]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kernel/cpu/common.c
bd07a6c6da51f97636c441521218012cc91146d2
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kernel / cpu / common.c
1 #include <linux/bootmem.h>
2 #include <linux/linkage.h>
3 #include <linux/bitops.h>
4 #include <linux/kernel.h>
5 #include <linux/export.h>
6 #include <linux/percpu.h>
7 #include <linux/string.h>
8 #include <linux/ctype.h>
9 #include <linux/delay.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/clock.h>
12 #include <linux/sched/task.h>
13 #include <linux/init.h>
14 #include <linux/kprobes.h>
15 #include <linux/kgdb.h>
16 #include <linux/smp.h>
17 #include <linux/io.h>
18 #include <linux/syscore_ops.h>
19
20 #include <asm/stackprotector.h>
21 #include <asm/perf_event.h>
22 #include <asm/mmu_context.h>
23 #include <asm/archrandom.h>
24 #include <asm/hypervisor.h>
25 #include <asm/processor.h>
26 #include <asm/tlbflush.h>
27 #include <asm/debugreg.h>
28 #include <asm/sections.h>
29 #include <asm/vsyscall.h>
30 #include <linux/topology.h>
31 #include <linux/cpumask.h>
32 #include <asm/pgtable.h>
33 #include <linux/atomic.h>
34 #include <asm/proto.h>
35 #include <asm/setup.h>
36 #include <asm/apic.h>
37 #include <asm/desc.h>
38 #include <asm/fpu/internal.h>
39 #include <asm/mtrr.h>
40 #include <asm/hwcap2.h>
41 #include <linux/numa.h>
42 #include <asm/asm.h>
43 #include <asm/bugs.h>
44 #include <asm/cpu.h>
45 #include <asm/mce.h>
46 #include <asm/msr.h>
47 #include <asm/pat.h>
48 #include <asm/microcode.h>
49 #include <asm/microcode_intel.h>
50 #include <asm/intel-family.h>
51 #include <asm/cpu_device_id.h>
52
53 #ifdef CONFIG_X86_LOCAL_APIC
54 #include <asm/uv/uv.h>
55 #endif
56
57 #include "cpu.h"
58
59 u32 elf_hwcap2 __read_mostly;
60
61 /* all of these masks are initialized in setup_cpu_local_masks() */
62 cpumask_var_t cpu_initialized_mask;
63 cpumask_var_t cpu_callout_mask;
64 cpumask_var_t cpu_callin_mask;
65
66 /* representing cpus for which sibling maps can be computed */
67 cpumask_var_t cpu_sibling_setup_mask;
68
69 /* Number of siblings per CPU package */
70 int smp_num_siblings = 1;
71 EXPORT_SYMBOL(smp_num_siblings);
72
73 /* Last level cache ID of each logical CPU */
74 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
75
76 /* correctly size the local cpu masks */
77 void __init setup_cpu_local_masks(void)
78 {
79 alloc_bootmem_cpumask_var(&cpu_initialized_mask);
80 alloc_bootmem_cpumask_var(&cpu_callin_mask);
81 alloc_bootmem_cpumask_var(&cpu_callout_mask);
82 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
83 }
84
85 static void default_init(struct cpuinfo_x86 *c)
86 {
87 #ifdef CONFIG_X86_64
88 cpu_detect_cache_sizes(c);
89 #else
90 /* Not much we can do here... */
91 /* Check if at least it has cpuid */
92 if (c->cpuid_level == -1) {
93 /* No cpuid. It must be an ancient CPU */
94 if (c->x86 == 4)
95 strcpy(c->x86_model_id, "486");
96 else if (c->x86 == 3)
97 strcpy(c->x86_model_id, "386");
98 }
99 #endif
100 }
101
102 static const struct cpu_dev default_cpu = {
103 .c_init = default_init,
104 .c_vendor = "Unknown",
105 .c_x86_vendor = X86_VENDOR_UNKNOWN,
106 };
107
108 static const struct cpu_dev *this_cpu = &default_cpu;
109
110 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
111 #ifdef CONFIG_X86_64
112 /*
113 * We need valid kernel segments for data and code in long mode too
114 * IRET will check the segment types kkeil 2000/10/28
115 * Also sysret mandates a special GDT layout
116 *
117 * TLS descriptors are currently at a different place compared to i386.
118 * Hopefully nobody expects them at a fixed place (Wine?)
119 */
120 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
121 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
122 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
123 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
124 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
125 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
126 #else
127 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
128 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
129 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
130 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
131 /*
132 * Segments used for calling PnP BIOS have byte granularity.
133 * They code segments and data segments have fixed 64k limits,
134 * the transfer segment sizes are set at run time.
135 */
136 /* 32-bit code */
137 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
138 /* 16-bit code */
139 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
140 /* 16-bit data */
141 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
142 /* 16-bit data */
143 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
144 /* 16-bit data */
145 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
146 /*
147 * The APM segments have byte granularity and their bases
148 * are set at run time. All have 64k limits.
149 */
150 /* 32-bit code */
151 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
152 /* 16-bit code */
153 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
154 /* data */
155 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
156
157 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
158 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
159 GDT_STACK_CANARY_INIT
160 #endif
161 } };
162 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
163
164 static int __init x86_mpx_setup(char *s)
165 {
166 /* require an exact match without trailing characters */
167 if (strlen(s))
168 return 0;
169
170 /* do not emit a message if the feature is not present */
171 if (!boot_cpu_has(X86_FEATURE_MPX))
172 return 1;
173
174 setup_clear_cpu_cap(X86_FEATURE_MPX);
175 pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n");
176 return 1;
177 }
178 __setup("nompx", x86_mpx_setup);
179
180 #ifdef CONFIG_X86_64
181 static int __init x86_nopcid_setup(char *s)
182 {
183 /* nopcid doesn't accept parameters */
184 if (s)
185 return -EINVAL;
186
187 /* do not emit a message if the feature is not present */
188 if (!boot_cpu_has(X86_FEATURE_PCID))
189 return 0;
190
191 setup_clear_cpu_cap(X86_FEATURE_PCID);
192 pr_info("nopcid: PCID feature disabled\n");
193 return 0;
194 }
195 early_param("nopcid", x86_nopcid_setup);
196 #endif
197
198 static int __init x86_noinvpcid_setup(char *s)
199 {
200 /* noinvpcid doesn't accept parameters */
201 if (s)
202 return -EINVAL;
203
204 /* do not emit a message if the feature is not present */
205 if (!boot_cpu_has(X86_FEATURE_INVPCID))
206 return 0;
207
208 setup_clear_cpu_cap(X86_FEATURE_INVPCID);
209 pr_info("noinvpcid: INVPCID feature disabled\n");
210 return 0;
211 }
212 early_param("noinvpcid", x86_noinvpcid_setup);
213
214 #ifdef CONFIG_X86_32
215 static int cachesize_override = -1;
216 static int disable_x86_serial_nr = 1;
217
218 static int __init cachesize_setup(char *str)
219 {
220 get_option(&str, &cachesize_override);
221 return 1;
222 }
223 __setup("cachesize=", cachesize_setup);
224
225 static int __init x86_sep_setup(char *s)
226 {
227 setup_clear_cpu_cap(X86_FEATURE_SEP);
228 return 1;
229 }
230 __setup("nosep", x86_sep_setup);
231
232 /* Standard macro to see if a specific flag is changeable */
233 static inline int flag_is_changeable_p(u32 flag)
234 {
235 u32 f1, f2;
236
237 /*
238 * Cyrix and IDT cpus allow disabling of CPUID
239 * so the code below may return different results
240 * when it is executed before and after enabling
241 * the CPUID. Add "volatile" to not allow gcc to
242 * optimize the subsequent calls to this function.
