]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kernel/cpu/common.c
c7c996a692fd9d6af8d36ac57d6ec70a3e47e620
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kernel / cpu / common.c
1 #include <linux/bootmem.h>
2 #include <linux/linkage.h>
3 #include <linux/bitops.h>
4 #include <linux/kernel.h>
5 #include <linux/export.h>
6 #include <linux/percpu.h>
7 #include <linux/string.h>
8 #include <linux/ctype.h>
9 #include <linux/delay.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/clock.h>
12 #include <linux/sched/task.h>
13 #include <linux/init.h>
14 #include <linux/kprobes.h>
15 #include <linux/kgdb.h>
16 #include <linux/smp.h>
17 #include <linux/io.h>
18 #include <linux/syscore_ops.h>
19
20 #include <asm/stackprotector.h>
21 #include <asm/perf_event.h>
22 #include <asm/mmu_context.h>
23 #include <asm/archrandom.h>
24 #include <asm/hypervisor.h>
25 #include <asm/processor.h>
26 #include <asm/tlbflush.h>
27 #include <asm/debugreg.h>
28 #include <asm/sections.h>
29 #include <asm/vsyscall.h>
30 #include <linux/topology.h>
31 #include <linux/cpumask.h>
32 #include <asm/pgtable.h>
33 #include <linux/atomic.h>
34 #include <asm/proto.h>
35 #include <asm/setup.h>
36 #include <asm/apic.h>
37 #include <asm/desc.h>
38 #include <asm/fpu/internal.h>
39 #include <asm/mtrr.h>
40 #include <asm/hwcap2.h>
41 #include <linux/numa.h>
42 #include <asm/asm.h>
43 #include <asm/bugs.h>
44 #include <asm/cpu.h>
45 #include <asm/mce.h>
46 #include <asm/msr.h>
47 #include <asm/pat.h>
48 #include <asm/microcode.h>
49 #include <asm/microcode_intel.h>
50 #include <asm/intel-family.h>
51 #include <asm/cpu_device_id.h>
52
53 #ifdef CONFIG_X86_LOCAL_APIC
54 #include <asm/uv/uv.h>
55 #endif
56
57 #include "cpu.h"
58
59 u32 elf_hwcap2 __read_mostly;
60
61 /* all of these masks are initialized in setup_cpu_local_masks() */
62 cpumask_var_t cpu_initialized_mask;
63 cpumask_var_t cpu_callout_mask;
64 cpumask_var_t cpu_callin_mask;
65
66 /* representing cpus for which sibling maps can be computed */
67 cpumask_var_t cpu_sibling_setup_mask;
68
69 /* correctly size the local cpu masks */
70 void __init setup_cpu_local_masks(void)
71 {
72 alloc_bootmem_cpumask_var(&cpu_initialized_mask);
73 alloc_bootmem_cpumask_var(&cpu_callin_mask);
74 alloc_bootmem_cpumask_var(&cpu_callout_mask);
75 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
76 }
77
78 static void default_init(struct cpuinfo_x86 *c)
79 {
80 #ifdef CONFIG_X86_64
81 cpu_detect_cache_sizes(c);
82 #else
83 /* Not much we can do here... */
84 /* Check if at least it has cpuid */
85 if (c->cpuid_level == -1) {
86 /* No cpuid. It must be an ancient CPU */
87 if (c->x86 == 4)
88 strcpy(c->x86_model_id, "486");
89 else if (c->x86 == 3)
90 strcpy(c->x86_model_id, "386");
91 }
92 #endif
93 }
94
95 static const struct cpu_dev default_cpu = {
96 .c_init = default_init,
97 .c_vendor = "Unknown",
98 .c_x86_vendor = X86_VENDOR_UNKNOWN,
99 };
100
101 static const struct cpu_dev *this_cpu = &default_cpu;
102
103 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
104 #ifdef CONFIG_X86_64
105 /*
106 * We need valid kernel segments for data and code in long mode too
107 * IRET will check the segment types kkeil 2000/10/28
108 * Also sysret mandates a special GDT layout
109 *
110 * TLS descriptors are currently at a different place compared to i386.
111 * Hopefully nobody expects them at a fixed place (Wine?)
112 */
113 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
114 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
115 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
116 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
117 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
118 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
119 #else
120 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
121 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
122 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
123 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
124 /*
125 * Segments used for calling PnP BIOS have byte granularity.
126 * They code segments and data segments have fixed 64k limits,
127 * the transfer segment sizes are set at run time.
128 */
129 /* 32-bit code */
130 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
131 /* 16-bit code */
132 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
133 /* 16-bit data */
134 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
135 /* 16-bit data */
136 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
137 /* 16-bit data */
138 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
139 /*
140 * The APM segments have byte granularity and their bases
141 * are set at run time. All have 64k limits.
142 */
143 /* 32-bit code */
144 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
145 /* 16-bit code */
146 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
147 /* data */
148 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
149
150 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
151 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
152 GDT_STACK_CANARY_INIT
153 #endif
154 } };
155 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
156
157 static int __init x86_mpx_setup(char *s)
158 {
159 /* require an exact match without trailing characters */
160 if (strlen(s))
161 return 0;
162
163 /* do not emit a message if the feature is not present */
164 if (!boot_cpu_has(X86_FEATURE_MPX))
165 return 1;
166
167 setup_clear_cpu_cap(X86_FEATURE_MPX);
168 pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n");
169 return 1;
170 }
171 __setup("nompx", x86_mpx_setup);
172
173 #ifdef CONFIG_X86_64
174 static int __init x86_nopcid_setup(char *s)
175 {
176 /* nopcid doesn't accept parameters */
177 if (s)
178 return -EINVAL;
179
180 /* do not emit a message if the feature is not present */
181 if (!boot_cpu_has(X86_FEATURE_PCID))
182 return 0;
183
184 setup_clear_cpu_cap(X86_FEATURE_PCID);
185 pr_info("nopcid: PCID feature disabled\n");
186 return 0;
187 }
188 early_param("nopcid", x86_nopcid_setup);
189 #endif
190
191 static int __init x86_noinvpcid_setup(char *s)
192 {
193 /* noinvpcid doesn't accept parameters */
194 if (s)
195 return -EINVAL;
196
197 /* do not emit a message if the feature is not present */
198 if (!boot_cpu_has(X86_FEATURE_INVPCID))
199 return 0;
200
201 setup_clear_cpu_cap(X86_FEATURE_INVPCID);
202 pr_info("noinvpcid: INVPCID feature disabled\n");
203 return 0;
204 }
205 early_param("noinvpcid", x86_noinvpcid_setup);
206
207 #ifdef CONFIG_X86_32
208 static int cachesize_override = -1;
209 static int disable_x86_serial_nr = 1;
210
211 static int __init cachesize_setup(char *str)
212 {
213 get_option(&str, &cachesize_override);
214 return 1;
215 }
216 __setup("cachesize=", cachesize_setup);
217
218 static int __init x86_sep_setup(char *s)
219 {
220 setup_clear_cpu_cap(X86_FEATURE_SEP);
221 return 1;
222 }
223 __setup("nosep", x86_sep_setup);
224
225 /* Standard macro to see if a specific flag is changeable */
226 static inline int flag_is_changeable_p(u32 flag)
227 {
228 u32 f1, f2;
229
230 /*
231 * Cyrix and IDT cpus allow disabling of CPUID
232 * so the code below may return different results
233 * when it is executed before and after enabling
234 * the CPUID. Add "volatile" to not allow gcc to
235 * optimize the subsequent calls to this function.
