]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kernel/cpu/common.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/hirofumi/fatfs-2.6
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / cpu / common.c
1 #include <linux/bootmem.h>
2 #include <linux/linkage.h>
3 #include <linux/bitops.h>
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/percpu.h>
7 #include <linux/string.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/init.h>
11 #include <linux/kgdb.h>
12 #include <linux/smp.h>
13 #include <linux/io.h>
14
15 #include <asm/stackprotector.h>
16 #include <asm/perf_counter.h>
17 #include <asm/mmu_context.h>
18 #include <asm/hypervisor.h>
19 #include <asm/processor.h>
20 #include <asm/sections.h>
21 #include <asm/topology.h>
22 #include <asm/cpumask.h>
23 #include <asm/pgtable.h>
24 #include <asm/atomic.h>
25 #include <asm/proto.h>
26 #include <asm/setup.h>
27 #include <asm/apic.h>
28 #include <asm/desc.h>
29 #include <asm/i387.h>
30 #include <asm/mtrr.h>
31 #include <asm/numa.h>
32 #include <asm/asm.h>
33 #include <asm/cpu.h>
34 #include <asm/mce.h>
35 #include <asm/msr.h>
36 #include <asm/pat.h>
37 #include <asm/smp.h>
38
39 #ifdef CONFIG_X86_LOCAL_APIC
40 #include <asm/uv/uv.h>
41 #endif
42
43 #include "cpu.h"
44
45 /* all of these masks are initialized in setup_cpu_local_masks() */
46 cpumask_var_t cpu_initialized_mask;
47 cpumask_var_t cpu_callout_mask;
48 cpumask_var_t cpu_callin_mask;
49
50 /* representing cpus for which sibling maps can be computed */
51 cpumask_var_t cpu_sibling_setup_mask;
52
53 /* correctly size the local cpu masks */
54 void __init setup_cpu_local_masks(void)
55 {
56 alloc_bootmem_cpumask_var(&cpu_initialized_mask);
57 alloc_bootmem_cpumask_var(&cpu_callin_mask);
58 alloc_bootmem_cpumask_var(&cpu_callout_mask);
59 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
60 }
61
62 static const struct cpu_dev *this_cpu __cpuinitdata;
63
64 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
65 #ifdef CONFIG_X86_64
66 /*
67 * We need valid kernel segments for data and code in long mode too
68 * IRET will check the segment types kkeil 2000/10/28
69 * Also sysret mandates a special GDT layout
70 *
71 * TLS descriptors are currently at a different place compared to i386.
72 * Hopefully nobody expects them at a fixed place (Wine?)
73 */
74 [GDT_ENTRY_KERNEL32_CS] = { { { 0x0000ffff, 0x00cf9b00 } } },
75 [GDT_ENTRY_KERNEL_CS] = { { { 0x0000ffff, 0x00af9b00 } } },
76 [GDT_ENTRY_KERNEL_DS] = { { { 0x0000ffff, 0x00cf9300 } } },
77 [GDT_ENTRY_DEFAULT_USER32_CS] = { { { 0x0000ffff, 0x00cffb00 } } },
78 [GDT_ENTRY_DEFAULT_USER_DS] = { { { 0x0000ffff, 0x00cff300 } } },
79 [GDT_ENTRY_DEFAULT_USER_CS] = { { { 0x0000ffff, 0x00affb00 } } },
80 #else
81 [GDT_ENTRY_KERNEL_CS] = { { { 0x0000ffff, 0x00cf9a00 } } },
82 [GDT_ENTRY_KERNEL_DS] = { { { 0x0000ffff, 0x00cf9200 } } },
83 [GDT_ENTRY_DEFAULT_USER_CS] = { { { 0x0000ffff, 0x00cffa00 } } },
84 [GDT_ENTRY_DEFAULT_USER_DS] = { { { 0x0000ffff, 0x00cff200 } } },
85 /*
86 * Segments used for calling PnP BIOS have byte granularity.
87 * They code segments and data segments have fixed 64k limits,
88 * the transfer segment sizes are set at run time.
89 */
90 /* 32-bit code */
91 [GDT_ENTRY_PNPBIOS_CS32] = { { { 0x0000ffff, 0x00409a00 } } },
92 /* 16-bit code */
93 [GDT_ENTRY_PNPBIOS_CS16] = { { { 0x0000ffff, 0x00009a00 } } },
94 /* 16-bit data */
95 [GDT_ENTRY_PNPBIOS_DS] = { { { 0x0000ffff, 0x00009200 } } },
96 /* 16-bit data */
97 [GDT_ENTRY_PNPBIOS_TS1] = { { { 0x00000000, 0x00009200 } } },
98 /* 16-bit data */
99 [GDT_ENTRY_PNPBIOS_TS2] = { { { 0x00000000, 0x00009200 } } },
100 /*
101 * The APM segments have byte granularity and their bases
102 * are set at run time. All have 64k limits.
