]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kernel/cpu/common.c
x86, cpufeature: If we disable CLFLUSH, we should disable CLFLUSHOPT
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / cpu / common.c
1 #include <linux/bootmem.h>
2 #include <linux/linkage.h>
3 #include <linux/bitops.h>
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/percpu.h>
7 #include <linux/string.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/init.h>
11 #include <linux/kgdb.h>
12 #include <linux/smp.h>
13 #include <linux/io.h>
14
15 #include <asm/stackprotector.h>
16 #include <asm/perf_event.h>
17 #include <asm/mmu_context.h>
18 #include <asm/archrandom.h>
19 #include <asm/hypervisor.h>
20 #include <asm/processor.h>
21 #include <asm/debugreg.h>
22 #include <asm/sections.h>
23 #include <linux/topology.h>
24 #include <linux/cpumask.h>
25 #include <asm/pgtable.h>
26 #include <linux/atomic.h>
27 #include <asm/proto.h>
28 #include <asm/setup.h>
29 #include <asm/apic.h>
30 #include <asm/desc.h>
31 #include <asm/i387.h>
32 #include <asm/fpu-internal.h>
33 #include <asm/mtrr.h>
34 #include <linux/numa.h>
35 #include <asm/asm.h>
36 #include <asm/cpu.h>
37 #include <asm/mce.h>
38 #include <asm/msr.h>
39 #include <asm/pat.h>
40 #include <asm/microcode.h>
41 #include <asm/microcode_intel.h>
42
43 #ifdef CONFIG_X86_LOCAL_APIC
44 #include <asm/uv/uv.h>
45 #endif
46
47 #include "cpu.h"
48
49 /* all of these masks are initialized in setup_cpu_local_masks() */
50 cpumask_var_t cpu_initialized_mask;
51 cpumask_var_t cpu_callout_mask;
52 cpumask_var_t cpu_callin_mask;
53
54 /* representing cpus for which sibling maps can be computed */
55 cpumask_var_t cpu_sibling_setup_mask;
56
57 /* correctly size the local cpu masks */
58 void __init setup_cpu_local_masks(void)
59 {
60 alloc_bootmem_cpumask_var(&cpu_initialized_mask);
61 alloc_bootmem_cpumask_var(&cpu_callin_mask);
62 alloc_bootmem_cpumask_var(&cpu_callout_mask);
63 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
64 }
65
66 static void default_init(struct cpuinfo_x86 *c)
67 {
68 #ifdef CONFIG_X86_64
69 cpu_detect_cache_sizes(c);
70 #else
71 /* Not much we can do here... */
72 /* Check if at least it has cpuid */
73 if (c->cpuid_level == -1) {
74 /* No cpuid. It must be an ancient CPU */
75 if (c->x86 == 4)
76 strcpy(c->x86_model_id, "486");
77 else if (c->x86 == 3)
78 strcpy(c->x86_model_id, "386");
79 }
80 #endif
81 }
82
83 static const struct cpu_dev default_cpu = {
84 .c_init = default_init,
85 .c_vendor = "Unknown",
86 .c_x86_vendor = X86_VENDOR_UNKNOWN,
87 };
88
89 static const struct cpu_dev *this_cpu = &default_cpu;
90
91 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
92 #ifdef CONFIG_X86_64
93 /*
94 * We need valid kernel segments for data and code in long mode too
95 * IRET will check the segment types kkeil 2000/10/28
96 * Also sysret mandates a special GDT layout
97 *
98 * TLS descriptors are currently at a different place compared to i386.
99 * Hopefully nobody expects them at a fixed place (Wine?)
100 */
101 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
102 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
103 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
104 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
105 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
106 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
107 #else
108 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
109 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
110 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
111 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
112 /*
113 * Segments used for calling PnP BIOS have byte granularity.
114 * They code segments and data segments have fixed 64k limits,
115 * the transfer segment sizes are set at run time.
116 */
117 /* 32-bit code */
118 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
119 /* 16-bit code */
120 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
121 /* 16-bit data */
122 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
123 /* 16-bit data */
124 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
125 /* 16-bit data */
126 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
127 /*
128 * The APM segments have byte granularity and their bases
129 * are set at run time. All have 64k limits.
130 */
131 /* 32-bit code */
132 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
133 /* 16-bit code */
134 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
135 /* data */
136 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
137
138 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
139 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
140 GDT_STACK_CANARY_INIT
141 #endif
142 } };
143 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
144
145 static int __init x86_xsave_setup(char *s)
146 {
147 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
148 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
149 setup_clear_cpu_cap(X86_FEATURE_AVX);
150 setup_clear_cpu_cap(X86_FEATURE_AVX2);
151 return 1;
152 }
153 __setup("noxsave", x86_xsave_setup);
154
155 static int __init x86_xsaveopt_setup(char *s)
156 {
157 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
158 return 1;
159 }
160 __setup("noxsaveopt", x86_xsaveopt_setup);
161
162 #ifdef CONFIG_X86_32
163 static int cachesize_override = -1;
164 static int disable_x86_serial_nr = 1;
165
166 static int __init cachesize_setup(char *str)
167 {
168 get_option(&str, &cachesize_override);
169 return 1;
170 }
171 __setup("cachesize=", cachesize_setup);
172
173 static int __init x86_fxsr_setup(char *s)
174 {
175 setup_clear_cpu_cap(X86_FEATURE_FXSR);
176 setup_clear_cpu_cap(X86_FEATURE_XMM);
177 return 1;
178 }
179 __setup("nofxsr", x86_fxsr_setup);
180
181 static int __init x86_sep_setup(char *s)
182 {
183 setup_clear_cpu_cap(X86_FEATURE_SEP);
184 return 1;
185 }
186 __setup("nosep", x86_sep_setup);
187
188 /* Standard macro to see if a specific flag is changeable */
189 static inline int flag_is_changeable_p(u32 flag)
190 {
191 u32 f1, f2;
192
193 /*
194 * Cyrix and IDT cpus allow disabling of CPUID
195 * so the code below may return different results
196 * when it is executed before and after enabling
197 * the CPUID. Add "volatile" to not allow gcc to
198 * optimize the subsequent calls to this function.
