]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/kernel/cpu/common.c
mm: introduce include/linux/pgtable.h
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kernel / cpu / common.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* cpu_feature_enabled() cannot be used this early */
3 #define USE_EARLY_PGTABLE_L5
4
5 #include <linux/memblock.h>
6 #include <linux/linkage.h>
7 #include <linux/bitops.h>
8 #include <linux/kernel.h>
9 #include <linux/export.h>
10 #include <linux/percpu.h>
11 #include <linux/string.h>
12 #include <linux/ctype.h>
13 #include <linux/delay.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/clock.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/smt.h>
18 #include <linux/init.h>
19 #include <linux/kprobes.h>
20 #include <linux/kgdb.h>
21 #include <linux/smp.h>
22 #include <linux/io.h>
23 #include <linux/syscore_ops.h>
24
25 #include <asm/stackprotector.h>
26 #include <asm/perf_event.h>
27 #include <asm/mmu_context.h>
28 #include <asm/doublefault.h>
29 #include <asm/archrandom.h>
30 #include <asm/hypervisor.h>
31 #include <asm/processor.h>
32 #include <asm/tlbflush.h>
33 #include <asm/debugreg.h>
34 #include <asm/sections.h>
35 #include <asm/vsyscall.h>
36 #include <linux/topology.h>
37 #include <linux/cpumask.h>
38 #include <linux/pgtable.h>
39 #include <linux/atomic.h>
40 #include <asm/proto.h>
41 #include <asm/setup.h>
42 #include <asm/apic.h>
43 #include <asm/desc.h>
44 #include <asm/fpu/internal.h>
45 #include <asm/mtrr.h>
46 #include <asm/hwcap2.h>
47 #include <linux/numa.h>
48 #include <asm/asm.h>
49 #include <asm/bugs.h>
50 #include <asm/cpu.h>
51 #include <asm/mce.h>
52 #include <asm/msr.h>
53 #include <asm/memtype.h>
54 #include <asm/microcode.h>
55 #include <asm/microcode_intel.h>
56 #include <asm/intel-family.h>
57 #include <asm/cpu_device_id.h>
58 #include <asm/uv/uv.h>
59
60 #include "cpu.h"
61
62 u32 elf_hwcap2 __read_mostly;
63
64 /* all of these masks are initialized in setup_cpu_local_masks() */
65 cpumask_var_t cpu_initialized_mask;
66 cpumask_var_t cpu_callout_mask;
67 cpumask_var_t cpu_callin_mask;
68
69 /* representing cpus for which sibling maps can be computed */
70 cpumask_var_t cpu_sibling_setup_mask;
71
72 /* Number of siblings per CPU package */
73 int smp_num_siblings = 1;
74 EXPORT_SYMBOL(smp_num_siblings);
75
76 /* Last level cache ID of each logical CPU */
77 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
78
79 /* correctly size the local cpu masks */
80 void __init setup_cpu_local_masks(void)
81 {
82 alloc_bootmem_cpumask_var(&cpu_initialized_mask);
83 alloc_bootmem_cpumask_var(&cpu_callin_mask);
84 alloc_bootmem_cpumask_var(&cpu_callout_mask);
85 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
86 }
87
88 static void default_init(struct cpuinfo_x86 *c)
89 {
90 #ifdef CONFIG_X86_64
91 cpu_detect_cache_sizes(c);
92 #else
93 /* Not much we can do here... */
94 /* Check if at least it has cpuid */
95 if (c->cpuid_level == -1) {
96 /* No cpuid. It must be an ancient CPU */
97 if (c->x86 == 4)
98 strcpy(c->x86_model_id, "486");
99 else if (c->x86 == 3)
100 strcpy(c->x86_model_id, "386");
101 }
102 #endif
103 }
104
105 static const struct cpu_dev default_cpu = {
106 .c_init = default_init,
107 .c_vendor = "Unknown",
108 .c_x86_vendor = X86_VENDOR_UNKNOWN,
109 };
110
111 static const struct cpu_dev *this_cpu = &default_cpu;
112
113 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
114 #ifdef CONFIG_X86_64
115 /*
116 * We need valid kernel segments for data and code in long mode too
117 * IRET will check the segment types kkeil 2000/10/28
118 * Also sysret mandates a special GDT layout
119 *
120 * TLS descriptors are currently at a different place compared to i386.
121 * Hopefully nobody expects them at a fixed place (Wine?)
122 */
123 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
124 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
125 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
126 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
127 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
128 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
129 #else
130 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
131 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
132 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
133 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
134 /*
135 * Segments used for calling PnP BIOS have byte granularity.
136 * They code segments and data segments have fixed 64k limits,
137 * the transfer segment sizes are set at run time.
138 */
139 /* 32-bit code */
140 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
141 /* 16-bit code */
142 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
143 /* 16-bit data */
144 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
145 /* 16-bit data */
146 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
147 /* 16-bit data */
148 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
149 /*
150 * The APM segments have byte granularity and their bases
151 * are set at run time. All have 64k limits.
152 */
153 /* 32-bit code */
154 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
155 /* 16-bit code */
156 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
157 /* data */
158 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
159
160 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
161 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
162 GDT_STACK_CANARY_INIT
163 #endif
164 } };
165 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
166
167 #ifdef CONFIG_X86_64
168 static int __init x86_nopcid_setup(char *s)
169 {
170 /* nopcid doesn't accept parameters */
171 if (s)
172 return -EINVAL;
173
174 /* do not emit a message if the feature is not present */
175 if (!boot_cpu_has(X86_FEATURE_PCID))
176 return 0;
177
178 setup_clear_cpu_cap(X86_FEATURE_PCID);
179 pr_info("nopcid: PCID feature disabled\n");
180 return 0;
181 }
182 early_param("nopcid", x86_nopcid_setup);
183 #endif
184
185 static int __init x86_noinvpcid_setup(char *s)
186 {
187 /* noinvpcid doesn't accept parameters */
188 if (s)
189 return -EINVAL;
190
191 /* do not emit a message if the feature is not present */
192 if (!boot_cpu_has(X86_FEATURE_INVPCID))
193 return 0;
194
195 setup_clear_cpu_cap(X86_FEATURE_INVPCID);
196 pr_info("noinvpcid: INVPCID feature disabled\n");
197 return 0;
198 }
199 early_param("noinvpcid", x86_noinvpcid_setup);
200
201 #ifdef CONFIG_X86_32
202 static int cachesize_override = -1;
203 static int disable_x86_serial_nr = 1;
204
205 static int __init cachesize_setup(char *str)
206 {
207 get_option(&str, &cachesize_override);
208 return 1;
209 }
210 __setup("cachesize=", cachesize_setup);
211
212 static int __init x86_sep_setup(char *s)
213 {
214 setup_clear_cpu_cap(X86_FEATURE_SEP);
215 return 1;
216 }
217 __setup("nosep", x86_sep_setup);
218
219 /* Standard macro to see if a specific flag is changeable */
220 static inline int flag_is_changeable_p(u32 flag)
221 {
222 u32 f1, f2;
223
224 /*
225 * Cyrix and IDT cpus allow disabling of CPUID
226 * so the code below may return different results
227 * when it is executed before and after enabling
228 * the CPUID. Add "volatile" to not allow gcc to
229 * optimize the subsequent calls to this function.