243 */
244 asm volatile ("pushfl \n\t"
245 "pushfl \n\t"
246 "popl %0 \n\t"
247 "movl %0, %1 \n\t"
248 "xorl %2, %0 \n\t"
249 "pushl %0 \n\t"
250 "popfl \n\t"
251 "pushfl \n\t"
252 "popl %0 \n\t"
253 "popfl \n\t"
254
255 : "=&r" (f1), "=&r" (f2)
256 : "ir" (flag));
257
258 return ((f1^f2) & flag) != 0;
259 }
260
261 /* Probe for the CPUID instruction */
262 int have_cpuid_p(void)
263 {
264 return flag_is_changeable_p(X86_EFLAGS_ID);
265 }
266
267 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
268 {
269 unsigned long lo, hi;
270
271 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
272 return;
273
274 /* Disable processor serial number: */
275
276 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
277 lo |= 0x200000;
278 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
279
280 pr_notice("CPU serial number disabled.\n");
281 clear_cpu_cap(c, X86_FEATURE_PN);
282
283 /* Disabling the serial number may affect the cpuid level */
284 c->cpuid_level = cpuid_eax(0);
285 }
286
287 static int __init x86_serial_nr_setup(char *s)
288 {
289 disable_x86_serial_nr = 0;
290 return 1;
291 }
292 __setup("serialnumber", x86_serial_nr_setup);
293 #else
294 static inline int flag_is_changeable_p(u32 flag)
295 {
296 return 1;
297 }
298 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
299 {
300 }
301 #endif
302
303 static __init int setup_disable_smep(char *arg)
304 {
305 setup_clear_cpu_cap(X86_FEATURE_SMEP);
306 /* Check for things that depend on SMEP being enabled: */
307 check_mpx_erratum(&boot_cpu_data);
308 return 1;
309 }
310 __setup("nosmep", setup_disable_smep);
311
312 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
313 {
314 if (cpu_has(c, X86_FEATURE_SMEP))
315 cr4_set_bits(X86_CR4_SMEP);
316 }
317
318 static __init int setup_disable_smap(char *arg)
319 {
320 setup_clear_cpu_cap(X86_FEATURE_SMAP);
321 return 1;
322 }
323 __setup("nosmap", setup_disable_smap);
324
325 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
326 {
327 unsigned long eflags = native_save_fl();
328
329 /* This should have been cleared long ago */
330 BUG_ON(eflags & X86_EFLAGS_AC);
331
332 if (cpu_has(c, X86_FEATURE_SMAP)) {
333 #ifdef CONFIG_X86_SMAP
334 cr4_set_bits(X86_CR4_SMAP);
335 #else
336 cr4_clear_bits(X86_CR4_SMAP);
337 #endif
338 }
339 }
340
341 static __always_inline void setup_umip(struct cpuinfo_x86 *c)
342 {
343 /* Check the boot processor, plus build option for UMIP. */
344 if (!cpu_feature_enabled(X86_FEATURE_UMIP))
345 goto out;
346
347 /* Check the current processor's cpuid bits. */
348 if (!cpu_has(c, X86_FEATURE_UMIP))
349 goto out;
350
351 cr4_set_bits(X86_CR4_UMIP);
352
353 pr_info("x86/cpu: Activated the Intel User Mode Instruction Prevention (UMIP) CPU feature\n");
354
355 return;
356
357 out:
358 /*
359 * Make sure UMIP is disabled in case it was enabled in a
360 * previous boot (e.g., via kexec).
361 */
362 cr4_clear_bits(X86_CR4_UMIP);
363 }
364
365 /*
366 * Protection Keys are not available in 32-bit mode.
367 */
368 static bool pku_disabled;
369
370 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
371 {
372 /* check the boot processor, plus compile options for PKU: */
373 if (!cpu_feature_enabled(X86_FEATURE_PKU))
374 return;
375 /* checks the actual processor's cpuid bits: */
376 if (!cpu_has(c, X86_FEATURE_PKU))
377 return;
378 if (pku_disabled)
379 return;
380
381 cr4_set_bits(X86_CR4_PKE);
382 /*
383 * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
384 * cpuid bit to be set. We need to ensure that we
385 * update that bit in this CPU's "cpu_info".
386 */
387 get_cpu_cap(c);
388 }
389
390 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
391 static __init int setup_disable_pku(char *arg)
392 {
393 /*
394 * Do not clear the X86_FEATURE_PKU bit. All of the
395 * runtime checks are against OSPKE so clearing the
396 * bit does nothing.
397 *
398 * This way, we will see "pku" in cpuinfo, but not
399 * "ospke", which is exactly what we want. It shows
400 * that the CPU has PKU, but the OS has not enabled it.
401 * This happens to be exactly how a system would look
402 * if we disabled the config option.
403 */
404 pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
405 pku_disabled = true;
406 return 1;
407 }
408 __setup("nopku", setup_disable_pku);
409 #endif /* CONFIG_X86_64 */
410
411 /*
412 * Some CPU features depend on higher CPUID levels, which may not always
413 * be available due to CPUID level capping or broken virtualization
414 * software. Add those features to this table to auto-disable them.
415 */
416 struct cpuid_dependent_feature {
417 u32 feature;
418 u32 level;
419 };
420
421 static const struct cpuid_dependent_feature
422 cpuid_dependent_features[] = {
423 { X86_FEATURE_MWAIT, 0x00000005 },
424 { X86_FEATURE_DCA, 0x00000009 },
425 { X86_FEATURE_XSAVE, 0x0000000d },
426 { 0, 0 }
427 };
428
429 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
430 {
431 const struct cpuid_dependent_feature *df;
432
433 for (df = cpuid_dependent_features; df->feature; df++) {
434
435 if (!cpu_has(c, df->feature))
436 continue;
437 /*
438 * Note: cpuid_level is set to -1 if unavailable, but
439 * extended_extended_level is set to 0 if unavailable
440 * and the legitimate extended levels are all negative
441 * when signed; hence the weird messing around with
442 * signs here...
443 */
444 if (!((s32)df->level < 0 ?