199 */
200 asm volatile ("pushfl \n\t"
201 "pushfl \n\t"
202 "popl %0 \n\t"
203 "movl %0, %1 \n\t"
204 "xorl %2, %0 \n\t"
205 "pushl %0 \n\t"
206 "popfl \n\t"
207 "pushfl \n\t"
208 "popl %0 \n\t"
209 "popfl \n\t"
210
211 : "=&r" (f1), "=&r" (f2)
212 : "ir" (flag));
213
214 return ((f1^f2) & flag) != 0;
215 }
216
217 /* Probe for the CPUID instruction */
218 int have_cpuid_p(void)
219 {
220 return flag_is_changeable_p(X86_EFLAGS_ID);
221 }
222
223 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
224 {
225 unsigned long lo, hi;
226
227 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
228 return;
229
230 /* Disable processor serial number: */
231
232 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
233 lo |= 0x200000;
234 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
235
236 printk(KERN_NOTICE "CPU serial number disabled.\n");
237 clear_cpu_cap(c, X86_FEATURE_PN);
238
239 /* Disabling the serial number may affect the cpuid level */
240 c->cpuid_level = cpuid_eax(0);
241 }
242
243 static int __init x86_serial_nr_setup(char *s)
244 {
245 disable_x86_serial_nr = 0;
246 return 1;
247 }
248 __setup("serialnumber", x86_serial_nr_setup);
249 #else
250 static inline int flag_is_changeable_p(u32 flag)
251 {
252 return 1;
253 }
254 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
255 {
256 }
257 #endif
258
259 static __init int setup_disable_smep(char *arg)
260 {
261 setup_clear_cpu_cap(X86_FEATURE_SMEP);
262 return 1;
263 }
264 __setup("nosmep", setup_disable_smep);
265
266 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
267 {
268 if (cpu_has(c, X86_FEATURE_SMEP))
269 set_in_cr4(X86_CR4_SMEP);
270 }
271
272 static __init int setup_disable_smap(char *arg)
273 {
274 setup_clear_cpu_cap(X86_FEATURE_SMAP);
275 return 1;
276 }
277 __setup("nosmap", setup_disable_smap);
278
279 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
280 {
281 unsigned long eflags;
282
283 /* This should have been cleared long ago */
284 raw_local_save_flags(eflags);
285 BUG_ON(eflags & X86_EFLAGS_AC);
286
287 if (cpu_has(c, X86_FEATURE_SMAP)) {
288 #ifdef CONFIG_X86_SMAP
289 set_in_cr4(X86_CR4_SMAP);
290 #else
291 clear_in_cr4(X86_CR4_SMAP);
292 #endif
293 }
294 }
295
296 /*
297 * Some CPU features depend on higher CPUID levels, which may not always
298 * be available due to CPUID level capping or broken virtualization
299 * software. Add those features to this table to auto-disable them.
300 */
301 struct cpuid_dependent_feature {
302 u32 feature;
303 u32 level;
304 };
305
306 static const struct cpuid_dependent_feature
307 cpuid_dependent_features[] = {
308 { X86_FEATURE_MWAIT, 0x00000005 },
309 { X86_FEATURE_DCA, 0x00000009 },
310 { X86_FEATURE_XSAVE, 0x0000000d },
311 { 0, 0 }
312 };
313
314 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
315 {
316 const struct cpuid_dependent_feature *df;
317
318 for (df = cpuid_dependent_features; df->feature; df++) {
319
320 if (!cpu_has(c, df->feature))
321 continue;
322 /*
323 * Note: cpuid_level is set to -1 if unavailable, but
324 * extended_extended_level is set to 0 if unavailable
325 * and the legitimate extended levels are all negative
326 * when signed; hence the weird messing around with
327 * signs here...
328 */
329 if (!((s32)df->level < 0 ?
330 (u32)df->level > (u32)c->extended_cpuid_level :
331 (s32)df->level > (s32)c->cpuid_level))
332 continue;
333
334 clear_cpu_cap(c, df->feature);
335 if (!warn)
336 continue;
337
338 printk(KERN_WARNING
339 "CPU: CPU feature %s disabled, no CPUID level 0x%x\n",
340 x86_cap_flags[df->feature], df->level);
341 }
342 }
343
344 /*
345 * Naming convention should be: <Name> [(<Codename>)]
346 * This table only is used unless init_<vendor>() below doesn't set it;
347 * in particular, if CPUID levels 0x80000002..4 are supported, this
348 * isn't used
349 */
350
351 /* Look up CPU names by table lookup. */
352 static const char *table_lookup_model(struct cpuinfo_x86 *c)
353 {
354 #ifdef CONFIG_X86_32
355 const struct legacy_cpu_model_info *info;
356
357 if (c->x86_model >= 16)
358 return NULL; /* Range check */
359
360 if (!this_cpu)
361 return NULL;
362
363 info = this_cpu->legacy_models;
364
365 while (info->family) {
366 if (info->family == c->x86)
367 return info->model_names[c->x86_model];
368 info++;
369 }
370 #endif
371 return NULL; /* Not found */
372 }
373
374 __u32 cpu_caps_cleared[NCAPINTS];
375 __u32 cpu_caps_set[NCAPINTS];
376
377 void load_percpu_segment(int cpu)
378 {
379 #ifdef CONFIG_X86_32
380 loadsegment(fs, __KERNEL_PERCPU);
381 #else
382 loadsegment(gs, 0);
383 wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
384 #endif
385 load_stack_canary_segment();
386 }
387
388 /*
389 * Current gdt points %fs at the "master" per-cpu area: after this,
390 * it's on the real one.
