]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kernel/cpu/common.c
Merge remote-tracking branches 'asoc/topic/fsl-ssi', 'asoc/topic/hi6220' and 'asoc...
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / cpu / common.c
1 #include <linux/bootmem.h>
2 #include <linux/linkage.h>
3 #include <linux/bitops.h>
4 #include <linux/kernel.h>
5 #include <linux/export.h>
6 #include <linux/percpu.h>
7 #include <linux/string.h>
8 #include <linux/ctype.h>
9 #include <linux/delay.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/clock.h>
12 #include <linux/sched/task.h>
13 #include <linux/init.h>
14 #include <linux/kprobes.h>
15 #include <linux/kgdb.h>
16 #include <linux/smp.h>
17 #include <linux/io.h>
18 #include <linux/syscore_ops.h>
19
20 #include <asm/stackprotector.h>
21 #include <asm/perf_event.h>
22 #include <asm/mmu_context.h>
23 #include <asm/archrandom.h>
24 #include <asm/hypervisor.h>
25 #include <asm/processor.h>
26 #include <asm/tlbflush.h>
27 #include <asm/debugreg.h>
28 #include <asm/sections.h>
29 #include <asm/vsyscall.h>
30 #include <linux/topology.h>
31 #include <linux/cpumask.h>
32 #include <asm/pgtable.h>
33 #include <linux/atomic.h>
34 #include <asm/proto.h>
35 #include <asm/setup.h>
36 #include <asm/apic.h>
37 #include <asm/desc.h>
38 #include <asm/fpu/internal.h>
39 #include <asm/mtrr.h>
40 #include <asm/hwcap2.h>
41 #include <linux/numa.h>
42 #include <asm/asm.h>
43 #include <asm/bugs.h>
44 #include <asm/cpu.h>
45 #include <asm/mce.h>
46 #include <asm/msr.h>
47 #include <asm/pat.h>
48 #include <asm/microcode.h>
49 #include <asm/microcode_intel.h>
50
51 #ifdef CONFIG_X86_LOCAL_APIC
52 #include <asm/uv/uv.h>
53 #endif
54
55 #include "cpu.h"
56
57 u32 elf_hwcap2 __read_mostly;
58
59 /* all of these masks are initialized in setup_cpu_local_masks() */
60 cpumask_var_t cpu_initialized_mask;
61 cpumask_var_t cpu_callout_mask;
62 cpumask_var_t cpu_callin_mask;
63
64 /* representing cpus for which sibling maps can be computed */
65 cpumask_var_t cpu_sibling_setup_mask;
66
67 /* correctly size the local cpu masks */
68 void __init setup_cpu_local_masks(void)
69 {
70 alloc_bootmem_cpumask_var(&cpu_initialized_mask);
71 alloc_bootmem_cpumask_var(&cpu_callin_mask);
72 alloc_bootmem_cpumask_var(&cpu_callout_mask);
73 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
74 }
75
76 static void default_init(struct cpuinfo_x86 *c)
77 {
78 #ifdef CONFIG_X86_64
79 cpu_detect_cache_sizes(c);
80 #else
81 /* Not much we can do here... */
82 /* Check if at least it has cpuid */
83 if (c->cpuid_level == -1) {
84 /* No cpuid. It must be an ancient CPU */
85 if (c->x86 == 4)
86 strcpy(c->x86_model_id, "486");
87 else if (c->x86 == 3)
88 strcpy(c->x86_model_id, "386");
89 }
90 #endif
91 }
92
93 static const struct cpu_dev default_cpu = {
94 .c_init = default_init,
95 .c_vendor = "Unknown",
96 .c_x86_vendor = X86_VENDOR_UNKNOWN,
97 };
98
99 static const struct cpu_dev *this_cpu = &default_cpu;
100
101 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
102 #ifdef CONFIG_X86_64
103 /*
104 * We need valid kernel segments for data and code in long mode too
105 * IRET will check the segment types kkeil 2000/10/28
106 * Also sysret mandates a special GDT layout
107 *
108 * TLS descriptors are currently at a different place compared to i386.