445 (u32)df->level > (u32)c->extended_cpuid_level :
446 (s32)df->level > (s32)c->cpuid_level))
447 continue;
448
449 clear_cpu_cap(c, df->feature);
450 if (!warn)
451 continue;
452
453 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
454 x86_cap_flag(df->feature), df->level);
455 }
456 }
457
458 /*
459 * Naming convention should be: <Name> [(<Codename>)]
460 * This table only is used unless init_<vendor>() below doesn't set it;
461 * in particular, if CPUID levels 0x80000002..4 are supported, this
462 * isn't used
463 */
464
465 /* Look up CPU names by table lookup. */
466 static const char *table_lookup_model(struct cpuinfo_x86 *c)
467 {
468 #ifdef CONFIG_X86_32
469 const struct legacy_cpu_model_info *info;
470
471 if (c->x86_model >= 16)
472 return NULL; /* Range check */
473
474 if (!this_cpu)
475 return NULL;
476
477 info = this_cpu->legacy_models;
478
479 while (info->family) {
480 if (info->family == c->x86)
481 return info->model_names[c->x86_model];
482 info++;
483 }
484 #endif
485 return NULL; /* Not found */
486 }
487
488 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS];
489 __u32 cpu_caps_set[NCAPINTS + NBUGINTS];
490
491 void load_percpu_segment(int cpu)
492 {
493 #ifdef CONFIG_X86_32
494 loadsegment(fs, __KERNEL_PERCPU);
495 #else
496 __loadsegment_simple(gs, 0);
497 wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
498 #endif
499 load_stack_canary_segment();
500 }
501
502 #ifdef CONFIG_X86_32
503 /* The 32-bit entry code needs to find cpu_entry_area. */
504 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
505 #endif
506
507 #ifdef CONFIG_X86_64
508 /*
509 * Special IST stacks which the CPU switches to when it calls
510 * an IST-marked descriptor entry. Up to 7 stacks (hardware
511 * limit), all of them are 4K, except the debug stack which
512 * is 8K.
513 */
514 static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
515 [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ,
516 [DEBUG_STACK - 1] = DEBUG_STKSZ
517 };
518 #endif
519
520 /* Load the original GDT from the per-cpu structure */
521 void load_direct_gdt(int cpu)
522 {
523 struct desc_ptr gdt_descr;
524
525 gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
526 gdt_descr.size = GDT_SIZE - 1;
527 load_gdt(&gdt_descr);
528 }
529 EXPORT_SYMBOL_GPL(load_direct_gdt);
530
531 /* Load a fixmap remapping of the per-cpu GDT */
532 void load_fixmap_gdt(int cpu)
533 {
534 struct desc_ptr gdt_descr;
535
536 gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
537 gdt_descr.size = GDT_SIZE - 1;
538 load_gdt(&gdt_descr);
539 }
540 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
541
542 /*
543 * Current gdt points %fs at the "master" per-cpu area: after this,
544 * it's on the real one.
545 */
546 void switch_to_new_gdt(int cpu)
547 {
548 /* Load the original GDT */
549 load_direct_gdt(cpu);
550 /* Reload the per-cpu base */
551 load_percpu_segment(cpu);
552 }
553
554 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
555
556 static void get_model_name(struct cpuinfo_x86 *c)
557 {
558 unsigned int *v;
559 char *p, *q, *s;
560
561 if (c->extended_cpuid_level < 0x80000004)
562 return;
563
564 v = (unsigned int *)c->x86_model_id;
565 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
566 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
567 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
568 c->x86_model_id[48] = 0;
569
570 /* Trim whitespace */
571 p = q = s = &c->x86_model_id[0];
572
573 while (*p == ' ')
574 p++;
575
576 while (*p) {
577 /* Note the last non-whitespace index */
578 if (!isspace(*p))
579 s = q;
580
581 *q++ = *p++;
582 }
583
584 *(s + 1) = '\0';
585 }
586
587 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
588 {
589 unsigned int n, dummy, ebx, ecx, edx, l2size;
590
591 n = c->extended_cpuid_level;
592
593 if (n >= 0x80000005) {
594 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
595 c->x86_cache_size = (ecx>>24) + (edx>>24);
596 #ifdef CONFIG_X86_64
597 /* On K8 L1 TLB is inclusive, so don't count it */
598 c->x86_tlbsize = 0;
599 #endif
600 }
601
602 if (n < 0x80000006) /* Some chips just has a large L1. */
603 return;
604
605 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
606 l2size = ecx >> 16;
607
608 #ifdef CONFIG_X86_64
609 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
610 #else
611 /* do processor-specific cache resizing */
612 if (this_cpu->legacy_cache_size)
613 l2size = this_cpu->legacy_cache_size(c, l2size);
614
615 /* Allow user to override all this if necessary. */
616 if (cachesize_override != -1)
617 l2size = cachesize_override;
618
619 if (l2size == 0)
620 return; /* Again, no L2 cache is possible */
621 #endif
622
623 c->x86_cache_size = l2size;
624 }
625
626 u16 __read_mostly tlb_lli_4k[NR_INFO];
627 u16 __read_mostly tlb_lli_2m[NR_INFO];
628 u16 __read_mostly tlb_lli_4m[NR_INFO];
629 u16 __read_mostly tlb_lld_4k[NR_INFO];
630 u16 __read_mostly tlb_lld_2m[NR_INFO];
631 u16 __read_mostly tlb_lld_4m[NR_INFO];
632 u16 __read_mostly tlb_lld_1g[NR_INFO];
633
634 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
635 {
636 if (this_cpu->c_detect_tlb)
637 this_cpu->c_detect_tlb(c);
638
639 pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
640 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
641 tlb_lli_4m[ENTRIES]);
642
643 pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
644 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
645 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
646 }
647
648 void detect_ht(struct cpuinfo_x86 *c)
649 {
650 #ifdef CONFIG_SMP
651 u32 eax, ebx, ecx, edx;
652 int index_msb, core_bits;
653 static bool printed;
654
655 if (!cpu_has(c, X86_FEATURE_HT))
656 return;
657
658 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
659 goto out;
660
661 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
662 return;
663
664 cpuid(1, &eax, &ebx, &ecx, &edx);
665
666 smp_num_siblings = (ebx & 0xff0000) >> 16;
667
668 if (smp_num_siblings == 1) {
669 pr_info_once("CPU0: Hyper-Threading is disabled\n");
670 goto out;
671 }
672
673 if (smp_num_siblings <= 1)
674 goto out;
675
676 index_msb = get_count_order(smp_num_siblings);
677 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
678
679 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
680
681 index_msb = get_count_order(smp_num_siblings);
682
683 core_bits = get_count_order(c->x86_max_cores);
684
685 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
686 ((1 << core_bits) - 1);
687
688 out:
689 if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
690 pr_info("CPU: Physical Processor ID: %d\n",
691 c->phys_proc_id);
692 pr_info("CPU: Processor Core ID: %d\n",
693 c->cpu_core_id);
694 printed = 1;
695 }
696 #endif
697 }
698
699 static void get_cpu_vendor(struct cpuinfo_x86 *c)
700 {
701 char *v = c->x86_vendor_id;
702 int i;
703
704 for (i = 0; i < X86_VENDOR_NUM; i++) {
705 if (!cpu_devs[i])
706 break;
707
708 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
709 (cpu_devs[i]->c_ident[1] &&
710 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
711
712 this_cpu = cpu_devs[i];
713 c->x86_vendor = this_cpu->c_x86_vendor;
714 return;
715 }
716 }
717
718 pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
719 "CPU: Your system may be unstable.\n", v);
720
721 c->x86_vendor = X86_VENDOR_UNKNOWN;
722 this_cpu = &default_cpu;
723 }
724
725 void cpu_detect(struct cpuinfo_x86 *c)
726 {
727 /* Get vendor name */
728 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
729 (unsigned int *)&c->x86_vendor_id[0],
730 (unsigned int *)&c->x86_vendor_id[8],
731 (unsigned int *)&c->x86_vendor_id[4]);
732
733 c->x86 = 4;
734 /* Intel-defined flags: level 0x00000001 */
735 if (c->cpuid_level >= 0x00000001) {
736 u32 junk, tfms, cap0, misc;
737
738 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
739 c->x86 = x86_family(tfms);
740 c->x86_model = x86_model(tfms);
741 c->x86_stepping = x86_stepping(tfms);
742
743 if (cap0 & (1<<19)) {
744 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
745 c->x86_cache_alignment = c->x86_clflush_size;
746 }
747 }
748 }
749
750 static void apply_forced_caps(struct cpuinfo_x86 *c)
751 {
752 int i;
753
754 for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
755 c->x86_capability[i] &= ~cpu_caps_cleared[i];
756 c->x86_capability[i] |= cpu_caps_set[i];
757 }
758 }
759
760 static void init_speculation_control(struct cpuinfo_x86 *c)
761 {
762 /*
763 * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
764 * and they also have a different bit for STIBP support. Also,
765 * a hypervisor might have set the individual AMD bits even on
766 * Intel CPUs, for finer-grained selection of what's available.