391 */
392 void switch_to_new_gdt(int cpu)
393 {
394 struct desc_ptr gdt_descr;
395
396 gdt_descr.address = (long)get_cpu_gdt_table(cpu);
397 gdt_descr.size = GDT_SIZE - 1;
398 load_gdt(&gdt_descr);
399 /* Reload the per-cpu base */
400
401 load_percpu_segment(cpu);
402 }
403
404 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
405
406 static void get_model_name(struct cpuinfo_x86 *c)
407 {
408 unsigned int *v;
409 char *p, *q;
410
411 if (c->extended_cpuid_level < 0x80000004)
412 return;
413
414 v = (unsigned int *)c->x86_model_id;
415 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
416 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
417 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
418 c->x86_model_id[48] = 0;
419
420 /*
421 * Intel chips right-justify this string for some dumb reason;
422 * undo that brain damage:
423 */
424 p = q = &c->x86_model_id[0];
425 while (*p == ' ')
426 p++;
427 if (p != q) {
428 while (*p)
429 *q++ = *p++;
430 while (q <= &c->x86_model_id[48])
431 *q++ = '\0'; /* Zero-pad the rest */
432 }
433 }
434
435 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
436 {
437 unsigned int n, dummy, ebx, ecx, edx, l2size;
438
439 n = c->extended_cpuid_level;
440
441 if (n >= 0x80000005) {
442 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
443 c->x86_cache_size = (ecx>>24) + (edx>>24);
444 #ifdef CONFIG_X86_64
445 /* On K8 L1 TLB is inclusive, so don't count it */
446 c->x86_tlbsize = 0;
447 #endif
448 }
449
450 if (n < 0x80000006) /* Some chips just has a large L1. */
451 return;
452
453 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
454 l2size = ecx >> 16;
455
456 #ifdef CONFIG_X86_64
457 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
458 #else
459 /* do processor-specific cache resizing */
460 if (this_cpu->legacy_cache_size)
461 l2size = this_cpu->legacy_cache_size(c, l2size);
462
463 /* Allow user to override all this if necessary. */
464 if (cachesize_override != -1)
465 l2size = cachesize_override;
466
467 if (l2size == 0)
468 return; /* Again, no L2 cache is possible */
469 #endif
470
471 c->x86_cache_size = l2size;
472 }
473
474 u16 __read_mostly tlb_lli_4k[NR_INFO];
475 u16 __read_mostly tlb_lli_2m[NR_INFO];
476 u16 __read_mostly tlb_lli_4m[NR_INFO];
477 u16 __read_mostly tlb_lld_4k[NR_INFO];
478 u16 __read_mostly tlb_lld_2m[NR_INFO];
479 u16 __read_mostly tlb_lld_4m[NR_INFO];
480 u16 __read_mostly tlb_lld_1g[NR_INFO];
481
482 /*
483 * tlb_flushall_shift shows the balance point in replacing cr3 write
484 * with multiple 'invlpg'. It will do this replacement when
485 * flush_tlb_lines <= active_lines/2^tlb_flushall_shift.
486 * If tlb_flushall_shift is -1, means the replacement will be disabled.
