]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kernel/cpu/common.c
x86/ldt: Make the LDT mapping RO
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kernel / cpu / common.c
1 #include <linux/bootmem.h>
2 #include <linux/linkage.h>
3 #include <linux/bitops.h>
4 #include <linux/kernel.h>
5 #include <linux/export.h>
6 #include <linux/percpu.h>
7 #include <linux/string.h>
8 #include <linux/ctype.h>
9 #include <linux/delay.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/clock.h>
12 #include <linux/sched/task.h>
13 #include <linux/init.h>
14 #include <linux/kprobes.h>
15 #include <linux/kgdb.h>
16 #include <linux/smp.h>
17 #include <linux/io.h>
18 #include <linux/syscore_ops.h>
19
20 #include <asm/stackprotector.h>
21 #include <asm/perf_event.h>
22 #include <asm/mmu_context.h>
23 #include <asm/archrandom.h>
24 #include <asm/hypervisor.h>
25 #include <asm/processor.h>
26 #include <asm/tlbflush.h>
27 #include <asm/debugreg.h>
28 #include <asm/sections.h>
29 #include <asm/vsyscall.h>
30 #include <linux/topology.h>
31 #include <linux/cpumask.h>
32 #include <asm/pgtable.h>
33 #include <linux/atomic.h>
34 #include <asm/proto.h>
35 #include <asm/setup.h>
36 #include <asm/apic.h>
37 #include <asm/desc.h>
38 #include <asm/fpu/internal.h>
39 #include <asm/mtrr.h>
40 #include <asm/hwcap2.h>
41 #include <linux/numa.h>
42 #include <asm/asm.h>
43 #include <asm/bugs.h>
44 #include <asm/cpu.h>
45 #include <asm/mce.h>
46 #include <asm/msr.h>
47 #include <asm/pat.h>
48 #include <asm/microcode.h>
49 #include <asm/microcode_intel.h>
50
51 #ifdef CONFIG_X86_LOCAL_APIC
52 #include <asm/uv/uv.h>
53 #endif
54
55 #include "cpu.h"
56
57 u32 elf_hwcap2 __read_mostly;
58
59 /* all of these masks are initialized in setup_cpu_local_masks() */
60 cpumask_var_t cpu_initialized_mask;
61 cpumask_var_t cpu_callout_mask;
62 cpumask_var_t cpu_callin_mask;
63
64 /* representing cpus for which sibling maps can be computed */
65 cpumask_var_t cpu_sibling_setup_mask;
66
67 /* correctly size the local cpu masks */
68 void __init setup_cpu_local_masks(void)
69 {
70 alloc_bootmem_cpumask_var(&cpu_initialized_mask);
71 alloc_bootmem_cpumask_var(&cpu_callin_mask);
72 alloc_bootmem_cpumask_var(&cpu_callout_mask);
73 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
74 }
75
76 static void default_init(struct cpuinfo_x86 *c)
77 {
78 #ifdef CONFIG_X86_64
79 cpu_detect_cache_sizes(c);
80 #else
81 /* Not much we can do here... */
82 /* Check if at least it has cpuid */
83 if (c->cpuid_level == -1) {
84 /* No cpuid. It must be an ancient CPU */
85 if (c->x86 == 4)
86 strcpy(c->x86_model_id, "486");
87 else if (c->x86 == 3)
88 strcpy(c->x86_model_id, "386");
89 }
90 #endif
91 }
92
93 static const struct cpu_dev default_cpu = {
94 .c_init = default_init,
95 .c_vendor = "Unknown",
96 .c_x86_vendor = X86_VENDOR_UNKNOWN,
97 };
98
99 static const struct cpu_dev *this_cpu = &default_cpu;
100
101 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
102 #ifdef CONFIG_X86_64
103 /*
104 * We need valid kernel segments for data and code in long mode too
105 * IRET will check the segment types kkeil 2000/10/28
106 * Also sysret mandates a special GDT layout
107 *
108 * TLS descriptors are currently at a different place compared to i386.
109 * Hopefully nobody expects them at a fixed place (Wine?)
110 */
111 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
112 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
113 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
114 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
115 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
116 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
117 #else
118 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
119 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
120 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
121 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
122 /*
123 * Segments used for calling PnP BIOS have byte granularity.
124 * They code segments and data segments have fixed 64k limits,
125 * the transfer segment sizes are set at run time.
126 */
127 /* 32-bit code */
128 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
129 /* 16-bit code */
130 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
131 /* 16-bit data */
132 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
133 /* 16-bit data */
134 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
135 /* 16-bit data */
136 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
137 /*
138 * The APM segments have byte granularity and their bases
139 * are set at run time. All have 64k limits.
140 */
141 /* 32-bit code */
142 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
143 /* 16-bit code */
144 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
145 /* data */
146 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
147
148 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
149 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
150 GDT_STACK_CANARY_INIT
151 #endif
152 } };
153 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
154
155 static int __init x86_mpx_setup(char *s)
156 {
157 /* require an exact match without trailing characters */
158 if (strlen(s))
159 return 0;
160
161 /* do not emit a message if the feature is not present */
162 if (!boot_cpu_has(X86_FEATURE_MPX))
163 return 1;
164
165 setup_clear_cpu_cap(X86_FEATURE_MPX);
166 pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n");
167 return 1;
168 }
169 __setup("nompx", x86_mpx_setup);
170
171 #ifdef CONFIG_X86_64
172 static int __init x86_nopcid_setup(char *s)
173 {
174 /* nopcid doesn't accept parameters */
175 if (s)
176 return -EINVAL;
177
178 /* do not emit a message if the feature is not present */
179 if (!boot_cpu_has(X86_FEATURE_PCID))
180 return 0;
181
182 setup_clear_cpu_cap(X86_FEATURE_PCID);
183 pr_info("nopcid: PCID feature disabled\n");
184 return 0;
185 }
186 early_param("nopcid", x86_nopcid_setup);
187 #endif
188
189 static int __init x86_noinvpcid_setup(char *s)
190 {
191 /* noinvpcid doesn't accept parameters */
192 if (s)
193 return -EINVAL;
194
195 /* do not emit a message if the feature is not present */
196 if (!boot_cpu_has(X86_FEATURE_INVPCID))
197 return 0;
198
199 setup_clear_cpu_cap(X86_FEATURE_INVPCID);
200 pr_info("noinvpcid: INVPCID feature disabled\n");
201 return 0;
202 }
203 early_param("noinvpcid", x86_noinvpcid_setup);
204
205 #ifdef CONFIG_X86_32
206 static int cachesize_override = -1;
207 static int disable_x86_serial_nr = 1;
208
209 static int __init cachesize_setup(char *str)
210 {
211 get_option(&str, &cachesize_override);
212 return 1;
213 }
214 __setup("cachesize=", cachesize_setup);
215
216 static int __init x86_sep_setup(char *s)
217 {
218 setup_clear_cpu_cap(X86_FEATURE_SEP);
219 return 1;
220 }
221 __setup("nosep", x86_sep_setup);
222
223 /* Standard macro to see if a specific flag is changeable */
224 static inline int flag_is_changeable_p(u32 flag)
225 {
226 u32 f1, f2;
227
228 /*
229 * Cyrix and IDT cpus allow disabling of CPUID
230 * so the code below may return different results
231 * when it is executed before and after enabling
232 * the CPUID. Add "volatile" to not allow gcc to
233 * optimize the subsequent calls to this function.