767 */
768 if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
769 set_cpu_cap(c, X86_FEATURE_IBRS);
770 set_cpu_cap(c, X86_FEATURE_IBPB);
771 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
772 }
773
774 if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
775 set_cpu_cap(c, X86_FEATURE_STIBP);
776
777 if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
778 cpu_has(c, X86_FEATURE_VIRT_SSBD))
779 set_cpu_cap(c, X86_FEATURE_SSBD);
780
781 if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
782 set_cpu_cap(c, X86_FEATURE_IBRS);
783 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
784 }
785
786 if (cpu_has(c, X86_FEATURE_AMD_IBPB))
787 set_cpu_cap(c, X86_FEATURE_IBPB);
788
789 if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
790 set_cpu_cap(c, X86_FEATURE_STIBP);
791 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
792 }
793 }
794
795 void get_cpu_cap(struct cpuinfo_x86 *c)
796 {
797 u32 eax, ebx, ecx, edx;
798
799 /* Intel-defined flags: level 0x00000001 */
800 if (c->cpuid_level >= 0x00000001) {
801 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
802
803 c->x86_capability[CPUID_1_ECX] = ecx;
804 c->x86_capability[CPUID_1_EDX] = edx;
805 }
806
807 /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
808 if (c->cpuid_level >= 0x00000006)
809 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
810
811 /* Additional Intel-defined flags: level 0x00000007 */
812 if (c->cpuid_level >= 0x00000007) {
813 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
814 c->x86_capability[CPUID_7_0_EBX] = ebx;
815 c->x86_capability[CPUID_7_ECX] = ecx;
816 c->x86_capability[CPUID_7_EDX] = edx;
817 }
818
819 /* Extended state features: level 0x0000000d */
820 if (c->cpuid_level >= 0x0000000d) {
821 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
822
823 c->x86_capability[CPUID_D_1_EAX] = eax;
824 }
825
826 /* Additional Intel-defined flags: level 0x0000000F */
827 if (c->cpuid_level >= 0x0000000F) {
828
829 /* QoS sub-leaf, EAX=0Fh, ECX=0 */
830 cpuid_count(0x0000000F, 0, &eax, &ebx, &ecx, &edx);
831 c->x86_capability[CPUID_F_0_EDX] = edx;
832
833 if (cpu_has(c, X86_FEATURE_CQM_LLC)) {
834 /* will be overridden if occupancy monitoring exists */
835 c->x86_cache_max_rmid = ebx;
836
837 /* QoS sub-leaf, EAX=0Fh, ECX=1 */
838 cpuid_count(0x0000000F, 1, &eax, &ebx, &ecx, &edx);
839 c->x86_capability[CPUID_F_1_EDX] = edx;
840
841 if ((cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC)) ||
842 ((cpu_has(c, X86_FEATURE_CQM_MBM_TOTAL)) ||
843 (cpu_has(c, X86_FEATURE_CQM_MBM_LOCAL)))) {
844 c->x86_cache_max_rmid = ecx;
845 c->x86_cache_occ_scale = ebx;
846 }
847 } else {
848 c->x86_cache_max_rmid = -1;
849 c->x86_cache_occ_scale = -1;
850 }
851 }
852
853 /* AMD-defined flags: level 0x80000001 */
854 eax = cpuid_eax(0x80000000);
855 c->extended_cpuid_level = eax;
856
857 if ((eax & 0xffff0000) == 0x80000000) {
858 if (eax >= 0x80000001) {
859 cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
860
861 c->x86_capability[CPUID_8000_0001_ECX] = ecx;
862 c->x86_capability[CPUID_8000_0001_EDX] = edx;
863 }
864 }
865
866 if (c->extended_cpuid_level >= 0x80000007) {
867 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
868
869 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
870 c->x86_power = edx;
871 }
872
873 if (c->extended_cpuid_level >= 0x80000008) {
874 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
875
876 c->x86_virt_bits = (eax >> 8) & 0xff;
877 c->x86_phys_bits = eax & 0xff;
878 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
879 }
880 #ifdef CONFIG_X86_32
881 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
882 c->x86_phys_bits = 36;
883 #endif
884
885 if (c->extended_cpuid_level >= 0x8000000a)
886 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
887
888 init_scattered_cpuid_features(c);
889 init_speculation_control(c);
890
891 /*
892 * Clear/Set all flags overridden by options, after probe.
893 * This needs to happen each time we re-probe, which may happen
894 * several times during CPU initialization.