487 */
488 s8 __read_mostly tlb_flushall_shift = -1;
489
490 void cpu_detect_tlb(struct cpuinfo_x86 *c)
491 {
492 if (this_cpu->c_detect_tlb)
493 this_cpu->c_detect_tlb(c);
494
495 printk(KERN_INFO "Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n"
496 "Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n"
497 "tlb_flushall_shift: %d\n",
498 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
499 tlb_lli_4m[ENTRIES], tlb_lld_4k[ENTRIES],
500 tlb_lld_2m[ENTRIES], tlb_lld_4m[ENTRIES],
501 tlb_lld_1g[ENTRIES], tlb_flushall_shift);
502 }
503
504 void detect_ht(struct cpuinfo_x86 *c)
505 {
506 #ifdef CONFIG_X86_HT
507 u32 eax, ebx, ecx, edx;
508 int index_msb, core_bits;
509 static bool printed;
510
511 if (!cpu_has(c, X86_FEATURE_HT))
512 return;
513
514 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
515 goto out;
516
517 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
518 return;
519
520 cpuid(1, &eax, &ebx, &ecx, &edx);
521
522 smp_num_siblings = (ebx & 0xff0000) >> 16;
523
524 if (smp_num_siblings == 1) {
525 printk_once(KERN_INFO "CPU0: Hyper-Threading is disabled\n");
526 goto out;
527 }
528
529 if (smp_num_siblings <= 1)
530 goto out;
531
532 index_msb = get_count_order(smp_num_siblings);
533 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
534
535 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
536
537 index_msb = get_count_order(smp_num_siblings);
538
539 core_bits = get_count_order(c->x86_max_cores);
540
541 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
542 ((1 << core_bits) - 1);
543
544 out:
545 if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
546 printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
547 c->phys_proc_id);
548 printk(KERN_INFO "CPU: Processor Core ID: %d\n",
549 c->cpu_core_id);
550 printed = 1;
551 }
552 #endif
553 }
554
555 static void get_cpu_vendor(struct cpuinfo_x86 *c)
556 {
557 char *v = c->x86_vendor_id;
558 int i;
559
560 for (i = 0; i < X86_VENDOR_NUM; i++) {
561 if (!cpu_devs[i])
562 break;
563
564 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
565 (cpu_devs[i]->c_ident[1] &&
566 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
567
568 this_cpu = cpu_devs[i];
569 c->x86_vendor = this_cpu->c_x86_vendor;
570 return;
571 }
572 }
573
574 printk_once(KERN_ERR
575 "CPU: vendor_id '%s' unknown, using generic init.\n" \
576 "CPU: Your system may be unstable.\n", v);
577
578 c->x86_vendor = X86_VENDOR_UNKNOWN;
579 this_cpu = &default_cpu;
580 }
581
582 void cpu_detect(struct cpuinfo_x86 *c)
583 {
584 /* Get vendor name */
585 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
586 (unsigned int *)&c->x86_vendor_id[0],
587 (unsigned int *)&c->x86_vendor_id[8],
588 (unsigned int *)&c->x86_vendor_id[4]);
589
590 c->x86 = 4;
591 /* Intel-defined flags: level 0x00000001 */
592 if (c->cpuid_level >= 0x00000001) {
593 u32 junk, tfms, cap0, misc;
594
595 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
596 c->x86 = (tfms >> 8) & 0xf;
597 c->x86_model = (tfms >> 4) & 0xf;
598 c->x86_mask = tfms & 0xf;
599
600 if (c->x86 == 0xf)
601 c->x86 += (tfms >> 20) & 0xff;
602 if (c->x86 >= 0x6)
603 c->x86_model += ((tfms >> 16) & 0xf) << 4;
604
605 if (cap0 & (1<<19)) {
606 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
607 c->x86_cache_alignment = c->x86_clflush_size;
608 }
609 }
610 }
611
612 void get_cpu_cap(struct cpuinfo_x86 *c)
613 {
614 u32 tfms, xlvl;
615 u32 ebx;
616
617 /* Intel-defined flags: level 0x00000001 */
618 if (c->cpuid_level >= 0x00000001) {
619 u32 capability, excap;
620
621 cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
622 c->x86_capability[0] = capability;
623 c->x86_capability[4] = excap;
624 }
625
626 /* Additional Intel-defined flags: level 0x00000007 */
627 if (c->cpuid_level >= 0x00000007) {
628 u32 eax, ebx, ecx, edx;
629
630 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
631
632 c->x86_capability[9] = ebx;
633 }
634
635 /* AMD-defined flags: level 0x80000001 */
636 xlvl = cpuid_eax(0x80000000);
637 c->extended_cpuid_level = xlvl;
638
639 if ((xlvl & 0xffff0000) == 0x80000000) {
640 if (xlvl >= 0x80000001) {
641 c->x86_capability[1] = cpuid_edx(0x80000001);
642 c->x86_capability[6] = cpuid_ecx(0x80000001);
643 }
644 }
645
646 if (c->extended_cpuid_level >= 0x80000008) {
647 u32 eax = cpuid_eax(0x80000008);
648
649 c->x86_virt_bits = (eax >> 8) & 0xff;
650 c->x86_phys_bits = eax & 0xff;
651 }
652 #ifdef CONFIG_X86_32
653 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
654 c->x86_phys_bits = 36;
655 #endif
656
657 if (c->extended_cpuid_level >= 0x80000007)
658 c->x86_power = cpuid_edx(0x80000007);
659
660 init_scattered_cpuid_features(c);
661 }
662
663 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
664 {
665 #ifdef CONFIG_X86_32
666 int i;
667
668 /*
669 * First of all, decide if this is a 486 or higher
670 * It's a 486 if we can modify the AC flag
671 */
672 if (flag_is_changeable_p(X86_EFLAGS_AC))
673 c->x86 = 4;
674 else
675 c->x86 = 3;
676
677 for (i = 0; i < X86_VENDOR_NUM; i++)
678 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
679 c->x86_vendor_id[0] = 0;
680 cpu_devs[i]->c_identify(c);
681 if (c->x86_vendor_id[0]) {
682 get_cpu_vendor(c);
683 break;
684 }
685 }
686 #endif
687 }
688
689 /*
690 * Do minimum CPU detection early.
691 * Fields really needed: vendor, cpuid_level, family, model, mask,
692 * cache alignment.
693 * The others are not touched to avoid unwanted side effects.
694 *
695 * WARNING: this function is only called on the BP. Don't add code here
696 * that is supposed to run on all CPUs.