234 */
235 asm volatile ("pushfl \n\t"
236 "pushfl \n\t"
237 "popl %0 \n\t"
238 "movl %0, %1 \n\t"
239 "xorl %2, %0 \n\t"
240 "pushl %0 \n\t"
241 "popfl \n\t"
242 "pushfl \n\t"
243 "popl %0 \n\t"
244 "popfl \n\t"
245
246 : "=&r" (f1), "=&r" (f2)
247 : "ir" (flag));
248
249 return ((f1^f2) & flag) != 0;
250 }
251
252 /* Probe for the CPUID instruction */
253 int have_cpuid_p(void)
254 {
255 return flag_is_changeable_p(X86_EFLAGS_ID);
256 }
257
258 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
259 {
260 unsigned long lo, hi;
261
262 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
263 return;
264
265 /* Disable processor serial number: */
266
267 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
268 lo |= 0x200000;
269 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
270
271 pr_notice("CPU serial number disabled.\n");
272 clear_cpu_cap(c, X86_FEATURE_PN);
273
274 /* Disabling the serial number may affect the cpuid level */
275 c->cpuid_level = cpuid_eax(0);
276 }
277
278 static int __init x86_serial_nr_setup(char *s)
279 {
280 disable_x86_serial_nr = 0;
281 return 1;
282 }
283 __setup("serialnumber", x86_serial_nr_setup);
284 #else
285 static inline int flag_is_changeable_p(u32 flag)
286 {
287 return 1;
288 }
289 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
290 {
291 }
292 #endif
293
294 static __init int setup_disable_smep(char *arg)
295 {
296 setup_clear_cpu_cap(X86_FEATURE_SMEP);
297 /* Check for things that depend on SMEP being enabled: */
298 check_mpx_erratum(&boot_cpu_data);
299 return 1;
300 }
301 __setup("nosmep", setup_disable_smep);
302
303 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
304 {
305 if (cpu_has(c, X86_FEATURE_SMEP))
306 cr4_set_bits(X86_CR4_SMEP);
307 }
308
309 static __init int setup_disable_smap(char *arg)
310 {
311 setup_clear_cpu_cap(X86_FEATURE_SMAP);
312 return 1;
313 }
314 __setup("nosmap", setup_disable_smap);
315
316 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
317 {
318 unsigned long eflags = native_save_fl();
319
320 /* This should have been cleared long ago */
321 BUG_ON(eflags & X86_EFLAGS_AC);
322
323 if (cpu_has(c, X86_FEATURE_SMAP)) {
324 #ifdef CONFIG_X86_SMAP
325 cr4_set_bits(X86_CR4_SMAP);
326 #else
327 cr4_clear_bits(X86_CR4_SMAP);
328 #endif
329 }
330 }
331
332 /*
333 * Protection Keys are not available in 32-bit mode.
334 */
335 static bool pku_disabled;
336
337 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
338 {
339 /* check the boot processor, plus compile options for PKU: */
340 if (!cpu_feature_enabled(X86_FEATURE_PKU))
341 return;
342 /* checks the actual processor's cpuid bits: */
343 if (!cpu_has(c, X86_FEATURE_PKU))
344 return;
345 if (pku_disabled)
346 return;
347
348 cr4_set_bits(X86_CR4_PKE);
349 /*
350 * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
351 * cpuid bit to be set. We need to ensure that we
352 * update that bit in this CPU's "cpu_info".
353 */
354 get_cpu_cap(c);
355 }
356
357 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
358 static __init int setup_disable_pku(char *arg)
359 {
360 /*
361 * Do not clear the X86_FEATURE_PKU bit. All of the
362 * runtime checks are against OSPKE so clearing the
363 * bit does nothing.
364 *
365 * This way, we will see "pku" in cpuinfo, but not
366 * "ospke", which is exactly what we want. It shows
367 * that the CPU has PKU, but the OS has not enabled it.
368 * This happens to be exactly how a system would look
369 * if we disabled the config option.
370 */
371 pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
372 pku_disabled = true;
373 return 1;
374 }
375 __setup("nopku", setup_disable_pku);
376 #endif /* CONFIG_X86_64 */
377
378 /*
379 * Some CPU features depend on higher CPUID levels, which may not always
380 * be available due to CPUID level capping or broken virtualization
381 * software. Add those features to this table to auto-disable them.
382 */
383 struct cpuid_dependent_feature {
384 u32 feature;
385 u32 level;
386 };
387
388 static const struct cpuid_dependent_feature
389 cpuid_dependent_features[] = {
390 { X86_FEATURE_MWAIT, 0x00000005 },
391 { X86_FEATURE_DCA, 0x00000009 },
392 { X86_FEATURE_XSAVE, 0x0000000d },
393 { 0, 0 }
394 };
395
396 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
397 {
398 const struct cpuid_dependent_feature *df;
399
400 for (df = cpuid_dependent_features; df->feature; df++) {
401
402 if (!cpu_has(c, df->feature))
403 continue;
404 /*
405 * Note: cpuid_level is set to -1 if unavailable, but
406 * extended_extended_level is set to 0 if unavailable
407 * and the legitimate extended levels are all negative
408 * when signed; hence the weird messing around with
409 * signs here...
410 */
411 if (!((s32)df->level < 0 ?
