]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kernel/cpu/common.c
x86: load new GDT after setting up boot cpu per-cpu area
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / cpu / common.c
1 #include <linux/init.h>
2 #include <linux/kernel.h>
3 #include <linux/sched.h>
4 #include <linux/string.h>
5 #include <linux/bootmem.h>
6 #include <linux/bitops.h>
7 #include <linux/module.h>
8 #include <linux/kgdb.h>
9 #include <linux/topology.h>
10 #include <linux/delay.h>
11 #include <linux/smp.h>
12 #include <linux/percpu.h>
13 #include <asm/i387.h>
14 #include <asm/msr.h>
15 #include <asm/io.h>
16 #include <asm/linkage.h>
17 #include <asm/mmu_context.h>
18 #include <asm/mtrr.h>
19 #include <asm/mce.h>
20 #include <asm/pat.h>
21 #include <asm/asm.h>
22 #include <asm/numa.h>
23 #include <asm/smp.h>
24 #include <asm/cpu.h>
25 #include <asm/cpumask.h>
26 #ifdef CONFIG_X86_LOCAL_APIC
27 #include <asm/mpspec.h>
28 #include <asm/apic.h>
29 #include <mach_apic.h>
30 #include <asm/genapic.h>
31 #include <asm/uv/uv.h>
32 #endif
33
34 #include <asm/pgtable.h>
35 #include <asm/processor.h>
36 #include <asm/desc.h>
37 #include <asm/atomic.h>
38 #include <asm/proto.h>
39 #include <asm/sections.h>
40 #include <asm/setup.h>
41 #include <asm/hypervisor.h>
42
43 #include "cpu.h"
44
45 #ifdef CONFIG_X86_64
46
47 /* all of these masks are initialized in setup_cpu_local_masks() */
48 cpumask_var_t cpu_callin_mask;
49 cpumask_var_t cpu_callout_mask;
50 cpumask_var_t cpu_initialized_mask;
51
52 /* representing cpus for which sibling maps can be computed */
53 cpumask_var_t cpu_sibling_setup_mask;
54
55 /* correctly size the local cpu masks */
56 void setup_cpu_local_masks(void)
57 {
58 alloc_bootmem_cpumask_var(&cpu_initialized_mask);
59 alloc_bootmem_cpumask_var(&cpu_callin_mask);
60 alloc_bootmem_cpumask_var(&cpu_callout_mask);
61 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
62 }
63
64 #else /* CONFIG_X86_32 */
65
66 cpumask_t cpu_callin_map;
67 cpumask_t cpu_callout_map;
68 cpumask_t cpu_initialized;
69 cpumask_t cpu_sibling_setup_map;
70
71 #endif /* CONFIG_X86_32 */
72
73
74 static struct cpu_dev *this_cpu __cpuinitdata;
75
76 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
77 #ifdef CONFIG_X86_64
78 /*
79 * We need valid kernel segments for data and code in long mode too
80 * IRET will check the segment types kkeil 2000/10/28
81 * Also sysret mandates a special GDT layout
82 *
83 * The TLS descriptors are currently at a different place compared to i386.
84 * Hopefully nobody expects them at a fixed place (Wine?)
85 */
86 [GDT_ENTRY_KERNEL32_CS] = { { { 0x0000ffff, 0x00cf9b00 } } },
87 [GDT_ENTRY_KERNEL_CS] = { { { 0x0000ffff, 0x00af9b00 } } },
88 [GDT_ENTRY_KERNEL_DS] = { { { 0x0000ffff, 0x00cf9300 } } },
89 [GDT_ENTRY_DEFAULT_USER32_CS] = { { { 0x0000ffff, 0x00cffb00 } } },
90 [GDT_ENTRY_DEFAULT_USER_DS] = { { { 0x0000ffff, 0x00cff300 } } },
91 [GDT_ENTRY_DEFAULT_USER_CS] = { { { 0x0000ffff, 0x00affb00 } } },
92 #else
93 [GDT_ENTRY_KERNEL_CS] = { { { 0x0000ffff, 0x00cf9a00 } } },
94 [GDT_ENTRY_KERNEL_DS] = { { { 0x0000ffff, 0x00cf9200 } } },
95 [GDT_ENTRY_DEFAULT_USER_CS] = { { { 0x0000ffff, 0x00cffa00 } } },
96 [GDT_ENTRY_DEFAULT_USER_DS] = { { { 0x0000ffff, 0x00cff200 } } },
97 /*
98 * Segments used for calling PnP BIOS have byte granularity.
99 * They code segments and data segments have fixed 64k limits,
100 * the transfer segment sizes are set at run time.