230 */
231 asm volatile ("pushfl \n\t"
232 "pushfl \n\t"
233 "popl %0 \n\t"
234 "movl %0, %1 \n\t"
235 "xorl %2, %0 \n\t"
236 "pushl %0 \n\t"
237 "popfl \n\t"
238 "pushfl \n\t"
239 "popl %0 \n\t"
240 "popfl \n\t"
241
242 : "=&r" (f1), "=&r" (f2)
243 : "ir" (flag));
244
245 return ((f1^f2) & flag) != 0;
246 }
247
248 /* Probe for the CPUID instruction */
249 int have_cpuid_p(void)
250 {
251 return flag_is_changeable_p(X86_EFLAGS_ID);
252 }
253
254 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
255 {
256 unsigned long lo, hi;
257
258 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
259 return;
260
261 /* Disable processor serial number: */
262
263 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
264 lo |= 0x200000;
265 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
266
267 pr_notice("CPU serial number disabled.\n");
268 clear_cpu_cap(c, X86_FEATURE_PN);
269
270 /* Disabling the serial number may affect the cpuid level */
271 c->cpuid_level = cpuid_eax(0);
272 }
273
274 static int __init x86_serial_nr_setup(char *s)
275 {
276 disable_x86_serial_nr = 0;
277 return 1;
278 }
279 __setup("serialnumber", x86_serial_nr_setup);
280 #else
281 static inline int flag_is_changeable_p(u32 flag)
282 {
283 return 1;
284 }
285 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
286 {
287 }
288 #endif
289
290 static __init int setup_disable_smep(char *arg)
291 {
292 setup_clear_cpu_cap(X86_FEATURE_SMEP);
293 return 1;
294 }
295 __setup("nosmep", setup_disable_smep);
296
297 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
298 {
299 if (cpu_has(c, X86_FEATURE_SMEP))
300 cr4_set_bits(X86_CR4_SMEP);
301 }
302
303 static __init int setup_disable_smap(char *arg)
304 {
305 setup_clear_cpu_cap(X86_FEATURE_SMAP);
306 return 1;
307 }
308 __setup("nosmap", setup_disable_smap);
309
310 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
311 {
312 unsigned long eflags = native_save_fl();
313
314 /* This should have been cleared long ago */
315 BUG_ON(eflags & X86_EFLAGS_AC);
316
317 if (cpu_has(c, X86_FEATURE_SMAP)) {
318 #ifdef CONFIG_X86_SMAP
319 cr4_set_bits(X86_CR4_SMAP);
320 #else
321 cr4_clear_bits(X86_CR4_SMAP);
322 #endif
323 }
324 }
325
326 static __always_inline void setup_umip(struct cpuinfo_x86 *c)
327 {
328 /* Check the boot processor, plus build option for UMIP. */
329 if (!cpu_feature_enabled(X86_FEATURE_UMIP))
330 goto out;
331
332 /* Check the current processor's cpuid bits. */
333 if (!cpu_has(c, X86_FEATURE_UMIP))
334 goto out;
335
336 cr4_set_bits(X86_CR4_UMIP);
337
338 pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
339
340 return;
341
342 out:
343 /*
344 * Make sure UMIP is disabled in case it was enabled in a
345 * previous boot (e.g., via kexec).
346 */
347 cr4_clear_bits(X86_CR4_UMIP);
348 }
349
350 static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
351 static unsigned long cr4_pinned_bits __ro_after_init;
352
353 void native_write_cr0(unsigned long val)
354 {
355 unsigned long bits_missing = 0;
356
357 set_register:
358 asm volatile("mov %0,%%cr0": "+r" (val), "+m" (__force_order));
359
360 if (static_branch_likely(&cr_pinning)) {
361 if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
362 bits_missing = X86_CR0_WP;
363 val |= bits_missing;
364 goto set_register;
365 }
366 /* Warn after we've set the missing bits. */
367 WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
368 }
369 }
370 EXPORT_SYMBOL(native_write_cr0);
371
372 void native_write_cr4(unsigned long val)
373 {
374 unsigned long bits_missing = 0;
375
376 set_register:
377 asm volatile("mov %0,%%cr4": "+r" (val), "+m" (cr4_pinned_bits));
378
379 if (static_branch_likely(&cr_pinning)) {
380 if (unlikely((val & cr4_pinned_bits) != cr4_pinned_bits)) {
381 bits_missing = ~val & cr4_pinned_bits;
382 val |= bits_missing;
383 goto set_register;
384 }
385 /* Warn after we've set the missing bits. */
386 WARN_ONCE(bits_missing, "CR4 bits went missing: %lx!?\n",
387 bits_missing);
388 }
389 }
390 #if IS_MODULE(CONFIG_LKDTM)
391 EXPORT_SYMBOL_GPL(native_write_cr4);
392 #endif
393
394 void cr4_update_irqsoff(unsigned long set, unsigned long clear)
395 {
396 unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
397
398 lockdep_assert_irqs_disabled();
399
400 newval = (cr4 & ~clear) | set;
401 if (newval != cr4) {
402 this_cpu_write(cpu_tlbstate.cr4, newval);
403 __write_cr4(newval);
404 }
405 }
406 EXPORT_SYMBOL(cr4_update_irqsoff);
407
408 /* Read the CR4 shadow. */
409 unsigned long cr4_read_shadow(void)
410 {
411 return this_cpu_read(cpu_tlbstate.cr4);
412 }
413 EXPORT_SYMBOL_GPL(cr4_read_shadow);
414
415 void cr4_init(void)
416 {
417 unsigned long cr4 = __read_cr4();
418
419 if (boot_cpu_has(X86_FEATURE_PCID))
420 cr4 |= X86_CR4_PCIDE;
421 if (static_branch_likely(&cr_pinning))
422 cr4 |= cr4_pinned_bits;
423
424 __write_cr4(cr4);
425
426 /* Initialize cr4 shadow for this CPU. */
427 this_cpu_write(cpu_tlbstate.cr4, cr4);
428 }
429
430 /*
431 * Once CPU feature detection is finished (and boot params have been
432 * parsed), record any of the sensitive CR bits that are set, and
433 * enable CR pinning.
434 */
435 static void __init setup_cr_pinning(void)
436 {
437 unsigned long mask;
438
439 mask = (X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP);
440 cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & mask;
441 static_key_enable(&cr_pinning.key);
442 }
443
444 /*
445 * Protection Keys are not available in 32-bit mode.
446 */
447 static bool pku_disabled;
448
449 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
450 {
451 struct pkru_state *pk;
452
453 /* check the boot processor, plus compile options for PKU: */
454 if (!cpu_feature_enabled(X86_FEATURE_PKU))
455 return;
456 /* checks the actual processor's cpuid bits: */
457 if (!cpu_has(c, X86_FEATURE_PKU))
458 return;
459 if (pku_disabled)
460 return;
461
462 cr4_set_bits(X86_CR4_PKE);
463 pk = get_xsave_addr(&init_fpstate.xsave, XFEATURE_PKRU);
464 if (pk)
465 pk->pkru = init_pkru_value;
466 /*
467 * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
468 * cpuid bit to be set. We need to ensure that we
469 * update that bit in this CPU's "cpu_info".
470 */
471 set_cpu_cap(c, X86_FEATURE_OSPKE);
472 }
473
474 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
475 static __init int setup_disable_pku(char *arg)
476 {
477 /*
478 * Do not clear the X86_FEATURE_PKU bit. All of the
479 * runtime checks are against OSPKE so clearing the
480 * bit does nothing.
481 *
482 * This way, we will see "pku" in cpuinfo, but not
483 * "ospke", which is exactly what we want. It shows
484 * that the CPU has PKU, but the OS has not enabled it.
485 * This happens to be exactly how a system would look
486 * if we disabled the config option.
487 */
488 pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
489 pku_disabled = true;
490 return 1;
491 }
492 __setup("nopku", setup_disable_pku);
493 #endif /* CONFIG_X86_64 */
494
495 /*
496 * Some CPU features depend on higher CPUID levels, which may not always
497 * be available due to CPUID level capping or broken virtualization
498 * software. Add those features to this table to auto-disable them.
