]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kernel/cpu/common.c
Merge tag 'led_fixes_for_4.15-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kernel / cpu / common.c
1 #include <linux/bootmem.h>
2 #include <linux/linkage.h>
3 #include <linux/bitops.h>
4 #include <linux/kernel.h>
5 #include <linux/export.h>
6 #include <linux/percpu.h>
7 #include <linux/string.h>
8 #include <linux/ctype.h>
9 #include <linux/delay.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/clock.h>
12 #include <linux/sched/task.h>
13 #include <linux/init.h>
14 #include <linux/kprobes.h>
15 #include <linux/kgdb.h>
16 #include <linux/smp.h>
17 #include <linux/io.h>
18 #include <linux/syscore_ops.h>
19
20 #include <asm/stackprotector.h>
21 #include <asm/perf_event.h>
22 #include <asm/mmu_context.h>
23 #include <asm/archrandom.h>
24 #include <asm/hypervisor.h>
25 #include <asm/processor.h>
26 #include <asm/tlbflush.h>
27 #include <asm/debugreg.h>
28 #include <asm/sections.h>
29 #include <asm/vsyscall.h>
30 #include <linux/topology.h>
31 #include <linux/cpumask.h>
32 #include <asm/pgtable.h>
33 #include <linux/atomic.h>
34 #include <asm/proto.h>
35 #include <asm/setup.h>
36 #include <asm/apic.h>
37 #include <asm/desc.h>
38 #include <asm/fpu/internal.h>
39 #include <asm/mtrr.h>
40 #include <asm/hwcap2.h>
41 #include <linux/numa.h>
42 #include <asm/asm.h>
43 #include <asm/bugs.h>
44 #include <asm/cpu.h>
45 #include <asm/mce.h>
46 #include <asm/msr.h>
47 #include <asm/pat.h>
48 #include <asm/microcode.h>
49 #include <asm/microcode_intel.h>
50
51 #ifdef CONFIG_X86_LOCAL_APIC
52 #include <asm/uv/uv.h>
53 #endif
54
55 #include "cpu.h"
56
57 u32 elf_hwcap2 __read_mostly;
58
59 /* all of these masks are initialized in setup_cpu_local_masks() */
60 cpumask_var_t cpu_initialized_mask;
61 cpumask_var_t cpu_callout_mask;
62 cpumask_var_t cpu_callin_mask;
63
64 /* representing cpus for which sibling maps can be computed */
65 cpumask_var_t cpu_sibling_setup_mask;
66
67 /* correctly size the local cpu masks */
68 void __init setup_cpu_local_masks(void)
69 {
70 alloc_bootmem_cpumask_var(&cpu_initialized_mask);
71 alloc_bootmem_cpumask_var(&cpu_callin_mask);
72 alloc_bootmem_cpumask_var(&cpu_callout_mask);
73 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
74 }
75
76 static void default_init(struct cpuinfo_x86 *c)
77 {
78 #ifdef CONFIG_X86_64
79 cpu_detect_cache_sizes(c);
80 #else
81 /* Not much we can do here... */
82 /* Check if at least it has cpuid */
83 if (c->cpuid_level == -1) {
84 /* No cpuid. It must be an ancient CPU */
85 if (c->x86 == 4)
86 strcpy(c->x86_model_id, "486");
87 else if (c->x86 == 3)
88 strcpy(c->x86_model_id, "386");
89 }
90 #endif
91 }
92
93 static const struct cpu_dev default_cpu = {
94 .c_init = default_init,
95 .c_vendor = "Unknown",
96 .c_x86_vendor = X86_VENDOR_UNKNOWN,
97 };
98
99 static const struct cpu_dev *this_cpu = &default_cpu;
100
101 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
102 #ifdef CONFIG_X86_64
103 /*
104 * We need valid kernel segments for data and code in long mode too
105 * IRET will check the segment types kkeil 2000/10/28
106 * Also sysret mandates a special GDT layout
107 *
108 * TLS descriptors are currently at a different place compared to i386.
109 * Hopefully nobody expects them at a fixed place (Wine?)
110 */
111 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
112 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
113 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
114 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
115 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
116 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
117 #else
118 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
119 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
120 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
121 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
122 /*
123 * Segments used for calling PnP BIOS have byte granularity.
124 * They code segments and data segments have fixed 64k limits,
125 * the transfer segment sizes are set at run time.
126 */
127 /* 32-bit code */
128 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
129 /* 16-bit code */
130 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
131 /* 16-bit data */
132 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
133 /* 16-bit data */
134 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
135 /* 16-bit data */
136 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
137 /*
138 * The APM segments have byte granularity and their bases
139 * are set at run time. All have 64k limits.
140 */
141 /* 32-bit code */
142 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
143 /* 16-bit code */
144 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
145 /* data */
146 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
147
148 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
149 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
150 GDT_STACK_CANARY_INIT
151 #endif
152 } };
153 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
154
155 static int __init x86_mpx_setup(char *s)
156 {
157 /* require an exact match without trailing characters */
158 if (strlen(s))
159 return 0;
160
161 /* do not emit a message if the feature is not present */
162 if (!boot_cpu_has(X86_FEATURE_MPX))
163 return 1;
164
165 setup_clear_cpu_cap(X86_FEATURE_MPX);
166 pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n");
167 return 1;
168 }
169 __setup("nompx", x86_mpx_setup);
170
171 #ifdef CONFIG_X86_64
172 static int __init x86_nopcid_setup(char *s)
173 {
174 /* nopcid doesn't accept parameters */
175 if (s)
176 return -EINVAL;
177
178 /* do not emit a message if the feature is not present */
179 if (!boot_cpu_has(X86_FEATURE_PCID))
180 return 0;
181
182 setup_clear_cpu_cap(X86_FEATURE_PCID);
183 pr_info("nopcid: PCID feature disabled\n");
184 return 0;
185 }
186 early_param("nopcid", x86_nopcid_setup);
187 #endif
188
189 static int __init x86_noinvpcid_setup(char *s)
190 {
191 /* noinvpcid doesn't accept parameters */
192 if (s)
193 return -EINVAL;
194
195 /* do not emit a message if the feature is not present */
196 if (!boot_cpu_has(X86_FEATURE_INVPCID))
197 return 0;
198
199 setup_clear_cpu_cap(X86_FEATURE_INVPCID);
200 pr_info("noinvpcid: INVPCID feature disabled\n");
201 return 0;
202 }
203 early_param("noinvpcid", x86_noinvpcid_setup);
204
205 #ifdef CONFIG_X86_32
206 static int cachesize_override = -1;
207 static int disable_x86_serial_nr = 1;
208
209 static int __init cachesize_setup(char *str)
210 {
211 get_option(&str, &cachesize_override);
212 return 1;
213 }
214 __setup("cachesize=", cachesize_setup);
215
216 static int __init x86_sep_setup(char *s)
217 {
218 setup_clear_cpu_cap(X86_FEATURE_SEP);
219 return 1;
220 }
221 __setup("nosep", x86_sep_setup);
222
223 /* Standard macro to see if a specific flag is changeable */
224 static inline int flag_is_changeable_p(u32 flag)
225 {
226 u32 f1, f2;
227
228 /*
229 * Cyrix and IDT cpus allow disabling of CPUID
230 * so the code below may return different results
231 * when it is executed before and after enabling
232 * the CPUID. Add "volatile" to not allow gcc to
233 * optimize the subsequent calls to this function.
