
901 #endif
902
903 void __init identify_boot_cpu(void)
904 {
905 identify_cpu(&boot_cpu_data);
906 init_amd_e400_c1e_mask();
907 #ifdef CONFIG_X86_32
908 sysenter_setup();
909 enable_sep_cpu();
910 #else
911 vgetcpu_set_mode();
912 #endif
913 }
914
915 void __cpuinit identify_secondary_cpu(struct cpuinfo_x86 *c)
916 {
917 BUG_ON(c == &boot_cpu_data);
918 identify_cpu(c);
919 #ifdef CONFIG_X86_32
920 enable_sep_cpu();
921 #endif
922 mtrr_ap_init();
923 }
924
925 struct msr_range {
926 unsigned min;
927 unsigned max;
928 };
929
930 static const struct msr_range msr_range_array[] __cpuinitconst = {
931 { 0x00000000, 0x00000418},
932 { 0xc0000000, 0xc000040b},
933 { 0xc0010000, 0xc0010142},
934 { 0xc0011000, 0xc001103b},
935 };
936
937 static void __cpuinit __print_cpu_msr(void)
938 {
939 unsigned index_min, index_max;
940 unsigned index;
941 u64 val;
942 int i;
943
944 for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
945 index_min = msr_range_array[i].min;
946 index_max = msr_range_array[i].max;
947
948 for (index = index_min; index < index_max; index++) {
949 if (rdmsrl_amd_safe(index, &val))
950 continue;
951 printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
952 }
953 }
954 }
955
956 static int show_msr __cpuinitdata;
957
958 static __init int setup_show_msr(char *arg)
959 {
960 int num;
961
962 get_option(&arg, &num);
963
964 if (num > 0)
965 show_msr = num;
966 return 1;
967 }
968 __setup("show_msr=", setup_show_msr);
969
970 static __init int setup_noclflush(char *arg)
971 {
972 setup_clear_cpu_cap(X86_FEATURE_CLFLSH);
973 return 1;
974 }
975 __setup("noclflush", setup_noclflush);
976
977 void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
978 {
979 const char *vendor = NULL;
980
981 if (c->x86_vendor < X86_VENDOR_NUM) {
982 vendor = this_cpu->c_vendor;
983 } else {
984 if (c->cpuid_level >= 0)
985 vendor = c->x86_vendor_id;
986 }
987
988 if (vendor && !strstr(c->x86_model_id, vendor))
989 printk(KERN_CONT "%s ", vendor);
990
991 if (c->x86_model_id[0])
992 printk(KERN_CONT "%s", c->x86_model_id);
993 else
994 printk(KERN_CONT "%d86", c->x86);
995
996 if (c->x86_mask || c->cpuid_level >= 0)
997 printk(KERN_CONT " stepping %02x\n", c->x86_mask);
998 else
999 printk(KERN_CONT "\n");
1000
1001 print_cpu_msr(c);
1002 }
1003
1004 void __cpuinit print_cpu_msr(struct cpuinfo_x86 *c)
1005 {
1006 if (c->cpu_index < show_msr)
1007 __print_cpu_msr();
1008 }
1009
1010 static __init int setup_disablecpuid(char *arg)
1011 {
1012 int bit;
1013
1014 if (get_option(&arg, &bit) && bit < NCAPINTS*32)
1015 setup_clear_cpu_cap(bit);
1016 else
1017 return 0;
1018
1019 return 1;
1020 }
1021 __setup("clearcpuid=", setup_disablecpuid);
1022
1023 #ifdef CONFIG_X86_64
1024 struct desc_ptr idt_descr = { NR_VECTORS * 16 - 1, (unsigned long) idt_table };
1025 struct desc_ptr nmi_idt_descr = { NR_VECTORS * 16 - 1,
1026 (unsigned long) nmi_idt_table };
1027
1028 DEFINE_PER_CPU_FIRST(union irq_stack_union,
1029 irq_stack_union) __aligned(PAGE_SIZE);
1030
1031 /*
1032 * The following four percpu variables are hot. Align current_task to
1033 * cacheline size such that all four fall in the same cacheline.
1034 */
1035 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1036 &init_task;
1037 EXPORT_PER_CPU_SYMBOL(current_task);
1038
1039 DEFINE_PER_CPU(unsigned long, kernel_stack) =
1040 (unsigned long)&init_thread_union - KERNEL_STACK_OFFSET + THREAD_SIZE;
1041 EXPORT_PER_CPU_SYMBOL(kernel_stack);
1042
1043 DEFINE_PER_CPU(char *, irq_stack_ptr) =
1044 init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64;
1045
1046 DEFINE_PER_CPU(unsigned int, irq_count) = -1;
1047
1048 DEFINE_PER_CPU(struct task_struct *, fpu_owner_task);
1049
1050 /*
1051 * Special IST stacks which the CPU switches to when it calls
1052 * an IST-marked descriptor entry. Up to 7 stacks (hardware
1053 * limit), all of them are 4K, except the debug stack which
1054 * is 8K.