101 */
102 /* 32-bit code */
103 [GDT_ENTRY_PNPBIOS_CS32] = { { { 0x0000ffff, 0x00409a00 } } },
104 /* 16-bit code */
105 [GDT_ENTRY_PNPBIOS_CS16] = { { { 0x0000ffff, 0x00009a00 } } },
106 /* 16-bit data */
107 [GDT_ENTRY_PNPBIOS_DS] = { { { 0x0000ffff, 0x00009200 } } },
108 /* 16-bit data */
109 [GDT_ENTRY_PNPBIOS_TS1] = { { { 0x00000000, 0x00009200 } } },
110 /* 16-bit data */
111 [GDT_ENTRY_PNPBIOS_TS2] = { { { 0x00000000, 0x00009200 } } },
112 /*
113 * The APM segments have byte granularity and their bases
114 * are set at run time. All have 64k limits.
115 */
116 /* 32-bit code */
117 [GDT_ENTRY_APMBIOS_BASE] = { { { 0x0000ffff, 0x00409a00 } } },
118 /* 16-bit code */
119 [GDT_ENTRY_APMBIOS_BASE+1] = { { { 0x0000ffff, 0x00009a00 } } },
120 /* data */
121 [GDT_ENTRY_APMBIOS_BASE+2] = { { { 0x0000ffff, 0x00409200 } } },
122
123 [GDT_ENTRY_ESPFIX_SS] = { { { 0x00000000, 0x00c09200 } } },
124 [GDT_ENTRY_PERCPU] = { { { 0x0000ffff, 0x00cf9200 } } },
125 #endif
126 } };
127 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
128
129 #ifdef CONFIG_X86_32
130 static int cachesize_override __cpuinitdata = -1;
131 static int disable_x86_serial_nr __cpuinitdata = 1;
132
133 static int __init cachesize_setup(char *str)
134 {
135 get_option(&str, &cachesize_override);
136 return 1;
137 }
138 __setup("cachesize=", cachesize_setup);
139
140 static int __init x86_fxsr_setup(char *s)
141 {
142 setup_clear_cpu_cap(X86_FEATURE_FXSR);
143 setup_clear_cpu_cap(X86_FEATURE_XMM);
144 return 1;
145 }
146 __setup("nofxsr", x86_fxsr_setup);
147
148 static int __init x86_sep_setup(char *s)
149 {
150 setup_clear_cpu_cap(X86_FEATURE_SEP);
151 return 1;
152 }
153 __setup("nosep", x86_sep_setup);
154
155 /* Standard macro to see if a specific flag is changeable */
156 static inline int flag_is_changeable_p(u32 flag)
157 {
158 u32 f1, f2;
159
160 /*
161 * Cyrix and IDT cpus allow disabling of CPUID
162 * so the code below may return different results
163 * when it is executed before and after enabling
164 * the CPUID. Add "volatile" to not allow gcc to
165 * optimize the subsequent calls to this function.
166 */
167 asm volatile ("pushfl\n\t"
168 "pushfl\n\t"
169 "popl %0\n\t"
170 "movl %0,%1\n\t"
171 "xorl %2,%0\n\t"
172 "pushl %0\n\t"
173 "popfl\n\t"
174 "pushfl\n\t"
175 "popl %0\n\t"
176 "popfl\n\t"
177 : "=&r" (f1), "=&r" (f2)
178 : "ir" (flag));
179
180 return ((f1^f2) & flag) != 0;
181 }
182
183 /* Probe for the CPUID instruction */
184 static int __cpuinit have_cpuid_p(void)
185 {
186 return flag_is_changeable_p(X86_EFLAGS_ID);
187 }
188
189 static void __cpuinit squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
190 {
191 if (cpu_has(c, X86_FEATURE_PN) && disable_x86_serial_nr) {
192 /* Disable processor serial number */
193 unsigned long lo, hi;
194 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
195 lo |= 0x200000;
196 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
197 printk(KERN_NOTICE "CPU serial number disabled.\n");
198 clear_cpu_cap(c, X86_FEATURE_PN);
199
200 /* Disabling the serial number may affect the cpuid level */
201 c->cpuid_level = cpuid_eax(0);
202 }
203 }
204
205 static int __init x86_serial_nr_setup(char *s)
206 {
207 disable_x86_serial_nr = 0;
208 return 1;
209 }
210 __setup("serialnumber", x86_serial_nr_setup);
211 #else
212 static inline int flag_is_changeable_p(u32 flag)
213 {
214 return 1;
215 }
216 /* Probe for the CPUID instruction */
217 static inline int have_cpuid_p(void)
218 {
219 return 1;
220 }
221 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
222 {
223 }
224 #endif
225
226 /*
227 * Naming convention should be: <Name> [(<Codename>)]
228 * This table only is used unless init_<vendor>() below doesn't set it;
229 * in particular, if CPUID levels 0x80000002..4 are supported, this isn't used
230 *
231 */
232
233 /* Look up CPU names by table lookup. */
234 static char __cpuinit *table_lookup_model(struct cpuinfo_x86 *c)
235 {
236 struct cpu_model_info *info;
237
238 if (c->x86_model >= 16)
239 return NULL; /* Range check */
240
241 if (!this_cpu)
242 return NULL;
243
244 info = this_cpu->c_models;
245