234 */
235 asm volatile ("pushfl \n\t"
236 "pushfl \n\t"
237 "popl %0 \n\t"
238 "movl %0, %1 \n\t"
239 "xorl %2, %0 \n\t"
240 "pushl %0 \n\t"
241 "popfl \n\t"
242 "pushfl \n\t"
243 "popl %0 \n\t"
244 "popfl \n\t"
245
246 : "=&r" (f1), "=&r" (f2)
247 : "ir" (flag));
248
249 return ((f1^f2) & flag) != 0;
250 }
251
252 /* Probe for the CPUID instruction */
253 int have_cpuid_p(void)
254 {
255 return flag_is_changeable_p(X86_EFLAGS_ID);
256 }
257
258 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
259 {
260 unsigned long lo, hi;
261
262 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
263 return;
264
265 /* Disable processor serial number: */
266
267 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
268 lo |= 0x200000;
269 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
270
271 pr_notice("CPU serial number disabled.\n");
272 clear_cpu_cap(c, X86_FEATURE_PN);
273
274 /* Disabling the serial number may affect the cpuid level */
275 c->cpuid_level = cpuid_eax(0);
276 }
277
278 static int __init x86_serial_nr_setup(char *s)
279 {
280 disable_x86_serial_nr = 0;
281 return 1;
282 }
283 __setup("serialnumber", x86_serial_nr_setup);
284 #else
285 static inline int flag_is_changeable_p(u32 flag)
286 {
287 return 1;
288 }
289 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
290 {
291 }
292 #endif
293
294 static __init int setup_disable_smep(char *arg)
295 {
296 setup_clear_cpu_cap(X86_FEATURE_SMEP);
297 /* Check for things that depend on SMEP being enabled: */
298 check_mpx_erratum(&boot_cpu_data);
299 return 1;
300 }
301 __setup("nosmep", setup_disable_smep);
302
303 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
304 {
305 if (cpu_has(c, X86_FEATURE_SMEP))
306 cr4_set_bits(X86_CR4_SMEP);
307 }
308
309 static __init int setup_disable_smap(char *arg)
310 {
311 setup_clear_cpu_cap(X86_FEATURE_SMAP);
312 return 1;
313 }
314 __setup("nosmap", setup_disable_smap);
315
316 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
317 {
318 unsigned long eflags = native_save_fl();
319
320 /* This should have been cleared long ago */
321 BUG_ON(eflags & X86_EFLAGS_AC);
322
323 if (cpu_has(c, X86_FEATURE_SMAP)) {
324 #ifdef CONFIG_X86_SMAP
325 cr4_set_bits(X86_CR4_SMAP);
326 #else
327 cr4_clear_bits(X86_CR4_SMAP);
328 #endif
329 }
330 }
331
332 static __always_inline void setup_umip(struct cpuinfo_x86 *c)
333 {
334 /* Check the boot processor, plus build option for UMIP. */
335 if (!cpu_feature_enabled(X86_FEATURE_UMIP))
336 goto out;
337
338 /* Check the current processor's cpuid bits. */
339 if (!cpu_has(c, X86_FEATURE_UMIP))
340 goto out;
341
342 cr4_set_bits(X86_CR4_UMIP);
343
344 pr_info("x86/cpu: Activated the Intel User Mode Instruction Prevention (UMIP) CPU feature\n");
345
346 return;
347
348 out:
349 /*
350 * Make sure UMIP is disabled in case it was enabled in a
351 * previous boot (e.g., via kexec).
352 */
353 cr4_clear_bits(X86_CR4_UMIP);
354 }
355
356 /*
357 * Protection Keys are not available in 32-bit mode.
358 */
359 static bool pku_disabled;
360
361 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
362 {
363 /* check the boot processor, plus compile options for PKU: */
364 if (!cpu_feature_enabled(X86_FEATURE_PKU))
365 return;
366 /* checks the actual processor's cpuid bits: */
367 if (!cpu_has(c, X86_FEATURE_PKU))
368 return;
369 if (pku_disabled)
370 return;
371
372 cr4_set_bits(X86_CR4_PKE);
373 /*
374 * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
375 * cpuid bit to be set. We need to ensure that we
376 * update that bit in this CPU's "cpu_info".
377 */
378 get_cpu_cap(c);
379 }
380
381 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
382 static __init int setup_disable_pku(char *arg)
383 {
384 /*
385 * Do not clear the X86_FEATURE_PKU bit. All of the
386 * runtime checks are against OSPKE so clearing the
387 * bit does nothing.
388 *
389 * This way, we will see "pku" in cpuinfo, but not
390 * "ospke", which is exactly what we want. It shows
391 * that the CPU has PKU, but the OS has not enabled it.
392 * This happens to be exactly how a system would look
393 * if we disabled the config option.
394 */
395 pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
396 pku_disabled = true;
397 return 1;
398 }
399 __setup("nopku", setup_disable_pku);
400 #endif /* CONFIG_X86_64 */
401
402 /*
403 * Some CPU features depend on higher CPUID levels, which may not always
404 * be available due to CPUID level capping or broken virtualization
405 * software. Add those features to this table to auto-disable them.
406 */
407 struct cpuid_dependent_feature {
408 u32 feature;
409 u32 level;
410 };
411
412 static const struct cpuid_dependent_feature
413 cpuid_dependent_features[] = {
414 { X86_FEATURE_MWAIT, 0x00000005 },
415 { X86_FEATURE_DCA, 0x00000009 },
416 { X86_FEATURE_XSAVE, 0x0000000d },
417 { 0, 0 }
418 };
419
420 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
421 {
422 const struct cpuid_dependent_feature *df;
423
424 for (df = cpuid_dependent_features; df->feature; df++) {
425
426 if (!cpu_has(c, df->feature))
427 continue;
428 /*
429 * Note: cpuid_level is set to -1 if unavailable, but
430 * extended_extended_level is set to 0 if unavailable
431 * and the legitimate extended levels are all negative
432 * when signed; hence the weird messing around with
433 * signs here...