1055 */
1056 static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
1057 [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ,
1058 [DEBUG_STACK - 1] = DEBUG_STKSZ
1059 };
1060
1061 static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
1062 [(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]);
1063
1064 /* May not be marked __init: used by software suspend */
1065 void syscall_init(void)
1066 {
1067 /*
1068 * LSTAR and STAR live in a bit strange symbiosis.
1069 * They both write to the same internal register. STAR allows to
1070 * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
1071 */
1072 wrmsrl(MSR_STAR, ((u64)__USER32_CS)<<48 | ((u64)__KERNEL_CS)<<32);
1073 wrmsrl(MSR_LSTAR, system_call);
1074 wrmsrl(MSR_CSTAR, ignore_sysret);
1075
1076 #ifdef CONFIG_IA32_EMULATION
1077 syscall32_cpu_init();
1078 #endif
1079
1080 /* Flags to clear on syscall */
1081 wrmsrl(MSR_SYSCALL_MASK,
1082 X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|X86_EFLAGS_IOPL);
1083 }
1084
1085 unsigned long kernel_eflags;
1086
1087 /*
1088 * Copies of the original ist values from the tss are only accessed during
1089 * debugging, no special alignment required.
1090 */
1091 DEFINE_PER_CPU(struct orig_ist, orig_ist);
1092
1093 static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
1094 DEFINE_PER_CPU(int, debug_stack_usage);
1095
1096 int is_debug_stack(unsigned long addr)
1097 {
1098 return __get_cpu_var(debug_stack_usage) ||
1099 (addr <= __get_cpu_var(debug_stack_addr) &&
1100 addr > (__get_cpu_var(debug_stack_addr) - DEBUG_STKSZ));
1101 }
1102
1103 void debug_stack_set_zero(void)
1104 {
1105 load_idt((const struct desc_ptr *)&nmi_idt_descr);
1106 }
1107
1108 void debug_stack_reset(void)
1109 {
1110 load_idt((const struct desc_ptr *)&idt_descr);
1111 }
1112
1113 #else /* CONFIG_X86_64 */
1114
1115 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1116 EXPORT_PER_CPU_SYMBOL(current_task);
1117 DEFINE_PER_CPU(struct task_struct *, fpu_owner_task);
1118
1119 #ifdef CONFIG_CC_STACKPROTECTOR
1120 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1121 #endif
1122
1123 /* Make sure %fs and %gs are initialized properly in idle threads */
1124 struct pt_regs * __cpuinit idle_regs(struct pt_regs *regs)
1125 {
1126 memset(regs, 0, sizeof(struct pt_regs));
1127 regs->fs = __KERNEL_PERCPU;
1128 regs->gs = __KERNEL_STACK_CANARY;
1129
1130 return regs;
1131 }
1132 #endif /* CONFIG_X86_64 */
1133
1134 /*
1135 * Clear all 6 debug registers:
1136 */
1137 static void clear_all_debug_regs(void)
1138 {
1139 int i;
1140
1141 for (i = 0; i < 8; i++) {
1142 /* Ignore db4, db5 */
1143 if ((i == 4) || (i == 5))
1144 continue;
1145
1146 set_debugreg(0, i);
1147 }
1148 }
1149
1150 #ifdef CONFIG_KGDB
1151 /*
1152 * Restore debug regs if using kgdbwait and you have a kernel debugger
1153 * connection established.
1154 */
1155 static void dbg_restore_debug_regs(void)
1156 {
1157 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1158 arch_kgdb_ops.correct_hw_break();
1159 }
1160 #else /* ! CONFIG_KGDB */
1161 #define dbg_restore_debug_regs()
1162 #endif /* ! CONFIG_KGDB */
1163
1164 /*
1165 * Prints an error where the NUMA and configured core-number mismatch and the
1166 * platform didn't override this to fix it up
1167 */
1168 void __cpuinit x86_default_fixup_cpu_id(struct cpuinfo_x86 *c, int node)
1169 {
1170 pr_err("NUMA core number %d differs from configured core number %d\n", node, c->phys_proc_id);
1171 }
1172
1173 /*
1174 * cpu_init() initializes state that is per-CPU. Some data is already
1175 * initialized (naturally) in the bootstrap process, such as the GDT
1176 * and IDT. We reload them nevertheless, this function acts as a
1177 * 'CPU state barrier', nothing should get across.