412 (u32)df->level > (u32)c->extended_cpuid_level :
413 (s32)df->level > (s32)c->cpuid_level))
414 continue;
415
416 clear_cpu_cap(c, df->feature);
417 if (!warn)
418 continue;
419
420 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
421 x86_cap_flag(df->feature), df->level);
422 }
423 }
424
425 /*
426 * Naming convention should be: <Name> [(<Codename>)]
427 * This table only is used unless init_<vendor>() below doesn't set it;
428 * in particular, if CPUID levels 0x80000002..4 are supported, this
429 * isn't used
430 */
431
432 /* Look up CPU names by table lookup. */
433 static const char *table_lookup_model(struct cpuinfo_x86 *c)
434 {
435 #ifdef CONFIG_X86_32
436 const struct legacy_cpu_model_info *info;
437
438 if (c->x86_model >= 16)
439 return NULL; /* Range check */
440
441 if (!this_cpu)
442 return NULL;
443
444 info = this_cpu->legacy_models;
445
446 while (info->family) {
447 if (info->family == c->x86)
448 return info->model_names[c->x86_model];
449 info++;
450 }
451 #endif
452 return NULL; /* Not found */
453 }
454
455 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS];
456 __u32 cpu_caps_set[NCAPINTS + NBUGINTS];
457
458 void load_percpu_segment(int cpu)
459 {
460 #ifdef CONFIG_X86_32
461 loadsegment(fs, __KERNEL_PERCPU);
462 #else
463 __loadsegment_simple(gs, 0);
464 wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
465 #endif
466 load_stack_canary_segment();
467 }
468
469 #ifdef CONFIG_X86_32
470 /* The 32-bit entry code needs to find cpu_entry_area. */
471 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
472 #endif
473
474 #ifdef CONFIG_X86_64
475 /*
476 * Special IST stacks which the CPU switches to when it calls
477 * an IST-marked descriptor entry. Up to 7 stacks (hardware
478 * limit), all of them are 4K, except the debug stack which
479 * is 8K.
480 */
481 static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
482 [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ,
483 [DEBUG_STACK - 1] = DEBUG_STKSZ
484 };
485 #endif
486
487 /* Load the original GDT from the per-cpu structure */
488 void load_direct_gdt(int cpu)
489 {
490 struct desc_ptr gdt_descr;
491
492 gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
493 gdt_descr.size = GDT_SIZE - 1;
494 load_gdt(&gdt_descr);
495 }
496 EXPORT_SYMBOL_GPL(load_direct_gdt);
497
498 /* Load a fixmap remapping of the per-cpu GDT */
499 void load_fixmap_gdt(int cpu)
500 {
501 struct desc_ptr gdt_descr;
502
503 gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
504 gdt_descr.size = GDT_SIZE - 1;
505 load_gdt(&gdt_descr);
506 }
507 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
508
509 /*
510 * Current gdt points %fs at the "master" per-cpu area: after this,
511 * it's on the real one.
512 */
513 void switch_to_new_gdt(int cpu)
514 {
515 /* Load the original GDT */
516 load_direct_gdt(cpu);
517 /* Reload the per-cpu base */
518 load_percpu_segment(cpu);
519 }
520
521 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
522
523 static void get_model_name(struct cpuinfo_x86 *c)
524 {
525 unsigned int *v;
526 char *p, *q, *s;
527
528 if (c->extended_cpuid_level < 0x80000004)
529 return;
530
531 v = (unsigned int *)c->x86_model_id;
532 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
533 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
534 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
535 c->x86_model_id[48] = 0;
536
537 /* Trim whitespace */
538 p = q = s = &c->x86_model_id[0];
539
540 while (*p == ' ')
541 p++;
542
543 while (*p) {
544 /* Note the last non-whitespace index */
545 if (!isspace(*p))
546 s = q;
547
548 *q++ = *p++;
549 }
550
551 *(s + 1) = '\0';
552 }
553
554 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
555 {
556 unsigned int n, dummy, ebx, ecx, edx, l2size;
557
558 n = c->extended_cpuid_level;
559
560 if (n >= 0x80000005) {
561 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
562 c->x86_cache_size = (ecx>>24) + (edx>>24);
563 #ifdef CONFIG_X86_64
564 /* On K8 L1 TLB is inclusive, so don't count it */
565 c->x86_tlbsize = 0;
566 #endif
567 }
568
569 if (n < 0x80000006) /* Some chips just has a large L1. */
570 return;
571
572 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
573 l2size = ecx >> 16;
574
575 #ifdef CONFIG_X86_64
576 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
577 #else
578 /* do processor-specific cache resizing */
579 if (this_cpu->legacy_cache_size)
580 l2size = this_cpu->legacy_cache_size(c, l2size);
581
582 /* Allow user to override all this if necessary. */
583 if (cachesize_override != -1)
584 l2size = cachesize_override;
585
586 if (l2size == 0)
587 return; /* Again, no L2 cache is possible */
588 #endif
589
590 c->x86_cache_size = l2size;
591 }
592
593 u16 __read_mostly tlb_lli_4k[NR_INFO];
594 u16 __read_mostly tlb_lli_2m[NR_INFO];
595 u16 __read_mostly tlb_lli_4m[NR_INFO];
596 u16 __read_mostly tlb_lld_4k[NR_INFO];
597 u16 __read_mostly tlb_lld_2m[NR_INFO];
598 u16 __read_mostly tlb_lld_4m[NR_INFO];
599 u16 __read_mostly tlb_lld_1g[NR_INFO];
600
601 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
602 {
603 if (this_cpu->c_detect_tlb)
604 this_cpu->c_detect_tlb(c);
605
606 pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
607 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
608 tlb_lli_4m[ENTRIES]);
609
610 pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
611 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
612 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
613 }
614
615 void detect_ht(struct cpuinfo_x86 *c)
616 {
617 #ifdef CONFIG_SMP
618 u32 eax, ebx, ecx, edx;
619 int index_msb, core_bits;
620 static bool printed;
621
622 if (!cpu_has(c, X86_FEATURE_HT))
623 return;
624
625 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
626 goto out;
627
628 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
629 return;
630
631 cpuid(1, &eax, &ebx, &ecx, &edx);
632
633 smp_num_siblings = (ebx & 0xff0000) >> 16;
634
635 if (smp_num_siblings == 1) {
636 pr_info_once("CPU0: Hyper-Threading is disabled\n");
637 goto out;