246 while (info && info->family) {
247 if (info->family == c->x86)
248 return info->model_names[c->x86_model];
249 info++;
250 }
251 return NULL; /* Not found */
252 }
253
254 __u32 cleared_cpu_caps[NCAPINTS] __cpuinitdata;
255
256 /* Current gdt points %fs at the "master" per-cpu area: after this,
257 * it's on the real one. */
258 void switch_to_new_gdt(void)
259 {
260 struct desc_ptr gdt_descr;
261 int cpu = smp_processor_id();
262
263 gdt_descr.address = (long)get_cpu_gdt_table(cpu);
264 gdt_descr.size = GDT_SIZE - 1;
265 load_gdt(&gdt_descr);
266 /* Reload the per-cpu base */
267 #ifdef CONFIG_X86_32
268 loadsegment(fs, __KERNEL_PERCPU);
269 #else
270 loadsegment(gs, 0);
271 wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
272 #endif
273 }
274
275 static struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
276
277 static void __cpuinit default_init(struct cpuinfo_x86 *c)
278 {
279 #ifdef CONFIG_X86_64
280 display_cacheinfo(c);
281 #else
282 /* Not much we can do here... */
283 /* Check if at least it has cpuid */
284 if (c->cpuid_level == -1) {
285 /* No cpuid. It must be an ancient CPU */
286 if (c->x86 == 4)
287 strcpy(c->x86_model_id, "486");
288 else if (c->x86 == 3)
289 strcpy(c->x86_model_id, "386");
290 }
291 #endif
292 }
293
294 static struct cpu_dev __cpuinitdata default_cpu = {
295 .c_init = default_init,
296 .c_vendor = "Unknown",
297 .c_x86_vendor = X86_VENDOR_UNKNOWN,
298 };
299
300 static void __cpuinit get_model_name(struct cpuinfo_x86 *c)
301 {
302 unsigned int *v;
303 char *p, *q;
304
305 if (c->extended_cpuid_level < 0x80000004)
306 return;
307
308 v = (unsigned int *) c->x86_model_id;
309 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
310 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
311 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
312 c->x86_model_id[48] = 0;
313
314 /* Intel chips right-justify this string for some dumb reason;
315 undo that brain damage */
316 p = q = &c->x86_model_id[0];
317 while (*p == ' ')
318 p++;
319 if (p != q) {
320 while (*p)
321 *q++ = *p++;
322 while (q <= &c->x86_model_id[48])
323 *q++ = '\0'; /* Zero-pad the rest */
324 }
325 }
326
327 void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
328 {
329 unsigned int n, dummy, ebx, ecx, edx, l2size;
330
331 n = c->extended_cpuid_level;
332
333 if (n >= 0x80000005) {
334 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
335 printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n",
336 edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
337 c->x86_cache_size = (ecx>>24) + (edx>>24);
338 #ifdef CONFIG_X86_64
339 /* On K8 L1 TLB is inclusive, so don't count it */
340 c->x86_tlbsize = 0;
341 #endif
342 }
343
344 if (n < 0x80000006) /* Some chips just has a large L1. */
345 return;
346
347 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
348 l2size = ecx >> 16;
349
350 #ifdef CONFIG_X86_64
351 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
352 #else
353 /* do processor-specific cache resizing */
354 if (this_cpu->c_size_cache)
355 l2size = this_cpu->c_size_cache(c, l2size);
356
357 /* Allow user to override all this if necessary. */
358 if (cachesize_override != -1)
359 l2size = cachesize_override;
360
361 if (l2size == 0)
362 return; /* Again, no L2 cache is possible */
363 #endif
364
365 c->x86_cache_size = l2size;
366
367 printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
368 l2size, ecx & 0xFF);
369 }
370
371 void __cpuinit detect_ht(struct cpuinfo_x86 *c)
372 {
373 #ifdef CONFIG_X86_HT
374 u32 eax, ebx, ecx, edx;
375 int index_msb, core_bits;
376
377 if (!cpu_has(c, X86_FEATURE_HT))
378 return;
379
380 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
381 goto out;
382
383 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
384 return;
385
386 cpuid(1, &eax, &ebx, &ecx, &edx);
387
388 smp_num_siblings = (ebx & 0xff0000) >> 16;
389
390 if (smp_num_siblings == 1) {
391 printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
392 } else if (smp_num_siblings > 1) {
393
394 if (smp_num_siblings > nr_cpu_ids) {
395 printk(KERN_WARNING "CPU: Unsupported number of siblings %d",