434 */
435 if (!((s32)df->level < 0 ?
436 (u32)df->level > (u32)c->extended_cpuid_level :
437 (s32)df->level > (s32)c->cpuid_level))
438 continue;
439
440 clear_cpu_cap(c, df->feature);
441 if (!warn)
442 continue;
443
444 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
445 x86_cap_flag(df->feature), df->level);
446 }
447 }
448
449 /*
450 * Naming convention should be: <Name> [(<Codename>)]
451 * This table only is used unless init_<vendor>() below doesn't set it;
452 * in particular, if CPUID levels 0x80000002..4 are supported, this
453 * isn't used
454 */
455
456 /* Look up CPU names by table lookup. */
457 static const char *table_lookup_model(struct cpuinfo_x86 *c)
458 {
459 #ifdef CONFIG_X86_32
460 const struct legacy_cpu_model_info *info;
461
462 if (c->x86_model >= 16)
463 return NULL; /* Range check */
464
465 if (!this_cpu)
466 return NULL;
467
468 info = this_cpu->legacy_models;
469
470 while (info->family) {
471 if (info->family == c->x86)
472 return info->model_names[c->x86_model];
473 info++;
474 }
475 #endif
476 return NULL; /* Not found */
477 }
478
479 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS];
480 __u32 cpu_caps_set[NCAPINTS + NBUGINTS];
481
482 void load_percpu_segment(int cpu)
483 {
484 #ifdef CONFIG_X86_32
485 loadsegment(fs, __KERNEL_PERCPU);
486 #else
487 __loadsegment_simple(gs, 0);
488 wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
489 #endif
490 load_stack_canary_segment();
491 }
492
493 #ifdef CONFIG_X86_32
494 /* The 32-bit entry code needs to find cpu_entry_area. */
495 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
496 #endif
497
498 #ifdef CONFIG_X86_64
499 /*
500 * Special IST stacks which the CPU switches to when it calls
501 * an IST-marked descriptor entry. Up to 7 stacks (hardware
502 * limit), all of them are 4K, except the debug stack which
503 * is 8K.
504 */
505 static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
506 [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ,
507 [DEBUG_STACK - 1] = DEBUG_STKSZ
508 };
509 #endif
510
511 /* Load the original GDT from the per-cpu structure */
512 void load_direct_gdt(int cpu)
513 {
514 struct desc_ptr gdt_descr;
515
516 gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
517 gdt_descr.size = GDT_SIZE - 1;
518 load_gdt(&gdt_descr);
519 }
520 EXPORT_SYMBOL_GPL(load_direct_gdt);
521
522 /* Load a fixmap remapping of the per-cpu GDT */
523 void load_fixmap_gdt(int cpu)
524 {
525 struct desc_ptr gdt_descr;
526
527 gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
528 gdt_descr.size = GDT_SIZE - 1;
529 load_gdt(&gdt_descr);
530 }
531 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
532
533 /*
534 * Current gdt points %fs at the "master" per-cpu area: after this,
535 * it's on the real one.
536 */
537 void switch_to_new_gdt(int cpu)
538 {
539 /* Load the original GDT */
540 load_direct_gdt(cpu);
541 /* Reload the per-cpu base */
542 load_percpu_segment(cpu);
543 }
544
545 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
546
547 static void get_model_name(struct cpuinfo_x86 *c)
548 {
549 unsigned int *v;
550 char *p, *q, *s;
551
552 if (c->extended_cpuid_level < 0x80000004)
553 return;
554
555 v = (unsigned int *)c->x86_model_id;
556 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
557 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
558 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
559 c->x86_model_id[48] = 0;
560
561 /* Trim whitespace */
562 p = q = s = &c->x86_model_id[0];
563
564 while (*p == ' ')
565 p++;
566
567 while (*p) {
568 /* Note the last non-whitespace index */
569 if (!isspace(*p))
570 s = q;
571
572 *q++ = *p++;
573 }
574
575 *(s + 1) = '\0';
576 }
577
578 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
579 {
580 unsigned int n, dummy, ebx, ecx, edx, l2size;
581
582 n = c->extended_cpuid_level;
583
584 if (n >= 0x80000005) {
585 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
586 c->x86_cache_size = (ecx>>24) + (edx>>24);
587 #ifdef CONFIG_X86_64
588 /* On K8 L1 TLB is inclusive, so don't count it */
589 c->x86_tlbsize = 0;
590 #endif
591 }
592
593 if (n < 0x80000006) /* Some chips just has a large L1. */
594 return;
595
596 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
597 l2size = ecx >> 16;
598
599 #ifdef CONFIG_X86_64
600 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
601 #else
602 /* do processor-specific cache resizing */
603 if (this_cpu->legacy_cache_size)
604 l2size = this_cpu->legacy_cache_size(c, l2size);
605
606 /* Allow user to override all this if necessary. */
607 if (cachesize_override != -1)
608 l2size = cachesize_override;
609
610 if (l2size == 0)
611 return; /* Again, no L2 cache is possible */
612 #endif
613
614 c->x86_cache_size = l2size;
615 }
616
617 u16 __read_mostly tlb_lli_4k[NR_INFO];
618 u16 __read_mostly tlb_lli_2m[NR_INFO];
619 u16 __read_mostly tlb_lli_4m[NR_INFO];
620 u16 __read_mostly tlb_lld_4k[NR_INFO];
621 u16 __read_mostly tlb_lld_2m[NR_INFO];
622 u16 __read_mostly tlb_lld_4m[NR_INFO];
623 u16 __read_mostly tlb_lld_1g[NR_INFO];
624
625 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
626 {
627 if (this_cpu->c_detect_tlb)
628 this_cpu->c_detect_tlb(c);
629
630 pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
631 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
632 tlb_lli_4m[ENTRIES]);
633
634 pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
635 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
636 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
637 }
638
639 void detect_ht(struct cpuinfo_x86 *c)
640 {
641 #ifdef CONFIG_SMP
642 u32 eax, ebx, ecx, edx;
643 int index_msb, core_bits;
644 static bool printed;
645
646 if (!cpu_has(c, X86_FEATURE_HT))
647 return;