638 }
639
640 if (smp_num_siblings <= 1)
641 goto out;
642
643 index_msb = get_count_order(smp_num_siblings);
644 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
645
646 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
647
648 index_msb = get_count_order(smp_num_siblings);
649
650 core_bits = get_count_order(c->x86_max_cores);
651
652 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
653 ((1 << core_bits) - 1);
654
655 out:
656 if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
657 pr_info("CPU: Physical Processor ID: %d\n",
658 c->phys_proc_id);
659 pr_info("CPU: Processor Core ID: %d\n",
660 c->cpu_core_id);
661 printed = 1;
662 }
663 #endif
664 }
665
666 static void get_cpu_vendor(struct cpuinfo_x86 *c)
667 {
668 char *v = c->x86_vendor_id;
669 int i;
670
671 for (i = 0; i < X86_VENDOR_NUM; i++) {
672 if (!cpu_devs[i])
673 break;
674
675 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
676 (cpu_devs[i]->c_ident[1] &&
677 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
678
679 this_cpu = cpu_devs[i];
680 c->x86_vendor = this_cpu->c_x86_vendor;
681 return;
682 }
683 }
684
685 pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
686 "CPU: Your system may be unstable.\n", v);
687
688 c->x86_vendor = X86_VENDOR_UNKNOWN;
689 this_cpu = &default_cpu;
690 }
691
692 void cpu_detect(struct cpuinfo_x86 *c)
693 {
694 /* Get vendor name */
695 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
696 (unsigned int *)&c->x86_vendor_id[0],
697 (unsigned int *)&c->x86_vendor_id[8],
698 (unsigned int *)&c->x86_vendor_id[4]);
699
700 c->x86 = 4;
701 /* Intel-defined flags: level 0x00000001 */
702 if (c->cpuid_level >= 0x00000001) {
703 u32 junk, tfms, cap0, misc;
704
705 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
706 c->x86 = x86_family(tfms);
707 c->x86_model = x86_model(tfms);
708 c->x86_mask = x86_stepping(tfms);
709
710 if (cap0 & (1<<19)) {
711 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
712 c->x86_cache_alignment = c->x86_clflush_size;
713 }
714 }
715 }
716
717 static void apply_forced_caps(struct cpuinfo_x86 *c)
718 {
719 int i;
720
721 for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
722 c->x86_capability[i] &= ~cpu_caps_cleared[i];
723 c->x86_capability[i] |= cpu_caps_set[i];
724 }
725 }
726
727 void get_cpu_cap(struct cpuinfo_x86 *c)
728 {
729 u32 eax, ebx, ecx, edx;
730
731 /* Intel-defined flags: level 0x00000001 */
732 if (c->cpuid_level >= 0x00000001) {
733 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
734
735 c->x86_capability[CPUID_1_ECX] = ecx;
736 c->x86_capability[CPUID_1_EDX] = edx;
737 }
738
739 /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
740 if (c->cpuid_level >= 0x00000006)
741 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
742
743 /* Additional Intel-defined flags: level 0x00000007 */
744 if (c->cpuid_level >= 0x00000007) {
745 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
746 c->x86_capability[CPUID_7_0_EBX] = ebx;
747 c->x86_capability[CPUID_7_ECX] = ecx;
748 }
749
750 /* Extended state features: level 0x0000000d */
751 if (c->cpuid_level >= 0x0000000d) {
752 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
753
754 c->x86_capability[CPUID_D_1_EAX] = eax;
755 }
756
757 /* Additional Intel-defined flags: level 0x0000000F */
758 if (c->cpuid_level >= 0x0000000F) {
759
760 /* QoS sub-leaf, EAX=0Fh, ECX=0 */
761 cpuid_count(0x0000000F, 0, &eax, &ebx, &ecx, &edx);
762 c->x86_capability[CPUID_F_0_EDX] = edx;
763
764 if (cpu_has(c, X86_FEATURE_CQM_LLC)) {
765 /* will be overridden if occupancy monitoring exists */
766 c->x86_cache_max_rmid = ebx;
767
768 /* QoS sub-leaf, EAX=0Fh, ECX=1 */
769 cpuid_count(0x0000000F, 1, &eax, &ebx, &ecx, &edx);
770 c->x86_capability[CPUID_F_1_EDX] = edx;
771
772 if ((cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC)) ||
773 ((cpu_has(c, X86_FEATURE_CQM_MBM_TOTAL)) ||
774 (cpu_has(c, X86_FEATURE_CQM_MBM_LOCAL)))) {
775 c->x86_cache_max_rmid = ecx;
776 c->x86_cache_occ_scale = ebx;
777 }
778 } else {
779 c->x86_cache_max_rmid = -1;
780 c->x86_cache_occ_scale = -1;
781 }
782 }
783
784 /* AMD-defined flags: level 0x80000001 */
785 eax = cpuid_eax(0x80000000);
786 c->extended_cpuid_level = eax;
787
788 if ((eax & 0xffff0000) == 0x80000000) {
789 if (eax >= 0x80000001) {
790 cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
791
792 c->x86_capability[CPUID_8000_0001_ECX] = ecx;
793 c->x86_capability[CPUID_8000_0001_EDX] = edx;
794 }
795 }
796
797 if (c->extended_cpuid_level >= 0x80000007) {
798 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
799
800 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
801 c->x86_power = edx;
802 }
803
804 if (c->extended_cpuid_level >= 0x80000008) {
805 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
806
807 c->x86_virt_bits = (eax >> 8) & 0xff;
808 c->x86_phys_bits = eax & 0xff;
809 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
810 }
811 #ifdef CONFIG_X86_32
812 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
813 c->x86_phys_bits = 36;
814 #endif
815
816 if (c->extended_cpuid_level >= 0x8000000a)
817 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
818
819 init_scattered_cpuid_features(c);
820
821 /*
822 * Clear/Set all flags overridden by options, after probe.
823 * This needs to happen each time we re-probe, which may happen
824 * several times during CPU initialization.
825 */
826 apply_forced_caps(c);
827 }
828
829 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
830 {
831 #ifdef CONFIG_X86_32
832 int i;
833
834 /*
835 * First of all, decide if this is a 486 or higher
836 * It's a 486 if we can modify the AC flag
837 */
838 if (flag_is_changeable_p(X86_EFLAGS_AC))
839 c->x86 = 4;
840 else
841 c->x86 = 3;
842
843 for (i = 0; i < X86_VENDOR_NUM; i++)
844 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
845 c->x86_vendor_id[0] = 0;
846 cpu_devs[i]->c_identify(c);
847 if (c->x86_vendor_id[0]) {
848 get_cpu_vendor(c);
849 break;
850 }
851 }
852 #endif
853 }
854
855 /*
856 * Do minimum CPU detection early.