396 smp_num_siblings);
397 smp_num_siblings = 1;
398 return;
399 }
400
401 index_msb = get_count_order(smp_num_siblings);
402 #ifdef CONFIG_X86_64
403 c->phys_proc_id = phys_pkg_id(index_msb);
404 #else
405 c->phys_proc_id = phys_pkg_id(c->initial_apicid, index_msb);
406 #endif
407
408 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
409
410 index_msb = get_count_order(smp_num_siblings);
411
412 core_bits = get_count_order(c->x86_max_cores);
413
414 #ifdef CONFIG_X86_64
415 c->cpu_core_id = phys_pkg_id(index_msb) &
416 ((1 << core_bits) - 1);
417 #else
418 c->cpu_core_id = phys_pkg_id(c->initial_apicid, index_msb) &
419 ((1 << core_bits) - 1);
420 #endif
421 }
422
423 out:
424 if ((c->x86_max_cores * smp_num_siblings) > 1) {
425 printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
426 c->phys_proc_id);
427 printk(KERN_INFO "CPU: Processor Core ID: %d\n",
428 c->cpu_core_id);
429 }
430 #endif
431 }
432
433 static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
434 {
435 char *v = c->x86_vendor_id;
436 int i;
437 static int printed;
438
439 for (i = 0; i < X86_VENDOR_NUM; i++) {
440 if (!cpu_devs[i])
441 break;
442
443 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
444 (cpu_devs[i]->c_ident[1] &&
445 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
446 this_cpu = cpu_devs[i];
447 c->x86_vendor = this_cpu->c_x86_vendor;
448 return;
449 }
450 }
451
452 if (!printed) {
453 printed++;
454 printk(KERN_ERR "CPU: vendor_id '%s' unknown, using generic init.\n", v);
455 printk(KERN_ERR "CPU: Your system may be unstable.\n");
456 }
457
458 c->x86_vendor = X86_VENDOR_UNKNOWN;
459 this_cpu = &default_cpu;
460 }
461
462 void __cpuinit cpu_detect(struct cpuinfo_x86 *c)
463 {
464 /* Get vendor name */
465 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
466 (unsigned int *)&c->x86_vendor_id[0],
467 (unsigned int *)&c->x86_vendor_id[8],
468 (unsigned int *)&c->x86_vendor_id[4]);
469
470 c->x86 = 4;
471 /* Intel-defined flags: level 0x00000001 */
472 if (c->cpuid_level >= 0x00000001) {
473 u32 junk, tfms, cap0, misc;
474 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
475 c->x86 = (tfms >> 8) & 0xf;
476 c->x86_model = (tfms >> 4) & 0xf;
477 c->x86_mask = tfms & 0xf;
478 if (c->x86 == 0xf)
479 c->x86 += (tfms >> 20) & 0xff;
480 if (c->x86 >= 0x6)
481 c->x86_model += ((tfms >> 16) & 0xf) << 4;
482 if (cap0 & (1<<19)) {
483 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
484 c->x86_cache_alignment = c->x86_clflush_size;
485 }
486 }
487 }
488
489 static void __cpuinit get_cpu_cap(struct cpuinfo_x86 *c)
490 {
491 u32 tfms, xlvl;
492 u32 ebx;
493
494 /* Intel-defined flags: level 0x00000001 */
495 if (c->cpuid_level >= 0x00000001) {
496 u32 capability, excap;
497 cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
498 c->x86_capability[0] = capability;
499 c->x86_capability[4] = excap;
500 }
501
502 /* AMD-defined flags: level 0x80000001 */
503 xlvl = cpuid_eax(0x80000000);
504 c->extended_cpuid_level = xlvl;
505 if ((xlvl & 0xffff0000) == 0x80000000) {
506 if (xlvl >= 0x80000001) {
507 c->x86_capability[1] = cpuid_edx(0x80000001);
508 c->x86_capability[6] = cpuid_ecx(0x80000001);
509 }
510 }
511
512 #ifdef CONFIG_X86_64
513 if (c->extended_cpuid_level >= 0x80000008) {
514 u32 eax = cpuid_eax(0x80000008);
515
516 c->x86_virt_bits = (eax >> 8) & 0xff;
517 c->x86_phys_bits = eax & 0xff;
518 }
519 #endif
520
521 if (c->extended_cpuid_level >= 0x80000007)
522 c->x86_power = cpuid_edx(0x80000007);
523
524 }
525
526 static void __cpuinit identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
527 {
528 #ifdef CONFIG_X86_32
529 int i;
530
531 /*
532 * First of all, decide if this is a 486 or higher
533 * It's a 486 if we can modify the AC flag
534 */
535 if (flag_is_changeable_p(X86_EFLAGS_AC))
536 c->x86 = 4;
537 else
538 c->x86 = 3;
539
540 for (i = 0; i < X86_VENDOR_NUM; i++)
541 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
542 c->x86_vendor_id[0] = 0;
543 cpu_devs[i]->c_identify(c);
544 if (c->x86_vendor_id[0]) {
545 get_cpu_vendor(c);
546 break;
547 }
548 }
549 #endif
550 }
551
552 /*
553 * Do minimum CPU detection early.