895 */
896 apply_forced_caps(c);
897 }
898
899 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
900 {
901 #ifdef CONFIG_X86_32
902 int i;
903
904 /*
905 * First of all, decide if this is a 486 or higher
906 * It's a 486 if we can modify the AC flag
907 */
908 if (flag_is_changeable_p(X86_EFLAGS_AC))
909 c->x86 = 4;
910 else
911 c->x86 = 3;
912
913 for (i = 0; i < X86_VENDOR_NUM; i++)
914 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
915 c->x86_vendor_id[0] = 0;
916 cpu_devs[i]->c_identify(c);
917 if (c->x86_vendor_id[0]) {
918 get_cpu_vendor(c);
919 break;
920 }
921 }
922 #endif
923 }
924
925 static const __initconst struct x86_cpu_id cpu_no_speculation[] = {
926 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_CEDARVIEW, X86_FEATURE_ANY },
927 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_CLOVERVIEW, X86_FEATURE_ANY },
928 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_LINCROFT, X86_FEATURE_ANY },
929 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_PENWELL, X86_FEATURE_ANY },
930 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_PINEVIEW, X86_FEATURE_ANY },
931 { X86_VENDOR_CENTAUR, 5 },
932 { X86_VENDOR_INTEL, 5 },
933 { X86_VENDOR_NSC, 5 },
934 { X86_VENDOR_ANY, 4 },
935 {}
936 };
937
938 static const __initconst struct x86_cpu_id cpu_no_meltdown[] = {
939 { X86_VENDOR_AMD },
940 {}
941 };
942
943 static const __initconst struct x86_cpu_id cpu_no_spec_store_bypass[] = {
944 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_PINEVIEW },
945 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_LINCROFT },
946 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_PENWELL },
947 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_CLOVERVIEW },
948 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_CEDARVIEW },
949 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_SILVERMONT1 },
950 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_AIRMONT },
951 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_SILVERMONT2 },
952 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_MERRIFIELD },
953 { X86_VENDOR_INTEL, 6, INTEL_FAM6_CORE_YONAH },
954 { X86_VENDOR_INTEL, 6, INTEL_FAM6_XEON_PHI_KNL },
955 { X86_VENDOR_INTEL, 6, INTEL_FAM6_XEON_PHI_KNM },
956 { X86_VENDOR_CENTAUR, 5, },
957 { X86_VENDOR_INTEL, 5, },
958 { X86_VENDOR_NSC, 5, },
959 { X86_VENDOR_AMD, 0x12, },
960 { X86_VENDOR_AMD, 0x11, },
961 { X86_VENDOR_AMD, 0x10, },
962 { X86_VENDOR_AMD, 0xf, },
963 { X86_VENDOR_ANY, 4, },
964 {}
965 };
966
967 static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
968 {
969 u64 ia32_cap = 0;
970
971 if (cpu_has(c, X86_FEATURE_ARCH_CAPABILITIES))
972 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
973
974 if (!x86_match_cpu(cpu_no_spec_store_bypass) &&
975 !(ia32_cap & ARCH_CAP_SSB_NO))
976 setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
977
978 if (x86_match_cpu(cpu_no_speculation))
979 return;
980
981 setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
982 setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
983
984 if (x86_match_cpu(cpu_no_meltdown))
985 return;
986
987 /* Rogue Data Cache Load? No! */
988 if (ia32_cap & ARCH_CAP_RDCL_NO)
989 return;
990
991 setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
992 }
993
994 /*
995 * Do minimum CPU detection early.
996 * Fields really needed: vendor, cpuid_level, family, model, mask,
997 * cache alignment.
998 * The others are not touched to avoid unwanted side effects.
999 *
1000 * WARNING: this function is only called on the boot CPU. Don't add code
1001 * here that is supposed to run on all CPUs.
1002 */
1003 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1004 {
1005 #ifdef CONFIG_X86_64
1006 c->x86_clflush_size = 64;
1007 c->x86_phys_bits = 36;
1008 c->x86_virt_bits = 48;
1009 #else
1010 c->x86_clflush_size = 32;
1011 c->x86_phys_bits = 32;
1012 c->x86_virt_bits = 32;
1013 #endif
1014 c->x86_cache_alignment = c->x86_clflush_size;
1015
1016 memset(&c->x86_capability, 0, sizeof c->x86_capability);
1017 c->extended_cpuid_level = 0;
1018
1019 /* cyrix could have cpuid enabled via c_identify()*/
1020 if (have_cpuid_p()) {
1021 cpu_detect(c);
1022 get_cpu_vendor(c);
1023 get_cpu_cap(c);
1024 setup_force_cpu_cap(X86_FEATURE_CPUID);
1025
1026 if (this_cpu->c_early_init)
1027 this_cpu->c_early_init(c);
1028
1029 c->cpu_index = 0;
1030 filter_cpuid_features(c, false);
1031
1032 if (this_cpu->c_bsp_init)
1033 this_cpu->c_bsp_init(c);
1034 } else {
1035 identify_cpu_without_cpuid(c);
1036 setup_clear_cpu_cap(X86_FEATURE_CPUID);
1037 }
1038
1039 setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1040
1041 cpu_set_bug_bits(c);
1042
1043 fpu__init_system(c);
1044
1045 #ifdef CONFIG_X86_32
1046 /*
1047 * Regardless of whether PCID is enumerated, the SDM says
1048 * that it can't be enabled in 32-bit mode.
1049 */
1050 setup_clear_cpu_cap(X86_FEATURE_PCID);
1051 #endif
1052 }
1053
1054 void __init early_cpu_init(void)
1055 {
1056 const struct cpu_dev *const *cdev;
1057 int count = 0;
1058
1059 #ifdef CONFIG_PROCESSOR_SELECT
1060 pr_info("KERNEL supported cpus:\n");
1061 #endif
1062
1063 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1064 const struct cpu_dev *cpudev = *cdev;
1065
1066 if (count >= X86_VENDOR_NUM)
1067 break;
1068 cpu_devs[count] = cpudev;
1069 count++;
1070
1071 #ifdef CONFIG_PROCESSOR_SELECT
1072 {
1073 unsigned int j;
1074
1075 for (j = 0; j < 2; j++) {
1076 if (!cpudev->c_ident[j])
1077 continue;
1078 pr_info(" %s %s\n", cpudev->c_vendor,
1079 cpudev->c_ident[j]);
1080 }
1081 }
1082 #endif
1083 }
1084 early_identify_cpu(&boot_cpu_data);
1085 }
1086
1087 /*
1088 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1089 * unfortunately, that's not true in practice because of early VIA
1090 * chips and (more importantly) broken virtualizers that are not easy
1091 * to detect. In the latter case it doesn't even *fail* reliably, so
1092 * probing for it doesn't even work. Disable it completely on 32-bit
1093 * unless we can find a reliable way to detect all the broken cases.
1094 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1095 */
1096 static void detect_nopl(struct cpuinfo_x86 *c)
1097 {
1098 #ifdef CONFIG_X86_32
1099 clear_cpu_cap(c, X86_FEATURE_NOPL);
1100 #else
1101 set_cpu_cap(c, X86_FEATURE_NOPL);
1102 #endif
1103 }
1104
1105 static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
1106 {
1107 #ifdef CONFIG_X86_64
1108 /*
1109 * Empirically, writing zero to a segment selector on AMD does
1110 * not clear the base, whereas writing zero to a segment
1111 * selector on Intel does clear the base. Intel's behavior
1112 * allows slightly faster context switches in the common case
1113 * where GS is unused by the prev and next threads.
1114 *
1115 * Since neither vendor documents this anywhere that I can see,
1116 * detect it directly instead of hardcoding the choice by
1117 * vendor.
1118 *
1119 * I've designated AMD's behavior as the "bug" because it's
1120 * counterintuitive and less friendly.