499 */
500 struct cpuid_dependent_feature {
501 u32 feature;
502 u32 level;
503 };
504
505 static const struct cpuid_dependent_feature
506 cpuid_dependent_features[] = {
507 { X86_FEATURE_MWAIT, 0x00000005 },
508 { X86_FEATURE_DCA, 0x00000009 },
509 { X86_FEATURE_XSAVE, 0x0000000d },
510 { 0, 0 }
511 };
512
513 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
514 {
515 const struct cpuid_dependent_feature *df;
516
517 for (df = cpuid_dependent_features; df->feature; df++) {
518
519 if (!cpu_has(c, df->feature))
520 continue;
521 /*
522 * Note: cpuid_level is set to -1 if unavailable, but
523 * extended_extended_level is set to 0 if unavailable
524 * and the legitimate extended levels are all negative
525 * when signed; hence the weird messing around with
526 * signs here...
527 */
528 if (!((s32)df->level < 0 ?
529 (u32)df->level > (u32)c->extended_cpuid_level :
530 (s32)df->level > (s32)c->cpuid_level))
531 continue;
532
533 clear_cpu_cap(c, df->feature);
534 if (!warn)
535 continue;
536
537 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
538 x86_cap_flag(df->feature), df->level);
539 }
540 }
541
542 /*
543 * Naming convention should be: <Name> [(<Codename>)]
544 * This table only is used unless init_<vendor>() below doesn't set it;
545 * in particular, if CPUID levels 0x80000002..4 are supported, this
546 * isn't used
547 */
548
549 /* Look up CPU names by table lookup. */
550 static const char *table_lookup_model(struct cpuinfo_x86 *c)
551 {
552 #ifdef CONFIG_X86_32
553 const struct legacy_cpu_model_info *info;
554
555 if (c->x86_model >= 16)
556 return NULL; /* Range check */
557
558 if (!this_cpu)
559 return NULL;
560
561 info = this_cpu->legacy_models;
562
563 while (info->family) {
564 if (info->family == c->x86)
565 return info->model_names[c->x86_model];
566 info++;
567 }
568 #endif
569 return NULL; /* Not found */
570 }
571
572 /* Aligned to unsigned long to avoid split lock in atomic bitmap ops */
573 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
574 __u32 cpu_caps_set[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
575
576 void load_percpu_segment(int cpu)
577 {
578 #ifdef CONFIG_X86_32
579 loadsegment(fs, __KERNEL_PERCPU);
580 #else
581 __loadsegment_simple(gs, 0);
582 wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
583 #endif
584 load_stack_canary_segment();
585 }
586
587 #ifdef CONFIG_X86_32
588 /* The 32-bit entry code needs to find cpu_entry_area. */
589 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
590 #endif
591
592 /* Load the original GDT from the per-cpu structure */
593 void load_direct_gdt(int cpu)
594 {
595 struct desc_ptr gdt_descr;
596
597 gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
598 gdt_descr.size = GDT_SIZE - 1;
599 load_gdt(&gdt_descr);
600 }
601 EXPORT_SYMBOL_GPL(load_direct_gdt);
602
603 /* Load a fixmap remapping of the per-cpu GDT */
604 void load_fixmap_gdt(int cpu)
605 {
606 struct desc_ptr gdt_descr;
607
608 gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
609 gdt_descr.size = GDT_SIZE - 1;
610 load_gdt(&gdt_descr);
611 }
612 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
613
614 /*
615 * Current gdt points %fs at the "master" per-cpu area: after this,
616 * it's on the real one.
617 */
618 void switch_to_new_gdt(int cpu)
619 {
620 /* Load the original GDT */
621 load_direct_gdt(cpu);
622 /* Reload the per-cpu base */
623 load_percpu_segment(cpu);
624 }
625
626 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
627
628 static void get_model_name(struct cpuinfo_x86 *c)
629 {
630 unsigned int *v;
631 char *p, *q, *s;
632
633 if (c->extended_cpuid_level < 0x80000004)
634 return;
635
636 v = (unsigned int *)c->x86_model_id;
637 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
638 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
639 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
640 c->x86_model_id[48] = 0;
641
642 /* Trim whitespace */
643 p = q = s = &c->x86_model_id[0];
644
645 while (*p == ' ')
646 p++;
647
648 while (*p) {
649 /* Note the last non-whitespace index */
650 if (!isspace(*p))
651 s = q;
652
653 *q++ = *p++;
654 }
655
656 *(s + 1) = '\0';
657 }
658
659 void detect_num_cpu_cores(struct cpuinfo_x86 *c)
660 {
661 unsigned int eax, ebx, ecx, edx;
662
663 c->x86_max_cores = 1;
664 if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
665 return;
666
667 cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
668 if (eax & 0x1f)
669 c->x86_max_cores = (eax >> 26) + 1;
670 }
671
672 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
673 {
674 unsigned int n, dummy, ebx, ecx, edx, l2size;
675
676 n = c->extended_cpuid_level;
677
678 if (n >= 0x80000005) {
679 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
680 c->x86_cache_size = (ecx>>24) + (edx>>24);
681 #ifdef CONFIG_X86_64
682 /* On K8 L1 TLB is inclusive, so don't count it */
683 c->x86_tlbsize = 0;
684 #endif
685 }
686
687 if (n < 0x80000006) /* Some chips just has a large L1. */
688 return;
689
690 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
691 l2size = ecx >> 16;
692
693 #ifdef CONFIG_X86_64
694 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
695 #else
696 /* do processor-specific cache resizing */
697 if (this_cpu->legacy_cache_size)
698 l2size = this_cpu->legacy_cache_size(c, l2size);
699
700 /* Allow user to override all this if necessary. */
701 if (cachesize_override != -1)
702 l2size = cachesize_override;
703
704 if (l2size == 0)
705 return; /* Again, no L2 cache is possible */
706 #endif
707
708 c->x86_cache_size = l2size;
709 }
710
711 u16 __read_mostly tlb_lli_4k[NR_INFO];
712 u16 __read_mostly tlb_lli_2m[NR_INFO];
713 u16 __read_mostly tlb_lli_4m[NR_INFO];
714 u16 __read_mostly tlb_lld_4k[NR_INFO];
715 u16 __read_mostly tlb_lld_2m[NR_INFO];
716 u16 __read_mostly tlb_lld_4m[NR_INFO];
717 u16 __read_mostly tlb_lld_1g[NR_INFO];
718
719 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
720 {
721 if (this_cpu->c_detect_tlb)
722 this_cpu->c_detect_tlb(c);
723
724 pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
725 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
726 tlb_lli_4m[ENTRIES]);
727
728 pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
729 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
730 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
731 }
732
733 int detect_ht_early(struct cpuinfo_x86 *c)
734 {
735 #ifdef CONFIG_SMP
736 u32 eax, ebx, ecx, edx;
737
738 if (!cpu_has(c, X86_FEATURE_HT))
739 return -1;
740
741 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
742 return -1;
743
744 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
745 return -1;
746
747 cpuid(1, &eax, &ebx, &ecx, &edx);
748
749 smp_num_siblings = (ebx & 0xff0000) >> 16;
750 if (smp_num_siblings == 1)
751 pr_info_once("CPU0: Hyper-Threading is disabled\n");
752 #endif
753 return 0;
754 }
755
756 void detect_ht(struct cpuinfo_x86 *c)
757 {
758 #ifdef CONFIG_SMP
759 int index_msb, core_bits;
760
761 if (detect_ht_early(c) < 0)
762 return;
763
764 index_msb = get_count_order(smp_num_siblings);
765 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
766
767 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
768
769 index_msb = get_count_order(smp_num_siblings);
770
771 core_bits = get_count_order(c->x86_max_cores);
772
773 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
774 ((1 << core_bits) - 1);
775 #endif
776 }
777
778 static void get_cpu_vendor(struct cpuinfo_x86 *c)
779 {
780 char *v = c->x86_vendor_id;
781 int i;
782
783 for (i = 0; i < X86_VENDOR_NUM; i++) {
784 if (!cpu_devs[i])
785 break;
786
787 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
788 (cpu_devs[i]->c_ident[1] &&
789 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
790
791 this_cpu = cpu_devs[i];
792 c->x86_vendor = this_cpu->c_x86_vendor;
793 return;
794 }
795 }
796
797 pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
798 "CPU: Your system may be unstable.\n", v);
799
800 c->x86_vendor = X86_VENDOR_UNKNOWN;
801 this_cpu = &default_cpu;
802 }
803
804 void cpu_detect(struct cpuinfo_x86 *c)
805 {
806 /* Get vendor name */
807 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
808 (unsigned int *)&c->x86_vendor_id[0],
809 (unsigned int *)&c->x86_vendor_id[8],
810 (unsigned int *)&c->x86_vendor_id[4]);
811
812 c->x86 = 4;
813 /* Intel-defined flags: level 0x00000001 */
814 if (c->cpuid_level >= 0x00000001) {
815 u32 junk, tfms, cap0, misc;
816
817 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
818 c->x86 = x86_family(tfms);
819 c->x86_model = x86_model(tfms);
820 c->x86_stepping = x86_stepping(tfms);
821
822 if (cap0 & (1<<19)) {
823 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
824 c->x86_cache_alignment = c->x86_clflush_size;
825 }
826 }
827 }
828
829 static void apply_forced_caps(struct cpuinfo_x86 *c)
830 {
831 int i;
832
833 for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
834 c->x86_capability[i] &= ~cpu_caps_cleared[i];
835 c->x86_capability[i] |= cpu_caps_set[i];
836 }
837 }
838
839 static void init_speculation_control(struct cpuinfo_x86 *c)
840 {
841 /*
842 * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
843 * and they also have a different bit for STIBP support. Also,
844 * a hypervisor might have set the individual AMD bits even on
845 * Intel CPUs, for finer-grained selection of what's available.