109 * Hopefully nobody expects them at a fixed place (Wine?)
110 */
111 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
112 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
113 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
114 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
115 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
116 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
117 #else
118 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
119 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
120 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
121 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
122 /*
123 * Segments used for calling PnP BIOS have byte granularity.
124 * They code segments and data segments have fixed 64k limits,
125 * the transfer segment sizes are set at run time.
126 */
127 /* 32-bit code */
128 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
129 /* 16-bit code */
130 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
131 /* 16-bit data */
132 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
133 /* 16-bit data */
134 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
135 /* 16-bit data */
136 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
137 /*
138 * The APM segments have byte granularity and their bases
139 * are set at run time. All have 64k limits.
140 */
141 /* 32-bit code */
142 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
143 /* 16-bit code */
144 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
145 /* data */
146 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
147
148 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
149 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
150 GDT_STACK_CANARY_INIT
151 #endif
152 } };
153 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
154
155 static int __init x86_mpx_setup(char *s)
156 {
157 /* require an exact match without trailing characters */
158 if (strlen(s))
159 return 0;
160
161 /* do not emit a message if the feature is not present */
162 if (!boot_cpu_has(X86_FEATURE_MPX))
163 return 1;
164
165 setup_clear_cpu_cap(X86_FEATURE_MPX);
166 pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n");
167 return 1;
168 }
169 __setup("nompx", x86_mpx_setup);
170
171 static int __init x86_noinvpcid_setup(char *s)
172 {
173 /* noinvpcid doesn't accept parameters */
174 if (s)
175 return -EINVAL;
176
177 /* do not emit a message if the feature is not present */
178 if (!boot_cpu_has(X86_FEATURE_INVPCID))
179 return 0;
180
181 setup_clear_cpu_cap(X86_FEATURE_INVPCID);
182 pr_info("noinvpcid: INVPCID feature disabled\n");
183 return 0;
184 }
185 early_param("noinvpcid", x86_noinvpcid_setup);
186
187 #ifdef CONFIG_X86_32
188 static int cachesize_override = -1;
189 static int disable_x86_serial_nr = 1;
190
191 static int __init cachesize_setup(char *str)
192 {
193 get_option(&str, &cachesize_override);
194 return 1;
195 }
196 __setup("cachesize=", cachesize_setup);
197
198 static int __init x86_sep_setup(char *s)
199 {
200 setup_clear_cpu_cap(X86_FEATURE_SEP);
201 return 1;
202 }
203 __setup("nosep", x86_sep_setup);
204
205 /* Standard macro to see if a specific flag is changeable */
206 static inline int flag_is_changeable_p(u32 flag)
207 {
208 u32 f1, f2;
209
210 /*
211 * Cyrix and IDT cpus allow disabling of CPUID
212 * so the code below may return different results
213 * when it is executed before and after enabling
214 * the CPUID. Add "volatile" to not allow gcc to
215 * optimize the subsequent calls to this function.