103 */
104 /* 32-bit code */
105 [GDT_ENTRY_APMBIOS_BASE] = { { { 0x0000ffff, 0x00409a00 } } },
106 /* 16-bit code */
107 [GDT_ENTRY_APMBIOS_BASE+1] = { { { 0x0000ffff, 0x00009a00 } } },
108 /* data */
109 [GDT_ENTRY_APMBIOS_BASE+2] = { { { 0x0000ffff, 0x00409200 } } },
110
111 [GDT_ENTRY_ESPFIX_SS] = { { { 0x00000000, 0x00c09200 } } },
112 [GDT_ENTRY_PERCPU] = { { { 0x0000ffff, 0x00cf9200 } } },
113 GDT_STACK_CANARY_INIT
114 #endif
115 } };
116 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
117
118 static int __init x86_xsave_setup(char *s)
119 {
120 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
121 return 1;
122 }
123 __setup("noxsave", x86_xsave_setup);
124
125 #ifdef CONFIG_X86_32
126 static int cachesize_override __cpuinitdata = -1;
127 static int disable_x86_serial_nr __cpuinitdata = 1;
128
129 static int __init cachesize_setup(char *str)
130 {
131 get_option(&str, &cachesize_override);
132 return 1;
133 }
134 __setup("cachesize=", cachesize_setup);
135
136 static int __init x86_fxsr_setup(char *s)
137 {
138 setup_clear_cpu_cap(X86_FEATURE_FXSR);
139 setup_clear_cpu_cap(X86_FEATURE_XMM);
140 return 1;
141 }
142 __setup("nofxsr", x86_fxsr_setup);
143
144 static int __init x86_sep_setup(char *s)
145 {
146 setup_clear_cpu_cap(X86_FEATURE_SEP);
147 return 1;
148 }
149 __setup("nosep", x86_sep_setup);
150
151 /* Standard macro to see if a specific flag is changeable */
152 static inline int flag_is_changeable_p(u32 flag)
153 {
154 u32 f1, f2;
155
156 /*
157 * Cyrix and IDT cpus allow disabling of CPUID
158 * so the code below may return different results
159 * when it is executed before and after enabling
160 * the CPUID. Add "volatile" to not allow gcc to
161 * optimize the subsequent calls to this function.
162 */
163 asm volatile ("pushfl \n\t"
164 "pushfl \n\t"
165 "popl %0 \n\t"
166 "movl %0, %1 \n\t"
167 "xorl %2, %0 \n\t"
168 "pushl %0 \n\t"
169 "popfl \n\t"
170 "pushfl \n\t"
171 "popl %0 \n\t"
172 "popfl \n\t"
173
174 : "=&r" (f1), "=&r" (f2)
175 : "ir" (flag));
176
177 return ((f1^f2) & flag) != 0;
178 }
179
180 /* Probe for the CPUID instruction */
181 static int __cpuinit have_cpuid_p(void)
182 {
183 return flag_is_changeable_p(X86_EFLAGS_ID);
184 }
185
186 static void __cpuinit squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
187 {
188 unsigned long lo, hi;
189
190 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
191 return;
192
193 /* Disable processor serial number: */
194
195 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
196 lo |= 0x200000;
197 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
198
199 printk(KERN_NOTICE "CPU serial number disabled.\n");
200 clear_cpu_cap(c, X86_FEATURE_PN);
201
202 /* Disabling the serial number may affect the cpuid level */
203 c->cpuid_level = cpuid_eax(0);
204 }
205
206 static int __init x86_serial_nr_setup(char *s)
207 {
208 disable_x86_serial_nr = 0;
209 return 1;
210 }
211 __setup("serialnumber", x86_serial_nr_setup);
212 #else
213 static inline int flag_is_changeable_p(u32 flag)
214 {
215 return 1;
216 }
217 /* Probe for the CPUID instruction */
218 static inline int have_cpuid_p(void)
219 {
220 return 1;
221 }
222 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
223 {
224 }
225 #endif
226
227 /*
228 * Some CPU features depend on higher CPUID levels, which may not always
229 * be available due to CPUID level capping or broken virtualization
230 * software. Add those features to this table to auto-disable them.
231 */
232 struct cpuid_dependent_feature {
233 u32 feature;
234 u32 level;
235 };
236
237 static const struct cpuid_dependent_feature __cpuinitconst
238 cpuid_dependent_features[] = {
239 { X86_FEATURE_MWAIT, 0x00000005 },
240 { X86_FEATURE_DCA, 0x00000009 },
241 { X86_FEATURE_XSAVE, 0x0000000d },
242 { 0, 0 }
243 };
244
245 static void __cpuinit filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
246 {
247 const struct cpuid_dependent_feature *df;
248
249 for (df = cpuid_dependent_features; df->feature; df++) {
250
251 if (!cpu_has(c, df->feature))
252 continue;
253 /*
254 * Note: cpuid_level is set to -1 if unavailable, but
255 * extended_extended_level is set to 0 if unavailable
256 * and the legitimate extended levels are all negative
257 * when signed; hence the weird messing around with
258 * signs here...
259 */
260 if (!((s32)df->level < 0 ?