697 */
698 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
699 {
700 #ifdef CONFIG_X86_64
701 c->x86_clflush_size = 64;
702 c->x86_phys_bits = 36;
703 c->x86_virt_bits = 48;
704 #else
705 c->x86_clflush_size = 32;
706 c->x86_phys_bits = 32;
707 c->x86_virt_bits = 32;
708 #endif
709 c->x86_cache_alignment = c->x86_clflush_size;
710
711 memset(&c->x86_capability, 0, sizeof c->x86_capability);
712 c->extended_cpuid_level = 0;
713
714 if (!have_cpuid_p())
715 identify_cpu_without_cpuid(c);
716
717 /* cyrix could have cpuid enabled via c_identify()*/
718 if (!have_cpuid_p())
719 return;
720
721 cpu_detect(c);
722 get_cpu_vendor(c);
723 get_cpu_cap(c);
724 fpu_detect(c);
725
726 if (this_cpu->c_early_init)
727 this_cpu->c_early_init(c);
728
729 c->cpu_index = 0;
730 filter_cpuid_features(c, false);
731
732 if (this_cpu->c_bsp_init)
733 this_cpu->c_bsp_init(c);
734
735 setup_force_cpu_cap(X86_FEATURE_ALWAYS);
736 }
737
738 void __init early_cpu_init(void)
739 {
740 const struct cpu_dev *const *cdev;
741 int count = 0;
742
743 #ifdef CONFIG_PROCESSOR_SELECT
744 printk(KERN_INFO "KERNEL supported cpus:\n");
745 #endif
746
747 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
748 const struct cpu_dev *cpudev = *cdev;
749
750 if (count >= X86_VENDOR_NUM)
751 break;
752 cpu_devs[count] = cpudev;
753 count++;
754
755 #ifdef CONFIG_PROCESSOR_SELECT
756 {
757 unsigned int j;
758
759 for (j = 0; j < 2; j++) {
760 if (!cpudev->c_ident[j])
761 continue;
762 printk(KERN_INFO " %s %s\n", cpudev->c_vendor,
763 cpudev->c_ident[j]);
764 }
765 }
766 #endif
767 }
768 early_identify_cpu(&boot_cpu_data);
769 }
770
771 /*
772 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
773 * unfortunately, that's not true in practice because of early VIA
774 * chips and (more importantly) broken virtualizers that are not easy
775 * to detect. In the latter case it doesn't even *fail* reliably, so
776 * probing for it doesn't even work. Disable it completely on 32-bit
777 * unless we can find a reliable way to detect all the broken cases.
778 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
779 */
780 static void detect_nopl(struct cpuinfo_x86 *c)
781 {
782 #ifdef CONFIG_X86_32
783 clear_cpu_cap(c, X86_FEATURE_NOPL);
784 #else
785 set_cpu_cap(c, X86_FEATURE_NOPL);
786 #endif
787 }
788
789 static void generic_identify(struct cpuinfo_x86 *c)
790 {
791 c->extended_cpuid_level = 0;
792
793 if (!have_cpuid_p())
794 identify_cpu_without_cpuid(c);
795
796 /* cyrix could have cpuid enabled via c_identify()*/
797 if (!have_cpuid_p())
798 return;
799
800 cpu_detect(c);
801
802 get_cpu_vendor(c);
803
804 get_cpu_cap(c);
805
806 if (c->cpuid_level >= 0x00000001) {
807 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
808 #ifdef CONFIG_X86_32
809 # ifdef CONFIG_X86_HT
810 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
811 # else
812 c->apicid = c->initial_apicid;
813 # endif
814 #endif
815 c->phys_proc_id = c->initial_apicid;
816 }
817
818 get_model_name(c); /* Default name */
819
820 detect_nopl(c);
821 }
822
823 /*
824 * This does the hard work of actually picking apart the CPU stuff...
825 */
826 static void identify_cpu(struct cpuinfo_x86 *c)
827 {
828 int i;
829
830 c->loops_per_jiffy = loops_per_jiffy;
831 c->x86_cache_size = -1;
832 c->x86_vendor = X86_VENDOR_UNKNOWN;
833 c->x86_model = c->x86_mask = 0; /* So far unknown... */
834 c->x86_vendor_id[0] = '\0'; /* Unset */
835 c->x86_model_id[0] = '\0'; /* Unset */
836 c->x86_max_cores = 1;
837 c->x86_coreid_bits = 0;
838 #ifdef CONFIG_X86_64
839 c->x86_clflush_size = 64;
840 c->x86_phys_bits = 36;
841 c->x86_virt_bits = 48;
842 #else
843 c->cpuid_level = -1; /* CPUID not detected */
844 c->x86_clflush_size = 32;
845 c->x86_phys_bits = 32;
846 c->x86_virt_bits = 32;
847 #endif
848 c->x86_cache_alignment = c->x86_clflush_size;
849 memset(&c->x86_capability, 0, sizeof c->x86_capability);
850
851 generic_identify(c);
852
853 if (this_cpu->c_identify)
854 this_cpu->c_identify(c);
855
856 /* Clear/Set all flags overriden by options, after probe */
857 for (i = 0; i < NCAPINTS; i++) {
858 c->x86_capability[i] &= ~cpu_caps_cleared[i];
859 c->x86_capability[i] |= cpu_caps_set[i];
860 }
861
862 #ifdef CONFIG_X86_64
863 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
864 #endif
865
866 /*
867 * Vendor-specific initialization. In this section we
868 * canonicalize the feature flags, meaning if there are
869 * features a certain CPU supports which CPUID doesn't
870 * tell us, CPUID claiming incorrect flags, or other bugs,
871 * we handle them here.
872 *
873 * At the end of this section, c->x86_capability better
874 * indicate the features this CPU genuinely supports!