648
649 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
650 goto out;
651
652 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
653 return;
654
655 cpuid(1, &eax, &ebx, &ecx, &edx);
656
657 smp_num_siblings = (ebx & 0xff0000) >> 16;
658
659 if (smp_num_siblings == 1) {
660 pr_info_once("CPU0: Hyper-Threading is disabled\n");
661 goto out;
662 }
663
664 if (smp_num_siblings <= 1)
665 goto out;
666
667 index_msb = get_count_order(smp_num_siblings);
668 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
669
670 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
671
672 index_msb = get_count_order(smp_num_siblings);
673
674 core_bits = get_count_order(c->x86_max_cores);
675
676 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
677 ((1 << core_bits) - 1);
678
679 out:
680 if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
681 pr_info("CPU: Physical Processor ID: %d\n",
682 c->phys_proc_id);
683 pr_info("CPU: Processor Core ID: %d\n",
684 c->cpu_core_id);
685 printed = 1;
686 }
687 #endif
688 }
689
690 static void get_cpu_vendor(struct cpuinfo_x86 *c)
691 {
692 char *v = c->x86_vendor_id;
693 int i;
694
695 for (i = 0; i < X86_VENDOR_NUM; i++) {
696 if (!cpu_devs[i])
697 break;
698
699 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
700 (cpu_devs[i]->c_ident[1] &&
701 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
702
703 this_cpu = cpu_devs[i];
704 c->x86_vendor = this_cpu->c_x86_vendor;
705 return;
706 }
707 }
708
709 pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
710 "CPU: Your system may be unstable.\n", v);
711
712 c->x86_vendor = X86_VENDOR_UNKNOWN;
713 this_cpu = &default_cpu;
714 }
715
716 void cpu_detect(struct cpuinfo_x86 *c)
717 {
718 /* Get vendor name */
719 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
720 (unsigned int *)&c->x86_vendor_id[0],
721 (unsigned int *)&c->x86_vendor_id[8],
722 (unsigned int *)&c->x86_vendor_id[4]);
723
724 c->x86 = 4;
725 /* Intel-defined flags: level 0x00000001 */
726 if (c->cpuid_level >= 0x00000001) {
727 u32 junk, tfms, cap0, misc;
728
729 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
730 c->x86 = x86_family(tfms);
731 c->x86_model = x86_model(tfms);
732 c->x86_mask = x86_stepping(tfms);
733
734 if (cap0 & (1<<19)) {
735 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
736 c->x86_cache_alignment = c->x86_clflush_size;
737 }
738 }
739 }
740
741 static void apply_forced_caps(struct cpuinfo_x86 *c)
742 {
743 int i;
744
745 for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
746 c->x86_capability[i] &= ~cpu_caps_cleared[i];
747 c->x86_capability[i] |= cpu_caps_set[i];
748 }
749 }
750
751 void get_cpu_cap(struct cpuinfo_x86 *c)
752 {
753 u32 eax, ebx, ecx, edx;
754
755 /* Intel-defined flags: level 0x00000001 */
756 if (c->cpuid_level >= 0x00000001) {
757 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
758
759 c->x86_capability[CPUID_1_ECX] = ecx;
760 c->x86_capability[CPUID_1_EDX] = edx;
761 }
762
763 /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
764 if (c->cpuid_level >= 0x00000006)
765 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
766
767 /* Additional Intel-defined flags: level 0x00000007 */
768 if (c->cpuid_level >= 0x00000007) {
769 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
770 c->x86_capability[CPUID_7_0_EBX] = ebx;
771 c->x86_capability[CPUID_7_ECX] = ecx;
772 }
773
774 /* Extended state features: level 0x0000000d */
775 if (c->cpuid_level >= 0x0000000d) {
776 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
777
778 c->x86_capability[CPUID_D_1_EAX] = eax;
779 }
780
781 /* Additional Intel-defined flags: level 0x0000000F */
782 if (c->cpuid_level >= 0x0000000F) {
783
784 /* QoS sub-leaf, EAX=0Fh, ECX=0 */
785 cpuid_count(0x0000000F, 0, &eax, &ebx, &ecx, &edx);
786 c->x86_capability[CPUID_F_0_EDX] = edx;
787
788 if (cpu_has(c, X86_FEATURE_CQM_LLC)) {
789 /* will be overridden if occupancy monitoring exists */
790 c->x86_cache_max_rmid = ebx;
791
792 /* QoS sub-leaf, EAX=0Fh, ECX=1 */
793 cpuid_count(0x0000000F, 1, &eax, &ebx, &ecx, &edx);
794 c->x86_capability[CPUID_F_1_EDX] = edx;
795
796 if ((cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC)) ||
797 ((cpu_has(c, X86_FEATURE_CQM_MBM_TOTAL)) ||
798 (cpu_has(c, X86_FEATURE_CQM_MBM_LOCAL)))) {
799 c->x86_cache_max_rmid = ecx;
800 c->x86_cache_occ_scale = ebx;
801 }
802 } else {
803 c->x86_cache_max_rmid = -1;
804 c->x86_cache_occ_scale = -1;
805 }
806 }
807
808 /* AMD-defined flags: level 0x80000001 */
809 eax = cpuid_eax(0x80000000);
810 c->extended_cpuid_level = eax;
811
812 if ((eax & 0xffff0000) == 0x80000000) {
813 if (eax >= 0x80000001) {
814 cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
815
816 c->x86_capability[CPUID_8000_0001_ECX] = ecx;
817 c->x86_capability[CPUID_8000_0001_EDX] = edx;
818 }
819 }
820
821 if (c->extended_cpuid_level >= 0x80000007) {
822 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
823
824 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
825 c->x86_power = edx;
826 }
827
828 if (c->extended_cpuid_level >= 0x80000008) {
829 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
830
831 c->x86_virt_bits = (eax >> 8) & 0xff;
832 c->x86_phys_bits = eax & 0xff;
833 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
834 }
835 #ifdef CONFIG_X86_32
836 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
837 c->x86_phys_bits = 36;
838 #endif
839
840 if (c->extended_cpuid_level >= 0x8000000a)
841 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
842
843 init_scattered_cpuid_features(c);
844
845 /*
846 * Clear/Set all flags overridden by options, after probe.
847 * This needs to happen each time we re-probe, which may happen
848 * several times during CPU initialization.