857 * Fields really needed: vendor, cpuid_level, family, model, mask,
858 * cache alignment.
859 * The others are not touched to avoid unwanted side effects.
860 *
861 * WARNING: this function is only called on the BP. Don't add code here
862 * that is supposed to run on all CPUs.
863 */
864 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
865 {
866 #ifdef CONFIG_X86_64
867 c->x86_clflush_size = 64;
868 c->x86_phys_bits = 36;
869 c->x86_virt_bits = 48;
870 #else
871 c->x86_clflush_size = 32;
872 c->x86_phys_bits = 32;
873 c->x86_virt_bits = 32;
874 #endif
875 c->x86_cache_alignment = c->x86_clflush_size;
876
877 memset(&c->x86_capability, 0, sizeof c->x86_capability);
878 c->extended_cpuid_level = 0;
879
880 /* cyrix could have cpuid enabled via c_identify()*/
881 if (have_cpuid_p()) {
882 cpu_detect(c);
883 get_cpu_vendor(c);
884 get_cpu_cap(c);
885 setup_force_cpu_cap(X86_FEATURE_CPUID);
886
887 if (this_cpu->c_early_init)
888 this_cpu->c_early_init(c);
889
890 c->cpu_index = 0;
891 filter_cpuid_features(c, false);
892
893 if (this_cpu->c_bsp_init)
894 this_cpu->c_bsp_init(c);
895 } else {
896 identify_cpu_without_cpuid(c);
897 setup_clear_cpu_cap(X86_FEATURE_CPUID);
898 }
899
900 setup_force_cpu_cap(X86_FEATURE_ALWAYS);
901
902 /* Assume for now that ALL x86 CPUs are insecure */
903 setup_force_cpu_bug(X86_BUG_CPU_INSECURE);
904
905 fpu__init_system(c);
906
907 #ifdef CONFIG_X86_32
908 /*
909 * Regardless of whether PCID is enumerated, the SDM says
910 * that it can't be enabled in 32-bit mode.
911 */
912 setup_clear_cpu_cap(X86_FEATURE_PCID);
913 #endif
914 }
915
916 void __init early_cpu_init(void)
917 {
918 const struct cpu_dev *const *cdev;
919 int count = 0;
920
921 #ifdef CONFIG_PROCESSOR_SELECT
922 pr_info("KERNEL supported cpus:\n");
923 #endif
924
925 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
926 const struct cpu_dev *cpudev = *cdev;
927
928 if (count >= X86_VENDOR_NUM)
929 break;
930 cpu_devs[count] = cpudev;
931 count++;
932
933 #ifdef CONFIG_PROCESSOR_SELECT
934 {
935 unsigned int j;
936
937 for (j = 0; j < 2; j++) {
938 if (!cpudev->c_ident[j])
939 continue;
940 pr_info(" %s %s\n", cpudev->c_vendor,
941 cpudev->c_ident[j]);
942 }
943 }
944 #endif
945 }
946 early_identify_cpu(&boot_cpu_data);
947 }
948
949 /*
950 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
951 * unfortunately, that's not true in practice because of early VIA
952 * chips and (more importantly) broken virtualizers that are not easy
953 * to detect. In the latter case it doesn't even *fail* reliably, so
954 * probing for it doesn't even work. Disable it completely on 32-bit
955 * unless we can find a reliable way to detect all the broken cases.
956 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
957 */
958 static void detect_nopl(struct cpuinfo_x86 *c)
959 {
960 #ifdef CONFIG_X86_32
961 clear_cpu_cap(c, X86_FEATURE_NOPL);
962 #else
963 set_cpu_cap(c, X86_FEATURE_NOPL);
964 #endif
965 }
966
967 static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
968 {
969 #ifdef CONFIG_X86_64
970 /*
971 * Empirically, writing zero to a segment selector on AMD does
972 * not clear the base, whereas writing zero to a segment
973 * selector on Intel does clear the base. Intel's behavior
974 * allows slightly faster context switches in the common case
975 * where GS is unused by the prev and next threads.
976 *
977 * Since neither vendor documents this anywhere that I can see,
978 * detect it directly instead of hardcoding the choice by
979 * vendor.
980 *
981 * I've designated AMD's behavior as the "bug" because it's
982 * counterintuitive and less friendly.
983 */
984
985 unsigned long old_base, tmp;
986 rdmsrl(MSR_FS_BASE, old_base);
987 wrmsrl(MSR_FS_BASE, 1);
988 loadsegment(fs, 0);
989 rdmsrl(MSR_FS_BASE, tmp);
990 if (tmp != 0)
991 set_cpu_bug(c, X86_BUG_NULL_SEG);
992 wrmsrl(MSR_FS_BASE, old_base);
993 #endif
994 }
995
996 static void generic_identify(struct cpuinfo_x86 *c)
997 {
998 c->extended_cpuid_level = 0;
999
1000 if (!have_cpuid_p())
1001 identify_cpu_without_cpuid(c);
1002
1003 /* cyrix could have cpuid enabled via c_identify()*/
1004 if (!have_cpuid_p())
1005 return;
1006
1007 cpu_detect(c);
1008
1009 get_cpu_vendor(c);
1010
1011 get_cpu_cap(c);
1012
1013 if (c->cpuid_level >= 0x00000001) {
1014 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1015 #ifdef CONFIG_X86_32
1016 # ifdef CONFIG_SMP
1017 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1018 # else
1019 c->apicid = c->initial_apicid;
1020 # endif
1021 #endif
1022 c->phys_proc_id = c->initial_apicid;
1023 }
1024
1025 get_model_name(c); /* Default name */
1026
1027 detect_nopl(c);
1028
1029 detect_null_seg_behavior(c);
1030
1031 /*
1032 * ESPFIX is a strange bug. All real CPUs have it. Paravirt
1033 * systems that run Linux at CPL > 0 may or may not have the
1034 * issue, but, even if they have the issue, there's absolutely
1035 * nothing we can do about it because we can't use the real IRET
1036 * instruction.
1037 *
1038 * NB: For the time being, only 32-bit kernels support
1039 * X86_BUG_ESPFIX as such. 64-bit kernels directly choose
1040 * whether to apply espfix using paravirt hooks. If any
1041 * non-paravirt system ever shows up that does *not* have the
1042 * ESPFIX issue, we can change this.