875 */
876 if (this_cpu->c_init)
877 this_cpu->c_init(c);
878
879 /* Disable the PN if appropriate */
880 squash_the_stupid_serial_number(c);
881
882 /* Set up SMEP/SMAP */
883 setup_smep(c);
884 setup_smap(c);
885
886 /*
887 * The vendor-specific functions might have changed features.
888 * Now we do "generic changes."
889 */
890
891 /* Filter out anything that depends on CPUID levels we don't have */
892 filter_cpuid_features(c, true);
893
894 /* If the model name is still unset, do table lookup. */
895 if (!c->x86_model_id[0]) {
896 const char *p;
897 p = table_lookup_model(c);
898 if (p)
899 strcpy(c->x86_model_id, p);
900 else
901 /* Last resort... */
902 sprintf(c->x86_model_id, "%02x/%02x",
903 c->x86, c->x86_model);
904 }
905
906 #ifdef CONFIG_X86_64
907 detect_ht(c);
908 #endif
909
910 init_hypervisor(c);
911 x86_init_rdrand(c);
912
913 /*
914 * Clear/Set all flags overriden by options, need do it
915 * before following smp all cpus cap AND.
916 */
917 for (i = 0; i < NCAPINTS; i++) {
918 c->x86_capability[i] &= ~cpu_caps_cleared[i];
919 c->x86_capability[i] |= cpu_caps_set[i];
920 }
921
922 /*
923 * On SMP, boot_cpu_data holds the common feature set between
924 * all CPUs; so make sure that we indicate which features are
925 * common between the CPUs. The first time this routine gets
926 * executed, c == &boot_cpu_data.
927 */
928 if (c != &boot_cpu_data) {
929 /* AND the already accumulated flags with these */
930 for (i = 0; i < NCAPINTS; i++)
931 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
932
933 /* OR, i.e. replicate the bug flags */
934 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
935 c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
936 }
937
938 /* Init Machine Check Exception if available. */
939 mcheck_cpu_init(c);
940
941 select_idle_routine(c);
942
943 #ifdef CONFIG_NUMA
944 numa_add_cpu(smp_processor_id());
945 #endif
946 }
947
948 #ifdef CONFIG_X86_64
949 static void vgetcpu_set_mode(void)
950 {
951 if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP))
952 vgetcpu_mode = VGETCPU_RDTSCP;
953 else
954 vgetcpu_mode = VGETCPU_LSL;
955 }
956 #endif
957
958 void __init identify_boot_cpu(void)
959 {
960 identify_cpu(&boot_cpu_data);
961 init_amd_e400_c1e_mask();
962 #ifdef CONFIG_X86_32
963 sysenter_setup();
964 enable_sep_cpu();
965 #else
966 vgetcpu_set_mode();
967 #endif
968 cpu_detect_tlb(&boot_cpu_data);
969 }
970
971 void identify_secondary_cpu(struct cpuinfo_x86 *c)
972 {
973 BUG_ON(c == &boot_cpu_data);
974 identify_cpu(c);
975 #ifdef CONFIG_X86_32
976 enable_sep_cpu();
977 #endif
978 mtrr_ap_init();
979 }
980
981 struct msr_range {
982 unsigned min;
983 unsigned max;
984 };
985
986 static const struct msr_range msr_range_array[] = {
987 { 0x00000000, 0x00000418},
988 { 0xc0000000, 0xc000040b},
989 { 0xc0010000, 0xc0010142},
990 { 0xc0011000, 0xc001103b},
991 };
992
993 static void __print_cpu_msr(void)
994 {
995 unsigned index_min, index_max;
996 unsigned index;
997 u64 val;
998 int i;
999
1000 for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
1001 index_min = msr_range_array[i].min;
1002 index_max = msr_range_array[i].max;
1003
1004 for (index = index_min; index < index_max; index++) {
1005 if (rdmsrl_safe(index, &val))
1006 continue;
1007 printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
1008 }
1009 }
1010 }
1011
1012 static int show_msr;
1013
1014 static __init int setup_show_msr(char *arg)
1015 {
1016 int num;
1017
1018 get_option(&arg, &num);
1019
1020 if (num > 0)
1021 show_msr = num;
1022 return 1;
1023 }
1024 __setup("show_msr=", setup_show_msr);
1025
1026 static __init int setup_noclflush(char *arg)
1027 {
1028 setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1029 setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1030 return 1;
1031 }
1032 __setup("noclflush", setup_noclflush);
1033
1034 void print_cpu_info(struct cpuinfo_x86 *c)
1035 {
1036 const char *vendor = NULL;
1037
1038 if (c->x86_vendor < X86_VENDOR_NUM) {
1039 vendor = this_cpu->c_vendor;
1040 } else {
1041 if (c->cpuid_level >= 0)
1042 vendor = c->x86_vendor_id;
1043 }
1044
1045 if (vendor && !strstr(c->x86_model_id, vendor))
1046 printk(KERN_CONT "%s ", vendor);
1047
1048 if (c->x86_model_id[0])
1049 printk(KERN_CONT "%s", strim(c->x86_model_id));
1050 else
1051 printk(KERN_CONT "%d86", c->x86);
1052
1053 printk(KERN_CONT " (fam: %02x, model: %02x", c->x86, c->x86_model);
1054
1055 if (c->x86_mask || c->cpuid_level >= 0)
1056 printk(KERN_CONT ", stepping: %02x)\n", c->x86_mask);
1057 else
1058 printk(KERN_CONT ")\n");
1059
1060 print_cpu_msr(c);
1061 }
1062
1063 void print_cpu_msr(struct cpuinfo_x86 *c)
1064 {
1065 if (c->cpu_index < show_msr)
1066 __print_cpu_msr();
1067 }
1068
1069 static __init int setup_disablecpuid(char *arg)
1070 {
1071 int bit;
1072
1073 if (get_option(&arg, &bit) && bit < NCAPINTS*32)
1074 setup_clear_cpu_cap(bit);
1075 else
1076 return 0;
1077
1078 return 1;
1079 }
1080 __setup("clearcpuid=", setup_disablecpuid);
1081
1082 #ifdef CONFIG_X86_64
1083 struct desc_ptr idt_descr = { NR_VECTORS * 16 - 1, (unsigned long) idt_table };
1084 struct desc_ptr debug_idt_descr = { NR_VECTORS * 16 - 1,
1085 (unsigned long) debug_idt_table };
1086
1087 DEFINE_PER_CPU_FIRST(union irq_stack_union,
1088 irq_stack_union) __aligned(PAGE_SIZE) __visible;
1089
1090 /*
1091 * The following four percpu variables are hot. Align current_task to
1092 * cacheline size such that all four fall in the same cacheline.