849 */
850 apply_forced_caps(c);
851 }
852
853 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
854 {
855 #ifdef CONFIG_X86_32
856 int i;
857
858 /*
859 * First of all, decide if this is a 486 or higher
860 * It's a 486 if we can modify the AC flag
861 */
862 if (flag_is_changeable_p(X86_EFLAGS_AC))
863 c->x86 = 4;
864 else
865 c->x86 = 3;
866
867 for (i = 0; i < X86_VENDOR_NUM; i++)
868 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
869 c->x86_vendor_id[0] = 0;
870 cpu_devs[i]->c_identify(c);
871 if (c->x86_vendor_id[0]) {
872 get_cpu_vendor(c);
873 break;
874 }
875 }
876 #endif
877 }
878
879 /*
880 * Do minimum CPU detection early.
881 * Fields really needed: vendor, cpuid_level, family, model, mask,
882 * cache alignment.
883 * The others are not touched to avoid unwanted side effects.
884 *
885 * WARNING: this function is only called on the boot CPU. Don't add code
886 * here that is supposed to run on all CPUs.
887 */
888 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
889 {
890 #ifdef CONFIG_X86_64
891 c->x86_clflush_size = 64;
892 c->x86_phys_bits = 36;
893 c->x86_virt_bits = 48;
894 #else
895 c->x86_clflush_size = 32;
896 c->x86_phys_bits = 32;
897 c->x86_virt_bits = 32;
898 #endif
899 c->x86_cache_alignment = c->x86_clflush_size;
900
901 memset(&c->x86_capability, 0, sizeof c->x86_capability);
902 c->extended_cpuid_level = 0;
903
904 /* cyrix could have cpuid enabled via c_identify()*/
905 if (have_cpuid_p()) {
906 cpu_detect(c);
907 get_cpu_vendor(c);
908 get_cpu_cap(c);
909 setup_force_cpu_cap(X86_FEATURE_CPUID);
910
911 if (this_cpu->c_early_init)
912 this_cpu->c_early_init(c);
913
914 c->cpu_index = 0;
915 filter_cpuid_features(c, false);
916
917 if (this_cpu->c_bsp_init)
918 this_cpu->c_bsp_init(c);
919 } else {
920 identify_cpu_without_cpuid(c);
921 setup_clear_cpu_cap(X86_FEATURE_CPUID);
922 }
923
924 setup_force_cpu_cap(X86_FEATURE_ALWAYS);
925 fpu__init_system(c);
926
927 #ifdef CONFIG_X86_32
928 /*
929 * Regardless of whether PCID is enumerated, the SDM says
930 * that it can't be enabled in 32-bit mode.
931 */
932 setup_clear_cpu_cap(X86_FEATURE_PCID);
933 #endif
934 }
935
936 void __init early_cpu_init(void)
937 {
938 const struct cpu_dev *const *cdev;
939 int count = 0;
940
941 #ifdef CONFIG_PROCESSOR_SELECT
942 pr_info("KERNEL supported cpus:\n");
943 #endif
944
945 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
946 const struct cpu_dev *cpudev = *cdev;
947
948 if (count >= X86_VENDOR_NUM)
949 break;
950 cpu_devs[count] = cpudev;
951 count++;
952
953 #ifdef CONFIG_PROCESSOR_SELECT
954 {
955 unsigned int j;
956
957 for (j = 0; j < 2; j++) {
958 if (!cpudev->c_ident[j])
959 continue;
960 pr_info(" %s %s\n", cpudev->c_vendor,
961 cpudev->c_ident[j]);
962 }
963 }
964 #endif
965 }
966 early_identify_cpu(&boot_cpu_data);
967 }
968
969 /*
970 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
971 * unfortunately, that's not true in practice because of early VIA
972 * chips and (more importantly) broken virtualizers that are not easy
973 * to detect. In the latter case it doesn't even *fail* reliably, so
974 * probing for it doesn't even work. Disable it completely on 32-bit
975 * unless we can find a reliable way to detect all the broken cases.
976 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
977 */
978 static void detect_nopl(struct cpuinfo_x86 *c)
979 {
980 #ifdef CONFIG_X86_32
981 clear_cpu_cap(c, X86_FEATURE_NOPL);
982 #else
983 set_cpu_cap(c, X86_FEATURE_NOPL);
984 #endif
985 }
986
987 static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
988 {
989 #ifdef CONFIG_X86_64
990 /*
991 * Empirically, writing zero to a segment selector on AMD does
992 * not clear the base, whereas writing zero to a segment
993 * selector on Intel does clear the base. Intel's behavior
994 * allows slightly faster context switches in the common case
995 * where GS is unused by the prev and next threads.
996 *
997 * Since neither vendor documents this anywhere that I can see,
998 * detect it directly instead of hardcoding the choice by
999 * vendor.
1000 *
1001 * I've designated AMD's behavior as the "bug" because it's
1002 * counterintuitive and less friendly.
1003 */
1004
1005 unsigned long old_base, tmp;
1006 rdmsrl(MSR_FS_BASE, old_base);
1007 wrmsrl(MSR_FS_BASE, 1);
1008 loadsegment(fs, 0);
1009 rdmsrl(MSR_FS_BASE, tmp);
1010 if (tmp != 0)
1011 set_cpu_bug(c, X86_BUG_NULL_SEG);
1012 wrmsrl(MSR_FS_BASE, old_base);
1013 #endif
1014 }
1015
1016 static void generic_identify(struct cpuinfo_x86 *c)
1017 {
1018 c->extended_cpuid_level = 0;
1019
1020 if (!have_cpuid_p())
1021 identify_cpu_without_cpuid(c);
1022
1023 /* cyrix could have cpuid enabled via c_identify()*/
1024 if (!have_cpuid_p())
1025 return;
1026
1027 cpu_detect(c);
1028
1029 get_cpu_vendor(c);
1030
1031 get_cpu_cap(c);
1032
1033 if (c->cpuid_level >= 0x00000001) {
1034 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1035 #ifdef CONFIG_X86_32
1036 # ifdef CONFIG_SMP
1037 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1038 # else
1039 c->apicid = c->initial_apicid;
1040 # endif
1041 #endif
1042 c->phys_proc_id = c->initial_apicid;
1043 }
1044
1045 get_model_name(c); /* Default name */
1046
1047 detect_nopl(c);
1048
1049 detect_null_seg_behavior(c);
1050
1051 /*
1052 * ESPFIX is a strange bug. All real CPUs have it. Paravirt
1053 * systems that run Linux at CPL > 0 may or may not have the
1054 * issue, but, even if they have the issue, there's absolutely
1055 * nothing we can do about it because we can't use the real IRET
1056 * instruction.