216 */
217 asm volatile ("pushfl \n\t"
218 "pushfl \n\t"
219 "popl %0 \n\t"
220 "movl %0, %1 \n\t"
221 "xorl %2, %0 \n\t"
222 "pushl %0 \n\t"
223 "popfl \n\t"
224 "pushfl \n\t"
225 "popl %0 \n\t"
226 "popfl \n\t"
227
228 : "=&r" (f1), "=&r" (f2)
229 : "ir" (flag));
230
231 return ((f1^f2) & flag) != 0;
232 }
233
234 /* Probe for the CPUID instruction */
235 int have_cpuid_p(void)
236 {
237 return flag_is_changeable_p(X86_EFLAGS_ID);
238 }
239
240 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
241 {
242 unsigned long lo, hi;
243
244 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
245 return;
246
247 /* Disable processor serial number: */
248
249 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
250 lo |= 0x200000;
251 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
252
253 pr_notice("CPU serial number disabled.\n");
254 clear_cpu_cap(c, X86_FEATURE_PN);
255
256 /* Disabling the serial number may affect the cpuid level */
257 c->cpuid_level = cpuid_eax(0);
258 }
259
260 static int __init x86_serial_nr_setup(char *s)
261 {
262 disable_x86_serial_nr = 0;
263 return 1;
264 }
265 __setup("serialnumber", x86_serial_nr_setup);
266 #else
267 static inline int flag_is_changeable_p(u32 flag)
268 {
269 return 1;
270 }
271 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
272 {
273 }
274 #endif
275
276 static __init int setup_disable_smep(char *arg)
277 {
278 setup_clear_cpu_cap(X86_FEATURE_SMEP);
279 /* Check for things that depend on SMEP being enabled: */
280 check_mpx_erratum(&boot_cpu_data);
281 return 1;
282 }
283 __setup("nosmep", setup_disable_smep);
284
285 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
286 {
287 if (cpu_has(c, X86_FEATURE_SMEP))
288 cr4_set_bits(X86_CR4_SMEP);
289 }
290
291 static __init int setup_disable_smap(char *arg)
292 {
293 setup_clear_cpu_cap(X86_FEATURE_SMAP);
294 return 1;
295 }
296 __setup("nosmap", setup_disable_smap);
297
298 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
299 {
300 unsigned long eflags = native_save_fl();
301
302 /* This should have been cleared long ago */
303 BUG_ON(eflags & X86_EFLAGS_AC);
304
305 if (cpu_has(c, X86_FEATURE_SMAP)) {
306 #ifdef CONFIG_X86_SMAP
307 cr4_set_bits(X86_CR4_SMAP);
308 #else
309 cr4_clear_bits(X86_CR4_SMAP);
310 #endif
311 }
312 }
313
314 /*
315 * Protection Keys are not available in 32-bit mode.
316 */
317 static bool pku_disabled;
318
319 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
320 {
321 /* check the boot processor, plus compile options for PKU: */
322 if (!cpu_feature_enabled(X86_FEATURE_PKU))
323 return;
324 /* checks the actual processor's cpuid bits: */
325 if (!cpu_has(c, X86_FEATURE_PKU))
326 return;
327 if (pku_disabled)
328 return;
329
330 cr4_set_bits(X86_CR4_PKE);
331 /*
332 * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
333 * cpuid bit to be set. We need to ensure that we
334 * update that bit in this CPU's "cpu_info".
335 */
336 get_cpu_cap(c);
337 }
338
339 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
340 static __init int setup_disable_pku(char *arg)
341 {
342 /*
343 * Do not clear the X86_FEATURE_PKU bit. All of the
344 * runtime checks are against OSPKE so clearing the
345 * bit does nothing.
346 *
347 * This way, we will see "pku" in cpuinfo, but not
348 * "ospke", which is exactly what we want. It shows
349 * that the CPU has PKU, but the OS has not enabled it.
350 * This happens to be exactly how a system would look
351 * if we disabled the config option.
352 */
353 pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
354 pku_disabled = true;
355 return 1;
356 }
357 __setup("nopku", setup_disable_pku);
358 #endif /* CONFIG_X86_64 */
359
360 /*
361 * Some CPU features depend on higher CPUID levels, which may not always
362 * be available due to CPUID level capping or broken virtualization
363 * software. Add those features to this table to auto-disable them.
364 */
365 struct cpuid_dependent_feature {
366 u32 feature;
367 u32 level;
368 };
369
370 static const struct cpuid_dependent_feature
371 cpuid_dependent_features[] = {
372 { X86_FEATURE_MWAIT, 0x00000005 },
373 { X86_FEATURE_DCA, 0x00000009 },
374 { X86_FEATURE_XSAVE, 0x0000000d },
375 { 0, 0 }
376 };
377
378 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
379 {
380 const struct cpuid_dependent_feature *df;
381
382 for (df = cpuid_dependent_features; df->feature; df++) {
383
384 if (!cpu_has(c, df->feature))
385 continue;
386 /*
387 * Note: cpuid_level is set to -1 if unavailable, but
388 * extended_extended_level is set to 0 if unavailable
389 * and the legitimate extended levels are all negative
390 * when signed; hence the weird messing around with
391 * signs here...