236 */
237 asm volatile ("pushfl \n\t"
238 "pushfl \n\t"
239 "popl %0 \n\t"
240 "movl %0, %1 \n\t"
241 "xorl %2, %0 \n\t"
242 "pushl %0 \n\t"
243 "popfl \n\t"
244 "pushfl \n\t"
245 "popl %0 \n\t"
246 "popfl \n\t"
247
248 : "=&r" (f1), "=&r" (f2)
249 : "ir" (flag));
250
251 return ((f1^f2) & flag) != 0;
252 }
253
254 /* Probe for the CPUID instruction */
255 int have_cpuid_p(void)
256 {
257 return flag_is_changeable_p(X86_EFLAGS_ID);
258 }
259
260 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
261 {
262 unsigned long lo, hi;
263
264 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
265 return;
266
267 /* Disable processor serial number: */
268
269 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
270 lo |= 0x200000;
271 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
272
273 pr_notice("CPU serial number disabled.\n");
274 clear_cpu_cap(c, X86_FEATURE_PN);
275
276 /* Disabling the serial number may affect the cpuid level */
277 c->cpuid_level = cpuid_eax(0);
278 }
279
280 static int __init x86_serial_nr_setup(char *s)
281 {
282 disable_x86_serial_nr = 0;
283 return 1;
284 }
285 __setup("serialnumber", x86_serial_nr_setup);
286 #else
287 static inline int flag_is_changeable_p(u32 flag)
288 {
289 return 1;
290 }
291 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
292 {
293 }
294 #endif
295
296 static __init int setup_disable_smep(char *arg)
297 {
298 setup_clear_cpu_cap(X86_FEATURE_SMEP);
299 /* Check for things that depend on SMEP being enabled: */
300 check_mpx_erratum(&boot_cpu_data);
301 return 1;
302 }
303 __setup("nosmep", setup_disable_smep);
304
305 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
306 {
307 if (cpu_has(c, X86_FEATURE_SMEP))
308 cr4_set_bits(X86_CR4_SMEP);
309 }
310
311 static __init int setup_disable_smap(char *arg)
312 {
313 setup_clear_cpu_cap(X86_FEATURE_SMAP);
314 return 1;
315 }
316 __setup("nosmap", setup_disable_smap);
317
318 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
319 {
320 unsigned long eflags = native_save_fl();
321
322 /* This should have been cleared long ago */
323 BUG_ON(eflags & X86_EFLAGS_AC);
324
325 if (cpu_has(c, X86_FEATURE_SMAP)) {
326 #ifdef CONFIG_X86_SMAP
327 cr4_set_bits(X86_CR4_SMAP);
328 #else
329 cr4_clear_bits(X86_CR4_SMAP);
330 #endif
331 }
332 }
333
334 static __always_inline void setup_umip(struct cpuinfo_x86 *c)
335 {
336 /* Check the boot processor, plus build option for UMIP. */
337 if (!cpu_feature_enabled(X86_FEATURE_UMIP))
338 goto out;
339
340 /* Check the current processor's cpuid bits. */
341 if (!cpu_has(c, X86_FEATURE_UMIP))
342 goto out;
343
344 cr4_set_bits(X86_CR4_UMIP);
345
346 pr_info("x86/cpu: Activated the Intel User Mode Instruction Prevention (UMIP) CPU feature\n");
347
348 return;
349
350 out:
351 /*
352 * Make sure UMIP is disabled in case it was enabled in a
353 * previous boot (e.g., via kexec).
354 */
355 cr4_clear_bits(X86_CR4_UMIP);
356 }
357
358 /*
359 * Protection Keys are not available in 32-bit mode.
360 */
361 static bool pku_disabled;
362
363 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
364 {
365 /* check the boot processor, plus compile options for PKU: */
366 if (!cpu_feature_enabled(X86_FEATURE_PKU))
367 return;
368 /* checks the actual processor's cpuid bits: */
369 if (!cpu_has(c, X86_FEATURE_PKU))
370 return;
371 if (pku_disabled)
372 return;
373
374 cr4_set_bits(X86_CR4_PKE);
375 /*
376 * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
377 * cpuid bit to be set. We need to ensure that we
378 * update that bit in this CPU's "cpu_info".
379 */
380 get_cpu_cap(c);
381 }
382
383 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
384 static __init int setup_disable_pku(char *arg)
385 {
386 /*
387 * Do not clear the X86_FEATURE_PKU bit. All of the
388 * runtime checks are against OSPKE so clearing the
389 * bit does nothing.
390 *
391 * This way, we will see "pku" in cpuinfo, but not
392 * "ospke", which is exactly what we want. It shows
393 * that the CPU has PKU, but the OS has not enabled it.
394 * This happens to be exactly how a system would look
395 * if we disabled the config option.
396 */
397 pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
398 pku_disabled = true;
399 return 1;
400 }
401 __setup("nopku", setup_disable_pku);
402 #endif /* CONFIG_X86_64 */
403
404 /*
405 * Some CPU features depend on higher CPUID levels, which may not always
406 * be available due to CPUID level capping or broken virtualization
407 * software. Add those features to this table to auto-disable them.
408 */
409 struct cpuid_dependent_feature {
410 u32 feature;
411 u32 level;
412 };
413
414 static const struct cpuid_dependent_feature
415 cpuid_dependent_features[] = {
416 { X86_FEATURE_MWAIT, 0x00000005 },
417 { X86_FEATURE_DCA, 0x00000009 },
418 { X86_FEATURE_XSAVE, 0x0000000d },
419 { 0, 0 }
420 };
421
422 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
423 {
424 const struct cpuid_dependent_feature *df;
425
426 for (df = cpuid_dependent_features; df->feature; df++) {
427
428 if (!cpu_has(c, df->feature))
429 continue;
430 /*
431 * Note: cpuid_level is set to -1 if unavailable, but
432 * extended_extended_level is set to 0 if unavailable
433 * and the legitimate extended levels are all negative
434 * when signed; hence the weird messing around with
435 * signs here...