846 */
847 if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
848 set_cpu_cap(c, X86_FEATURE_IBRS);
849 set_cpu_cap(c, X86_FEATURE_IBPB);
850 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
851 }
852
853 if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
854 set_cpu_cap(c, X86_FEATURE_STIBP);
855
856 if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
857 cpu_has(c, X86_FEATURE_VIRT_SSBD))
858 set_cpu_cap(c, X86_FEATURE_SSBD);
859
860 if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
861 set_cpu_cap(c, X86_FEATURE_IBRS);
862 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
863 }
864
865 if (cpu_has(c, X86_FEATURE_AMD_IBPB))
866 set_cpu_cap(c, X86_FEATURE_IBPB);
867
868 if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
869 set_cpu_cap(c, X86_FEATURE_STIBP);
870 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
871 }
872
873 if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
874 set_cpu_cap(c, X86_FEATURE_SSBD);
875 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
876 clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
877 }
878 }
879
880 void get_cpu_cap(struct cpuinfo_x86 *c)
881 {
882 u32 eax, ebx, ecx, edx;
883
884 /* Intel-defined flags: level 0x00000001 */
885 if (c->cpuid_level >= 0x00000001) {
886 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
887
888 c->x86_capability[CPUID_1_ECX] = ecx;
889 c->x86_capability[CPUID_1_EDX] = edx;
890 }
891
892 /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
893 if (c->cpuid_level >= 0x00000006)
894 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
895
896 /* Additional Intel-defined flags: level 0x00000007 */
897 if (c->cpuid_level >= 0x00000007) {
898 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
899 c->x86_capability[CPUID_7_0_EBX] = ebx;
900 c->x86_capability[CPUID_7_ECX] = ecx;
901 c->x86_capability[CPUID_7_EDX] = edx;
902
903 /* Check valid sub-leaf index before accessing it */
904 if (eax >= 1) {
905 cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
906 c->x86_capability[CPUID_7_1_EAX] = eax;
907 }
908 }
909
910 /* Extended state features: level 0x0000000d */
911 if (c->cpuid_level >= 0x0000000d) {
912 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
913
914 c->x86_capability[CPUID_D_1_EAX] = eax;
915 }
916
917 /* AMD-defined flags: level 0x80000001 */
918 eax = cpuid_eax(0x80000000);
919 c->extended_cpuid_level = eax;
920
921 if ((eax & 0xffff0000) == 0x80000000) {
922 if (eax >= 0x80000001) {
923 cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
924
925 c->x86_capability[CPUID_8000_0001_ECX] = ecx;
926 c->x86_capability[CPUID_8000_0001_EDX] = edx;
927 }
928 }
929
930 if (c->extended_cpuid_level >= 0x80000007) {
931 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
932
933 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
934 c->x86_power = edx;
935 }
936
937 if (c->extended_cpuid_level >= 0x80000008) {
938 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
939 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
940 }
941
942 if (c->extended_cpuid_level >= 0x8000000a)
943 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
944
945 init_scattered_cpuid_features(c);
946 init_speculation_control(c);
947
948 /*
949 * Clear/Set all flags overridden by options, after probe.
950 * This needs to happen each time we re-probe, which may happen
951 * several times during CPU initialization.
952 */
953 apply_forced_caps(c);
954 }
955
956 void get_cpu_address_sizes(struct cpuinfo_x86 *c)
957 {
958 u32 eax, ebx, ecx, edx;
959
960 if (c->extended_cpuid_level >= 0x80000008) {
961 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
962
963 c->x86_virt_bits = (eax >> 8) & 0xff;
964 c->x86_phys_bits = eax & 0xff;
965 }
966 #ifdef CONFIG_X86_32
967 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
968 c->x86_phys_bits = 36;
969 #endif
970 c->x86_cache_bits = c->x86_phys_bits;
971 }
972
973 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
974 {
975 #ifdef CONFIG_X86_32
976 int i;
977
978 /*
979 * First of all, decide if this is a 486 or higher
980 * It's a 486 if we can modify the AC flag
981 */
982 if (flag_is_changeable_p(X86_EFLAGS_AC))
983 c->x86 = 4;
984 else
985 c->x86 = 3;
986
987 for (i = 0; i < X86_VENDOR_NUM; i++)
988 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
989 c->x86_vendor_id[0] = 0;
990 cpu_devs[i]->c_identify(c);
991 if (c->x86_vendor_id[0]) {
992 get_cpu_vendor(c);
993 break;
994 }
995 }
996 #endif
997 }
998
999 #define NO_SPECULATION BIT(0)
1000 #define NO_MELTDOWN BIT(1)
1001 #define NO_SSB BIT(2)
1002 #define NO_L1TF BIT(3)
1003 #define NO_MDS BIT(4)
1004 #define MSBDS_ONLY BIT(5)
1005 #define NO_SWAPGS BIT(6)
1006 #define NO_ITLB_MULTIHIT BIT(7)
1007 #define NO_SPECTRE_V2 BIT(8)
1008
1009 #define VULNWL(vendor, family, model, whitelist) \
1010 X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, whitelist)
1011
1012 #define VULNWL_INTEL(model, whitelist) \
1013 VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
1014
1015 #define VULNWL_AMD(family, whitelist) \
1016 VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
1017
1018 #define VULNWL_HYGON(family, whitelist) \
1019 VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
1020
1021 static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
1022 VULNWL(ANY, 4, X86_MODEL_ANY, NO_SPECULATION),
1023 VULNWL(CENTAUR, 5, X86_MODEL_ANY, NO_SPECULATION),
1024 VULNWL(INTEL, 5, X86_MODEL_ANY, NO_SPECULATION),
1025 VULNWL(NSC, 5, X86_MODEL_ANY, NO_SPECULATION),
1026
1027 /* Intel Family 6 */
1028 VULNWL_INTEL(ATOM_SALTWELL, NO_SPECULATION | NO_ITLB_MULTIHIT),
1029 VULNWL_INTEL(ATOM_SALTWELL_TABLET, NO_SPECULATION | NO_ITLB_MULTIHIT),
1030 VULNWL_INTEL(ATOM_SALTWELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT),
1031 VULNWL_INTEL(ATOM_BONNELL, NO_SPECULATION | NO_ITLB_MULTIHIT),
1032 VULNWL_INTEL(ATOM_BONNELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT),
1033
1034 VULNWL_INTEL(ATOM_SILVERMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1035 VULNWL_INTEL(ATOM_SILVERMONT_D, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1036 VULNWL_INTEL(ATOM_SILVERMONT_MID, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1037 VULNWL_INTEL(ATOM_AIRMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1038 VULNWL_INTEL(XEON_PHI_KNL, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1039 VULNWL_INTEL(XEON_PHI_KNM, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1040
1041 VULNWL_INTEL(CORE_YONAH, NO_SSB),
1042
1043 VULNWL_INTEL(ATOM_AIRMONT_MID, NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1044 VULNWL_INTEL(ATOM_AIRMONT_NP, NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1045
1046 VULNWL_INTEL(ATOM_GOLDMONT, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1047 VULNWL_INTEL(ATOM_GOLDMONT_D, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1048 VULNWL_INTEL(ATOM_GOLDMONT_PLUS, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1049
1050 /*
1051 * Technically, swapgs isn't serializing on AMD (despite it previously
1052 * being documented as such in the APM). But according to AMD, %gs is
1053 * updated non-speculatively, and the issuing of %gs-relative memory
1054 * operands will be blocked until the %gs update completes, which is
1055 * good enough for our purposes.