261 (u32)df->level > (u32)c->extended_cpuid_level :
262 (s32)df->level > (s32)c->cpuid_level))
263 continue;
264
265 clear_cpu_cap(c, df->feature);
266 if (!warn)
267 continue;
268
269 printk(KERN_WARNING
270 "CPU: CPU feature %s disabled, no CPUID level 0x%x\n",
271 x86_cap_flags[df->feature], df->level);
272 }
273 }
274
275 /*
276 * Naming convention should be: <Name> [(<Codename>)]
277 * This table only is used unless init_<vendor>() below doesn't set it;
278 * in particular, if CPUID levels 0x80000002..4 are supported, this
279 * isn't used
280 */
281
282 /* Look up CPU names by table lookup. */
283 static const char *__cpuinit table_lookup_model(struct cpuinfo_x86 *c)
284 {
285 const struct cpu_model_info *info;
286
287 if (c->x86_model >= 16)
288 return NULL; /* Range check */
289
290 if (!this_cpu)
291 return NULL;
292
293 info = this_cpu->c_models;
294
295 while (info && info->family) {
296 if (info->family == c->x86)
297 return info->model_names[c->x86_model];
298 info++;
299 }
300 return NULL; /* Not found */
301 }
302
303 __u32 cpu_caps_cleared[NCAPINTS] __cpuinitdata;
304 __u32 cpu_caps_set[NCAPINTS] __cpuinitdata;
305
306 void load_percpu_segment(int cpu)
307 {
308 #ifdef CONFIG_X86_32
309 loadsegment(fs, __KERNEL_PERCPU);
310 #else
311 loadsegment(gs, 0);
312 wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
313 #endif
314 load_stack_canary_segment();
315 }
316
317 /*
318 * Current gdt points %fs at the "master" per-cpu area: after this,
319 * it's on the real one.
320 */
321 void switch_to_new_gdt(int cpu)
322 {
323 struct desc_ptr gdt_descr;
324
325 gdt_descr.address = (long)get_cpu_gdt_table(cpu);
326 gdt_descr.size = GDT_SIZE - 1;
327 load_gdt(&gdt_descr);
328 /* Reload the per-cpu base */
329
330 load_percpu_segment(cpu);
331 }
332
333 static const struct cpu_dev *__cpuinitdata cpu_devs[X86_VENDOR_NUM] = {};
334
335 static void __cpuinit default_init(struct cpuinfo_x86 *c)
336 {
337 #ifdef CONFIG_X86_64
338 display_cacheinfo(c);
339 #else
340 /* Not much we can do here... */
341 /* Check if at least it has cpuid */
342 if (c->cpuid_level == -1) {
343 /* No cpuid. It must be an ancient CPU */
344 if (c->x86 == 4)
345 strcpy(c->x86_model_id, "486");
346 else if (c->x86 == 3)
347 strcpy(c->x86_model_id, "386");
348 }
349 #endif
350 }
351
352 static const struct cpu_dev __cpuinitconst default_cpu = {
353 .c_init = default_init,
354 .c_vendor = "Unknown",
355 .c_x86_vendor = X86_VENDOR_UNKNOWN,
356 };
357
358 static void __cpuinit get_model_name(struct cpuinfo_x86 *c)
359 {
360 unsigned int *v;
361 char *p, *q;
362
363 if (c->extended_cpuid_level < 0x80000004)
364 return;
365
366 v = (unsigned int *)c->x86_model_id;
367 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
368 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
369 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
370 c->x86_model_id[48] = 0;
371
372 /*
373 * Intel chips right-justify this string for some dumb reason;
374 * undo that brain damage:
375 */
376 p = q = &c->x86_model_id[0];
377 while (*p == ' ')
378 p++;
379 if (p != q) {
380 while (*p)
381 *q++ = *p++;
382 while (q <= &c->x86_model_id[48])
383 *q++ = '\0'; /* Zero-pad the rest */
384 }
385 }
386
387 void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
388 {
389 unsigned int n, dummy, ebx, ecx, edx, l2size;
390
391 n = c->extended_cpuid_level;
392
393 if (n >= 0x80000005) {
394 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
395 printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n",
396 edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
397 c->x86_cache_size = (ecx>>24) + (edx>>24);
398 #ifdef CONFIG_X86_64
399 /* On K8 L1 TLB is inclusive, so don't count it */
400 c->x86_tlbsize = 0;
401 #endif
402 }
403
404 if (n < 0x80000006) /* Some chips just has a large L1. */
405 return;
406
407 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
408 l2size = ecx >> 16;
409
410 #ifdef CONFIG_X86_64
411 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
412 #else
413 /* do processor-specific cache resizing */
414 if (this_cpu->c_size_cache)
415 l2size = this_cpu->c_size_cache(c, l2size);
416
417 /* Allow user to override all this if necessary. */
418 if (cachesize_override != -1)
419 l2size = cachesize_override;
420
421 if (l2size == 0)
422 return; /* Again, no L2 cache is possible */
423 #endif
424
425 c->x86_cache_size = l2size;
426
427 printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
428 l2size, ecx & 0xFF);
429 }
430
431 void __cpuinit detect_ht(struct cpuinfo_x86 *c)
432 {
433 #ifdef CONFIG_X86_HT
434 u32 eax, ebx, ecx, edx;