436 */
437 if (!((s32)df->level < 0 ?
438 (u32)df->level > (u32)c->extended_cpuid_level :
439 (s32)df->level > (s32)c->cpuid_level))
440 continue;
441
442 clear_cpu_cap(c, df->feature);
443 if (!warn)
444 continue;
445
446 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
447 x86_cap_flag(df->feature), df->level);
448 }
449 }
450
451 /*
452 * Naming convention should be: <Name> [(<Codename>)]
453 * This table only is used unless init_<vendor>() below doesn't set it;
454 * in particular, if CPUID levels 0x80000002..4 are supported, this
455 * isn't used
456 */
457
458 /* Look up CPU names by table lookup. */
459 static const char *table_lookup_model(struct cpuinfo_x86 *c)
460 {
461 #ifdef CONFIG_X86_32
462 const struct legacy_cpu_model_info *info;
463
464 if (c->x86_model >= 16)
465 return NULL; /* Range check */
466
467 if (!this_cpu)
468 return NULL;
469
470 info = this_cpu->legacy_models;
471
472 while (info->family) {
473 if (info->family == c->x86)
474 return info->model_names[c->x86_model];
475 info++;
476 }
477 #endif
478 return NULL; /* Not found */
479 }
480
481 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS];
482 __u32 cpu_caps_set[NCAPINTS + NBUGINTS];
483
484 void load_percpu_segment(int cpu)
485 {
486 #ifdef CONFIG_X86_32
487 loadsegment(fs, __KERNEL_PERCPU);
488 #else
489 __loadsegment_simple(gs, 0);
490 wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
491 #endif
492 load_stack_canary_segment();
493 }
494
495 #ifdef CONFIG_X86_32
496 /* The 32-bit entry code needs to find cpu_entry_area. */
497 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
498 #endif
499
500 #ifdef CONFIG_X86_64
501 /*
502 * Special IST stacks which the CPU switches to when it calls
503 * an IST-marked descriptor entry. Up to 7 stacks (hardware
504 * limit), all of them are 4K, except the debug stack which
505 * is 8K.
506 */
507 static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
508 [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ,
509 [DEBUG_STACK - 1] = DEBUG_STKSZ
510 };
511 #endif
512
513 /* Load the original GDT from the per-cpu structure */
514 void load_direct_gdt(int cpu)
515 {
516 struct desc_ptr gdt_descr;
517
518 gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
519 gdt_descr.size = GDT_SIZE - 1;
520 load_gdt(&gdt_descr);
521 }
522 EXPORT_SYMBOL_GPL(load_direct_gdt);
523
524 /* Load a fixmap remapping of the per-cpu GDT */
525 void load_fixmap_gdt(int cpu)
526 {
527 struct desc_ptr gdt_descr;
528
529 gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
530 gdt_descr.size = GDT_SIZE - 1;
531 load_gdt(&gdt_descr);
532 }
533 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
534
535 /*
536 * Current gdt points %fs at the "master" per-cpu area: after this,
537 * it's on the real one.
538 */
539 void switch_to_new_gdt(int cpu)
540 {
541 /* Load the original GDT */
542 load_direct_gdt(cpu);
543 /* Reload the per-cpu base */
544 load_percpu_segment(cpu);
545 }
546
547 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
548
549 static void get_model_name(struct cpuinfo_x86 *c)
550 {
551 unsigned int *v;
552 char *p, *q, *s;
553
554 if (c->extended_cpuid_level < 0x80000004)
555 return;
556
557 v = (unsigned int *)c->x86_model_id;
558 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
559 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
560 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
561 c->x86_model_id[48] = 0;
562
563 /* Trim whitespace */
564 p = q = s = &c->x86_model_id[0];
565
566 while (*p == ' ')
567 p++;
568
569 while (*p) {
570 /* Note the last non-whitespace index */
571 if (!isspace(*p))
572 s = q;
573
574 *q++ = *p++;
575 }
576
577 *(s + 1) = '\0';
578 }
579
580 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
581 {
582 unsigned int n, dummy, ebx, ecx, edx, l2size;
583
584 n = c->extended_cpuid_level;
585
586 if (n >= 0x80000005) {
587 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
588 c->x86_cache_size = (ecx>>24) + (edx>>24);
589 #ifdef CONFIG_X86_64
590 /* On K8 L1 TLB is inclusive, so don't count it */
591 c->x86_tlbsize = 0;
592 #endif
593 }
594
595 if (n < 0x80000006) /* Some chips just has a large L1. */
596 return;
597
598 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
599 l2size = ecx >> 16;
600
601 #ifdef CONFIG_X86_64
602 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
603 #else
604 /* do processor-specific cache resizing */
605 if (this_cpu->legacy_cache_size)
606 l2size = this_cpu->legacy_cache_size(c, l2size);
607
608 /* Allow user to override all this if necessary. */
609 if (cachesize_override != -1)
610 l2size = cachesize_override;
611
612 if (l2size == 0)
613 return; /* Again, no L2 cache is possible */
614 #endif
615
616 c->x86_cache_size = l2size;
617 }
618
619 u16 __read_mostly tlb_lli_4k[NR_INFO];
620 u16 __read_mostly tlb_lli_2m[NR_INFO];
621 u16 __read_mostly tlb_lli_4m[NR_INFO];
622 u16 __read_mostly tlb_lld_4k[NR_INFO];
623 u16 __read_mostly tlb_lld_2m[NR_INFO];
624 u16 __read_mostly tlb_lld_4m[NR_INFO];
625 u16 __read_mostly tlb_lld_1g[NR_INFO];
626
627 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
628 {
629 if (this_cpu->c_detect_tlb)
630 this_cpu->c_detect_tlb(c);
631
632 pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
633 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
634 tlb_lli_4m[ENTRIES]);
635
636 pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
637 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
638 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
639 }
640
641 void detect_ht(struct cpuinfo_x86 *c)
642 {
643 #ifdef CONFIG_SMP
644 u32 eax, ebx, ecx, edx;
645 int index_msb, core_bits;
646 static bool printed;
647
648 if (!cpu_has(c, X86_FEATURE_HT))
649 return;
650