1056 */
1057
1058 VULNWL_INTEL(ATOM_TREMONT_D, NO_ITLB_MULTIHIT),
1059
1060 /* AMD Family 0xf - 0x12 */
1061 VULNWL_AMD(0x0f, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1062 VULNWL_AMD(0x10, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1063 VULNWL_AMD(0x11, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1064 VULNWL_AMD(0x12, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1065
1066 /* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
1067 VULNWL_AMD(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1068 VULNWL_HYGON(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1069
1070 /* Zhaoxin Family 7 */
1071 VULNWL(CENTAUR, 7, X86_MODEL_ANY, NO_SPECTRE_V2 | NO_SWAPGS),
1072 VULNWL(ZHAOXIN, 7, X86_MODEL_ANY, NO_SPECTRE_V2 | NO_SWAPGS),
1073 {}
1074 };
1075
1076 static bool __init cpu_matches(unsigned long which)
1077 {
1078 const struct x86_cpu_id *m = x86_match_cpu(cpu_vuln_whitelist);
1079
1080 return m && !!(m->driver_data & which);
1081 }
1082
1083 u64 x86_read_arch_cap_msr(void)
1084 {
1085 u64 ia32_cap = 0;
1086
1087 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1088 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
1089
1090 return ia32_cap;
1091 }
1092
1093 static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1094 {
1095 u64 ia32_cap = x86_read_arch_cap_msr();
1096
1097 /* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
1098 if (!cpu_matches(NO_ITLB_MULTIHIT) && !(ia32_cap & ARCH_CAP_PSCHANGE_MC_NO))
1099 setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
1100
1101 if (cpu_matches(NO_SPECULATION))
1102 return;
1103
1104 setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1105
1106 if (!cpu_matches(NO_SPECTRE_V2))
1107 setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1108
1109 if (!cpu_matches(NO_SSB) && !(ia32_cap & ARCH_CAP_SSB_NO) &&
1110 !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1111 setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1112
1113 if (ia32_cap & ARCH_CAP_IBRS_ALL)
1114 setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1115
1116 if (!cpu_matches(NO_MDS) && !(ia32_cap & ARCH_CAP_MDS_NO)) {
1117 setup_force_cpu_bug(X86_BUG_MDS);
1118 if (cpu_matches(MSBDS_ONLY))
1119 setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1120 }
1121
1122 if (!cpu_matches(NO_SWAPGS))
1123 setup_force_cpu_bug(X86_BUG_SWAPGS);
1124
1125 /*
1126 * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1127 * - TSX is supported or
1128 * - TSX_CTRL is present
1129 *
1130 * TSX_CTRL check is needed for cases when TSX could be disabled before
1131 * the kernel boot e.g. kexec.
1132 * TSX_CTRL check alone is not sufficient for cases when the microcode
1133 * update is not present or running as guest that don't get TSX_CTRL.
1134 */
1135 if (!(ia32_cap & ARCH_CAP_TAA_NO) &&
1136 (cpu_has(c, X86_FEATURE_RTM) ||
1137 (ia32_cap & ARCH_CAP_TSX_CTRL_MSR)))
1138 setup_force_cpu_bug(X86_BUG_TAA);
1139
1140 if (cpu_matches(NO_MELTDOWN))
1141 return;
1142
1143 /* Rogue Data Cache Load? No! */
1144 if (ia32_cap & ARCH_CAP_RDCL_NO)
1145 return;
1146
1147 setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1148
1149 if (cpu_matches(NO_L1TF))
1150 return;
1151
1152 setup_force_cpu_bug(X86_BUG_L1TF);
1153 }
1154
1155 /*
1156 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1157 * unfortunately, that's not true in practice because of early VIA
1158 * chips and (more importantly) broken virtualizers that are not easy
1159 * to detect. In the latter case it doesn't even *fail* reliably, so
1160 * probing for it doesn't even work. Disable it completely on 32-bit
1161 * unless we can find a reliable way to detect all the broken cases.
1162 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1163 */
1164 static void detect_nopl(void)
1165 {
1166 #ifdef CONFIG_X86_32
1167 setup_clear_cpu_cap(X86_FEATURE_NOPL);
1168 #else
1169 setup_force_cpu_cap(X86_FEATURE_NOPL);
1170 #endif
1171 }
1172
1173 /*
1174 * Do minimum CPU detection early.
1175 * Fields really needed: vendor, cpuid_level, family, model, mask,
1176 * cache alignment.
1177 * The others are not touched to avoid unwanted side effects.
1178 *
1179 * WARNING: this function is only called on the boot CPU. Don't add code
1180 * here that is supposed to run on all CPUs.
1181 */
1182 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1183 {
1184 #ifdef CONFIG_X86_64
1185 c->x86_clflush_size = 64;
1186 c->x86_phys_bits = 36;
1187 c->x86_virt_bits = 48;
1188 #else
1189 c->x86_clflush_size = 32;
1190 c->x86_phys_bits = 32;
1191 c->x86_virt_bits = 32;
1192 #endif
1193 c->x86_cache_alignment = c->x86_clflush_size;
1194
1195 memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1196 c->extended_cpuid_level = 0;
1197
1198 if (!have_cpuid_p())
1199 identify_cpu_without_cpuid(c);
1200
1201 /* cyrix could have cpuid enabled via c_identify()*/
1202 if (have_cpuid_p()) {
1203 cpu_detect(c);
1204 get_cpu_vendor(c);
1205 get_cpu_cap(c);
1206 get_cpu_address_sizes(c);
1207 setup_force_cpu_cap(X86_FEATURE_CPUID);
1208
1209 if (this_cpu->c_early_init)
1210 this_cpu->c_early_init(c);
1211
1212 c->cpu_index = 0;
1213 filter_cpuid_features(c, false);
1214
1215 if (this_cpu->c_bsp_init)
1216 this_cpu->c_bsp_init(c);
1217 } else {
1218 setup_clear_cpu_cap(X86_FEATURE_CPUID);
1219 }
1220
1221 setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1222
1223 cpu_set_bug_bits(c);
1224
1225 cpu_set_core_cap_bits(c);
1226
1227 fpu__init_system(c);
1228
1229 #ifdef CONFIG_X86_32
1230 /*
1231 * Regardless of whether PCID is enumerated, the SDM says
1232 * that it can't be enabled in 32-bit mode.