435 int index_msb, core_bits;
436
437 if (!cpu_has(c, X86_FEATURE_HT))
438 return;
439
440 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
441 goto out;
442
443 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
444 return;
445
446 cpuid(1, &eax, &ebx, &ecx, &edx);
447
448 smp_num_siblings = (ebx & 0xff0000) >> 16;
449
450 if (smp_num_siblings == 1) {
451 printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
452 goto out;
453 }
454
455 if (smp_num_siblings <= 1)
456 goto out;
457
458 if (smp_num_siblings > nr_cpu_ids) {
459 pr_warning("CPU: Unsupported number of siblings %d",
460 smp_num_siblings);
461 smp_num_siblings = 1;
462 return;
463 }
464
465 index_msb = get_count_order(smp_num_siblings);
466 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
467
468 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
469
470 index_msb = get_count_order(smp_num_siblings);
471
472 core_bits = get_count_order(c->x86_max_cores);
473
474 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
475 ((1 << core_bits) - 1);
476
477 out:
478 if ((c->x86_max_cores * smp_num_siblings) > 1) {
479 printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
480 c->phys_proc_id);
481 printk(KERN_INFO "CPU: Processor Core ID: %d\n",
482 c->cpu_core_id);
483 }
484 #endif
485 }
486
487 static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
488 {
489 char *v = c->x86_vendor_id;
490 static int printed;
491 int i;
492
493 for (i = 0; i < X86_VENDOR_NUM; i++) {
494 if (!cpu_devs[i])
495 break;
496
497 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
498 (cpu_devs[i]->c_ident[1] &&
499 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
500
501 this_cpu = cpu_devs[i];
502 c->x86_vendor = this_cpu->c_x86_vendor;
503 return;
504 }
505 }
506
507 if (!printed) {
508 printed++;
509 printk(KERN_ERR
510 "CPU: vendor_id '%s' unknown, using generic init.\n", v);
511
512 printk(KERN_ERR "CPU: Your system may be unstable.\n");
513 }
514
515 c->x86_vendor = X86_VENDOR_UNKNOWN;
516 this_cpu = &default_cpu;
517 }
518
519 void __cpuinit cpu_detect(struct cpuinfo_x86 *c)
520 {
521 /* Get vendor name */
522 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
523 (unsigned int *)&c->x86_vendor_id[0],
524 (unsigned int *)&c->x86_vendor_id[8],
525 (unsigned int *)&c->x86_vendor_id[4]);
526
527 c->x86 = 4;
528 /* Intel-defined flags: level 0x00000001 */
529 if (c->cpuid_level >= 0x00000001) {
530 u32 junk, tfms, cap0, misc;
531
532 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
533 c->x86 = (tfms >> 8) & 0xf;
534 c->x86_model = (tfms >> 4) & 0xf;
535 c->x86_mask = tfms & 0xf;
536
537 if (c->x86 == 0xf)
538 c->x86 += (tfms >> 20) & 0xff;
539 if (c->x86 >= 0x6)
540 c->x86_model += ((tfms >> 16) & 0xf) << 4;
541
542 if (cap0 & (1<<19)) {
543 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
544 c->x86_cache_alignment = c->x86_clflush_size;
545 }
546 }
547 }
548
549 static void __cpuinit get_cpu_cap(struct cpuinfo_x86 *c)
550 {
551 u32 tfms, xlvl;
552 u32 ebx;
553
554 /* Intel-defined flags: level 0x00000001 */
555 if (c->cpuid_level >= 0x00000001) {
556 u32 capability, excap;
557
558 cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
559 c->x86_capability[0] = capability;
560 c->x86_capability[4] = excap;
561 }
562
563 /* AMD-defined flags: level 0x80000001 */
564 xlvl = cpuid_eax(0x80000000);
565 c->extended_cpuid_level = xlvl;
566
567 if ((xlvl & 0xffff0000) == 0x80000000) {
568 if (xlvl >= 0x80000001) {
569 c->x86_capability[1] = cpuid_edx(0x80000001);
570 c->x86_capability[6] = cpuid_ecx(0x80000001);
571 }
572 }
573
574 if (c->extended_cpuid_level >= 0x80000008) {
575 u32 eax = cpuid_eax(0x80000008);
576
577 c->x86_virt_bits = (eax >> 8) & 0xff;
578 c->x86_phys_bits = eax & 0xff;
579 }
580 #ifdef CONFIG_X86_32
581 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
582 c->x86_phys_bits = 36;
583 #endif
584
585 if (c->extended_cpuid_level >= 0x80000007)
586 c->x86_power = cpuid_edx(0x80000007);
587
588 }
589
590 static void __cpuinit identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
591 {
592 #ifdef CONFIG_X86_32
593 int i;
594
595 /*
596 * First of all, decide if this is a 486 or higher
597 * It's a 486 if we can modify the AC flag
598 */
599 if (flag_is_changeable_p(X86_EFLAGS_AC))
600 c->x86 = 4;
601 else
602 c->x86 = 3;
603
604 for (i = 0; i < X86_VENDOR_NUM; i++)
605 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
606 c->x86_vendor_id[0] = 0;
607 cpu_devs[i]->c_identify(c);
608 if (c->x86_vendor_id[0]) {
609 get_cpu_vendor(c);
610 break;
611 }
612 }
613 #endif
614 }
615
616 /*
617 * Do minimum CPU detection early.