651 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
652 goto out;
653
654 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
655 return;
656
657 cpuid(1, &eax, &ebx, &ecx, &edx);
658
659 smp_num_siblings = (ebx & 0xff0000) >> 16;
660
661 if (smp_num_siblings == 1) {
662 pr_info_once("CPU0: Hyper-Threading is disabled\n");
663 goto out;
664 }
665
666 if (smp_num_siblings <= 1)
667 goto out;
668
669 index_msb = get_count_order(smp_num_siblings);
670 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
671
672 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
673
674 index_msb = get_count_order(smp_num_siblings);
675
676 core_bits = get_count_order(c->x86_max_cores);
677
678 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
679 ((1 << core_bits) - 1);
680
681 out:
682 if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
683 pr_info("CPU: Physical Processor ID: %d\n",
684 c->phys_proc_id);
685 pr_info("CPU: Processor Core ID: %d\n",
686 c->cpu_core_id);
687 printed = 1;
688 }
689 #endif
690 }
691
692 static void get_cpu_vendor(struct cpuinfo_x86 *c)
693 {
694 char *v = c->x86_vendor_id;
695 int i;
696
697 for (i = 0; i < X86_VENDOR_NUM; i++) {
698 if (!cpu_devs[i])
699 break;
700
701 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
702 (cpu_devs[i]->c_ident[1] &&
703 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
704
705 this_cpu = cpu_devs[i];
706 c->x86_vendor = this_cpu->c_x86_vendor;
707 return;
708 }
709 }
710
711 pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
712 "CPU: Your system may be unstable.\n", v);
713
714 c->x86_vendor = X86_VENDOR_UNKNOWN;
715 this_cpu = &default_cpu;
716 }
717
718 void cpu_detect(struct cpuinfo_x86 *c)
719 {
720 /* Get vendor name */
721 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
722 (unsigned int *)&c->x86_vendor_id[0],
723 (unsigned int *)&c->x86_vendor_id[8],
724 (unsigned int *)&c->x86_vendor_id[4]);
725
726 c->x86 = 4;
727 /* Intel-defined flags: level 0x00000001 */
728 if (c->cpuid_level >= 0x00000001) {
729 u32 junk, tfms, cap0, misc;
730
731 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
732 c->x86 = x86_family(tfms);
733 c->x86_model = x86_model(tfms);
734 c->x86_mask = x86_stepping(tfms);
735
736 if (cap0 & (1<<19)) {
737 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
738 c->x86_cache_alignment = c->x86_clflush_size;
739 }
740 }
741 }
742
743 static void apply_forced_caps(struct cpuinfo_x86 *c)
744 {
745 int i;
746
747 for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
748 c->x86_capability[i] &= ~cpu_caps_cleared[i];
749 c->x86_capability[i] |= cpu_caps_set[i];
750 }
751 }
752
753 void get_cpu_cap(struct cpuinfo_x86 *c)
754 {
755 u32 eax, ebx, ecx, edx;
756
757 /* Intel-defined flags: level 0x00000001 */
758 if (c->cpuid_level >= 0x00000001) {
759 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
760
761 c->x86_capability[CPUID_1_ECX] = ecx;
762 c->x86_capability[CPUID_1_EDX] = edx;
763 }
764
765 /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
766 if (c->cpuid_level >= 0x00000006)
767 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
768
769 /* Additional Intel-defined flags: level 0x00000007 */
770 if (c->cpuid_level >= 0x00000007) {
771 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
772 c->x86_capability[CPUID_7_0_EBX] = ebx;
773 c->x86_capability[CPUID_7_ECX] = ecx;
774 c->x86_capability[CPUID_7_EDX] = edx;
775 }
776
777 /* Extended state features: level 0x0000000d */
778 if (c->cpuid_level >= 0x0000000d) {
779 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
780
781 c->x86_capability[CPUID_D_1_EAX] = eax;
782 }
783
784 /* Additional Intel-defined flags: level 0x0000000F */
785 if (c->cpuid_level >= 0x0000000F) {
786
787 /* QoS sub-leaf, EAX=0Fh, ECX=0 */
788 cpuid_count(0x0000000F, 0, &eax, &ebx, &ecx, &edx);
789 c->x86_capability[CPUID_F_0_EDX] = edx;
790
791 if (cpu_has(c, X86_FEATURE_CQM_LLC)) {
792 /* will be overridden if occupancy monitoring exists */
793 c->x86_cache_max_rmid = ebx;
794
795 /* QoS sub-leaf, EAX=0Fh, ECX=1 */
796 cpuid_count(0x0000000F, 1, &eax, &ebx, &ecx, &edx);
797 c->x86_capability[CPUID_F_1_EDX] = edx;
798
799 if ((cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC)) ||
800 ((cpu_has(c, X86_FEATURE_CQM_MBM_TOTAL)) ||
801 (cpu_has(c, X86_FEATURE_CQM_MBM_LOCAL)))) {
802 c->x86_cache_max_rmid = ecx;
803 c->x86_cache_occ_scale = ebx;
804 }
805 } else {
806 c->x86_cache_max_rmid = -1;
807 c->x86_cache_occ_scale = -1;
808 }
809 }
810
811 /* AMD-defined flags: level 0x80000001 */
812 eax = cpuid_eax(0x80000000);
813 c->extended_cpuid_level = eax;
814
815 if ((eax & 0xffff0000) == 0x80000000) {
816 if (eax >= 0x80000001) {
817 cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
818
819 c->x86_capability[CPUID_8000_0001_ECX] = ecx;
820 c->x86_capability[CPUID_8000_0001_EDX] = edx;
821 }
822 }
823
824 if (c->extended_cpuid_level >= 0x80000007) {
825 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
826
827 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
828 c->x86_power = edx;
829 }
830
831 if (c->extended_cpuid_level >= 0x80000008) {
832 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
833
834 c->x86_virt_bits = (eax >> 8) & 0xff;
835 c->x86_phys_bits = eax & 0xff;
836 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
837 }
838 #ifdef CONFIG_X86_32
839 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
840 c->x86_phys_bits = 36;
841 #endif
842
843 if (c->extended_cpuid_level >= 0x8000000a)
844 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
845
846 init_scattered_cpuid_features(c);
847
848 /*
849 * Clear/Set all flags overridden by options, after probe.
850 * This needs to happen each time we re-probe, which may happen
851 * several times during CPU initialization.