554 * Fields really needed: vendor, cpuid_level, family, model, mask,
555 * cache alignment.
556 * The others are not touched to avoid unwanted side effects.
557 *
558 * WARNING: this function is only called on the BP. Don't add code here
559 * that is supposed to run on all CPUs.
560 */
561 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
562 {
563 #ifdef CONFIG_X86_64
564 c->x86_clflush_size = 64;
565 #else
566 c->x86_clflush_size = 32;
567 #endif
568 c->x86_cache_alignment = c->x86_clflush_size;
569
570 memset(&c->x86_capability, 0, sizeof c->x86_capability);
571 c->extended_cpuid_level = 0;
572
573 if (!have_cpuid_p())
574 identify_cpu_without_cpuid(c);
575
576 /* cyrix could have cpuid enabled via c_identify()*/
577 if (!have_cpuid_p())
578 return;
579
580 cpu_detect(c);
581
582 get_cpu_vendor(c);
583
584 get_cpu_cap(c);
585
586 if (this_cpu->c_early_init)
587 this_cpu->c_early_init(c);
588
589 validate_pat_support(c);
590
591 #ifdef CONFIG_SMP
592 c->cpu_index = boot_cpu_id;
593 #endif
594 }
595
596 void __init early_cpu_init(void)
597 {
598 struct cpu_dev **cdev;
599 int count = 0;
600
601 printk("KERNEL supported cpus:\n");
602 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
603 struct cpu_dev *cpudev = *cdev;
604 unsigned int j;
605
606 if (count >= X86_VENDOR_NUM)
607 break;
608 cpu_devs[count] = cpudev;
609 count++;
610
611 for (j = 0; j < 2; j++) {
612 if (!cpudev->c_ident[j])
613 continue;
614 printk(" %s %s\n", cpudev->c_vendor,
615 cpudev->c_ident[j]);
616 }
617 }
618
619 early_identify_cpu(&boot_cpu_data);
620 }
621
622 /*
623 * The NOPL instruction is supposed to exist on all CPUs with
624 * family >= 6; unfortunately, that's not true in practice because
625 * of early VIA chips and (more importantly) broken virtualizers that
626 * are not easy to detect. In the latter case it doesn't even *fail*
627 * reliably, so probing for it doesn't even work. Disable it completely
628 * unless we can find a reliable way to detect all the broken cases.
629 */
630 static void __cpuinit detect_nopl(struct cpuinfo_x86 *c)
631 {
632 clear_cpu_cap(c, X86_FEATURE_NOPL);
633 }
634
635 static void __cpuinit generic_identify(struct cpuinfo_x86 *c)
636 {
637 c->extended_cpuid_level = 0;
638
639 if (!have_cpuid_p())
640 identify_cpu_without_cpuid(c);
641
642 /* cyrix could have cpuid enabled via c_identify()*/
643 if (!have_cpuid_p())
644 return;
645
646 cpu_detect(c);
647
648 get_cpu_vendor(c);
649
650 get_cpu_cap(c);
651
652 if (c->cpuid_level >= 0x00000001) {
653 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
654 #ifdef CONFIG_X86_32
655 # ifdef CONFIG_X86_HT
656 c->apicid = phys_pkg_id(c->initial_apicid, 0);
657 # else
658 c->apicid = c->initial_apicid;
659 # endif
660 #endif
661
662 #ifdef CONFIG_X86_HT
663 c->phys_proc_id = c->initial_apicid;
664 #endif
665 }
666
667 get_model_name(c); /* Default name */
668
669 init_scattered_cpuid_features(c);
670 detect_nopl(c);
671 }
672
673 /*
674 * This does the hard work of actually picking apart the CPU stuff...
675 */
676 static void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
677 {
678 int i;
679
680 c->loops_per_jiffy = loops_per_jiffy;
681 c->x86_cache_size = -1;
682 c->x86_vendor = X86_VENDOR_UNKNOWN;
683 c->x86_model = c->x86_mask = 0; /* So far unknown... */
684 c->x86_vendor_id[0] = '\0'; /* Unset */
685 c->x86_model_id[0] = '\0'; /* Unset */
686 c->x86_max_cores = 1;
687 c->x86_coreid_bits = 0;
688 #ifdef CONFIG_X86_64
689 c->x86_clflush_size = 64;
690 #else
691 c->cpuid_level = -1; /* CPUID not detected */
692 c->x86_clflush_size = 32;
693 #endif
694 c->x86_cache_alignment = c->x86_clflush_size;
695 memset(&c->x86_capability, 0, sizeof c->x86_capability);
696
697 generic_identify(c);
698
699 if (this_cpu->c_identify)
700 this_cpu->c_identify(c);
701
702 #ifdef CONFIG_X86_64
703 c->apicid = phys_pkg_id(0);
704 #endif
705
706 /*
707 * Vendor-specific initialization. In this section we
708 * canonicalize the feature flags, meaning if there are
709 * features a certain CPU supports which CPUID doesn't
710 * tell us, CPUID claiming incorrect flags, or other bugs,
711 * we handle them here.