618 * Fields really needed: vendor, cpuid_level, family, model, mask,
619 * cache alignment.
620 * The others are not touched to avoid unwanted side effects.
621 *
622 * WARNING: this function is only called on the BP. Don't add code here
623 * that is supposed to run on all CPUs.
624 */
625 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
626 {
627 #ifdef CONFIG_X86_64
628 c->x86_clflush_size = 64;
629 c->x86_phys_bits = 36;
630 c->x86_virt_bits = 48;
631 #else
632 c->x86_clflush_size = 32;
633 c->x86_phys_bits = 32;
634 c->x86_virt_bits = 32;
635 #endif
636 c->x86_cache_alignment = c->x86_clflush_size;
637
638 memset(&c->x86_capability, 0, sizeof c->x86_capability);
639 c->extended_cpuid_level = 0;
640
641 if (!have_cpuid_p())
642 identify_cpu_without_cpuid(c);
643
644 /* cyrix could have cpuid enabled via c_identify()*/
645 if (!have_cpuid_p())
646 return;
647
648 cpu_detect(c);
649
650 get_cpu_vendor(c);
651
652 get_cpu_cap(c);
653
654 if (this_cpu->c_early_init)
655 this_cpu->c_early_init(c);
656
657 #ifdef CONFIG_SMP
658 c->cpu_index = boot_cpu_id;
659 #endif
660 filter_cpuid_features(c, false);
661 }
662
663 void __init early_cpu_init(void)
664 {
665 const struct cpu_dev *const *cdev;
666 int count = 0;
667
668 printk(KERN_INFO "KERNEL supported cpus:\n");
669 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
670 const struct cpu_dev *cpudev = *cdev;
671 unsigned int j;
672
673 if (count >= X86_VENDOR_NUM)
674 break;
675 cpu_devs[count] = cpudev;
676 count++;
677
678 for (j = 0; j < 2; j++) {
679 if (!cpudev->c_ident[j])
680 continue;
681 printk(KERN_INFO " %s %s\n", cpudev->c_vendor,
682 cpudev->c_ident[j]);
683 }
684 }
685
686 early_identify_cpu(&boot_cpu_data);
687 }
688
689 /*
690 * The NOPL instruction is supposed to exist on all CPUs with
691 * family >= 6; unfortunately, that's not true in practice because
692 * of early VIA chips and (more importantly) broken virtualizers that
693 * are not easy to detect. In the latter case it doesn't even *fail*
694 * reliably, so probing for it doesn't even work. Disable it completely
695 * unless we can find a reliable way to detect all the broken cases.
696 */
697 static void __cpuinit detect_nopl(struct cpuinfo_x86 *c)
698 {
699 clear_cpu_cap(c, X86_FEATURE_NOPL);
700 }
701
702 static void __cpuinit generic_identify(struct cpuinfo_x86 *c)
703 {
704 c->extended_cpuid_level = 0;
705
706 if (!have_cpuid_p())
707 identify_cpu_without_cpuid(c);
708
709 /* cyrix could have cpuid enabled via c_identify()*/
710 if (!have_cpuid_p())
711 return;
712
713 cpu_detect(c);
714
715 get_cpu_vendor(c);
716
717 get_cpu_cap(c);
718
719 if (c->cpuid_level >= 0x00000001) {
720 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
721 #ifdef CONFIG_X86_32
722 # ifdef CONFIG_X86_HT
723 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
724 # else
725 c->apicid = c->initial_apicid;
726 # endif
727 #endif
728
729 #ifdef CONFIG_X86_HT
730 c->phys_proc_id = c->initial_apicid;
731 #endif
732 }
733
734 get_model_name(c); /* Default name */
735
736 init_scattered_cpuid_features(c);
737 detect_nopl(c);
738 }
739
740 /*
741 * This does the hard work of actually picking apart the CPU stuff...
742 */
743 static void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
744 {
745 int i;
746
747 c->loops_per_jiffy = loops_per_jiffy;
748 c->x86_cache_size = -1;
749 c->x86_vendor = X86_VENDOR_UNKNOWN;
750 c->x86_model = c->x86_mask = 0; /* So far unknown... */
751 c->x86_vendor_id[0] = '\0'; /* Unset */
752 c->x86_model_id[0] = '\0'; /* Unset */
753 c->x86_max_cores = 1;
754 c->x86_coreid_bits = 0;
755 #ifdef CONFIG_X86_64
756 c->x86_clflush_size = 64;
757 c->x86_phys_bits = 36;
758 c->x86_virt_bits = 48;
759 #else
760 c->cpuid_level = -1; /* CPUID not detected */
761 c->x86_clflush_size = 32;
762 c->x86_phys_bits = 32;
763 c->x86_virt_bits = 32;
764 #endif
765 c->x86_cache_alignment = c->x86_clflush_size;
766 memset(&c->x86_capability, 0, sizeof c->x86_capability);
767
768 generic_identify(c);
769
770 if (this_cpu->c_identify)
771 this_cpu->c_identify(c);
772
773 /* Clear/Set all flags overriden by options, after probe */
774 for (i = 0; i < NCAPINTS; i++) {
775 c->x86_capability[i] &= ~cpu_caps_cleared[i];
776 c->x86_capability[i] |= cpu_caps_set[i];
777 }
778
779 #ifdef CONFIG_X86_64
780 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
781 #endif
782
783 /*
784 * Vendor-specific initialization. In this section we
785 * canonicalize the feature flags, meaning if there are
786 * features a certain CPU supports which CPUID doesn't
787 * tell us, CPUID claiming incorrect flags, or other bugs,
788 * we handle them here.