1121 */
1122
1123 unsigned long old_base, tmp;
1124 rdmsrl(MSR_FS_BASE, old_base);
1125 wrmsrl(MSR_FS_BASE, 1);
1126 loadsegment(fs, 0);
1127 rdmsrl(MSR_FS_BASE, tmp);
1128 if (tmp != 0)
1129 set_cpu_bug(c, X86_BUG_NULL_SEG);
1130 wrmsrl(MSR_FS_BASE, old_base);
1131 #endif
1132 }
1133
1134 static void generic_identify(struct cpuinfo_x86 *c)
1135 {
1136 c->extended_cpuid_level = 0;
1137
1138 if (!have_cpuid_p())
1139 identify_cpu_without_cpuid(c);
1140
1141 /* cyrix could have cpuid enabled via c_identify()*/
1142 if (!have_cpuid_p())
1143 return;
1144
1145 cpu_detect(c);
1146
1147 get_cpu_vendor(c);
1148
1149 get_cpu_cap(c);
1150
1151 if (c->cpuid_level >= 0x00000001) {
1152 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1153 #ifdef CONFIG_X86_32
1154 # ifdef CONFIG_SMP
1155 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1156 # else
1157 c->apicid = c->initial_apicid;
1158 # endif
1159 #endif
1160 c->phys_proc_id = c->initial_apicid;
1161 }
1162
1163 get_model_name(c); /* Default name */
1164
1165 detect_nopl(c);
1166
1167 detect_null_seg_behavior(c);
1168
1169 /*
1170 * ESPFIX is a strange bug. All real CPUs have it. Paravirt
1171 * systems that run Linux at CPL > 0 may or may not have the
1172 * issue, but, even if they have the issue, there's absolutely
1173 * nothing we can do about it because we can't use the real IRET
1174 * instruction.
1175 *
1176 * NB: For the time being, only 32-bit kernels support
1177 * X86_BUG_ESPFIX as such. 64-bit kernels directly choose
1178 * whether to apply espfix using paravirt hooks. If any
1179 * non-paravirt system ever shows up that does *not* have the
1180 * ESPFIX issue, we can change this.
1181 */
1182 #ifdef CONFIG_X86_32
1183 # ifdef CONFIG_PARAVIRT
1184 do {
1185 extern void native_iret(void);
1186 if (pv_cpu_ops.iret == native_iret)
1187 set_cpu_bug(c, X86_BUG_ESPFIX);
1188 } while (0);
1189 # else
1190 set_cpu_bug(c, X86_BUG_ESPFIX);
1191 # endif
1192 #endif
1193 }
1194
1195 static void x86_init_cache_qos(struct cpuinfo_x86 *c)
1196 {
1197 /*
1198 * The heavy lifting of max_rmid and cache_occ_scale are handled
1199 * in get_cpu_cap(). Here we just set the max_rmid for the boot_cpu
1200 * in case CQM bits really aren't there in this CPU.
1201 */
1202 if (c != &boot_cpu_data) {
1203 boot_cpu_data.x86_cache_max_rmid =
1204 min(boot_cpu_data.x86_cache_max_rmid,
1205 c->x86_cache_max_rmid);
1206 }
1207 }
1208
1209 /*
1210 * Validate that ACPI/mptables have the same information about the
1211 * effective APIC id and update the package map.
1212 */
1213 static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1214 {
1215 #ifdef CONFIG_SMP
1216 unsigned int apicid, cpu = smp_processor_id();
1217
1218 apicid = apic->cpu_present_to_apicid(cpu);
1219
1220 if (apicid != c->apicid) {
1221 pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1222 cpu, apicid, c->initial_apicid);
1223 }
1224 BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1225 #else
1226 c->logical_proc_id = 0;
1227 #endif
1228 }
1229
1230 /*
1231 * This does the hard work of actually picking apart the CPU stuff...
1232 */
1233 static void identify_cpu(struct cpuinfo_x86 *c)
1234 {
1235 int i;
1236
1237 c->loops_per_jiffy = loops_per_jiffy;
1238 c->x86_cache_size = 0;
1239 c->x86_vendor = X86_VENDOR_UNKNOWN;
1240 c->x86_model = c->x86_stepping = 0; /* So far unknown... */
1241 c->x86_vendor_id[0] = '\0'; /* Unset */
1242 c->x86_model_id[0] = '\0'; /* Unset */
1243 c->x86_max_cores = 1;
1244 c->x86_coreid_bits = 0;
1245 c->cu_id = 0xff;
1246 #ifdef CONFIG_X86_64
1247 c->x86_clflush_size = 64;
1248 c->x86_phys_bits = 36;
1249 c->x86_virt_bits = 48;
1250 #else
1251 c->cpuid_level = -1; /* CPUID not detected */
1252 c->x86_clflush_size = 32;
1253 c->x86_phys_bits = 32;
1254 c->x86_virt_bits = 32;
1255 #endif
1256 c->x86_cache_alignment = c->x86_clflush_size;
1257 memset(&c->x86_capability, 0, sizeof c->x86_capability);
1258
1259 generic_identify(c);
1260
1261 if (this_cpu->c_identify)
1262 this_cpu->c_identify(c);
1263
1264 /* Clear/Set all flags overridden by options, after probe */
1265 apply_forced_caps(c);
1266
1267 #ifdef CONFIG_X86_64
1268 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1269 #endif
1270
1271 /*
1272 * Vendor-specific initialization. In this section we
1273 * canonicalize the feature flags, meaning if there are
1274 * features a certain CPU supports which CPUID doesn't
1275 * tell us, CPUID claiming incorrect flags, or other bugs,
1276 * we handle them here.
1277 *
1278 * At the end of this section, c->x86_capability better
1279 * indicate the features this CPU genuinely supports!
1280 */
1281 if (this_cpu->c_init)
1282 this_cpu->c_init(c);
1283
1284 /* Disable the PN if appropriate */
1285 squash_the_stupid_serial_number(c);
1286
1287 /* Set up SMEP/SMAP/UMIP */
1288 setup_smep(c);
1289 setup_smap(c);
1290 setup_umip(c);
1291
1292 /*
1293 * The vendor-specific functions might have changed features.
1294 * Now we do "generic changes."
1295 */
1296
1297 /* Filter out anything that depends on CPUID levels we don't have */
1298 filter_cpuid_features(c, true);
1299
1300 /* If the model name is still unset, do table lookup. */
1301 if (!c->x86_model_id[0]) {
1302 const char *p;
1303 p = table_lookup_model(c);
1304 if (p)
1305 strcpy(c->x86_model_id, p);
1306 else
1307 /* Last resort... */
1308 sprintf(c->x86_model_id, "%02x/%02x",
1309 c->x86, c->x86_model);
1310 }
1311
1312 #ifdef CONFIG_X86_64
1313 detect_ht(c);
1314 #endif
1315
1316 x86_init_rdrand(c);
1317 x86_init_cache_qos(c);
1318 setup_pku(c);
1319
1320 /*
1321 * Clear/Set all flags overridden by options, need do it
1322 * before following smp all cpus cap AND.
1323 */
1324 apply_forced_caps(c);
1325
1326 /*
1327 * On SMP, boot_cpu_data holds the common feature set between
1328 * all CPUs; so make sure that we indicate which features are
1329 * common between the CPUs. The first time this routine gets
1330 * executed, c == &boot_cpu_data.
1331 */
1332 if (c != &boot_cpu_data) {
1333 /* AND the already accumulated flags with these */
1334 for (i = 0; i < NCAPINTS; i++)
1335 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1336
1337 /* OR, i.e. replicate the bug flags */
1338 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1339 c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1340 }
1341
1342 /* Init Machine Check Exception if available. */
1343 mcheck_cpu_init(c);
1344
1345 select_idle_routine(c);
1346
1347 #ifdef CONFIG_NUMA
1348 numa_add_cpu(smp_processor_id());
1349 #endif
1350 }
1351
1352 /*
1353 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1354 * on 32-bit kernels:
1355 */
1356 #ifdef CONFIG_X86_32
1357 void enable_sep_cpu(void)
1358 {
1359 struct tss_struct *tss;
1360 int cpu;
1361
1362 if (!boot_cpu_has(X86_FEATURE_SEP))
1363 return;
1364
1365 cpu = get_cpu();
1366 tss = &per_cpu(cpu_tss_rw, cpu);
1367
1368 /*
1369 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1370 * see the big comment in struct x86_hw_tss's definition.