1043 */
1044 #ifdef CONFIG_X86_32
1045 # ifdef CONFIG_PARAVIRT
1046 do {
1047 extern void native_iret(void);
1048 if (pv_cpu_ops.iret == native_iret)
1049 set_cpu_bug(c, X86_BUG_ESPFIX);
1050 } while (0);
1051 # else
1052 set_cpu_bug(c, X86_BUG_ESPFIX);
1053 # endif
1054 #endif
1055 }
1056
1057 static void x86_init_cache_qos(struct cpuinfo_x86 *c)
1058 {
1059 /*
1060 * The heavy lifting of max_rmid and cache_occ_scale are handled
1061 * in get_cpu_cap(). Here we just set the max_rmid for the boot_cpu
1062 * in case CQM bits really aren't there in this CPU.
1063 */
1064 if (c != &boot_cpu_data) {
1065 boot_cpu_data.x86_cache_max_rmid =
1066 min(boot_cpu_data.x86_cache_max_rmid,
1067 c->x86_cache_max_rmid);
1068 }
1069 }
1070
1071 /*
1072 * Validate that ACPI/mptables have the same information about the
1073 * effective APIC id and update the package map.
1074 */
1075 static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1076 {
1077 #ifdef CONFIG_SMP
1078 unsigned int apicid, cpu = smp_processor_id();
1079
1080 apicid = apic->cpu_present_to_apicid(cpu);
1081
1082 if (apicid != c->apicid) {
1083 pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1084 cpu, apicid, c->initial_apicid);
1085 }
1086 BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1087 #else
1088 c->logical_proc_id = 0;
1089 #endif
1090 }
1091
1092 /*
1093 * This does the hard work of actually picking apart the CPU stuff...
1094 */
1095 static void identify_cpu(struct cpuinfo_x86 *c)
1096 {
1097 int i;
1098
1099 c->loops_per_jiffy = loops_per_jiffy;
1100 c->x86_cache_size = -1;
1101 c->x86_vendor = X86_VENDOR_UNKNOWN;
1102 c->x86_model = c->x86_mask = 0; /* So far unknown... */
1103 c->x86_vendor_id[0] = '\0'; /* Unset */
1104 c->x86_model_id[0] = '\0'; /* Unset */
1105 c->x86_max_cores = 1;
1106 c->x86_coreid_bits = 0;
1107 c->cu_id = 0xff;
1108 #ifdef CONFIG_X86_64
1109 c->x86_clflush_size = 64;
1110 c->x86_phys_bits = 36;
1111 c->x86_virt_bits = 48;
1112 #else
1113 c->cpuid_level = -1; /* CPUID not detected */
1114 c->x86_clflush_size = 32;
1115 c->x86_phys_bits = 32;
1116 c->x86_virt_bits = 32;
1117 #endif
1118 c->x86_cache_alignment = c->x86_clflush_size;
1119 memset(&c->x86_capability, 0, sizeof c->x86_capability);
1120
1121 generic_identify(c);
1122
1123 if (this_cpu->c_identify)
1124 this_cpu->c_identify(c);
1125
1126 /* Clear/Set all flags overridden by options, after probe */
1127 apply_forced_caps(c);
1128
1129 #ifdef CONFIG_X86_64
1130 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1131 #endif
1132
1133 /*
1134 * Vendor-specific initialization. In this section we
1135 * canonicalize the feature flags, meaning if there are
1136 * features a certain CPU supports which CPUID doesn't
1137 * tell us, CPUID claiming incorrect flags, or other bugs,
1138 * we handle them here.
1139 *
1140 * At the end of this section, c->x86_capability better
1141 * indicate the features this CPU genuinely supports!
1142 */
1143 if (this_cpu->c_init)
1144 this_cpu->c_init(c);
1145
1146 /* Disable the PN if appropriate */
1147 squash_the_stupid_serial_number(c);
1148
1149 /* Set up SMEP/SMAP */
1150 setup_smep(c);
1151 setup_smap(c);
1152
1153 /*
1154 * The vendor-specific functions might have changed features.
1155 * Now we do "generic changes."
1156 */
1157
1158 /* Filter out anything that depends on CPUID levels we don't have */
1159 filter_cpuid_features(c, true);
1160
1161 /* If the model name is still unset, do table lookup. */
1162 if (!c->x86_model_id[0]) {
1163 const char *p;
1164 p = table_lookup_model(c);
1165 if (p)
1166 strcpy(c->x86_model_id, p);
1167 else
1168 /* Last resort... */
1169 sprintf(c->x86_model_id, "%02x/%02x",
1170 c->x86, c->x86_model);
1171 }
1172
1173 #ifdef CONFIG_X86_64
1174 detect_ht(c);
1175 #endif
1176
1177 x86_init_rdrand(c);
1178 x86_init_cache_qos(c);
1179 setup_pku(c);
1180
1181 /*
1182 * Clear/Set all flags overridden by options, need do it
1183 * before following smp all cpus cap AND.
1184 */
1185 apply_forced_caps(c);
1186
1187 /*
1188 * On SMP, boot_cpu_data holds the common feature set between
1189 * all CPUs; so make sure that we indicate which features are
1190 * common between the CPUs. The first time this routine gets
1191 * executed, c == &boot_cpu_data.
1192 */
1193 if (c != &boot_cpu_data) {
1194 /* AND the already accumulated flags with these */
1195 for (i = 0; i < NCAPINTS; i++)
1196 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1197
1198 /* OR, i.e. replicate the bug flags */
1199 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1200 c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1201 }
1202
1203 /* Init Machine Check Exception if available. */
1204 mcheck_cpu_init(c);
1205
1206 select_idle_routine(c);
1207
1208 #ifdef CONFIG_NUMA
1209 numa_add_cpu(smp_processor_id());
1210 #endif
1211 }
1212
1213 /*
1214 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1215 * on 32-bit kernels:
1216 */
1217 #ifdef CONFIG_X86_32
1218 void enable_sep_cpu(void)
1219 {
1220 struct tss_struct *tss;
1221 int cpu;
1222
1223 if (!boot_cpu_has(X86_FEATURE_SEP))
1224 return;
1225
1226 cpu = get_cpu();
1227 tss = &per_cpu(cpu_tss_rw, cpu);
1228
1229 /*
1230 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1231 * see the big comment in struct x86_hw_tss's definition.