1233 */
1234 setup_clear_cpu_cap(X86_FEATURE_PCID);
1235 #endif
1236
1237 /*
1238 * Later in the boot process pgtable_l5_enabled() relies on
1239 * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1240 * enabled by this point we need to clear the feature bit to avoid
1241 * false-positives at the later stage.
1242 *
1243 * pgtable_l5_enabled() can be false here for several reasons:
1244 * - 5-level paging is disabled compile-time;
1245 * - it's 32-bit kernel;
1246 * - machine doesn't support 5-level paging;
1247 * - user specified 'no5lvl' in kernel command line.
1248 */
1249 if (!pgtable_l5_enabled())
1250 setup_clear_cpu_cap(X86_FEATURE_LA57);
1251
1252 detect_nopl();
1253 }
1254
1255 void __init early_cpu_init(void)
1256 {
1257 const struct cpu_dev *const *cdev;
1258 int count = 0;
1259
1260 #ifdef CONFIG_PROCESSOR_SELECT
1261 pr_info("KERNEL supported cpus:\n");
1262 #endif
1263
1264 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1265 const struct cpu_dev *cpudev = *cdev;
1266
1267 if (count >= X86_VENDOR_NUM)
1268 break;
1269 cpu_devs[count] = cpudev;
1270 count++;
1271
1272 #ifdef CONFIG_PROCESSOR_SELECT
1273 {
1274 unsigned int j;
1275
1276 for (j = 0; j < 2; j++) {
1277 if (!cpudev->c_ident[j])
1278 continue;
1279 pr_info(" %s %s\n", cpudev->c_vendor,
1280 cpudev->c_ident[j]);
1281 }
1282 }
1283 #endif
1284 }
1285 early_identify_cpu(&boot_cpu_data);
1286 }
1287
1288 static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
1289 {
1290 #ifdef CONFIG_X86_64
1291 /*
1292 * Empirically, writing zero to a segment selector on AMD does
1293 * not clear the base, whereas writing zero to a segment
1294 * selector on Intel does clear the base. Intel's behavior
1295 * allows slightly faster context switches in the common case
1296 * where GS is unused by the prev and next threads.
1297 *
1298 * Since neither vendor documents this anywhere that I can see,
1299 * detect it directly instead of hardcoding the choice by
1300 * vendor.
1301 *
1302 * I've designated AMD's behavior as the "bug" because it's
1303 * counterintuitive and less friendly.
1304 */
1305
1306 unsigned long old_base, tmp;
1307 rdmsrl(MSR_FS_BASE, old_base);
1308 wrmsrl(MSR_FS_BASE, 1);
1309 loadsegment(fs, 0);
1310 rdmsrl(MSR_FS_BASE, tmp);
1311 if (tmp != 0)
1312 set_cpu_bug(c, X86_BUG_NULL_SEG);
1313 wrmsrl(MSR_FS_BASE, old_base);
1314 #endif
1315 }
1316
1317 static void generic_identify(struct cpuinfo_x86 *c)
1318 {
1319 c->extended_cpuid_level = 0;
1320
1321 if (!have_cpuid_p())
1322 identify_cpu_without_cpuid(c);
1323
1324 /* cyrix could have cpuid enabled via c_identify()*/
1325 if (!have_cpuid_p())
1326 return;
1327
1328 cpu_detect(c);
1329
1330 get_cpu_vendor(c);
1331
1332 get_cpu_cap(c);
1333
1334 get_cpu_address_sizes(c);
1335
1336 if (c->cpuid_level >= 0x00000001) {
1337 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1338 #ifdef CONFIG_X86_32
1339 # ifdef CONFIG_SMP
1340 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1341 # else
1342 c->apicid = c->initial_apicid;
1343 # endif
1344 #endif
1345 c->phys_proc_id = c->initial_apicid;
1346 }
1347
1348 get_model_name(c); /* Default name */
1349
1350 detect_null_seg_behavior(c);
1351
1352 /*
1353 * ESPFIX is a strange bug. All real CPUs have it. Paravirt
1354 * systems that run Linux at CPL > 0 may or may not have the
1355 * issue, but, even if they have the issue, there's absolutely
1356 * nothing we can do about it because we can't use the real IRET
1357 * instruction.
1358 *
1359 * NB: For the time being, only 32-bit kernels support
1360 * X86_BUG_ESPFIX as such. 64-bit kernels directly choose
1361 * whether to apply espfix using paravirt hooks. If any
1362 * non-paravirt system ever shows up that does *not* have the
1363 * ESPFIX issue, we can change this.
1364 */
1365 #ifdef CONFIG_X86_32
1366 # ifdef CONFIG_PARAVIRT_XXL
1367 do {
1368 extern void native_iret(void);
1369 if (pv_ops.cpu.iret == native_iret)
1370 set_cpu_bug(c, X86_BUG_ESPFIX);
1371 } while (0);
1372 # else
1373 set_cpu_bug(c, X86_BUG_ESPFIX);
1374 # endif
1375 #endif
1376 }
1377
1378 /*
1379 * Validate that ACPI/mptables have the same information about the
1380 * effective APIC id and update the package map.
1381 */
1382 static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1383 {
1384 #ifdef CONFIG_SMP
1385 unsigned int apicid, cpu = smp_processor_id();
1386
1387 apicid = apic->cpu_present_to_apicid(cpu);
1388
1389 if (apicid != c->apicid) {
1390 pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1391 cpu, apicid, c->initial_apicid);
1392 }
1393 BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1394 BUG_ON(topology_update_die_map(c->cpu_die_id, cpu));
1395 #else
1396 c->logical_proc_id = 0;
1397 #endif
1398 }
1399
1400 /*
1401 * This does the hard work of actually picking apart the CPU stuff...
1402 */
1403 static void identify_cpu(struct cpuinfo_x86 *c)
1404 {
1405 int i;
1406
1407 c->loops_per_jiffy = loops_per_jiffy;
1408 c->x86_cache_size = 0;
1409 c->x86_vendor = X86_VENDOR_UNKNOWN;
1410 c->x86_model = c->x86_stepping = 0; /* So far unknown... */
1411 c->x86_vendor_id[0] = '\0'; /* Unset */
1412 c->x86_model_id[0] = '\0'; /* Unset */
1413 c->x86_max_cores = 1;
1414 c->x86_coreid_bits = 0;
1415 c->cu_id = 0xff;
1416 #ifdef CONFIG_X86_64
1417 c->x86_clflush_size = 64;
1418 c->x86_phys_bits = 36;
1419 c->x86_virt_bits = 48;
1420 #else
1421 c->cpuid_level = -1; /* CPUID not detected */
1422 c->x86_clflush_size = 32;
1423 c->x86_phys_bits = 32;
1424 c->x86_virt_bits = 32;
1425 #endif
1426 c->x86_cache_alignment = c->x86_clflush_size;
1427 memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1428 #ifdef CONFIG_X86_VMX_FEATURE_NAMES
1429 memset(&c->vmx_capability, 0, sizeof(c->vmx_capability));
1430 #endif
1431
1432 generic_identify(c);
1433
1434 if (this_cpu->c_identify)
1435 this_cpu->c_identify(c);
1436
1437 /* Clear/Set all flags overridden by options, after probe */
1438 apply_forced_caps(c);
1439
1440 #ifdef CONFIG_X86_64
1441 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1442 #endif
1443
1444 /*
1445 * Vendor-specific initialization. In this section we
1446 * canonicalize the feature flags, meaning if there are
1447 * features a certain CPU supports which CPUID doesn't
1448 * tell us, CPUID claiming incorrect flags, or other bugs,
1449 * we handle them here.