1057 *
1058 * NB: For the time being, only 32-bit kernels support
1059 * X86_BUG_ESPFIX as such. 64-bit kernels directly choose
1060 * whether to apply espfix using paravirt hooks. If any
1061 * non-paravirt system ever shows up that does *not* have the
1062 * ESPFIX issue, we can change this.
1063 */
1064 #ifdef CONFIG_X86_32
1065 # ifdef CONFIG_PARAVIRT
1066 do {
1067 extern void native_iret(void);
1068 if (pv_cpu_ops.iret == native_iret)
1069 set_cpu_bug(c, X86_BUG_ESPFIX);
1070 } while (0);
1071 # else
1072 set_cpu_bug(c, X86_BUG_ESPFIX);
1073 # endif
1074 #endif
1075 }
1076
1077 static void x86_init_cache_qos(struct cpuinfo_x86 *c)
1078 {
1079 /*
1080 * The heavy lifting of max_rmid and cache_occ_scale are handled
1081 * in get_cpu_cap(). Here we just set the max_rmid for the boot_cpu
1082 * in case CQM bits really aren't there in this CPU.
1083 */
1084 if (c != &boot_cpu_data) {
1085 boot_cpu_data.x86_cache_max_rmid =
1086 min(boot_cpu_data.x86_cache_max_rmid,
1087 c->x86_cache_max_rmid);
1088 }
1089 }
1090
1091 /*
1092 * Validate that ACPI/mptables have the same information about the
1093 * effective APIC id and update the package map.
1094 */
1095 static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1096 {
1097 #ifdef CONFIG_SMP
1098 unsigned int apicid, cpu = smp_processor_id();
1099
1100 apicid = apic->cpu_present_to_apicid(cpu);
1101
1102 if (apicid != c->apicid) {
1103 pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1104 cpu, apicid, c->initial_apicid);
1105 }
1106 BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1107 #else
1108 c->logical_proc_id = 0;
1109 #endif
1110 }
1111
1112 /*
1113 * This does the hard work of actually picking apart the CPU stuff...
1114 */
1115 static void identify_cpu(struct cpuinfo_x86 *c)
1116 {
1117 int i;
1118
1119 c->loops_per_jiffy = loops_per_jiffy;
1120 c->x86_cache_size = -1;
1121 c->x86_vendor = X86_VENDOR_UNKNOWN;
1122 c->x86_model = c->x86_mask = 0; /* So far unknown... */
1123 c->x86_vendor_id[0] = '\0'; /* Unset */
1124 c->x86_model_id[0] = '\0'; /* Unset */
1125 c->x86_max_cores = 1;
1126 c->x86_coreid_bits = 0;
1127 c->cu_id = 0xff;
1128 #ifdef CONFIG_X86_64
1129 c->x86_clflush_size = 64;
1130 c->x86_phys_bits = 36;
1131 c->x86_virt_bits = 48;
1132 #else
1133 c->cpuid_level = -1; /* CPUID not detected */
1134 c->x86_clflush_size = 32;
1135 c->x86_phys_bits = 32;
1136 c->x86_virt_bits = 32;
1137 #endif
1138 c->x86_cache_alignment = c->x86_clflush_size;
1139 memset(&c->x86_capability, 0, sizeof c->x86_capability);
1140
1141 generic_identify(c);
1142
1143 if (this_cpu->c_identify)
1144 this_cpu->c_identify(c);
1145
1146 /* Clear/Set all flags overridden by options, after probe */
1147 apply_forced_caps(c);
1148
1149 #ifdef CONFIG_X86_64
1150 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1151 #endif
1152
1153 /*
1154 * Vendor-specific initialization. In this section we
1155 * canonicalize the feature flags, meaning if there are
1156 * features a certain CPU supports which CPUID doesn't
1157 * tell us, CPUID claiming incorrect flags, or other bugs,
1158 * we handle them here.
1159 *
1160 * At the end of this section, c->x86_capability better
1161 * indicate the features this CPU genuinely supports!
1162 */
1163 if (this_cpu->c_init)
1164 this_cpu->c_init(c);
1165
1166 /* Disable the PN if appropriate */
1167 squash_the_stupid_serial_number(c);
1168
1169 /* Set up SMEP/SMAP/UMIP */
1170 setup_smep(c);
1171 setup_smap(c);
1172 setup_umip(c);
1173
1174 /*
1175 * The vendor-specific functions might have changed features.
1176 * Now we do "generic changes."
1177 */
1178
1179 /* Filter out anything that depends on CPUID levels we don't have */
1180 filter_cpuid_features(c, true);
1181
1182 /* If the model name is still unset, do table lookup. */
1183 if (!c->x86_model_id[0]) {
1184 const char *p;
1185 p = table_lookup_model(c);
1186 if (p)
1187 strcpy(c->x86_model_id, p);
1188 else
1189 /* Last resort... */
1190 sprintf(c->x86_model_id, "%02x/%02x",
1191 c->x86, c->x86_model);
1192 }
1193
1194 #ifdef CONFIG_X86_64
1195 detect_ht(c);
1196 #endif
1197
1198 x86_init_rdrand(c);
1199 x86_init_cache_qos(c);
1200 setup_pku(c);
1201
1202 /*
1203 * Clear/Set all flags overridden by options, need do it
1204 * before following smp all cpus cap AND.
1205 */
1206 apply_forced_caps(c);
1207
1208 /*
1209 * On SMP, boot_cpu_data holds the common feature set between
1210 * all CPUs; so make sure that we indicate which features are
1211 * common between the CPUs. The first time this routine gets
1212 * executed, c == &boot_cpu_data.
1213 */
1214 if (c != &boot_cpu_data) {
1215 /* AND the already accumulated flags with these */
1216 for (i = 0; i < NCAPINTS; i++)
1217 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1218
1219 /* OR, i.e. replicate the bug flags */
1220 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1221 c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1222 }
1223
1224 /* Init Machine Check Exception if available. */
1225 mcheck_cpu_init(c);
1226
1227 select_idle_routine(c);
1228
1229 #ifdef CONFIG_NUMA
1230 numa_add_cpu(smp_processor_id());
1231 #endif
1232 }
1233
1234 /*
1235 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1236 * on 32-bit kernels:
1237 */
1238 #ifdef CONFIG_X86_32
1239 void enable_sep_cpu(void)
1240 {
1241 struct tss_struct *tss;
1242 int cpu;
1243
1244 if (!boot_cpu_has(X86_FEATURE_SEP))
1245 return;
1246
1247 cpu = get_cpu();
1248 tss = &per_cpu(cpu_tss_rw, cpu);
1249
1250 /*
1251 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1252 * see the big comment in struct x86_hw_tss's definition.