1178 * A lot of state is already set up in PDA init for 64 bit
1179 */
1180 #ifdef CONFIG_X86_64
1181
1182 void __cpuinit cpu_init(void)
1183 {
1184 struct orig_ist *oist;
1185 struct task_struct *me;
1186 struct tss_struct *t;
1187 unsigned long v;
1188 int cpu;
1189 int i;
1190
1191 cpu = stack_smp_processor_id();
1192 t = &per_cpu(init_tss, cpu);
1193 oist = &per_cpu(orig_ist, cpu);
1194
1195 #ifdef CONFIG_NUMA
1196 if (cpu != 0 && percpu_read(numa_node) == 0 &&
1197 early_cpu_to_node(cpu) != NUMA_NO_NODE)
1198 set_numa_node(early_cpu_to_node(cpu));
1199 #endif
1200
1201 me = current;
1202
1203 if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask))
1204 panic("CPU#%d already initialized!\n", cpu);
1205
1206 pr_debug("Initializing CPU#%d\n", cpu);
1207
1208 clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1209
1210 /*
1211 * Initialize the per-CPU GDT with the boot GDT,
1212 * and set up the GDT descriptor:
1213 */
1214
1215 switch_to_new_gdt(cpu);
1216 loadsegment(fs, 0);
1217
1218 load_idt((const struct desc_ptr *)&idt_descr);
1219
1220 memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1221 syscall_init();
1222
1223 wrmsrl(MSR_FS_BASE, 0);
1224 wrmsrl(MSR_KERNEL_GS_BASE, 0);
1225 barrier();
1226
1227 x86_configure_nx();
1228 if (cpu != 0)
1229 enable_x2apic();
1230
1231 /*
1232 * set up and load the per-CPU TSS
1233 */
1234 if (!oist->ist[0]) {
1235 char *estacks = per_cpu(exception_stacks, cpu);
1236
1237 for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1238 estacks += exception_stack_sizes[v];
1239 oist->ist[v] = t->x86_tss.ist[v] =
1240 (unsigned long)estacks;
1241 if (v == DEBUG_STACK-1)
1242 per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
1243 }
1244 }
1245
1246 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1247
1248 /*
1249 * <= is required because the CPU will access up to
1250 * 8 bits beyond the end of the IO permission bitmap.
1251 */
1252 for (i = 0; i <= IO_BITMAP_LONGS; i++)
1253 t->io_bitmap[i] = ~0UL;
1254
1255 atomic_inc(&init_mm.mm_count);
1256 me->active_mm = &init_mm;
1257 BUG_ON(me->mm);
1258 enter_lazy_tlb(&init_mm, me);
1259
1260 load_sp0(t, &current->thread);
1261 set_tss_desc(cpu, t);
1262 load_TR_desc();
1263 load_LDT(&init_mm.context);
1264
1265 clear_all_debug_regs();
1266 dbg_restore_debug_regs();
1267
1268 fpu_init();
1269 xsave_init();
1270
1271 raw_local_save_flags(kernel_eflags);
1272
1273 if (is_uv_system())
1274 uv_cpu_init();
1275 }
1276
1277 #else
1278
1279 void __cpuinit cpu_init(void)
1280 {
1281 int cpu = smp_processor_id();
1282 struct task_struct *curr = current;
1283 struct tss_struct *t = &per_cpu(init_tss, cpu);
1284 struct thread_struct *thread = &curr->thread;
1285
1286 if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask)) {
1287 printk(KERN_WARNING "CPU#%d already initialized!\n", cpu);
1288 for (;;)
1289 local_irq_enable();
1290 }
1291
1292 printk(KERN_INFO "Initializing CPU#%d\n", cpu);
1293
1294 if (cpu_has_vme || cpu_has_tsc || cpu_has_de)
1295 clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1296
1297 load_idt(&idt_descr);
1298 switch_to_new_gdt(cpu);
1299
1300 /*
1301 * Set up and load the per-CPU TSS and LDT
1302 */
1303 atomic_inc(&init_mm.mm_count);
1304 curr->active_mm = &init_mm;
1305 BUG_ON(curr->mm);
1306 enter_lazy_tlb(&init_mm, curr);
1307
1308 load_sp0(t, thread);
1309 set_tss_desc(cpu, t);
1310 load_TR_desc();
1311 load_LDT(&init_mm.context);
1312
1313 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1314
1315 #ifdef CONFIG_DOUBLEFAULT
1316 /* Set up doublefault TSS pointer in the GDT */
1317 __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1318 #endif
1319
1320 clear_all_debug_regs();
1321 dbg_restore_debug_regs();
1322
1323 fpu_init();
1324 xsave_init();
1325 }
1326 #endif