392 */
393 if (!((s32)df->level < 0 ?
394 (u32)df->level > (u32)c->extended_cpuid_level :
395 (s32)df->level > (s32)c->cpuid_level))
396 continue;
397
398 clear_cpu_cap(c, df->feature);
399 if (!warn)
400 continue;
401
402 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
403 x86_cap_flag(df->feature), df->level);
404 }
405 }
406
407 /*
408 * Naming convention should be: <Name> [(<Codename>)]
409 * This table only is used unless init_<vendor>() below doesn't set it;
410 * in particular, if CPUID levels 0x80000002..4 are supported, this
411 * isn't used
412 */
413
414 /* Look up CPU names by table lookup. */
415 static const char *table_lookup_model(struct cpuinfo_x86 *c)
416 {
417 #ifdef CONFIG_X86_32
418 const struct legacy_cpu_model_info *info;
419
420 if (c->x86_model >= 16)
421 return NULL; /* Range check */
422
423 if (!this_cpu)
424 return NULL;
425
426 info = this_cpu->legacy_models;
427
428 while (info->family) {
429 if (info->family == c->x86)
430 return info->model_names[c->x86_model];
431 info++;
432 }
433 #endif
434 return NULL; /* Not found */
435 }
436
437 __u32 cpu_caps_cleared[NCAPINTS];
438 __u32 cpu_caps_set[NCAPINTS];
439
440 void load_percpu_segment(int cpu)
441 {
442 #ifdef CONFIG_X86_32
443 loadsegment(fs, __KERNEL_PERCPU);
444 #else
445 __loadsegment_simple(gs, 0);
446 wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
447 #endif
448 load_stack_canary_segment();
449 }
450
451 /*
452 * Current gdt points %fs at the "master" per-cpu area: after this,
453 * it's on the real one.
454 */
455 void switch_to_new_gdt(int cpu)
456 {
457 struct desc_ptr gdt_descr;
458
459 gdt_descr.address = (long)get_cpu_gdt_table(cpu);
460 gdt_descr.size = GDT_SIZE - 1;
461 load_gdt(&gdt_descr);
462 /* Reload the per-cpu base */
463
464 load_percpu_segment(cpu);
465 }
466
467 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
468
469 static void get_model_name(struct cpuinfo_x86 *c)
470 {
471 unsigned int *v;
472 char *p, *q, *s;
473
474 if (c->extended_cpuid_level < 0x80000004)
475 return;
476
477 v = (unsigned int *)c->x86_model_id;
478 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
479 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
480 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
481 c->x86_model_id[48] = 0;
482
483 /* Trim whitespace */
484 p = q = s = &c->x86_model_id[0];
485
486 while (*p == ' ')
487 p++;
488
489 while (*p) {
490 /* Note the last non-whitespace index */
491 if (!isspace(*p))
492 s = q;
493
494 *q++ = *p++;
495 }
496
497 *(s + 1) = '\0';
498 }
499
500 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
501 {
502 unsigned int n, dummy, ebx, ecx, edx, l2size;
503
504 n = c->extended_cpuid_level;
505
506 if (n >= 0x80000005) {
507 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
508 c->x86_cache_size = (ecx>>24) + (edx>>24);
509 #ifdef CONFIG_X86_64
510 /* On K8 L1 TLB is inclusive, so don't count it */
511 c->x86_tlbsize = 0;
512 #endif
513 }
514
515 if (n < 0x80000006) /* Some chips just has a large L1. */
516 return;
517
518 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
519 l2size = ecx >> 16;
520
521 #ifdef CONFIG_X86_64
522 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
523 #else
524 /* do processor-specific cache resizing */
525 if (this_cpu->legacy_cache_size)
526 l2size = this_cpu->legacy_cache_size(c, l2size);
527
528 /* Allow user to override all this if necessary. */
529 if (cachesize_override != -1)
530 l2size = cachesize_override;
531
532 if (l2size == 0)
533 return; /* Again, no L2 cache is possible */
534 #endif
535