789 *
790 * At the end of this section, c->x86_capability better
791 * indicate the features this CPU genuinely supports!
792 */
793 if (this_cpu->c_init)
794 this_cpu->c_init(c);
795
796 /* Disable the PN if appropriate */
797 squash_the_stupid_serial_number(c);
798
799 /*
800 * The vendor-specific functions might have changed features.
801 * Now we do "generic changes."
802 */
803
804 /* Filter out anything that depends on CPUID levels we don't have */
805 filter_cpuid_features(c, true);
806
807 /* If the model name is still unset, do table lookup. */
808 if (!c->x86_model_id[0]) {
809 const char *p;
810 p = table_lookup_model(c);
811 if (p)
812 strcpy(c->x86_model_id, p);
813 else
814 /* Last resort... */
815 sprintf(c->x86_model_id, "%02x/%02x",
816 c->x86, c->x86_model);
817 }
818
819 #ifdef CONFIG_X86_64
820 detect_ht(c);
821 #endif
822
823 init_hypervisor(c);
824
825 /*
826 * Clear/Set all flags overriden by options, need do it
827 * before following smp all cpus cap AND.
828 */
829 for (i = 0; i < NCAPINTS; i++) {
830 c->x86_capability[i] &= ~cpu_caps_cleared[i];
831 c->x86_capability[i] |= cpu_caps_set[i];
832 }
833
834 /*
835 * On SMP, boot_cpu_data holds the common feature set between
836 * all CPUs; so make sure that we indicate which features are
837 * common between the CPUs. The first time this routine gets
838 * executed, c == &boot_cpu_data.
839 */
840 if (c != &boot_cpu_data) {
841 /* AND the already accumulated flags with these */
842 for (i = 0; i < NCAPINTS; i++)
843 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
844 }
845
846 #ifdef CONFIG_X86_MCE
847 /* Init Machine Check Exception if available. */
848 mcheck_init(c);
849 #endif
850
851 select_idle_routine(c);
852
853 #if defined(CONFIG_NUMA) && defined(CONFIG_X86_64)
854 numa_add_cpu(smp_processor_id());
855 #endif
856 }
857
858 #ifdef CONFIG_X86_64
859 static void vgetcpu_set_mode(void)
860 {
861 if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP))
862 vgetcpu_mode = VGETCPU_RDTSCP;
863 else
864 vgetcpu_mode = VGETCPU_LSL;
865 }
866 #endif
867
868 void __init identify_boot_cpu(void)
869 {
870 identify_cpu(&boot_cpu_data);
871 init_c1e_mask();
872 #ifdef CONFIG_X86_32
873 sysenter_setup();
874 enable_sep_cpu();
875 #else
876 vgetcpu_set_mode();
877 #endif
878 init_hw_perf_counters();
879 }
880
881 void __cpuinit identify_secondary_cpu(struct cpuinfo_x86 *c)
882 {
883 BUG_ON(c == &boot_cpu_data);
884 identify_cpu(c);
885 #ifdef CONFIG_X86_32
886 enable_sep_cpu();
887 #endif
888 mtrr_ap_init();
889 }
890
891 struct msr_range {
892 unsigned min;
893 unsigned max;
894 };
895
896 static const struct msr_range msr_range_array[] __cpuinitconst = {
897 { 0x00000000, 0x00000418},
898 { 0xc0000000, 0xc000040b},
899 { 0xc0010000, 0xc0010142},
900 { 0xc0011000, 0xc001103b},
901 };
902
903 static void __cpuinit print_cpu_msr(void)
904 {
905 unsigned index_min, index_max;
906 unsigned index;
907 u64 val;
908 int i;
909
910 for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
911 index_min = msr_range_array[i].min;
912 index_max = msr_range_array[i].max;
913
914 for (index = index_min; index < index_max; index++) {
915 if (rdmsrl_amd_safe(index, &val))
916 continue;
917 printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
918 }
919 }
920 }
921
922 static int show_msr __cpuinitdata;
923
924 static __init int setup_show_msr(char *arg)
925 {
926 int num;
927
928 get_option(&arg, &num);
929
930 if (num > 0)
931 show_msr = num;
932 return 1;
933 }
934 __setup("show_msr=", setup_show_msr);
935
936 static __init int setup_noclflush(char *arg)
937 {
938 setup_clear_cpu_cap(X86_FEATURE_CLFLSH);
939 return 1;
940 }
941 __setup("noclflush", setup_noclflush);
942
943 void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
944 {
945 const char *vendor = NULL;
946
947 if (c->x86_vendor < X86_VENDOR_NUM) {
948 vendor = this_cpu->c_vendor;