852 */
853 apply_forced_caps(c);
854 }
855
856 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
857 {
858 #ifdef CONFIG_X86_32
859 int i;
860
861 /*
862 * First of all, decide if this is a 486 or higher
863 * It's a 486 if we can modify the AC flag
864 */
865 if (flag_is_changeable_p(X86_EFLAGS_AC))
866 c->x86 = 4;
867 else
868 c->x86 = 3;
869
870 for (i = 0; i < X86_VENDOR_NUM; i++)
871 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
872 c->x86_vendor_id[0] = 0;
873 cpu_devs[i]->c_identify(c);
874 if (c->x86_vendor_id[0]) {
875 get_cpu_vendor(c);
876 break;
877 }
878 }
879 #endif
880 }
881
882 static const __initdata struct x86_cpu_id cpu_no_speculation[] = {
883 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_CEDARVIEW, X86_FEATURE_ANY },
884 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_CLOVERVIEW, X86_FEATURE_ANY },
885 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_LINCROFT, X86_FEATURE_ANY },
886 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_PENWELL, X86_FEATURE_ANY },
887 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_PINEVIEW, X86_FEATURE_ANY },
888 { X86_VENDOR_CENTAUR, 5 },
889 { X86_VENDOR_INTEL, 5 },
890 { X86_VENDOR_NSC, 5 },
891 { X86_VENDOR_ANY, 4 },
892 {}
893 };
894
895 static const __initdata struct x86_cpu_id cpu_no_meltdown[] = {
896 { X86_VENDOR_AMD },
897 {}
898 };
899
900 static bool __init cpu_vulnerable_to_meltdown(struct cpuinfo_x86 *c)
901 {
902 u64 ia32_cap = 0;
903
904 if (x86_match_cpu(cpu_no_meltdown))
905 return false;
906
907 if (cpu_has(c, X86_FEATURE_ARCH_CAPABILITIES))
908 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
909
910 /* Rogue Data Cache Load? No! */
911 if (ia32_cap & ARCH_CAP_RDCL_NO)
912 return false;
913
914 return true;
915 }
916
917 /*
918 * Do minimum CPU detection early.
919 * Fields really needed: vendor, cpuid_level, family, model, mask,
920 * cache alignment.
921 * The others are not touched to avoid unwanted side effects.
922 *
923 * WARNING: this function is only called on the boot CPU. Don't add code
924 * here that is supposed to run on all CPUs.
925 */
926 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
927 {
928 #ifdef CONFIG_X86_64
929 c->x86_clflush_size = 64;
930 c->x86_phys_bits = 36;
931 c->x86_virt_bits = 48;
932 #else
933 c->x86_clflush_size = 32;
934 c->x86_phys_bits = 32;
935 c->x86_virt_bits = 32;
936 #endif
937 c->x86_cache_alignment = c->x86_clflush_size;
938
939 memset(&c->x86_capability, 0, sizeof c->x86_capability);
940 c->extended_cpuid_level = 0;
941
942 /* cyrix could have cpuid enabled via c_identify()*/
943 if (have_cpuid_p()) {
944 cpu_detect(c);
945 get_cpu_vendor(c);
946 get_cpu_cap(c);
947 setup_force_cpu_cap(X86_FEATURE_CPUID);
948
949 if (this_cpu->c_early_init)
950 this_cpu->c_early_init(c);
951
952 c->cpu_index = 0;
953 filter_cpuid_features(c, false);
954
955 if (this_cpu->c_bsp_init)
956 this_cpu->c_bsp_init(c);
957 } else {
958 identify_cpu_without_cpuid(c);
959 setup_clear_cpu_cap(X86_FEATURE_CPUID);
960 }
961
962 setup_force_cpu_cap(X86_FEATURE_ALWAYS);
963
964 if (!x86_match_cpu(cpu_no_speculation)) {
965 if (cpu_vulnerable_to_meltdown(c))
966 setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
967 setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
968 setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
969 }
970
971 fpu__init_system(c);
972
973 #ifdef CONFIG_X86_32
974 /*
975 * Regardless of whether PCID is enumerated, the SDM says
976 * that it can't be enabled in 32-bit mode.
977 */
978 setup_clear_cpu_cap(X86_FEATURE_PCID);
979 #endif
980 }
981
982 void __init early_cpu_init(void)
983 {
984 const struct cpu_dev *const *cdev;
985 int count = 0;
986
987 #ifdef CONFIG_PROCESSOR_SELECT
988 pr_info("KERNEL supported cpus:\n");
989 #endif
990
991 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
992 const struct cpu_dev *cpudev = *cdev;
993
994 if (count >= X86_VENDOR_NUM)
995 break;
996 cpu_devs[count] = cpudev;
997 count++;
998
999 #ifdef CONFIG_PROCESSOR_SELECT
1000 {
1001 unsigned int j;
1002
1003 for (j = 0; j < 2; j++) {
1004 if (!cpudev->c_ident[j])
1005 continue;
1006 pr_info(" %s %s\n", cpudev->c_vendor,
1007 cpudev->c_ident[j]);
1008 }
1009 }
1010 #endif
1011 }
1012 early_identify_cpu(&boot_cpu_data);
1013 }
1014
1015 /*
1016 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1017 * unfortunately, that's not true in practice because of early VIA
1018 * chips and (more importantly) broken virtualizers that are not easy
1019 * to detect. In the latter case it doesn't even *fail* reliably, so
1020 * probing for it doesn't even work. Disable it completely on 32-bit
1021 * unless we can find a reliable way to detect all the broken cases.
1022 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1023 */
1024 static void detect_nopl(struct cpuinfo_x86 *c)
1025 {
1026 #ifdef CONFIG_X86_32
1027 clear_cpu_cap(c, X86_FEATURE_NOPL);
1028 #else
1029 set_cpu_cap(c, X86_FEATURE_NOPL);
1030 #endif
1031 }
1032
1033 static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
1034 {
1035 #ifdef CONFIG_X86_64
1036 /*
1037 * Empirically, writing zero to a segment selector on AMD does
1038 * not clear the base, whereas writing zero to a segment
1039 * selector on Intel does clear the base. Intel's behavior
1040 * allows slightly faster context switches in the common case
1041 * where GS is unused by the prev and next threads.
1042 *
1043 * Since neither vendor documents this anywhere that I can see,
1044 * detect it directly instead of hardcoding the choice by
1045 * vendor.
1046 *
1047 * I've designated AMD's behavior as the "bug" because it's
1048 * counterintuitive and less friendly.
1049 */
1050
1051 unsigned long old_base, tmp;
1052 rdmsrl(MSR_FS_BASE, old_base);
1053 wrmsrl(MSR_FS_BASE, 1);
1054 loadsegment(fs, 0);
1055 rdmsrl(MSR_FS_BASE, tmp);
1056 if (tmp != 0)
1057 set_cpu_bug(c, X86_BUG_NULL_SEG);
1058 wrmsrl(MSR_FS_BASE, old_base);
1059 #endif
1060 }
1061
1062 static void generic_identify(struct cpuinfo_x86 *c)
1063 {
1064 c->extended_cpuid_level = 0;
1065
1066 if (!have_cpuid_p())
1067 identify_cpu_without_cpuid(c);
1068
1069 /* cyrix could have cpuid enabled via c_identify()*/
1070 if (!have_cpuid_p())
1071 return;
1072
1073 cpu_detect(c);
1074
1075 get_cpu_vendor(c);
1076
1077 get_cpu_cap(c);
1078
1079 if (c->cpuid_level >= 0x00000001) {
1080 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1081 #ifdef CONFIG_X86_32
1082 # ifdef CONFIG_SMP
1083 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1084 # else
1085 c->apicid = c->initial_apicid;
1086 # endif
1087 #endif
1088 c->phys_proc_id = c->initial_apicid;
1089 }
1090
1091 get_model_name(c); /* Default name */
1092
1093 detect_nopl(c);
1094
1095 detect_null_seg_behavior(c);
1096
1097 /*
1098 * ESPFIX is a strange bug. All real CPUs have it. Paravirt
1099 * systems that run Linux at CPL > 0 may or may not have the
1100 * issue, but, even if they have the issue, there's absolutely
1101 * nothing we can do about it because we can't use the real IRET
1102 * instruction.