712 *
713 * At the end of this section, c->x86_capability better
714 * indicate the features this CPU genuinely supports!
715 */
716 if (this_cpu->c_init)
717 this_cpu->c_init(c);
718
719 /* Disable the PN if appropriate */
720 squash_the_stupid_serial_number(c);
721
722 /*
723 * The vendor-specific functions might have changed features. Now
724 * we do "generic changes."
725 */
726
727 /* If the model name is still unset, do table lookup. */
728 if (!c->x86_model_id[0]) {
729 char *p;
730 p = table_lookup_model(c);
731 if (p)
732 strcpy(c->x86_model_id, p);
733 else
734 /* Last resort... */
735 sprintf(c->x86_model_id, "%02x/%02x",
736 c->x86, c->x86_model);
737 }
738
739 #ifdef CONFIG_X86_64
740 detect_ht(c);
741 #endif
742
743 init_hypervisor(c);
744 /*
745 * On SMP, boot_cpu_data holds the common feature set between
746 * all CPUs; so make sure that we indicate which features are
747 * common between the CPUs. The first time this routine gets
748 * executed, c == &boot_cpu_data.
749 */
750 if (c != &boot_cpu_data) {
751 /* AND the already accumulated flags with these */
752 for (i = 0; i < NCAPINTS; i++)
753 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
754 }
755
756 /* Clear all flags overriden by options */
757 for (i = 0; i < NCAPINTS; i++)
758 c->x86_capability[i] &= ~cleared_cpu_caps[i];
759
760 #ifdef CONFIG_X86_MCE
761 /* Init Machine Check Exception if available. */
762 mcheck_init(c);
763 #endif
764
765 select_idle_routine(c);
766
767 #if defined(CONFIG_NUMA) && defined(CONFIG_X86_64)
768 numa_add_cpu(smp_processor_id());
769 #endif
770 }
771
772 #ifdef CONFIG_X86_64
773 static void vgetcpu_set_mode(void)
774 {
775 if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP))
776 vgetcpu_mode = VGETCPU_RDTSCP;
777 else
778 vgetcpu_mode = VGETCPU_LSL;
779 }
780 #endif
781
782 void __init identify_boot_cpu(void)
783 {
784 identify_cpu(&boot_cpu_data);
785 #ifdef CONFIG_X86_32
786 sysenter_setup();
787 enable_sep_cpu();
788 #else
789 vgetcpu_set_mode();
790 #endif
791 }
792
793 void __cpuinit identify_secondary_cpu(struct cpuinfo_x86 *c)
794 {
795 BUG_ON(c == &boot_cpu_data);
796 identify_cpu(c);
797 #ifdef CONFIG_X86_32
798 enable_sep_cpu();
799 #endif
800 mtrr_ap_init();
801 }
802
803 struct msr_range {
804 unsigned min;
805 unsigned max;
806 };
807
808 static struct msr_range msr_range_array[] __cpuinitdata = {
809 { 0x00000000, 0x00000418},
810 { 0xc0000000, 0xc000040b},
811 { 0xc0010000, 0xc0010142},
812 { 0xc0011000, 0xc001103b},
813 };
814
815 static void __cpuinit print_cpu_msr(void)
816 {
817 unsigned index;
818 u64 val;
819 int i;
820 unsigned index_min, index_max;
821
822 for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
823 index_min = msr_range_array[i].min;
824 index_max = msr_range_array[i].max;
825 for (index = index_min; index < index_max; index++) {
826 if (rdmsrl_amd_safe(index, &val))
827 continue;
828 printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
829 }
830 }
831 }
832
833 static int show_msr __cpuinitdata;
834 static __init int setup_show_msr(char *arg)
835 {
836 int num;
837
838 get_option(&arg, &num);
839
840 if (num > 0)
841 show_msr = num;
842 return 1;
843 }
844 __setup("show_msr=", setup_show_msr);
845
846 static __init int setup_noclflush(char *arg)
847 {
848 setup_clear_cpu_cap(X86_FEATURE_CLFLSH);
849 return 1;
850 }
851 __setup("noclflush", setup_noclflush);
852
853 void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
854 {
855 char *vendor = NULL;
856
857 if (c->x86_vendor < X86_VENDOR_NUM)
858 vendor = this_cpu->c_vendor;
859 else if (c->cpuid_level >= 0)
860 vendor = c->x86_vendor_id;
861
862 if (vendor && !strstr(c->x86_model_id, vendor))
863 printk(KERN_CONT "%s ", vendor);
864
865 if (c->x86_model_id[0])
866 printk(KERN_CONT "%s", c->x86_model_id);
867 else
868 printk(KERN_CONT "%d86", c->x86);
869
870 if (c->x86_mask || c->cpuid_level >= 0)
871 printk(KERN_CONT " stepping %02x\n", c->x86_mask);
872 else
873 printk(KERN_CONT "\n");
874
875 #ifdef CONFIG_SMP
876 if (c->cpu_index < show_msr)
877 print_cpu_msr();
878 #else
879 if (show_msr)
880 print_cpu_msr();
881 #endif
882 }
883
884 static __init int setup_disablecpuid(char *arg)
885 {
886 int bit;
887 if (get_option(&arg, &bit) && bit < NCAPINTS*32)
888 setup_clear_cpu_cap(bit);
889 else