1232 */
1233
1234 tss->x86_tss.ss1 = __KERNEL_CS;
1235 wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1236 wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1237 wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1238
1239 put_cpu();
1240 }
1241 #endif
1242
1243 void __init identify_boot_cpu(void)
1244 {
1245 identify_cpu(&boot_cpu_data);
1246 #ifdef CONFIG_X86_32
1247 sysenter_setup();
1248 enable_sep_cpu();
1249 #endif
1250 cpu_detect_tlb(&boot_cpu_data);
1251 }
1252
1253 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1254 {
1255 BUG_ON(c == &boot_cpu_data);
1256 identify_cpu(c);
1257 #ifdef CONFIG_X86_32
1258 enable_sep_cpu();
1259 #endif
1260 mtrr_ap_init();
1261 validate_apic_and_package_id(c);
1262 }
1263
1264 static __init int setup_noclflush(char *arg)
1265 {
1266 setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1267 setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1268 return 1;
1269 }
1270 __setup("noclflush", setup_noclflush);
1271
1272 void print_cpu_info(struct cpuinfo_x86 *c)
1273 {
1274 const char *vendor = NULL;
1275
1276 if (c->x86_vendor < X86_VENDOR_NUM) {
1277 vendor = this_cpu->c_vendor;
1278 } else {
1279 if (c->cpuid_level >= 0)
1280 vendor = c->x86_vendor_id;
1281 }
1282
1283 if (vendor && !strstr(c->x86_model_id, vendor))
1284 pr_cont("%s ", vendor);
1285
1286 if (c->x86_model_id[0])
1287 pr_cont("%s", c->x86_model_id);
1288 else
1289 pr_cont("%d86", c->x86);
1290
1291 pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1292
1293 if (c->x86_mask || c->cpuid_level >= 0)
1294 pr_cont(", stepping: 0x%x)\n", c->x86_mask);
1295 else
1296 pr_cont(")\n");
1297 }
1298
1299 /*
1300 * clearcpuid= was already parsed in fpu__init_parse_early_param.
1301 * But we need to keep a dummy __setup around otherwise it would
1302 * show up as an environment variable for init.
1303 */
1304 static __init int setup_clearcpuid(char *arg)
1305 {
1306 return 1;
1307 }
1308 __setup("clearcpuid=", setup_clearcpuid);
1309
1310 #ifdef CONFIG_X86_64
1311 DEFINE_PER_CPU_FIRST(union irq_stack_union,
1312 irq_stack_union) __aligned(PAGE_SIZE) __visible;
1313
1314 /*
1315 * The following percpu variables are hot. Align current_task to
1316 * cacheline size such that they fall in the same cacheline.
1317 */
1318 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1319 &init_task;
1320 EXPORT_PER_CPU_SYMBOL(current_task);
1321
1322 DEFINE_PER_CPU(char *, irq_stack_ptr) =
1323 init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE;
1324
1325 DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1326
1327 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1328 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1329
1330 /* May not be marked __init: used by software suspend */
1331 void syscall_init(void)
1332 {
1333 extern char _entry_trampoline[];
1334 extern char entry_SYSCALL_64_trampoline[];
1335
1336 int cpu = smp_processor_id();
1337 unsigned long SYSCALL64_entry_trampoline =
1338 (unsigned long)get_cpu_entry_area(cpu)->entry_trampoline +
1339 (entry_SYSCALL_64_trampoline - _entry_trampoline);
1340
1341 wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1342 if (static_cpu_has(X86_FEATURE_PTI))
1343 wrmsrl(MSR_LSTAR, SYSCALL64_entry_trampoline);
1344 else
1345 wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1346
1347 #ifdef CONFIG_IA32_EMULATION
1348 wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1349 /*
1350 * This only works on Intel CPUs.
1351 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1352 * This does not cause SYSENTER to jump to the wrong location, because
1353 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1354 */
1355 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1356 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1));
1357 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1358 #else
1359 wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1360 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1361 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1362 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1363 #endif
1364
1365 /* Flags to clear on syscall */
1366 wrmsrl(MSR_SYSCALL_MASK,
1367 X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1368 X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1369 }
1370
1371 /*
1372 * Copies of the original ist values from the tss are only accessed during
1373 * debugging, no special alignment required.
1374 */
1375 DEFINE_PER_CPU(struct orig_ist, orig_ist);
1376
1377 static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
1378 DEFINE_PER_CPU(int, debug_stack_usage);
1379
1380 int is_debug_stack(unsigned long addr)
1381 {
1382 return __this_cpu_read(debug_stack_usage) ||
1383 (addr <= __this_cpu_read(debug_stack_addr) &&
1384 addr > (__this_cpu_read(debug_stack_addr) - DEBUG_STKSZ));
1385 }
1386 NOKPROBE_SYMBOL(is_debug_stack);
1387
1388 DEFINE_PER_CPU(u32, debug_idt_ctr);
1389
1390 void debug_stack_set_zero(void)
1391 {
1392 this_cpu_inc(debug_idt_ctr);
1393 load_current_idt();
1394 }
1395 NOKPROBE_SYMBOL(debug_stack_set_zero);
1396
1397 void debug_stack_reset(void)
1398 {
1399 if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
1400 return;
1401 if (this_cpu_dec_return(debug_idt_ctr) == 0)
1402 load_current_idt();
1403 }
1404 NOKPROBE_SYMBOL(debug_stack_reset);
1405
1406 #else /* CONFIG_X86_64 */
1407
1408 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1409 EXPORT_PER_CPU_SYMBOL(current_task);
1410 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1411 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1412
1413 /*
1414 * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1415 * the top of the kernel stack. Use an extra percpu variable to track the
1416 * top of the kernel stack directly.
1417 */
1418 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1419 (unsigned long)&init_thread_union + THREAD_SIZE;
1420 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1421
1422 #ifdef CONFIG_CC_STACKPROTECTOR
1423 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1424 #endif
1425
1426 #endif /* CONFIG_X86_64 */
1427
1428 /*
1429 * Clear all 6 debug registers:
1430 */
1431 static void clear_all_debug_regs(void)
1432 {
1433 int i;
1434
1435 for (i = 0; i < 8; i++) {
1436 /* Ignore db4, db5 */
1437 if ((i == 4) || (i == 5))
1438 continue;
1439
1440 set_debugreg(0, i);
1441 }
1442 }
1443
1444 #ifdef CONFIG_KGDB
1445 /*
1446 * Restore debug regs if using kgdbwait and you have a kernel debugger
1447 * connection established.