1103 *
1104 * NB: For the time being, only 32-bit kernels support
1105 * X86_BUG_ESPFIX as such. 64-bit kernels directly choose
1106 * whether to apply espfix using paravirt hooks. If any
1107 * non-paravirt system ever shows up that does *not* have the
1108 * ESPFIX issue, we can change this.
1109 */
1110 #ifdef CONFIG_X86_32
1111 # ifdef CONFIG_PARAVIRT
1112 do {
1113 extern void native_iret(void);
1114 if (pv_cpu_ops.iret == native_iret)
1115 set_cpu_bug(c, X86_BUG_ESPFIX);
1116 } while (0);
1117 # else
1118 set_cpu_bug(c, X86_BUG_ESPFIX);
1119 # endif
1120 #endif
1121 }
1122
1123 static void x86_init_cache_qos(struct cpuinfo_x86 *c)
1124 {
1125 /*
1126 * The heavy lifting of max_rmid and cache_occ_scale are handled
1127 * in get_cpu_cap(). Here we just set the max_rmid for the boot_cpu
1128 * in case CQM bits really aren't there in this CPU.
1129 */
1130 if (c != &boot_cpu_data) {
1131 boot_cpu_data.x86_cache_max_rmid =
1132 min(boot_cpu_data.x86_cache_max_rmid,
1133 c->x86_cache_max_rmid);
1134 }
1135 }
1136
1137 /*
1138 * Validate that ACPI/mptables have the same information about the
1139 * effective APIC id and update the package map.
1140 */
1141 static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1142 {
1143 #ifdef CONFIG_SMP
1144 unsigned int apicid, cpu = smp_processor_id();
1145
1146 apicid = apic->cpu_present_to_apicid(cpu);
1147
1148 if (apicid != c->apicid) {
1149 pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1150 cpu, apicid, c->initial_apicid);
1151 }
1152 BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1153 #else
1154 c->logical_proc_id = 0;
1155 #endif
1156 }
1157
1158 /*
1159 * This does the hard work of actually picking apart the CPU stuff...
1160 */
1161 static void identify_cpu(struct cpuinfo_x86 *c)
1162 {
1163 int i;
1164
1165 c->loops_per_jiffy = loops_per_jiffy;
1166 c->x86_cache_size = -1;
1167 c->x86_vendor = X86_VENDOR_UNKNOWN;
1168 c->x86_model = c->x86_mask = 0; /* So far unknown... */
1169 c->x86_vendor_id[0] = '\0'; /* Unset */
1170 c->x86_model_id[0] = '\0'; /* Unset */
1171 c->x86_max_cores = 1;
1172 c->x86_coreid_bits = 0;
1173 c->cu_id = 0xff;
1174 #ifdef CONFIG_X86_64
1175 c->x86_clflush_size = 64;
1176 c->x86_phys_bits = 36;
1177 c->x86_virt_bits = 48;
1178 #else
1179 c->cpuid_level = -1; /* CPUID not detected */
1180 c->x86_clflush_size = 32;
1181 c->x86_phys_bits = 32;
1182 c->x86_virt_bits = 32;
1183 #endif
1184 c->x86_cache_alignment = c->x86_clflush_size;
1185 memset(&c->x86_capability, 0, sizeof c->x86_capability);
1186
1187 generic_identify(c);
1188
1189 if (this_cpu->c_identify)
1190 this_cpu->c_identify(c);
1191
1192 /* Clear/Set all flags overridden by options, after probe */
1193 apply_forced_caps(c);
1194
1195 #ifdef CONFIG_X86_64
1196 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1197 #endif
1198
1199 /*
1200 * Vendor-specific initialization. In this section we
1201 * canonicalize the feature flags, meaning if there are
1202 * features a certain CPU supports which CPUID doesn't
1203 * tell us, CPUID claiming incorrect flags, or other bugs,
1204 * we handle them here.
1205 *
1206 * At the end of this section, c->x86_capability better
1207 * indicate the features this CPU genuinely supports!
1208 */
1209 if (this_cpu->c_init)
1210 this_cpu->c_init(c);
1211
1212 /* Disable the PN if appropriate */
1213 squash_the_stupid_serial_number(c);
1214
1215 /* Set up SMEP/SMAP/UMIP */
1216 setup_smep(c);
1217 setup_smap(c);
1218 setup_umip(c);
1219
1220 /*
1221 * The vendor-specific functions might have changed features.
1222 * Now we do "generic changes."
1223 */
1224
1225 /* Filter out anything that depends on CPUID levels we don't have */
1226 filter_cpuid_features(c, true);
1227
1228 /* If the model name is still unset, do table lookup. */
1229 if (!c->x86_model_id[0]) {
1230 const char *p;
1231 p = table_lookup_model(c);
1232 if (p)
1233 strcpy(c->x86_model_id, p);
1234 else
1235 /* Last resort... */
1236 sprintf(c->x86_model_id, "%02x/%02x",
1237 c->x86, c->x86_model);
1238 }
1239
1240 #ifdef CONFIG_X86_64
1241 detect_ht(c);
1242 #endif
1243
1244 x86_init_rdrand(c);
1245 x86_init_cache_qos(c);
1246 setup_pku(c);
1247
1248 /*
1249 * Clear/Set all flags overridden by options, need do it
1250 * before following smp all cpus cap AND.
1251 */
1252 apply_forced_caps(c);
1253
1254 /*
1255 * On SMP, boot_cpu_data holds the common feature set between
1256 * all CPUs; so make sure that we indicate which features are
1257 * common between the CPUs. The first time this routine gets
1258 * executed, c == &boot_cpu_data.
1259 */
1260 if (c != &boot_cpu_data) {
1261 /* AND the already accumulated flags with these */
1262 for (i = 0; i < NCAPINTS; i++)
1263 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1264
1265 /* OR, i.e. replicate the bug flags */
1266 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1267 c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1268 }
1269
1270 /* Init Machine Check Exception if available. */
1271 mcheck_cpu_init(c);
1272
1273 select_idle_routine(c);
1274
1275 #ifdef CONFIG_NUMA
1276 numa_add_cpu(smp_processor_id());
1277 #endif
1278 }
1279
1280 /*
1281 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1282 * on 32-bit kernels:
1283 */
1284 #ifdef CONFIG_X86_32
1285 void enable_sep_cpu(void)
1286 {
1287 struct tss_struct *tss;
1288 int cpu;
1289
1290 if (!boot_cpu_has(X86_FEATURE_SEP))
1291 return;
1292
1293 cpu = get_cpu();
1294 tss = &per_cpu(cpu_tss_rw, cpu);
1295
1296 /*
1297 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1298 * see the big comment in struct x86_hw_tss's definition.