1371 */
1372
1373 tss->x86_tss.ss1 = __KERNEL_CS;
1374 wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1375 wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1376 wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1377
1378 put_cpu();
1379 }
1380 #endif
1381
1382 void __init identify_boot_cpu(void)
1383 {
1384 identify_cpu(&boot_cpu_data);
1385 #ifdef CONFIG_X86_32
1386 sysenter_setup();
1387 enable_sep_cpu();
1388 #endif
1389 cpu_detect_tlb(&boot_cpu_data);
1390 }
1391
1392 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1393 {
1394 BUG_ON(c == &boot_cpu_data);
1395 identify_cpu(c);
1396 #ifdef CONFIG_X86_32
1397 enable_sep_cpu();
1398 #endif
1399 mtrr_ap_init();
1400 validate_apic_and_package_id(c);
1401 x86_spec_ctrl_setup_ap();
1402 }
1403
1404 static __init int setup_noclflush(char *arg)
1405 {
1406 setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1407 setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1408 return 1;
1409 }
1410 __setup("noclflush", setup_noclflush);
1411
1412 void print_cpu_info(struct cpuinfo_x86 *c)
1413 {
1414 const char *vendor = NULL;
1415
1416 if (c->x86_vendor < X86_VENDOR_NUM) {
1417 vendor = this_cpu->c_vendor;
1418 } else {
1419 if (c->cpuid_level >= 0)
1420 vendor = c->x86_vendor_id;
1421 }
1422
1423 if (vendor && !strstr(c->x86_model_id, vendor))
1424 pr_cont("%s ", vendor);
1425
1426 if (c->x86_model_id[0])
1427 pr_cont("%s", c->x86_model_id);
1428 else
1429 pr_cont("%d86", c->x86);
1430
1431 pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1432
1433 if (c->x86_stepping || c->cpuid_level >= 0)
1434 pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
1435 else
1436 pr_cont(")\n");
1437 }
1438
1439 /*
1440 * clearcpuid= was already parsed in fpu__init_parse_early_param.
1441 * But we need to keep a dummy __setup around otherwise it would
1442 * show up as an environment variable for init.
1443 */
1444 static __init int setup_clearcpuid(char *arg)
1445 {
1446 return 1;
1447 }
1448 __setup("clearcpuid=", setup_clearcpuid);
1449
1450 #ifdef CONFIG_X86_64
1451 DEFINE_PER_CPU_FIRST(union irq_stack_union,
1452 irq_stack_union) __aligned(PAGE_SIZE) __visible;
1453
1454 /*
1455 * The following percpu variables are hot. Align current_task to
1456 * cacheline size such that they fall in the same cacheline.
1457 */
1458 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1459 &init_task;
1460 EXPORT_PER_CPU_SYMBOL(current_task);
1461
1462 DEFINE_PER_CPU(char *, irq_stack_ptr) =
1463 init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE;
1464
1465 DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1466
1467 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1468 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1469
1470 /* May not be marked __init: used by software suspend */
1471 void syscall_init(void)
1472 {
1473 extern char _entry_trampoline[];
1474 extern char entry_SYSCALL_64_trampoline[];
1475
1476 int cpu = smp_processor_id();
1477 unsigned long SYSCALL64_entry_trampoline =
1478 (unsigned long)get_cpu_entry_area(cpu)->entry_trampoline +
1479 (entry_SYSCALL_64_trampoline - _entry_trampoline);
1480
1481 wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1482 if (static_cpu_has(X86_FEATURE_PTI))
1483 wrmsrl(MSR_LSTAR, SYSCALL64_entry_trampoline);
1484 else
1485 wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1486
1487 #ifdef CONFIG_IA32_EMULATION
1488 wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1489 /*
1490 * This only works on Intel CPUs.
1491 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1492 * This does not cause SYSENTER to jump to the wrong location, because
1493 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1494 */
1495 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1496 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1));
1497 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1498 #else
1499 wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1500 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1501 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1502 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1503 #endif
1504
1505 /* Flags to clear on syscall */
1506 wrmsrl(MSR_SYSCALL_MASK,
1507 X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1508 X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1509 }
1510
1511 /*
1512 * Copies of the original ist values from the tss are only accessed during
1513 * debugging, no special alignment required.
1514 */
1515 DEFINE_PER_CPU(struct orig_ist, orig_ist);
1516
1517 static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
1518 DEFINE_PER_CPU(int, debug_stack_usage);
1519
1520 int is_debug_stack(unsigned long addr)
1521 {
1522 return __this_cpu_read(debug_stack_usage) ||
1523 (addr <= __this_cpu_read(debug_stack_addr) &&
1524 addr > (__this_cpu_read(debug_stack_addr) - DEBUG_STKSZ));
1525 }
1526 NOKPROBE_SYMBOL(is_debug_stack);
1527
1528 DEFINE_PER_CPU(u32, debug_idt_ctr);
1529
1530 void debug_stack_set_zero(void)
1531 {
1532 this_cpu_inc(debug_idt_ctr);
1533 load_current_idt();
1534 }
1535 NOKPROBE_SYMBOL(debug_stack_set_zero);
1536
1537 void debug_stack_reset(void)
1538 {
1539 if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
1540 return;
1541 if (this_cpu_dec_return(debug_idt_ctr) == 0)
1542 load_current_idt();
1543 }
1544 NOKPROBE_SYMBOL(debug_stack_reset);
1545
1546 #else /* CONFIG_X86_64 */
1547
1548 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1549 EXPORT_PER_CPU_SYMBOL(current_task);
1550 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1551 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1552
1553 /*
1554 * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1555 * the top of the kernel stack. Use an extra percpu variable to track the
1556 * top of the kernel stack directly.
1557 */
1558 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1559 (unsigned long)&init_thread_union + THREAD_SIZE;
1560 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1561
1562 #ifdef CONFIG_CC_STACKPROTECTOR
1563 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1564 #endif
1565
1566 #endif /* CONFIG_X86_64 */
1567
1568 /*
1569 * Clear all 6 debug registers:
1570 */
1571 static void clear_all_debug_regs(void)
1572 {
1573 int i;
1574
1575 for (i = 0; i < 8; i++) {
1576 /* Ignore db4, db5 */
1577 if ((i == 4) || (i == 5))
1578 continue;
1579
1580 set_debugreg(0, i);
1581 }
1582 }
1583
1584 #ifdef CONFIG_KGDB
1585 /*
1586 * Restore debug regs if using kgdbwait and you have a kernel debugger
1587 * connection established.