1450 *
1451 * At the end of this section, c->x86_capability better
1452 * indicate the features this CPU genuinely supports!
1453 */
1454 if (this_cpu->c_init)
1455 this_cpu->c_init(c);
1456
1457 /* Disable the PN if appropriate */
1458 squash_the_stupid_serial_number(c);
1459
1460 /* Set up SMEP/SMAP/UMIP */
1461 setup_smep(c);
1462 setup_smap(c);
1463 setup_umip(c);
1464
1465 /*
1466 * The vendor-specific functions might have changed features.
1467 * Now we do "generic changes."
1468 */
1469
1470 /* Filter out anything that depends on CPUID levels we don't have */
1471 filter_cpuid_features(c, true);
1472
1473 /* If the model name is still unset, do table lookup. */
1474 if (!c->x86_model_id[0]) {
1475 const char *p;
1476 p = table_lookup_model(c);
1477 if (p)
1478 strcpy(c->x86_model_id, p);
1479 else
1480 /* Last resort... */
1481 sprintf(c->x86_model_id, "%02x/%02x",
1482 c->x86, c->x86_model);
1483 }
1484
1485 #ifdef CONFIG_X86_64
1486 detect_ht(c);
1487 #endif
1488
1489 x86_init_rdrand(c);
1490 setup_pku(c);
1491
1492 /*
1493 * Clear/Set all flags overridden by options, need do it
1494 * before following smp all cpus cap AND.
1495 */
1496 apply_forced_caps(c);
1497
1498 /*
1499 * On SMP, boot_cpu_data holds the common feature set between
1500 * all CPUs; so make sure that we indicate which features are
1501 * common between the CPUs. The first time this routine gets
1502 * executed, c == &boot_cpu_data.
1503 */
1504 if (c != &boot_cpu_data) {
1505 /* AND the already accumulated flags with these */
1506 for (i = 0; i < NCAPINTS; i++)
1507 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1508
1509 /* OR, i.e. replicate the bug flags */
1510 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1511 c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1512 }
1513
1514 /* Init Machine Check Exception if available. */
1515 mcheck_cpu_init(c);
1516
1517 select_idle_routine(c);
1518
1519 #ifdef CONFIG_NUMA
1520 numa_add_cpu(smp_processor_id());
1521 #endif
1522 }
1523
1524 /*
1525 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1526 * on 32-bit kernels:
1527 */
1528 #ifdef CONFIG_X86_32
1529 void enable_sep_cpu(void)
1530 {
1531 struct tss_struct *tss;
1532 int cpu;
1533
1534 if (!boot_cpu_has(X86_FEATURE_SEP))
1535 return;
1536
1537 cpu = get_cpu();
1538 tss = &per_cpu(cpu_tss_rw, cpu);
1539
1540 /*
1541 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1542 * see the big comment in struct x86_hw_tss's definition.
1543 */
1544
1545 tss->x86_tss.ss1 = __KERNEL_CS;
1546 wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1547 wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1548 wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1549
1550 put_cpu();
1551 }
1552 #endif
1553
1554 void __init identify_boot_cpu(void)
1555 {
1556 identify_cpu(&boot_cpu_data);
1557 #ifdef CONFIG_X86_32
1558 sysenter_setup();
1559 enable_sep_cpu();
1560 #endif
1561 cpu_detect_tlb(&boot_cpu_data);
1562 setup_cr_pinning();
1563
1564 tsx_init();
1565 }
1566
1567 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1568 {
1569 BUG_ON(c == &boot_cpu_data);
1570 identify_cpu(c);
1571 #ifdef CONFIG_X86_32
1572 enable_sep_cpu();
1573 #endif
1574 mtrr_ap_init();
1575 validate_apic_and_package_id(c);
1576 x86_spec_ctrl_setup_ap();
1577 }
1578
1579 static __init int setup_noclflush(char *arg)
1580 {
1581 setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1582 setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1583 return 1;
1584 }
1585 __setup("noclflush", setup_noclflush);
1586
1587 void print_cpu_info(struct cpuinfo_x86 *c)
1588 {
1589 const char *vendor = NULL;
1590
1591 if (c->x86_vendor < X86_VENDOR_NUM) {
1592 vendor = this_cpu->c_vendor;
1593 } else {
1594 if (c->cpuid_level >= 0)
1595 vendor = c->x86_vendor_id;
1596 }
1597
1598 if (vendor && !strstr(c->x86_model_id, vendor))
1599 pr_cont("%s ", vendor);
1600
1601 if (c->x86_model_id[0])
1602 pr_cont("%s", c->x86_model_id);
1603 else
1604 pr_cont("%d86", c->x86);
1605
1606 pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1607
1608 if (c->x86_stepping || c->cpuid_level >= 0)
1609 pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
1610 else
1611 pr_cont(")\n");
1612 }
1613
1614 /*
1615 * clearcpuid= was already parsed in fpu__init_parse_early_param.
1616 * But we need to keep a dummy __setup around otherwise it would
1617 * show up as an environment variable for init.
1618 */
1619 static __init int setup_clearcpuid(char *arg)
1620 {
1621 return 1;
1622 }
1623 __setup("clearcpuid=", setup_clearcpuid);
1624
1625 #ifdef CONFIG_X86_64
1626 DEFINE_PER_CPU_FIRST(struct fixed_percpu_data,
1627 fixed_percpu_data) __aligned(PAGE_SIZE) __visible;
1628 EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data);
1629
1630 /*
1631 * The following percpu variables are hot. Align current_task to
1632 * cacheline size such that they fall in the same cacheline.
1633 */
1634 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1635 &init_task;
1636 EXPORT_PER_CPU_SYMBOL(current_task);
1637
1638 DEFINE_PER_CPU(struct irq_stack *, hardirq_stack_ptr);
1639 DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1640
1641 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1642 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1643
1644 /* May not be marked __init: used by software suspend */
1645 void syscall_init(void)
1646 {
1647 wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1648 wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1649
1650 #ifdef CONFIG_IA32_EMULATION
1651 wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1652 /*
1653 * This only works on Intel CPUs.
1654 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1655 * This does not cause SYSENTER to jump to the wrong location, because
1656 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1657 */
1658 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1659 wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
1660 (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
1661 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1662 #else
1663 wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1664 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1665 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1666 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1667 #endif
1668
1669 /* Flags to clear on syscall */
1670 wrmsrl(MSR_SYSCALL_MASK,
1671 X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1672 X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1673 }
1674
1675 DEFINE_PER_CPU(int, debug_stack_usage);
1676 DEFINE_PER_CPU(u32, debug_idt_ctr);
1677
1678 void debug_stack_set_zero(void)
1679 {
1680 this_cpu_inc(debug_idt_ctr);
1681 load_current_idt();
1682 }
1683 NOKPROBE_SYMBOL(debug_stack_set_zero);
1684
1685 void debug_stack_reset(void)
1686 {
1687 if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
1688 return;
1689 if (this_cpu_dec_return(debug_idt_ctr) == 0)
1690 load_current_idt();
1691 }
1692 NOKPROBE_SYMBOL(debug_stack_reset);
1693
1694 #else /* CONFIG_X86_64 */
1695
1696 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1697 EXPORT_PER_CPU_SYMBOL(current_task);
1698 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1699 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1700
1701 /*
1702 * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1703 * the top of the kernel stack. Use an extra percpu variable to track the
1704 * top of the kernel stack directly.