1448 */
1449 static void dbg_restore_debug_regs(void)
1450 {
1451 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1452 arch_kgdb_ops.correct_hw_break();
1453 }
1454 #else /* ! CONFIG_KGDB */
1455 #define dbg_restore_debug_regs()
1456 #endif /* ! CONFIG_KGDB */
1457
1458 static void wait_for_master_cpu(int cpu)
1459 {
1460 #ifdef CONFIG_SMP
1461 /*
1462 * wait for ACK from master CPU before continuing
1463 * with AP initialization
1464 */
1465 WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1466 while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1467 cpu_relax();
1468 #endif
1469 }
1470
1471 /*
1472 * cpu_init() initializes state that is per-CPU. Some data is already
1473 * initialized (naturally) in the bootstrap process, such as the GDT
1474 * and IDT. We reload them nevertheless, this function acts as a
1475 * 'CPU state barrier', nothing should get across.
1476 * A lot of state is already set up in PDA init for 64 bit
1477 */
1478 #ifdef CONFIG_X86_64
1479
1480 void cpu_init(void)
1481 {
1482 struct orig_ist *oist;
1483 struct task_struct *me;
1484 struct tss_struct *t;
1485 unsigned long v;
1486 int cpu = raw_smp_processor_id();
1487 int i;
1488
1489 wait_for_master_cpu(cpu);
1490
1491 /*
1492 * Initialize the CR4 shadow before doing anything that could
1493 * try to read it.
1494 */
1495 cr4_init_shadow();
1496
1497 if (cpu)
1498 load_ucode_ap();
1499
1500 t = &per_cpu(cpu_tss_rw, cpu);
1501 oist = &per_cpu(orig_ist, cpu);
1502
1503 #ifdef CONFIG_NUMA
1504 if (this_cpu_read(numa_node) == 0 &&
1505 early_cpu_to_node(cpu) != NUMA_NO_NODE)
1506 set_numa_node(early_cpu_to_node(cpu));
1507 #endif
1508
1509 me = current;
1510
1511 pr_debug("Initializing CPU#%d\n", cpu);
1512
1513 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1514
1515 /*
1516 * Initialize the per-CPU GDT with the boot GDT,
1517 * and set up the GDT descriptor:
1518 */
1519
1520 switch_to_new_gdt(cpu);
1521 loadsegment(fs, 0);
1522
1523 load_current_idt();
1524
1525 memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1526 syscall_init();
1527
1528 wrmsrl(MSR_FS_BASE, 0);
1529 wrmsrl(MSR_KERNEL_GS_BASE, 0);
1530 barrier();
1531
1532 x86_configure_nx();
1533 x2apic_setup();
1534
1535 /*
1536 * set up and load the per-CPU TSS
1537 */
1538 if (!oist->ist[0]) {
1539 char *estacks = get_cpu_entry_area(cpu)->exception_stacks;
1540
1541 for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1542 estacks += exception_stack_sizes[v];
1543 oist->ist[v] = t->x86_tss.ist[v] =
1544 (unsigned long)estacks;
1545 if (v == DEBUG_STACK-1)
1546 per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
1547 }
1548 }
1549
1550 t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
1551
1552 /*
1553 * <= is required because the CPU will access up to
1554 * 8 bits beyond the end of the IO permission bitmap.
1555 */
1556 for (i = 0; i <= IO_BITMAP_LONGS; i++)
1557 t->io_bitmap[i] = ~0UL;
1558
1559 mmgrab(&init_mm);
1560 me->active_mm = &init_mm;
1561 BUG_ON(me->mm);
1562 initialize_tlbstate_and_flush();
1563 enter_lazy_tlb(&init_mm, me);
1564
1565 /*
1566 * Initialize the TSS. sp0 points to the entry trampoline stack
1567 * regardless of what task is running.
1568 */
1569 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1570 load_TR_desc();
1571 load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
1572
1573 load_mm_ldt(&init_mm);
1574
1575 clear_all_debug_regs();
1576 dbg_restore_debug_regs();
1577
1578 fpu__init_cpu();
1579
1580 if (is_uv_system())
1581 uv_cpu_init();
1582
1583 load_fixmap_gdt(cpu);
1584 }
1585
1586 #else
1587
1588 void cpu_init(void)
1589 {
1590 int cpu = smp_processor_id();
1591 struct task_struct *curr = current;
1592 struct tss_struct *t = &per_cpu(cpu_tss_rw, cpu);
1593
1594 wait_for_master_cpu(cpu);
1595
1596 /*
1597 * Initialize the CR4 shadow before doing anything that could
1598 * try to read it.
1599 */
1600 cr4_init_shadow();
1601
1602 show_ucode_info_early();
1603
1604 pr_info("Initializing CPU#%d\n", cpu);
1605
1606 if (cpu_feature_enabled(X86_FEATURE_VME) ||
1607 boot_cpu_has(X86_FEATURE_TSC) ||
1608 boot_cpu_has(X86_FEATURE_DE))
1609 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1610
1611 load_current_idt();
1612 switch_to_new_gdt(cpu);
1613
1614 /*
1615 * Set up and load the per-CPU TSS and LDT
1616 */
1617 mmgrab(&init_mm);
1618 curr->active_mm = &init_mm;
1619 BUG_ON(curr->mm);
1620 initialize_tlbstate_and_flush();
1621 enter_lazy_tlb(&init_mm, curr);
1622
1623 /*
1624 * Initialize the TSS. Don't bother initializing sp0, as the initial
1625 * task never enters user mode.
1626 */
1627 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1628 load_TR_desc();
1629
1630 load_mm_ldt(&init_mm);
1631
1632 t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
1633
1634 #ifdef CONFIG_DOUBLEFAULT
1635 /* Set up doublefault TSS pointer in the GDT */
1636 __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1637 #endif
1638
1639 clear_all_debug_regs();
1640 dbg_restore_debug_regs();
1641
1642 fpu__init_cpu();
1643
1644 load_fixmap_gdt(cpu);
1645 }
1646 #endif
1647
1648 static void bsp_resume(void)
1649 {
1650 if (this_cpu->c_bsp_resume)
1651 this_cpu->c_bsp_resume(&boot_cpu_data);
1652 }
1653
1654 static struct syscore_ops cpu_syscore_ops = {
1655 .resume = bsp_resume,
1656 };
1657
1658 static int __init init_cpu_syscore(void)
1659 {
1660 register_syscore_ops(&cpu_syscore_ops);
1661 return 0;
1662 }
1663 core_initcall(init_cpu_syscore);