1093 */
1094 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1095 &init_task;
1096 EXPORT_PER_CPU_SYMBOL(current_task);
1097
1098 DEFINE_PER_CPU(unsigned long, kernel_stack) =
1099 (unsigned long)&init_thread_union - KERNEL_STACK_OFFSET + THREAD_SIZE;
1100 EXPORT_PER_CPU_SYMBOL(kernel_stack);
1101
1102 DEFINE_PER_CPU(char *, irq_stack_ptr) =
1103 init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64;
1104
1105 DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1106
1107 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1108 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1109
1110 DEFINE_PER_CPU(struct task_struct *, fpu_owner_task);
1111
1112 /*
1113 * Special IST stacks which the CPU switches to when it calls
1114 * an IST-marked descriptor entry. Up to 7 stacks (hardware
1115 * limit), all of them are 4K, except the debug stack which
1116 * is 8K.
1117 */
1118 static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
1119 [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ,
1120 [DEBUG_STACK - 1] = DEBUG_STKSZ
1121 };
1122
1123 static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
1124 [(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]);
1125
1126 /* May not be marked __init: used by software suspend */
1127 void syscall_init(void)
1128 {
1129 /*
1130 * LSTAR and STAR live in a bit strange symbiosis.
1131 * They both write to the same internal register. STAR allows to
1132 * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
1133 */
1134 wrmsrl(MSR_STAR, ((u64)__USER32_CS)<<48 | ((u64)__KERNEL_CS)<<32);
1135 wrmsrl(MSR_LSTAR, system_call);
1136 wrmsrl(MSR_CSTAR, ignore_sysret);
1137
1138 #ifdef CONFIG_IA32_EMULATION
1139 syscall32_cpu_init();
1140 #endif
1141
1142 /* Flags to clear on syscall */
1143 wrmsrl(MSR_SYSCALL_MASK,
1144 X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1145 X86_EFLAGS_IOPL|X86_EFLAGS_AC);
1146 }
1147
1148 /*
1149 * Copies of the original ist values from the tss are only accessed during
1150 * debugging, no special alignment required.
1151 */
1152 DEFINE_PER_CPU(struct orig_ist, orig_ist);
1153
1154 static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
1155 DEFINE_PER_CPU(int, debug_stack_usage);
1156
1157 int is_debug_stack(unsigned long addr)
1158 {
1159 return __get_cpu_var(debug_stack_usage) ||
1160 (addr <= __get_cpu_var(debug_stack_addr) &&
1161 addr > (__get_cpu_var(debug_stack_addr) - DEBUG_STKSZ));
1162 }
1163
1164 DEFINE_PER_CPU(u32, debug_idt_ctr);
1165
1166 void debug_stack_set_zero(void)
1167 {
1168 this_cpu_inc(debug_idt_ctr);
1169 load_current_idt();
1170 }
1171
1172 void debug_stack_reset(void)
1173 {
1174 if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
1175 return;
1176 if (this_cpu_dec_return(debug_idt_ctr) == 0)
1177 load_current_idt();
1178 }
1179
1180 #else /* CONFIG_X86_64 */
1181
1182 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1183 EXPORT_PER_CPU_SYMBOL(current_task);
1184 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1185 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1186 DEFINE_PER_CPU(struct task_struct *, fpu_owner_task);
1187
1188 #ifdef CONFIG_CC_STACKPROTECTOR
1189 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1190 #endif
1191
1192 #endif /* CONFIG_X86_64 */
1193
1194 /*
1195 * Clear all 6 debug registers:
1196 */
1197 static void clear_all_debug_regs(void)
1198 {
1199 int i;
1200
1201 for (i = 0; i < 8; i++) {
1202 /* Ignore db4, db5 */
1203 if ((i == 4) || (i == 5))
1204 continue;
1205
1206 set_debugreg(0, i);
1207 }
1208 }
1209
1210 #ifdef CONFIG_KGDB
1211 /*
1212 * Restore debug regs if using kgdbwait and you have a kernel debugger
1213 * connection established.
1214 */
1215 static void dbg_restore_debug_regs(void)
1216 {
1217 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1218 arch_kgdb_ops.correct_hw_break();
1219 }
1220 #else /* ! CONFIG_KGDB */
1221 #define dbg_restore_debug_regs()
1222 #endif /* ! CONFIG_KGDB */
1223
1224 /*
1225 * cpu_init() initializes state that is per-CPU. Some data is already
1226 * initialized (naturally) in the bootstrap process, such as the GDT
1227 * and IDT. We reload them nevertheless, this function acts as a
1228 * 'CPU state barrier', nothing should get across.