1705 */
1706 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1707 (unsigned long)&init_thread_union + THREAD_SIZE;
1708 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1709
1710 #ifdef CONFIG_STACKPROTECTOR
1711 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1712 #endif
1713
1714 #endif /* CONFIG_X86_64 */
1715
1716 /*
1717 * Clear all 6 debug registers:
1718 */
1719 static void clear_all_debug_regs(void)
1720 {
1721 int i;
1722
1723 for (i = 0; i < 8; i++) {
1724 /* Ignore db4, db5 */
1725 if ((i == 4) || (i == 5))
1726 continue;
1727
1728 set_debugreg(0, i);
1729 }
1730 }
1731
1732 #ifdef CONFIG_KGDB
1733 /*
1734 * Restore debug regs if using kgdbwait and you have a kernel debugger
1735 * connection established.
1736 */
1737 static void dbg_restore_debug_regs(void)
1738 {
1739 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1740 arch_kgdb_ops.correct_hw_break();
1741 }
1742 #else /* ! CONFIG_KGDB */
1743 #define dbg_restore_debug_regs()
1744 #endif /* ! CONFIG_KGDB */
1745
1746 static void wait_for_master_cpu(int cpu)
1747 {
1748 #ifdef CONFIG_SMP
1749 /*
1750 * wait for ACK from master CPU before continuing
1751 * with AP initialization
1752 */
1753 WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1754 while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1755 cpu_relax();
1756 #endif
1757 }
1758
1759 #ifdef CONFIG_X86_64
1760 static inline void setup_getcpu(int cpu)
1761 {
1762 unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
1763 struct desc_struct d = { };
1764
1765 if (boot_cpu_has(X86_FEATURE_RDTSCP))
1766 write_rdtscp_aux(cpudata);
1767
1768 /* Store CPU and node number in limit. */
1769 d.limit0 = cpudata;
1770 d.limit1 = cpudata >> 16;
1771
1772 d.type = 5; /* RO data, expand down, accessed */
1773 d.dpl = 3; /* Visible to user code */
1774 d.s = 1; /* Not a system segment */
1775 d.p = 1; /* Present */
1776 d.d = 1; /* 32-bit */
1777
1778 write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
1779 }
1780
1781 static inline void ucode_cpu_init(int cpu)
1782 {
1783 if (cpu)
1784 load_ucode_ap();
1785 }
1786
1787 static inline void tss_setup_ist(struct tss_struct *tss)
1788 {
1789 /* Set up the per-CPU TSS IST stacks */
1790 tss->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
1791 tss->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
1792 tss->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
1793 tss->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
1794 }
1795
1796 #else /* CONFIG_X86_64 */
1797
1798 static inline void setup_getcpu(int cpu) { }
1799
1800 static inline void ucode_cpu_init(int cpu)
1801 {
1802 show_ucode_info_early();
1803 }
1804
1805 static inline void tss_setup_ist(struct tss_struct *tss) { }
1806
1807 #endif /* !CONFIG_X86_64 */
1808
1809 static inline void tss_setup_io_bitmap(struct tss_struct *tss)
1810 {
1811 tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID;
1812
1813 #ifdef CONFIG_X86_IOPL_IOPERM
1814 tss->io_bitmap.prev_max = 0;
1815 tss->io_bitmap.prev_sequence = 0;
1816 memset(tss->io_bitmap.bitmap, 0xff, sizeof(tss->io_bitmap.bitmap));
1817 /*
1818 * Invalidate the extra array entry past the end of the all
1819 * permission bitmap as required by the hardware.
1820 */
1821 tss->io_bitmap.mapall[IO_BITMAP_LONGS] = ~0UL;
1822 #endif
1823 }
1824
1825 /*
1826 * cpu_init() initializes state that is per-CPU. Some data is already
1827 * initialized (naturally) in the bootstrap process, such as the GDT
1828 * and IDT. We reload them nevertheless, this function acts as a
1829 * 'CPU state barrier', nothing should get across.
1830 */
1831 void cpu_init(void)
1832 {
1833 struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
1834 struct task_struct *cur = current;
1835 int cpu = raw_smp_processor_id();
1836
1837 wait_for_master_cpu(cpu);
1838
1839 ucode_cpu_init(cpu);
1840
1841 #ifdef CONFIG_NUMA
1842 if (this_cpu_read(numa_node) == 0 &&
1843 early_cpu_to_node(cpu) != NUMA_NO_NODE)
1844 set_numa_node(early_cpu_to_node(cpu));
1845 #endif
1846 setup_getcpu(cpu);
1847
1848 pr_debug("Initializing CPU#%d\n", cpu);
1849
1850 if (IS_ENABLED(CONFIG_X86_64) || cpu_feature_enabled(X86_FEATURE_VME) ||
1851 boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE))
1852 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1853
1854 /*
1855 * Initialize the per-CPU GDT with the boot GDT,
1856 * and set up the GDT descriptor:
1857 */
1858 switch_to_new_gdt(cpu);
1859 load_current_idt();
1860
1861 if (IS_ENABLED(CONFIG_X86_64)) {
1862 loadsegment(fs, 0);
1863 memset(cur->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1864 syscall_init();
1865
1866 wrmsrl(MSR_FS_BASE, 0);
1867 wrmsrl(MSR_KERNEL_GS_BASE, 0);
1868 barrier();
1869
1870 x2apic_setup();
1871 }
1872
1873 mmgrab(&init_mm);
1874 cur->active_mm = &init_mm;
1875 BUG_ON(cur->mm);
1876 initialize_tlbstate_and_flush();
1877 enter_lazy_tlb(&init_mm, cur);
1878
1879 /* Initialize the TSS. */
1880 tss_setup_ist(tss);
1881 tss_setup_io_bitmap(tss);
1882 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1883
1884 load_TR_desc();
1885 /*
1886 * sp0 points to the entry trampoline stack regardless of what task
1887 * is running.
1888 */
1889 load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
1890
1891 load_mm_ldt(&init_mm);
1892
1893 clear_all_debug_regs();
1894 dbg_restore_debug_regs();
1895
1896 doublefault_init_cpu_tss();
1897
1898 fpu__init_cpu();
1899
1900 if (is_uv_system())
1901 uv_cpu_init();
1902
1903 load_fixmap_gdt(cpu);
1904 }
1905
1906 /*
1907 * The microcode loader calls this upon late microcode load to recheck features,
1908 * only when microcode has been updated. Caller holds microcode_mutex and CPU
1909 * hotplug lock.
1910 */
1911 void microcode_check(void)
1912 {
1913 struct cpuinfo_x86 info;
1914
1915 perf_check_microcode();
1916
1917 /* Reload CPUID max function as it might've changed. */
1918 info.cpuid_level = cpuid_eax(0);
1919
1920 /*
1921 * Copy all capability leafs to pick up the synthetic ones so that
1922 * memcmp() below doesn't fail on that. The ones coming from CPUID will
1923 * get overwritten in get_cpu_cap().
1924 */
1925 memcpy(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability));
1926
1927 get_cpu_cap(&info);
1928
1929 if (!memcmp(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability)))
1930 return;
1931
1932 pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
1933 pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
1934 }
1935
1936 /*
1937 * Invoked from core CPU hotplug code after hotplug operations
1938 */
1939 void arch_smt_update(void)
1940 {
1941 /* Handle the speculative execution misfeatures */
1942 cpu_bugs_smt_update();
1943 /* Check whether IPI broadcasting can be enabled */
1944 apic_smt_update();
1945 }