1253 */
1254
1255 tss->x86_tss.ss1 = __KERNEL_CS;
1256 wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1257 wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1258 wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1259
1260 put_cpu();
1261 }
1262 #endif
1263
1264 void __init identify_boot_cpu(void)
1265 {
1266 identify_cpu(&boot_cpu_data);
1267 #ifdef CONFIG_X86_32
1268 sysenter_setup();
1269 enable_sep_cpu();
1270 #endif
1271 cpu_detect_tlb(&boot_cpu_data);
1272 }
1273
1274 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1275 {
1276 BUG_ON(c == &boot_cpu_data);
1277 identify_cpu(c);
1278 #ifdef CONFIG_X86_32
1279 enable_sep_cpu();
1280 #endif
1281 mtrr_ap_init();
1282 validate_apic_and_package_id(c);
1283 }
1284
1285 static __init int setup_noclflush(char *arg)
1286 {
1287 setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1288 setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1289 return 1;
1290 }
1291 __setup("noclflush", setup_noclflush);
1292
1293 void print_cpu_info(struct cpuinfo_x86 *c)
1294 {
1295 const char *vendor = NULL;
1296
1297 if (c->x86_vendor < X86_VENDOR_NUM) {
1298 vendor = this_cpu->c_vendor;
1299 } else {
1300 if (c->cpuid_level >= 0)
1301 vendor = c->x86_vendor_id;
1302 }
1303
1304 if (vendor && !strstr(c->x86_model_id, vendor))
1305 pr_cont("%s ", vendor);
1306
1307 if (c->x86_model_id[0])
1308 pr_cont("%s", c->x86_model_id);
1309 else
1310 pr_cont("%d86", c->x86);
1311
1312 pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1313
1314 if (c->x86_mask || c->cpuid_level >= 0)
1315 pr_cont(", stepping: 0x%x)\n", c->x86_mask);
1316 else
1317 pr_cont(")\n");
1318 }
1319
1320 /*
1321 * clearcpuid= was already parsed in fpu__init_parse_early_param.
1322 * But we need to keep a dummy __setup around otherwise it would
1323 * show up as an environment variable for init.
1324 */
1325 static __init int setup_clearcpuid(char *arg)
1326 {
1327 return 1;
1328 }
1329 __setup("clearcpuid=", setup_clearcpuid);
1330
1331 #ifdef CONFIG_X86_64
1332 DEFINE_PER_CPU_FIRST(union irq_stack_union,
1333 irq_stack_union) __aligned(PAGE_SIZE) __visible;
1334
1335 /*
1336 * The following percpu variables are hot. Align current_task to
1337 * cacheline size such that they fall in the same cacheline.
1338 */
1339 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1340 &init_task;
1341 EXPORT_PER_CPU_SYMBOL(current_task);
1342
1343 DEFINE_PER_CPU(char *, irq_stack_ptr) =
1344 init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE;
1345
1346 DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1347
1348 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1349 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1350
1351 /* May not be marked __init: used by software suspend */
1352 void syscall_init(void)
1353 {
1354 extern char _entry_trampoline[];
1355 extern char entry_SYSCALL_64_trampoline[];
1356
1357 int cpu = smp_processor_id();
1358 unsigned long SYSCALL64_entry_trampoline =
1359 (unsigned long)get_cpu_entry_area(cpu)->entry_trampoline +
1360 (entry_SYSCALL_64_trampoline - _entry_trampoline);
1361
1362 wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1363 wrmsrl(MSR_LSTAR, SYSCALL64_entry_trampoline);
1364
1365 #ifdef CONFIG_IA32_EMULATION
1366 wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1367 /*
1368 * This only works on Intel CPUs.
1369 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1370 * This does not cause SYSENTER to jump to the wrong location, because
1371 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1372 */
1373 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1374 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1));
1375 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1376 #else
1377 wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1378 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1379 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1380 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1381 #endif
1382
1383 /* Flags to clear on syscall */
1384 wrmsrl(MSR_SYSCALL_MASK,
1385 X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1386 X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1387 }
1388
1389 /*
1390 * Copies of the original ist values from the tss are only accessed during
1391 * debugging, no special alignment required.
1392 */
1393 DEFINE_PER_CPU(struct orig_ist, orig_ist);
1394
1395 static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
1396 DEFINE_PER_CPU(int, debug_stack_usage);
1397
1398 int is_debug_stack(unsigned long addr)
1399 {
1400 return __this_cpu_read(debug_stack_usage) ||
1401 (addr <= __this_cpu_read(debug_stack_addr) &&
1402 addr > (__this_cpu_read(debug_stack_addr) - DEBUG_STKSZ));
1403 }
1404 NOKPROBE_SYMBOL(is_debug_stack);
1405
1406 DEFINE_PER_CPU(u32, debug_idt_ctr);
1407
1408 void debug_stack_set_zero(void)
1409 {
1410 this_cpu_inc(debug_idt_ctr);
1411 load_current_idt();
1412 }
1413 NOKPROBE_SYMBOL(debug_stack_set_zero);
1414
1415 void debug_stack_reset(void)
1416 {
1417 if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
1418 return;
1419 if (this_cpu_dec_return(debug_idt_ctr) == 0)
1420 load_current_idt();
1421 }
1422 NOKPROBE_SYMBOL(debug_stack_reset);
1423
1424 #else /* CONFIG_X86_64 */
1425
1426 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1427 EXPORT_PER_CPU_SYMBOL(current_task);
1428 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1429 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1430
1431 /*
1432 * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1433 * the top of the kernel stack. Use an extra percpu variable to track the
1434 * top of the kernel stack directly.
1435 */
1436 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1437 (unsigned long)&init_thread_union + THREAD_SIZE;
1438 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1439
1440 #ifdef CONFIG_CC_STACKPROTECTOR
1441 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1442 #endif
1443
1444 #endif /* CONFIG_X86_64 */
1445
1446 /*
1447 * Clear all 6 debug registers:
1448 */
1449 static void clear_all_debug_regs(void)
1450 {
1451 int i;
1452
1453 for (i = 0; i < 8; i++) {
1454 /* Ignore db4, db5 */
1455 if ((i == 4) || (i == 5))
1456 continue;
1457
1458 set_debugreg(0, i);
1459 }
1460 }
1461
1462 #ifdef CONFIG_KGDB
1463 /*
1464 * Restore debug regs if using kgdbwait and you have a kernel debugger
1465 * connection established.