890 return 0;
891 return 1;
892 }
893 __setup("clearcpuid=", setup_disablecpuid);
894
895 #ifdef CONFIG_X86_64
896 struct desc_ptr idt_descr = { 256 * 16 - 1, (unsigned long) idt_table };
897
898 DEFINE_PER_CPU_FIRST(union irq_stack_union,
899 irq_stack_union) __aligned(PAGE_SIZE);
900 #ifdef CONFIG_SMP
901 DEFINE_PER_CPU(char *, irq_stack_ptr); /* will be set during per cpu init */
902 #else
903 DEFINE_PER_CPU(char *, irq_stack_ptr) =
904 per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64;
905 #endif
906
907 DEFINE_PER_CPU(unsigned long, kernel_stack) =
908 (unsigned long)&init_thread_union - KERNEL_STACK_OFFSET + THREAD_SIZE;
909 EXPORT_PER_CPU_SYMBOL(kernel_stack);
910
911 DEFINE_PER_CPU(unsigned int, irq_count) = -1;
912
913 static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
914 [(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ])
915 __aligned(PAGE_SIZE);
916
917 extern asmlinkage void ignore_sysret(void);
918
919 /* May not be marked __init: used by software suspend */
920 void syscall_init(void)
921 {
922 /*
923 * LSTAR and STAR live in a bit strange symbiosis.
924 * They both write to the same internal register. STAR allows to
925 * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
926 */
927 wrmsrl(MSR_STAR, ((u64)__USER32_CS)<<48 | ((u64)__KERNEL_CS)<<32);
928 wrmsrl(MSR_LSTAR, system_call);
929 wrmsrl(MSR_CSTAR, ignore_sysret);
930
931 #ifdef CONFIG_IA32_EMULATION
932 syscall32_cpu_init();
933 #endif
934
935 /* Flags to clear on syscall */
936 wrmsrl(MSR_SYSCALL_MASK,
937 X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|X86_EFLAGS_IOPL);
938 }
939
940 unsigned long kernel_eflags;
941
942 /*
943 * Copies of the original ist values from the tss are only accessed during
944 * debugging, no special alignment required.
945 */
946 DEFINE_PER_CPU(struct orig_ist, orig_ist);
947
948 #else
949
950 /* Make sure %fs is initialized properly in idle threads */
951 struct pt_regs * __cpuinit idle_regs(struct pt_regs *regs)
952 {
953 memset(regs, 0, sizeof(struct pt_regs));
954 regs->fs = __KERNEL_PERCPU;
955 return regs;
956 }
957 #endif
958
959 /*
960 * cpu_init() initializes state that is per-CPU. Some data is already
961 * initialized (naturally) in the bootstrap process, such as the GDT
962 * and IDT. We reload them nevertheless, this function acts as a
963 * 'CPU state barrier', nothing should get across.
964 * A lot of state is already set up in PDA init for 64 bit
965 */
966 #ifdef CONFIG_X86_64
967 void __cpuinit cpu_init(void)
968 {
969 int cpu = stack_smp_processor_id();
970 struct tss_struct *t = &per_cpu(init_tss, cpu);
971 struct orig_ist *orig_ist = &per_cpu(orig_ist, cpu);
972 unsigned long v;
973 struct task_struct *me;
974 int i;
975
976 #ifdef CONFIG_NUMA
977 if (cpu != 0 && percpu_read(node_number) == 0 &&
978 cpu_to_node(cpu) != NUMA_NO_NODE)
979 percpu_write(node_number, cpu_to_node(cpu));
980 #endif
981
982 me = current;
983
984 if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask))
985 panic("CPU#%d already initialized!\n", cpu);
986
987 printk(KERN_INFO "Initializing CPU#%d\n", cpu);
988
989 clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
990
991 /*
992 * Initialize the per-CPU GDT with the boot GDT,
993 * and set up the GDT descriptor:
994 */
995
996 switch_to_new_gdt();
997 loadsegment(fs, 0);
998
999 load_idt((const struct desc_ptr *)&idt_descr);
1000
1001 memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1002 syscall_init();
1003
1004 wrmsrl(MSR_FS_BASE, 0);
1005 wrmsrl(MSR_KERNEL_GS_BASE, 0);
1006 barrier();
1007
1008 check_efer();
1009 if (cpu != 0 && x2apic)
1010 enable_x2apic();
1011
1012 /*
1013 * set up and load the per-CPU TSS
1014 */
1015 if (!orig_ist->ist[0]) {
1016 static const unsigned int sizes[N_EXCEPTION_STACKS] = {
1017 [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ,
1018 [DEBUG_STACK - 1] = DEBUG_STKSZ
1019 };
1020 char *estacks = per_cpu(exception_stacks, cpu);
1021 for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1022 estacks += sizes[v];
1023 orig_ist->ist[v] = t->x86_tss.ist[v] =
1024 (unsigned long)estacks;
1025 }
1026 }
1027
1028 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1029 /*
1030 * <= is required because the CPU will access up to
1031 * 8 bits beyond the end of the IO permission bitmap.