536 c->x86_cache_size = l2size;
537 }
538
539 u16 __read_mostly tlb_lli_4k[NR_INFO];
540 u16 __read_mostly tlb_lli_2m[NR_INFO];
541 u16 __read_mostly tlb_lli_4m[NR_INFO];
542 u16 __read_mostly tlb_lld_4k[NR_INFO];
543 u16 __read_mostly tlb_lld_2m[NR_INFO];
544 u16 __read_mostly tlb_lld_4m[NR_INFO];
545 u16 __read_mostly tlb_lld_1g[NR_INFO];
546
547 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
548 {
549 if (this_cpu->c_detect_tlb)
550 this_cpu->c_detect_tlb(c);
551
552 pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
553 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
554 tlb_lli_4m[ENTRIES]);
555
556 pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
557 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
558 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
559 }
560
561 void detect_ht(struct cpuinfo_x86 *c)
562 {
563 #ifdef CONFIG_SMP
564 u32 eax, ebx, ecx, edx;
565 int index_msb, core_bits;
566 static bool printed;
567
568 if (!cpu_has(c, X86_FEATURE_HT))
569 return;
570
571 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
572 goto out;
573
574 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
575 return;
576
577 cpuid(1, &eax, &ebx, &ecx, &edx);
578
579 smp_num_siblings = (ebx & 0xff0000) >> 16;
580
581 if (smp_num_siblings == 1) {
582 pr_info_once("CPU0: Hyper-Threading is disabled\n");
583 goto out;
584 }
585
586 if (smp_num_siblings <= 1)
587 goto out;
588
589 index_msb = get_count_order(smp_num_siblings);
590 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
591
592 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
593
594 index_msb = get_count_order(smp_num_siblings);
595
596 core_bits = get_count_order(c->x86_max_cores);
597
598 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
599 ((1 << core_bits) - 1);
600
601 out:
602 if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
603 pr_info("CPU: Physical Processor ID: %d\n",
604 c->phys_proc_id);
605 pr_info("CPU: Processor Core ID: %d\n",
606 c->cpu_core_id);
607 printed = 1;
608 }
609 #endif
610 }
611
612 static void get_cpu_vendor(struct cpuinfo_x86 *c)
613 {
614 char *v = c->x86_vendor_id;
615 int i;
616
617 for (i = 0; i < X86_VENDOR_NUM; i++) {
618 if (!cpu_devs[i])
619 break;
620
621 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
622 (cpu_devs[i]->c_ident[1] &&
623 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
624
625 this_cpu = cpu_devs[i];
626 c->x86_vendor = this_cpu->c_x86_vendor;
627 return;
628 }
629 }
630
631 pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
632 "CPU: Your system may be unstable.\n", v);
633
634 c->x86_vendor = X86_VENDOR_UNKNOWN;
635 this_cpu = &default_cpu;
636 }
637
638 void cpu_detect(struct cpuinfo_x86 *c)
639 {
640 /* Get vendor name */
641 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
642 (unsigned int *)&c->x86_vendor_id[0],
643 (unsigned int *)&c->x86_vendor_id[8],
644 (unsigned int *)&c->x86_vendor_id[4]);
645
646 c->x86 = 4;
647 /* Intel-defined flags: level 0x00000001 */
648 if (c->cpuid_level >= 0x00000001) {
649 u32 junk, tfms, cap0, misc;
650
651 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
652 c->x86 = x86_family(tfms);
653 c->x86_model = x86_model(tfms);
654 c->x86_mask = x86_stepping(tfms);
655
656 if (cap0 & (1<<19)) {
657 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
658 c->x86_cache_alignment = c->x86_clflush_size;
659 }
660 }
661 }
662
663 static void apply_forced_caps(struct cpuinfo_x86 *c)
664 {
665 int i;
666
667 for (i = 0; i < NCAPINTS; i++) {
668 c->x86_capability[i] &= ~cpu_caps_cleared[i];
669 c->x86_capability[i] |= cpu_caps_set[i];