1466 */
1467 static void dbg_restore_debug_regs(void)
1468 {
1469 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1470 arch_kgdb_ops.correct_hw_break();
1471 }
1472 #else /* ! CONFIG_KGDB */
1473 #define dbg_restore_debug_regs()
1474 #endif /* ! CONFIG_KGDB */
1475
1476 static void wait_for_master_cpu(int cpu)
1477 {
1478 #ifdef CONFIG_SMP
1479 /*
1480 * wait for ACK from master CPU before continuing
1481 * with AP initialization
1482 */
1483 WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1484 while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1485 cpu_relax();
1486 #endif
1487 }
1488
1489 /*
1490 * cpu_init() initializes state that is per-CPU. Some data is already
1491 * initialized (naturally) in the bootstrap process, such as the GDT
1492 * and IDT. We reload them nevertheless, this function acts as a
1493 * 'CPU state barrier', nothing should get across.
1494 * A lot of state is already set up in PDA init for 64 bit
1495 */
1496 #ifdef CONFIG_X86_64
1497
1498 void cpu_init(void)
1499 {
1500 struct orig_ist *oist;
1501 struct task_struct *me;
1502 struct tss_struct *t;
1503 unsigned long v;
1504 int cpu = raw_smp_processor_id();
1505 int i;
1506
1507 wait_for_master_cpu(cpu);
1508
1509 /*
1510 * Initialize the CR4 shadow before doing anything that could
1511 * try to read it.
1512 */
1513 cr4_init_shadow();
1514
1515 if (cpu)
1516 load_ucode_ap();
1517
1518 t = &per_cpu(cpu_tss_rw, cpu);
1519 oist = &per_cpu(orig_ist, cpu);
1520
1521 #ifdef CONFIG_NUMA
1522 if (this_cpu_read(numa_node) == 0 &&
1523 early_cpu_to_node(cpu) != NUMA_NO_NODE)
1524 set_numa_node(early_cpu_to_node(cpu));
1525 #endif
1526
1527 me = current;
1528
1529 pr_debug("Initializing CPU#%d\n", cpu);
1530
1531 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1532
1533 /*
1534 * Initialize the per-CPU GDT with the boot GDT,
1535 * and set up the GDT descriptor:
1536 */
1537
1538 switch_to_new_gdt(cpu);
1539 loadsegment(fs, 0);
1540
1541 load_current_idt();
1542
1543 memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1544 syscall_init();
1545
1546 wrmsrl(MSR_FS_BASE, 0);
1547 wrmsrl(MSR_KERNEL_GS_BASE, 0);
1548 barrier();
1549
1550 x86_configure_nx();
1551 x2apic_setup();
1552
1553 /*
1554 * set up and load the per-CPU TSS
1555 */
1556 if (!oist->ist[0]) {
1557 char *estacks = get_cpu_entry_area(cpu)->exception_stacks;
1558
1559 for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1560 estacks += exception_stack_sizes[v];
1561 oist->ist[v] = t->x86_tss.ist[v] =
1562 (unsigned long)estacks;
1563 if (v == DEBUG_STACK-1)
1564 per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
1565 }
1566 }
1567
1568 t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
1569
1570 /*
1571 * <= is required because the CPU will access up to
1572 * 8 bits beyond the end of the IO permission bitmap.
1573 */
1574 for (i = 0; i <= IO_BITMAP_LONGS; i++)
1575 t->io_bitmap[i] = ~0UL;
1576
1577 mmgrab(&init_mm);
1578 me->active_mm = &init_mm;
1579 BUG_ON(me->mm);
1580 initialize_tlbstate_and_flush();
1581 enter_lazy_tlb(&init_mm, me);
1582
1583 /*
1584 * Initialize the TSS. sp0 points to the entry trampoline stack
1585 * regardless of what task is running.
1586 */
1587 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1588 load_TR_desc();
1589 load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
1590
1591 load_mm_ldt(&init_mm);
1592
1593 clear_all_debug_regs();
1594 dbg_restore_debug_regs();
1595
1596 fpu__init_cpu();
1597
1598 if (is_uv_system())
1599 uv_cpu_init();
1600
1601 load_fixmap_gdt(cpu);
1602 }
1603
1604 #else
1605
1606 void cpu_init(void)
1607 {
1608 int cpu = smp_processor_id();
1609 struct task_struct *curr = current;
1610 struct tss_struct *t = &per_cpu(cpu_tss_rw, cpu);
1611
1612 wait_for_master_cpu(cpu);
1613
1614 /*
1615 * Initialize the CR4 shadow before doing anything that could
1616 * try to read it.
1617 */
1618 cr4_init_shadow();
1619
1620 show_ucode_info_early();
1621
1622 pr_info("Initializing CPU#%d\n", cpu);
1623
1624 if (cpu_feature_enabled(X86_FEATURE_VME) ||
1625 boot_cpu_has(X86_FEATURE_TSC) ||
1626 boot_cpu_has(X86_FEATURE_DE))
1627 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1628
1629 load_current_idt();
1630 switch_to_new_gdt(cpu);
1631
1632 /*
1633 * Set up and load the per-CPU TSS and LDT
1634 */
1635 mmgrab(&init_mm);
1636 curr->active_mm = &init_mm;
1637 BUG_ON(curr->mm);
1638 initialize_tlbstate_and_flush();
1639 enter_lazy_tlb(&init_mm, curr);
1640
1641 /*
1642 * Initialize the TSS. Don't bother initializing sp0, as the initial
1643 * task never enters user mode.
1644 */
1645 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1646 load_TR_desc();
1647
1648 load_mm_ldt(&init_mm);
1649
1650 t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
1651
1652 #ifdef CONFIG_DOUBLEFAULT
1653 /* Set up doublefault TSS pointer in the GDT */
1654 __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1655 #endif
1656
1657 clear_all_debug_regs();
1658 dbg_restore_debug_regs();
1659
1660 fpu__init_cpu();
1661
1662 load_fixmap_gdt(cpu);
1663 }
1664 #endif
1665
1666 static void bsp_resume(void)
1667 {
1668 if (this_cpu->c_bsp_resume)
1669 this_cpu->c_bsp_resume(&boot_cpu_data);
1670 }
1671
1672 static struct syscore_ops cpu_syscore_ops = {
1673 .resume = bsp_resume,
1674 };
1675
1676 static int __init init_cpu_syscore(void)
1677 {
1678 register_syscore_ops(&cpu_syscore_ops);
1679 return 0;
1680 }
1681 core_initcall(init_cpu_syscore);