1032 */
1033 for (i = 0; i <= IO_BITMAP_LONGS; i++)
1034 t->io_bitmap[i] = ~0UL;
1035
1036 atomic_inc(&init_mm.mm_count);
1037 me->active_mm = &init_mm;
1038 if (me->mm)
1039 BUG();
1040 enter_lazy_tlb(&init_mm, me);
1041
1042 load_sp0(t, &current->thread);
1043 set_tss_desc(cpu, t);
1044 load_TR_desc();
1045 load_LDT(&init_mm.context);
1046
1047 #ifdef CONFIG_KGDB
1048 /*
1049 * If the kgdb is connected no debug regs should be altered. This
1050 * is only applicable when KGDB and a KGDB I/O module are built
1051 * into the kernel and you are using early debugging with
1052 * kgdbwait. KGDB will control the kernel HW breakpoint registers.
1053 */
1054 if (kgdb_connected && arch_kgdb_ops.correct_hw_break)
1055 arch_kgdb_ops.correct_hw_break();
1056 else {
1057 #endif
1058 /*
1059 * Clear all 6 debug registers:
1060 */
1061
1062 set_debugreg(0UL, 0);
1063 set_debugreg(0UL, 1);
1064 set_debugreg(0UL, 2);
1065 set_debugreg(0UL, 3);
1066 set_debugreg(0UL, 6);
1067 set_debugreg(0UL, 7);
1068 #ifdef CONFIG_KGDB
1069 /* If the kgdb is connected no debug regs should be altered. */
1070 }
1071 #endif
1072
1073 fpu_init();
1074
1075 raw_local_save_flags(kernel_eflags);
1076
1077 if (is_uv_system())
1078 uv_cpu_init();
1079 }
1080
1081 #else
1082
1083 void __cpuinit cpu_init(void)
1084 {
1085 int cpu = smp_processor_id();
1086 struct task_struct *curr = current;
1087 struct tss_struct *t = &per_cpu(init_tss, cpu);
1088 struct thread_struct *thread = &curr->thread;
1089
1090 if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask)) {
1091 printk(KERN_WARNING "CPU#%d already initialized!\n", cpu);
1092 for (;;) local_irq_enable();
1093 }
1094
1095 printk(KERN_INFO "Initializing CPU#%d\n", cpu);
1096
1097 if (cpu_has_vme || cpu_has_tsc || cpu_has_de)
1098 clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1099
1100 load_idt(&idt_descr);
1101 switch_to_new_gdt();
1102
1103 /*
1104 * Set up and load the per-CPU TSS and LDT
1105 */
1106 atomic_inc(&init_mm.mm_count);
1107 curr->active_mm = &init_mm;
1108 if (curr->mm)
1109 BUG();
1110 enter_lazy_tlb(&init_mm, curr);
1111
1112 load_sp0(t, thread);
1113 set_tss_desc(cpu, t);
1114 load_TR_desc();
1115 load_LDT(&init_mm.context);
1116
1117 #ifdef CONFIG_DOUBLEFAULT
1118 /* Set up doublefault TSS pointer in the GDT */
1119 __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1120 #endif
1121
1122 /* Clear %gs. */
1123 asm volatile ("mov %0, %%gs" : : "r" (0));
1124
1125 /* Clear all 6 debug registers: */
1126 set_debugreg(0, 0);
1127 set_debugreg(0, 1);
1128 set_debugreg(0, 2);
1129 set_debugreg(0, 3);
1130 set_debugreg(0, 6);
1131 set_debugreg(0, 7);
1132
1133 /*
1134 * Force FPU initialization:
1135 */
1136 if (cpu_has_xsave)
1137 current_thread_info()->status = TS_XSAVE;
1138 else
1139 current_thread_info()->status = 0;
1140 clear_used_math();
1141 mxcsr_feature_mask_init();
1142
1143 /*
1144 * Boot processor to setup the FP and extended state context info.
1145 */
1146 if (smp_processor_id() == boot_cpu_id)
1147 init_thread_xstate();
1148
1149 xsave_init();
1150 }
1151
1152
1153 #endif