1588 */
1589 static void dbg_restore_debug_regs(void)
1590 {
1591 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1592 arch_kgdb_ops.correct_hw_break();
1593 }
1594 #else /* ! CONFIG_KGDB */
1595 #define dbg_restore_debug_regs()
1596 #endif /* ! CONFIG_KGDB */
1597
1598 static void wait_for_master_cpu(int cpu)
1599 {
1600 #ifdef CONFIG_SMP
1601 /*
1602 * wait for ACK from master CPU before continuing
1603 * with AP initialization
1604 */
1605 WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1606 while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1607 cpu_relax();
1608 #endif
1609 }
1610
1611 /*
1612 * cpu_init() initializes state that is per-CPU. Some data is already
1613 * initialized (naturally) in the bootstrap process, such as the GDT
1614 * and IDT. We reload them nevertheless, this function acts as a
1615 * 'CPU state barrier', nothing should get across.
1616 * A lot of state is already set up in PDA init for 64 bit
1617 */
1618 #ifdef CONFIG_X86_64
1619
1620 void cpu_init(void)
1621 {
1622 struct orig_ist *oist;
1623 struct task_struct *me;
1624 struct tss_struct *t;
1625 unsigned long v;
1626 int cpu = raw_smp_processor_id();
1627 int i;
1628
1629 wait_for_master_cpu(cpu);
1630
1631 /*
1632 * Initialize the CR4 shadow before doing anything that could
1633 * try to read it.
1634 */
1635 cr4_init_shadow();
1636
1637 if (cpu)
1638 load_ucode_ap();
1639
1640 t = &per_cpu(cpu_tss_rw, cpu);
1641 oist = &per_cpu(orig_ist, cpu);
1642
1643 #ifdef CONFIG_NUMA
1644 if (this_cpu_read(numa_node) == 0 &&
1645 early_cpu_to_node(cpu) != NUMA_NO_NODE)
1646 set_numa_node(early_cpu_to_node(cpu));
1647 #endif
1648
1649 me = current;
1650
1651 pr_debug("Initializing CPU#%d\n", cpu);
1652
1653 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1654
1655 /*
1656 * Initialize the per-CPU GDT with the boot GDT,
1657 * and set up the GDT descriptor:
1658 */
1659
1660 switch_to_new_gdt(cpu);
1661 loadsegment(fs, 0);
1662
1663 load_current_idt();
1664
1665 memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1666 syscall_init();
1667
1668 wrmsrl(MSR_FS_BASE, 0);
1669 wrmsrl(MSR_KERNEL_GS_BASE, 0);
1670 barrier();
1671
1672 x86_configure_nx();
1673 x2apic_setup();
1674
1675 /*
1676 * set up and load the per-CPU TSS
1677 */
1678 if (!oist->ist[0]) {
1679 char *estacks = get_cpu_entry_area(cpu)->exception_stacks;
1680
1681 for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1682 estacks += exception_stack_sizes[v];
1683 oist->ist[v] = t->x86_tss.ist[v] =
1684 (unsigned long)estacks;
1685 if (v == DEBUG_STACK-1)
1686 per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
1687 }
1688 }
1689
1690 t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
1691
1692 /*
1693 * <= is required because the CPU will access up to
1694 * 8 bits beyond the end of the IO permission bitmap.
1695 */
1696 for (i = 0; i <= IO_BITMAP_LONGS; i++)
1697 t->io_bitmap[i] = ~0UL;
1698
1699 mmgrab(&init_mm);
1700 me->active_mm = &init_mm;
1701 BUG_ON(me->mm);
1702 initialize_tlbstate_and_flush();
1703 enter_lazy_tlb(&init_mm, me);
1704
1705 /*
1706 * Initialize the TSS. sp0 points to the entry trampoline stack
1707 * regardless of what task is running.
1708 */
1709 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1710 load_TR_desc();
1711 load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
1712
1713 load_mm_ldt(&init_mm);
1714
1715 clear_all_debug_regs();
1716 dbg_restore_debug_regs();
1717
1718 fpu__init_cpu();
1719
1720 if (is_uv_system())
1721 uv_cpu_init();
1722
1723 load_fixmap_gdt(cpu);
1724 }
1725
1726 #else
1727
1728 void cpu_init(void)
1729 {
1730 int cpu = smp_processor_id();
1731 struct task_struct *curr = current;
1732 struct tss_struct *t = &per_cpu(cpu_tss_rw, cpu);
1733
1734 wait_for_master_cpu(cpu);
1735
1736 /*
1737 * Initialize the CR4 shadow before doing anything that could
1738 * try to read it.
1739 */
1740 cr4_init_shadow();
1741
1742 show_ucode_info_early();
1743
1744 pr_info("Initializing CPU#%d\n", cpu);
1745
1746 if (cpu_feature_enabled(X86_FEATURE_VME) ||
1747 boot_cpu_has(X86_FEATURE_TSC) ||
1748 boot_cpu_has(X86_FEATURE_DE))
1749 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1750
1751 load_current_idt();
1752 switch_to_new_gdt(cpu);
1753
1754 /*
1755 * Set up and load the per-CPU TSS and LDT
1756 */
1757 mmgrab(&init_mm);
1758 curr->active_mm = &init_mm;
1759 BUG_ON(curr->mm);
1760 initialize_tlbstate_and_flush();
1761 enter_lazy_tlb(&init_mm, curr);
1762
1763 /*
1764 * Initialize the TSS. Don't bother initializing sp0, as the initial
1765 * task never enters user mode.
1766 */
1767 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1768 load_TR_desc();
1769
1770 load_mm_ldt(&init_mm);
1771
1772 t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
1773
1774 #ifdef CONFIG_DOUBLEFAULT
1775 /* Set up doublefault TSS pointer in the GDT */
1776 __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1777 #endif
1778
1779 clear_all_debug_regs();
1780 dbg_restore_debug_regs();
1781
1782 fpu__init_cpu();
1783
1784 load_fixmap_gdt(cpu);
1785 }
1786 #endif
1787
1788 static void bsp_resume(void)
1789 {
1790 if (this_cpu->c_bsp_resume)
1791 this_cpu->c_bsp_resume(&boot_cpu_data);
1792 }
1793
1794 static struct syscore_ops cpu_syscore_ops = {
1795 .resume = bsp_resume,
1796 };
1797
1798 static int __init init_cpu_syscore(void)
1799 {
1800 register_syscore_ops(&cpu_syscore_ops);
1801 return 0;
1802 }
1803 core_initcall(init_cpu_syscore);
1804
1805 /*
1806 * The microcode loader calls this upon late microcode load to recheck features,
1807 * only when microcode has been updated. Caller holds microcode_mutex and CPU
1808 * hotplug lock.
1809 */
1810 void microcode_check(void)
1811 {
1812 struct cpuinfo_x86 info;
1813
1814 perf_check_microcode();
1815
1816 /* Reload CPUID max function as it might've changed. */
1817 info.cpuid_level = cpuid_eax(0);
1818
1819 /*
1820 * Copy all capability leafs to pick up the synthetic ones so that
1821 * memcmp() below doesn't fail on that. The ones coming from CPUID will
1822 * get overwritten in get_cpu_cap().
1823 */
1824 memcpy(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability));
1825
1826 get_cpu_cap(&info);
1827
1828 if (!memcmp(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability)))
1829 return;
1830
1831 pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
1832 pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
1833 }