1299 */
1300
1301 tss->x86_tss.ss1 = __KERNEL_CS;
1302 wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1303 wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1304 wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1305
1306 put_cpu();
1307 }
1308 #endif
1309
1310 void __init identify_boot_cpu(void)
1311 {
1312 identify_cpu(&boot_cpu_data);
1313 #ifdef CONFIG_X86_32
1314 sysenter_setup();
1315 enable_sep_cpu();
1316 #endif
1317 cpu_detect_tlb(&boot_cpu_data);
1318 }
1319
1320 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1321 {
1322 BUG_ON(c == &boot_cpu_data);
1323 identify_cpu(c);
1324 #ifdef CONFIG_X86_32
1325 enable_sep_cpu();
1326 #endif
1327 mtrr_ap_init();
1328 validate_apic_and_package_id(c);
1329 }
1330
1331 static __init int setup_noclflush(char *arg)
1332 {
1333 setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1334 setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1335 return 1;
1336 }
1337 __setup("noclflush", setup_noclflush);
1338
1339 void print_cpu_info(struct cpuinfo_x86 *c)
1340 {
1341 const char *vendor = NULL;
1342
1343 if (c->x86_vendor < X86_VENDOR_NUM) {
1344 vendor = this_cpu->c_vendor;
1345 } else {
1346 if (c->cpuid_level >= 0)
1347 vendor = c->x86_vendor_id;
1348 }
1349
1350 if (vendor && !strstr(c->x86_model_id, vendor))
1351 pr_cont("%s ", vendor);
1352
1353 if (c->x86_model_id[0])
1354 pr_cont("%s", c->x86_model_id);
1355 else
1356 pr_cont("%d86", c->x86);
1357
1358 pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1359
1360 if (c->x86_mask || c->cpuid_level >= 0)
1361 pr_cont(", stepping: 0x%x)\n", c->x86_mask);
1362 else
1363 pr_cont(")\n");
1364 }
1365
1366 /*
1367 * clearcpuid= was already parsed in fpu__init_parse_early_param.
1368 * But we need to keep a dummy __setup around otherwise it would
1369 * show up as an environment variable for init.
1370 */
1371 static __init int setup_clearcpuid(char *arg)
1372 {
1373 return 1;
1374 }
1375 __setup("clearcpuid=", setup_clearcpuid);
1376
1377 #ifdef CONFIG_X86_64
1378 DEFINE_PER_CPU_FIRST(union irq_stack_union,
1379 irq_stack_union) __aligned(PAGE_SIZE) __visible;
1380
1381 /*
1382 * The following percpu variables are hot. Align current_task to
1383 * cacheline size such that they fall in the same cacheline.
1384 */
1385 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1386 &init_task;
1387 EXPORT_PER_CPU_SYMBOL(current_task);
1388
1389 DEFINE_PER_CPU(char *, irq_stack_ptr) =
1390 init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE;
1391
1392 DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1393
1394 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1395 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1396
1397 /* May not be marked __init: used by software suspend */
1398 void syscall_init(void)
1399 {
1400 extern char _entry_trampoline[];
1401 extern char entry_SYSCALL_64_trampoline[];
1402
1403 int cpu = smp_processor_id();
1404 unsigned long SYSCALL64_entry_trampoline =
1405 (unsigned long)get_cpu_entry_area(cpu)->entry_trampoline +
1406 (entry_SYSCALL_64_trampoline - _entry_trampoline);
1407
1408 wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1409 if (static_cpu_has(X86_FEATURE_PTI))
1410 wrmsrl(MSR_LSTAR, SYSCALL64_entry_trampoline);
1411 else
1412 wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1413
1414 #ifdef CONFIG_IA32_EMULATION
1415 wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1416 /*
1417 * This only works on Intel CPUs.
1418 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1419 * This does not cause SYSENTER to jump to the wrong location, because
1420 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1421 */
1422 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1423 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1));
1424 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1425 #else
1426 wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1427 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1428 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1429 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1430 #endif
1431
1432 /* Flags to clear on syscall */
1433 wrmsrl(MSR_SYSCALL_MASK,
1434 X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1435 X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1436 }
1437
1438 /*
1439 * Copies of the original ist values from the tss are only accessed during
1440 * debugging, no special alignment required.
1441 */
1442 DEFINE_PER_CPU(struct orig_ist, orig_ist);
1443
1444 static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
1445 DEFINE_PER_CPU(int, debug_stack_usage);
1446
1447 int is_debug_stack(unsigned long addr)
1448 {
1449 return __this_cpu_read(debug_stack_usage) ||
1450 (addr <= __this_cpu_read(debug_stack_addr) &&
1451 addr > (__this_cpu_read(debug_stack_addr) - DEBUG_STKSZ));
1452 }
1453 NOKPROBE_SYMBOL(is_debug_stack);
1454
1455 DEFINE_PER_CPU(u32, debug_idt_ctr);
1456
1457 void debug_stack_set_zero(void)
1458 {
1459 this_cpu_inc(debug_idt_ctr);
1460 load_current_idt();
1461 }
1462 NOKPROBE_SYMBOL(debug_stack_set_zero);
1463
1464 void debug_stack_reset(void)
1465 {
1466 if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
1467 return;
1468 if (this_cpu_dec_return(debug_idt_ctr) == 0)
1469 load_current_idt();
1470 }
1471 NOKPROBE_SYMBOL(debug_stack_reset);
1472
1473 #else /* CONFIG_X86_64 */
1474
1475 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1476 EXPORT_PER_CPU_SYMBOL(current_task);
1477 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1478 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1479
1480 /*
1481 * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1482 * the top of the kernel stack. Use an extra percpu variable to track the
1483 * top of the kernel stack directly.
1484 */
1485 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1486 (unsigned long)&init_thread_union + THREAD_SIZE;
1487 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1488
1489 #ifdef CONFIG_CC_STACKPROTECTOR
1490 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1491 #endif
1492
1493 #endif /* CONFIG_X86_64 */
1494
1495 /*
1496 * Clear all 6 debug registers:
1497 */
1498 static void clear_all_debug_regs(void)
1499 {
1500 int i;
1501
1502 for (i = 0; i < 8; i++) {
1503 /* Ignore db4, db5 */
1504 if ((i == 4) || (i == 5))
1505 continue;
1506
1507 set_debugreg(0, i);
1508 }
1509 }
1510
1511 #ifdef CONFIG_KGDB
1512 /*
1513 * Restore debug regs if using kgdbwait and you have a kernel debugger
1514 * connection established.