1229 * A lot of state is already set up in PDA init for 64 bit
1230 */
1231 #ifdef CONFIG_X86_64
1232
1233 void cpu_init(void)
1234 {
1235 struct orig_ist *oist;
1236 struct task_struct *me;
1237 struct tss_struct *t;
1238 unsigned long v;
1239 int cpu;
1240 int i;
1241
1242 /*
1243 * Load microcode on this cpu if a valid microcode is available.
1244 * This is early microcode loading procedure.
1245 */
1246 load_ucode_ap();
1247
1248 cpu = stack_smp_processor_id();
1249 t = &per_cpu(init_tss, cpu);
1250 oist = &per_cpu(orig_ist, cpu);
1251
1252 #ifdef CONFIG_NUMA
1253 if (this_cpu_read(numa_node) == 0 &&
1254 early_cpu_to_node(cpu) != NUMA_NO_NODE)
1255 set_numa_node(early_cpu_to_node(cpu));
1256 #endif
1257
1258 me = current;
1259
1260 if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask))
1261 panic("CPU#%d already initialized!\n", cpu);
1262
1263 pr_debug("Initializing CPU#%d\n", cpu);
1264
1265 clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1266
1267 /*
1268 * Initialize the per-CPU GDT with the boot GDT,
1269 * and set up the GDT descriptor:
1270 */
1271
1272 switch_to_new_gdt(cpu);
1273 loadsegment(fs, 0);
1274
1275 load_current_idt();
1276
1277 memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1278 syscall_init();
1279
1280 wrmsrl(MSR_FS_BASE, 0);
1281 wrmsrl(MSR_KERNEL_GS_BASE, 0);
1282 barrier();
1283
1284 x86_configure_nx();
1285 enable_x2apic();
1286
1287 /*
1288 * set up and load the per-CPU TSS
1289 */
1290 if (!oist->ist[0]) {
1291 char *estacks = per_cpu(exception_stacks, cpu);
1292
1293 for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1294 estacks += exception_stack_sizes[v];
1295 oist->ist[v] = t->x86_tss.ist[v] =
1296 (unsigned long)estacks;
1297 if (v == DEBUG_STACK-1)
1298 per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
1299 }
1300 }
1301
1302 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1303
1304 /*
1305 * <= is required because the CPU will access up to
1306 * 8 bits beyond the end of the IO permission bitmap.
1307 */
1308 for (i = 0; i <= IO_BITMAP_LONGS; i++)
1309 t->io_bitmap[i] = ~0UL;
1310
1311 atomic_inc(&init_mm.mm_count);
1312 me->active_mm = &init_mm;
1313 BUG_ON(me->mm);
1314 enter_lazy_tlb(&init_mm, me);
1315
1316 load_sp0(t, &current->thread);
1317 set_tss_desc(cpu, t);
1318 load_TR_desc();
1319 load_LDT(&init_mm.context);
1320
1321 clear_all_debug_regs();
1322 dbg_restore_debug_regs();
1323
1324 fpu_init();
1325
1326 if (is_uv_system())
1327 uv_cpu_init();
1328 }
1329
1330 #else
1331
1332 void cpu_init(void)
1333 {
1334 int cpu = smp_processor_id();
1335 struct task_struct *curr = current;
1336 struct tss_struct *t = &per_cpu(init_tss, cpu);
1337 struct thread_struct *thread = &curr->thread;
1338
1339 show_ucode_info_early();
1340
1341 if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask)) {
1342 printk(KERN_WARNING "CPU#%d already initialized!\n", cpu);
1343 for (;;)
1344 local_irq_enable();
1345 }
1346
1347 printk(KERN_INFO "Initializing CPU#%d\n", cpu);
1348
1349 if (cpu_has_vme || cpu_has_tsc || cpu_has_de)
1350 clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1351
1352 load_current_idt();
1353 switch_to_new_gdt(cpu);
1354
1355 /*
1356 * Set up and load the per-CPU TSS and LDT
1357 */
1358 atomic_inc(&init_mm.mm_count);
1359 curr->active_mm = &init_mm;
1360 BUG_ON(curr->mm);
1361 enter_lazy_tlb(&init_mm, curr);
1362
1363 load_sp0(t, thread);
1364 set_tss_desc(cpu, t);
1365 load_TR_desc();
1366 load_LDT(&init_mm.context);
1367
1368 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1369
1370 #ifdef CONFIG_DOUBLEFAULT
1371 /* Set up doublefault TSS pointer in the GDT */
1372 __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1373 #endif
1374
1375 clear_all_debug_regs();
1376 dbg_restore_debug_regs();
1377
1378 fpu_init();
1379 }
1380 #endif
1381
1382 #ifdef CONFIG_X86_DEBUG_STATIC_CPU_HAS
1383 void warn_pre_alternatives(void)
1384 {
1385 WARN(1, "You're using static_cpu_has before alternatives have run!\n");
1386 }
1387 EXPORT_SYMBOL_GPL(warn_pre_alternatives);
1388 #endif
1389
1390 inline bool __static_cpu_has_safe(u16 bit)
1391 {
1392 return boot_cpu_has(bit);
1393 }
1394 EXPORT_SYMBOL_GPL(__static_cpu_has_safe);