949 } else {
950 if (c->cpuid_level >= 0)
951 vendor = c->x86_vendor_id;
952 }
953
954 if (vendor && !strstr(c->x86_model_id, vendor))
955 printk(KERN_CONT "%s ", vendor);
956
957 if (c->x86_model_id[0])
958 printk(KERN_CONT "%s", c->x86_model_id);
959 else
960 printk(KERN_CONT "%d86", c->x86);
961
962 if (c->x86_mask || c->cpuid_level >= 0)
963 printk(KERN_CONT " stepping %02x\n", c->x86_mask);
964 else
965 printk(KERN_CONT "\n");
966
967 #ifdef CONFIG_SMP
968 if (c->cpu_index < show_msr)
969 print_cpu_msr();
970 #else
971 if (show_msr)
972 print_cpu_msr();
973 #endif
974 }
975
976 static __init int setup_disablecpuid(char *arg)
977 {
978 int bit;
979
980 if (get_option(&arg, &bit) && bit < NCAPINTS*32)
981 setup_clear_cpu_cap(bit);
982 else
983 return 0;
984
985 return 1;
986 }
987 __setup("clearcpuid=", setup_disablecpuid);
988
989 #ifdef CONFIG_X86_64
990 struct desc_ptr idt_descr = { 256 * 16 - 1, (unsigned long) idt_table };
991
992 DEFINE_PER_CPU_FIRST(union irq_stack_union,
993 irq_stack_union) __aligned(PAGE_SIZE);
994
995 DEFINE_PER_CPU(char *, irq_stack_ptr) =
996 init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64;
997
998 DEFINE_PER_CPU(unsigned long, kernel_stack) =
999 (unsigned long)&init_thread_union - KERNEL_STACK_OFFSET + THREAD_SIZE;
1000 EXPORT_PER_CPU_SYMBOL(kernel_stack);
1001
1002 DEFINE_PER_CPU(unsigned int, irq_count) = -1;
1003
1004 /*
1005 * Special IST stacks which the CPU switches to when it calls
1006 * an IST-marked descriptor entry. Up to 7 stacks (hardware
1007 * limit), all of them are 4K, except the debug stack which
1008 * is 8K.
1009 */
1010 static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
1011 [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ,
1012 [DEBUG_STACK - 1] = DEBUG_STKSZ
1013 };
1014
1015 static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
1016 [(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ])
1017 __aligned(PAGE_SIZE);
1018
1019 /* May not be marked __init: used by software suspend */
1020 void syscall_init(void)
1021 {
1022 /*
1023 * LSTAR and STAR live in a bit strange symbiosis.
1024 * They both write to the same internal register. STAR allows to
1025 * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
1026 */
1027 wrmsrl(MSR_STAR, ((u64)__USER32_CS)<<48 | ((u64)__KERNEL_CS)<<32);
1028 wrmsrl(MSR_LSTAR, system_call);
1029 wrmsrl(MSR_CSTAR, ignore_sysret);
1030
1031 #ifdef CONFIG_IA32_EMULATION
1032 syscall32_cpu_init();
1033 #endif
1034
1035 /* Flags to clear on syscall */
1036 wrmsrl(MSR_SYSCALL_MASK,
1037 X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|X86_EFLAGS_IOPL);
1038 }
1039
1040 unsigned long kernel_eflags;
1041
1042 /*
1043 * Copies of the original ist values from the tss are only accessed during
1044 * debugging, no special alignment required.
1045 */
1046 DEFINE_PER_CPU(struct orig_ist, orig_ist);
1047
1048 #else /* CONFIG_X86_64 */
1049
1050 #ifdef CONFIG_CC_STACKPROTECTOR
1051 DEFINE_PER_CPU(unsigned long, stack_canary);
1052 #endif
1053
1054 /* Make sure %fs and %gs are initialized properly in idle threads */
1055 struct pt_regs * __cpuinit idle_regs(struct pt_regs *regs)
1056 {
1057 memset(regs, 0, sizeof(struct pt_regs));
1058 regs->fs = __KERNEL_PERCPU;
1059 regs->gs = __KERNEL_STACK_CANARY;
1060
1061 return regs;
1062 }
1063 #endif /* CONFIG_X86_64 */
1064
1065 /*
1066 * Clear all 6 debug registers:
1067 */
1068 static void clear_all_debug_regs(void)
1069 {
1070 int i;
1071
1072 for (i = 0; i < 8; i++) {
1073 /* Ignore db4, db5 */
1074 if ((i == 4) || (i == 5))
1075 continue;
1076
1077 set_debugreg(0, i);
1078 }
1079 }
1080
1081 /*
1082 * cpu_init() initializes state that is per-CPU. Some data is already
1083 * initialized (naturally) in the bootstrap process, such as the GDT
1084 * and IDT. We reload them nevertheless, this function acts as a
1085 * 'CPU state barrier', nothing should get across.