1515 */
1516 static void dbg_restore_debug_regs(void)
1517 {
1518 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1519 arch_kgdb_ops.correct_hw_break();
1520 }
1521 #else /* ! CONFIG_KGDB */
1522 #define dbg_restore_debug_regs()
1523 #endif /* ! CONFIG_KGDB */
1524
1525 static void wait_for_master_cpu(int cpu)
1526 {
1527 #ifdef CONFIG_SMP
1528 /*
1529 * wait for ACK from master CPU before continuing
1530 * with AP initialization
1531 */
1532 WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1533 while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1534 cpu_relax();
1535 #endif
1536 }
1537
1538 /*
1539 * cpu_init() initializes state that is per-CPU. Some data is already
1540 * initialized (naturally) in the bootstrap process, such as the GDT
1541 * and IDT. We reload them nevertheless, this function acts as a
1542 * 'CPU state barrier', nothing should get across.
1543 * A lot of state is already set up in PDA init for 64 bit
1544 */
1545 #ifdef CONFIG_X86_64
1546
1547 void cpu_init(void)
1548 {
1549 struct orig_ist *oist;
1550 struct task_struct *me;
1551 struct tss_struct *t;
1552 unsigned long v;
1553 int cpu = raw_smp_processor_id();
1554 int i;
1555
1556 wait_for_master_cpu(cpu);
1557
1558 /*
1559 * Initialize the CR4 shadow before doing anything that could
1560 * try to read it.
1561 */
1562 cr4_init_shadow();
1563
1564 if (cpu)
1565 load_ucode_ap();
1566
1567 t = &per_cpu(cpu_tss_rw, cpu);
1568 oist = &per_cpu(orig_ist, cpu);
1569
1570 #ifdef CONFIG_NUMA
1571 if (this_cpu_read(numa_node) == 0 &&
1572 early_cpu_to_node(cpu) != NUMA_NO_NODE)
1573 set_numa_node(early_cpu_to_node(cpu));
1574 #endif
1575
1576 me = current;
1577
1578 pr_debug("Initializing CPU#%d\n", cpu);
1579
1580 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1581
1582 /*
1583 * Initialize the per-CPU GDT with the boot GDT,
1584 * and set up the GDT descriptor:
1585 */
1586
1587 switch_to_new_gdt(cpu);
1588 loadsegment(fs, 0);
1589
1590 load_current_idt();
1591
1592 memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1593 syscall_init();
1594
1595 wrmsrl(MSR_FS_BASE, 0);
1596 wrmsrl(MSR_KERNEL_GS_BASE, 0);
1597 barrier();
1598
1599 x86_configure_nx();
1600 x2apic_setup();
1601
1602 /*
1603 * set up and load the per-CPU TSS
1604 */
1605 if (!oist->ist[0]) {
1606 char *estacks = get_cpu_entry_area(cpu)->exception_stacks;
1607
1608 for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1609 estacks += exception_stack_sizes[v];
1610 oist->ist[v] = t->x86_tss.ist[v] =
1611 (unsigned long)estacks;
1612 if (v == DEBUG_STACK-1)
1613 per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
1614 }
1615 }
1616
1617 t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
1618
1619 /*
1620 * <= is required because the CPU will access up to
1621 * 8 bits beyond the end of the IO permission bitmap.
1622 */
1623 for (i = 0; i <= IO_BITMAP_LONGS; i++)
1624 t->io_bitmap[i] = ~0UL;
1625
1626 mmgrab(&init_mm);
1627 me->active_mm = &init_mm;
1628 BUG_ON(me->mm);
1629 initialize_tlbstate_and_flush();
1630 enter_lazy_tlb(&init_mm, me);
1631
1632 /*
1633 * Initialize the TSS. sp0 points to the entry trampoline stack
1634 * regardless of what task is running.
1635 */
1636 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1637 load_TR_desc();
1638 load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
1639
1640 load_mm_ldt(&init_mm);
1641
1642 clear_all_debug_regs();
1643 dbg_restore_debug_regs();
1644
1645 fpu__init_cpu();
1646
1647 if (is_uv_system())
1648 uv_cpu_init();
1649
1650 load_fixmap_gdt(cpu);
1651 }
1652
1653 #else
1654
1655 void cpu_init(void)
1656 {
1657 int cpu = smp_processor_id();
1658 struct task_struct *curr = current;
1659 struct tss_struct *t = &per_cpu(cpu_tss_rw, cpu);
1660
1661 wait_for_master_cpu(cpu);
1662
1663 /*
1664 * Initialize the CR4 shadow before doing anything that could
1665 * try to read it.
1666 */
1667 cr4_init_shadow();
1668
1669 show_ucode_info_early();
1670
1671 pr_info("Initializing CPU#%d\n", cpu);
1672
1673 if (cpu_feature_enabled(X86_FEATURE_VME) ||
1674 boot_cpu_has(X86_FEATURE_TSC) ||
1675 boot_cpu_has(X86_FEATURE_DE))
1676 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1677
1678 load_current_idt();
1679 switch_to_new_gdt(cpu);
1680
1681 /*
1682 * Set up and load the per-CPU TSS and LDT
1683 */
1684 mmgrab(&init_mm);
1685 curr->active_mm = &init_mm;
1686 BUG_ON(curr->mm);
1687 initialize_tlbstate_and_flush();
1688 enter_lazy_tlb(&init_mm, curr);
1689
1690 /*
1691 * Initialize the TSS. Don't bother initializing sp0, as the initial
1692 * task never enters user mode.
1693 */
1694 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1695 load_TR_desc();
1696
1697 load_mm_ldt(&init_mm);
1698
1699 t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
1700
1701 #ifdef CONFIG_DOUBLEFAULT
1702 /* Set up doublefault TSS pointer in the GDT */
1703 __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1704 #endif
1705
1706 clear_all_debug_regs();
1707 dbg_restore_debug_regs();
1708
1709 fpu__init_cpu();
1710
1711 load_fixmap_gdt(cpu);
1712 }
1713 #endif
1714
1715 static void bsp_resume(void)
1716 {
1717 if (this_cpu->c_bsp_resume)
1718 this_cpu->c_bsp_resume(&boot_cpu_data);
1719 }
1720
1721 static struct syscore_ops cpu_syscore_ops = {
1722 .resume = bsp_resume,
1723 };
1724
1725 static int __init init_cpu_syscore(void)
1726 {
1727 register_syscore_ops(&cpu_syscore_ops);
1728 return 0;
1729 }
1730 core_initcall(init_cpu_syscore);