1086 * A lot of state is already set up in PDA init for 64 bit
1087 */
1088 #ifdef CONFIG_X86_64
1089
1090 void __cpuinit cpu_init(void)
1091 {
1092 struct orig_ist *orig_ist;
1093 struct task_struct *me;
1094 struct tss_struct *t;
1095 unsigned long v;
1096 int cpu;
1097 int i;
1098
1099 cpu = stack_smp_processor_id();
1100 t = &per_cpu(init_tss, cpu);
1101 orig_ist = &per_cpu(orig_ist, cpu);
1102
1103 #ifdef CONFIG_NUMA
1104 if (cpu != 0 && percpu_read(node_number) == 0 &&
1105 cpu_to_node(cpu) != NUMA_NO_NODE)
1106 percpu_write(node_number, cpu_to_node(cpu));
1107 #endif
1108
1109 me = current;
1110
1111 if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask))
1112 panic("CPU#%d already initialized!\n", cpu);
1113
1114 printk(KERN_INFO "Initializing CPU#%d\n", cpu);
1115
1116 clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1117
1118 /*
1119 * Initialize the per-CPU GDT with the boot GDT,
1120 * and set up the GDT descriptor:
1121 */
1122
1123 switch_to_new_gdt(cpu);
1124 loadsegment(fs, 0);
1125
1126 load_idt((const struct desc_ptr *)&idt_descr);
1127
1128 memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1129 syscall_init();
1130
1131 wrmsrl(MSR_FS_BASE, 0);
1132 wrmsrl(MSR_KERNEL_GS_BASE, 0);
1133 barrier();
1134
1135 check_efer();
1136 if (cpu != 0)
1137 enable_x2apic();
1138
1139 /*
1140 * set up and load the per-CPU TSS
1141 */
1142 if (!orig_ist->ist[0]) {
1143 char *estacks = per_cpu(exception_stacks, cpu);
1144
1145 for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1146 estacks += exception_stack_sizes[v];
1147 orig_ist->ist[v] = t->x86_tss.ist[v] =
1148 (unsigned long)estacks;
1149 }
1150 }
1151
1152 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1153
1154 /*
1155 * <= is required because the CPU will access up to
1156 * 8 bits beyond the end of the IO permission bitmap.
1157 */
1158 for (i = 0; i <= IO_BITMAP_LONGS; i++)
1159 t->io_bitmap[i] = ~0UL;
1160
1161 atomic_inc(&init_mm.mm_count);
1162 me->active_mm = &init_mm;
1163 BUG_ON(me->mm);
1164 enter_lazy_tlb(&init_mm, me);
1165
1166 load_sp0(t, &current->thread);
1167 set_tss_desc(cpu, t);
1168 load_TR_desc();
1169 load_LDT(&init_mm.context);
1170
1171 #ifdef CONFIG_KGDB
1172 /*
1173 * If the kgdb is connected no debug regs should be altered. This
1174 * is only applicable when KGDB and a KGDB I/O module are built
1175 * into the kernel and you are using early debugging with
1176 * kgdbwait. KGDB will control the kernel HW breakpoint registers.
1177 */
1178 if (kgdb_connected && arch_kgdb_ops.correct_hw_break)
1179 arch_kgdb_ops.correct_hw_break();
1180 else
1181 #endif
1182 clear_all_debug_regs();
1183
1184 fpu_init();
1185
1186 raw_local_save_flags(kernel_eflags);
1187
1188 if (is_uv_system())
1189 uv_cpu_init();
1190 }
1191
1192 #else
1193
1194 void __cpuinit cpu_init(void)
1195 {
1196 int cpu = smp_processor_id();
1197 struct task_struct *curr = current;
1198 struct tss_struct *t = &per_cpu(init_tss, cpu);
1199 struct thread_struct *thread = &curr->thread;
1200
1201 if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask)) {
1202 printk(KERN_WARNING "CPU#%d already initialized!\n", cpu);
1203 for (;;)
1204 local_irq_enable();
1205 }
1206
1207 printk(KERN_INFO "Initializing CPU#%d\n", cpu);
1208
1209 if (cpu_has_vme || cpu_has_tsc || cpu_has_de)
1210 clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1211
1212 load_idt(&idt_descr);
1213 switch_to_new_gdt(cpu);
1214
1215 /*
1216 * Set up and load the per-CPU TSS and LDT
1217 */
1218 atomic_inc(&init_mm.mm_count);
1219 curr->active_mm = &init_mm;
1220 BUG_ON(curr->mm);
1221 enter_lazy_tlb(&init_mm, curr);
1222
1223 load_sp0(t, thread);
1224 set_tss_desc(cpu, t);
1225 load_TR_desc();
1226 load_LDT(&init_mm.context);
1227
1228 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1229
1230 #ifdef CONFIG_DOUBLEFAULT
1231 /* Set up doublefault TSS pointer in the GDT */
1232 __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1233 #endif
1234
1235 clear_all_debug_regs();
1236
1237 /*
1238 * Force FPU initialization:
1239 */
1240 if (cpu_has_xsave)
1241 current_thread_info()->status = TS_XSAVE;
1242 else
1243 current_thread_info()->status = 0;
1244 clear_used_math();
1245 mxcsr_feature_mask_init();
1246
1247 /*
1248 * Boot processor to setup the FP and extended state context info.
1249 */
1250 if (smp_processor_id() == boot_cpu_id)
1251 init_thread_xstate();
1252
1253 xsave_init();
1254 }
1255 #endif