670 }
671 }
672
673 void get_cpu_cap(struct cpuinfo_x86 *c)
674 {
675 u32 eax, ebx, ecx, edx;
676
677 /* Intel-defined flags: level 0x00000001 */
678 if (c->cpuid_level >= 0x00000001) {
679 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
680
681 c->x86_capability[CPUID_1_ECX] = ecx;
682 c->x86_capability[CPUID_1_EDX] = edx;
683 }
684
685 /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
686 if (c->cpuid_level >= 0x00000006)
687 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
688
689 /* Additional Intel-defined flags: level 0x00000007 */
690 if (c->cpuid_level >= 0x00000007) {
691 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
692 c->x86_capability[CPUID_7_0_EBX] = ebx;
693 c->x86_capability[CPUID_7_ECX] = ecx;
694 }
695
696 /* Extended state features: level 0x0000000d */
697 if (c->cpuid_level >= 0x0000000d) {
698 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
699
700 c->x86_capability[CPUID_D_1_EAX] = eax;
701 }
702
703 /* Additional Intel-defined flags: level 0x0000000F */
704 if (c->cpuid_level >= 0x0000000F) {
705
706 /* QoS sub-leaf, EAX=0Fh, ECX=0 */
707 cpuid_count(0x0000000F, 0, &eax, &ebx, &ecx, &edx);
708 c->x86_capability[CPUID_F_0_EDX] = edx;
709
710 if (cpu_has(c, X86_FEATURE_CQM_LLC)) {
711 /* will be overridden if occupancy monitoring exists */
712 c->x86_cache_max_rmid = ebx;
713
714 /* QoS sub-leaf, EAX=0Fh, ECX=1 */
715 cpuid_count(0x0000000F, 1, &eax, &ebx, &ecx, &edx);
716 c->x86_capability[CPUID_F_1_EDX] = edx;
717
718 if ((cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC)) ||
719 ((cpu_has(c, X86_FEATURE_CQM_MBM_TOTAL)) ||
720 (cpu_has(c, X86_FEATURE_CQM_MBM_LOCAL)))) {
721 c->x86_cache_max_rmid = ecx;
722 c->x86_cache_occ_scale = ebx;
723 }
724 } else {
725 c->x86_cache_max_rmid = -1;
726 c->x86_cache_occ_scale = -1;
727 }
728 }
729
730 /* AMD-defined flags: level 0x80000001 */
731 eax = cpuid_eax(0x80000000);
732 c->extended_cpuid_level = eax;
733
734 if ((eax & 0xffff0000) == 0x80000000) {
735 if (eax >= 0x80000001) {
736 cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
737
738 c->x86_capability[CPUID_8000_0001_ECX] = ecx;
739 c->x86_capability[CPUID_8000_0001_EDX] = edx;
740 }
741 }
742
743 if (c->extended_cpuid_level >= 0x80000007) {
744 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
745
746 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
747 c->x86_power = edx;
748 }
749
750 if (c->extended_cpuid_level >= 0x80000008) {
751 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
752
753 c->x86_virt_bits = (eax >> 8) & 0xff;
754 c->x86_phys_bits = eax & 0xff;
755 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
756 }
757 #ifdef CONFIG_X86_32
758 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
759 c->x86_phys_bits = 36;
760 #endif
761
762 if (c->extended_cpuid_level >= 0x8000000a)
763 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
764
765 init_scattered_cpuid_features(c);
766
767 /*
768 * Clear/Set all flags overridden by options, after probe.
769 * This needs to happen each time we re-probe, which may happen
770 * several times during CPU initialization.
771 */
772 apply_forced_caps(c);
773 }
774
775 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
776 {
777 #ifdef CONFIG_X86_32
778 int i;
779
780 /*
781 * First of all, decide if this is a 486 or higher
782 * It's a 486 if we can modify the AC flag
783 */
784 if (flag_is_changeable_p(X86_EFLAGS_AC))
785 c->x86 = 4;
786 else
787 c->x86 = 3;
788
789 for (i = 0; i < X86_VENDOR_NUM; i++)
790 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
791 c->x86_vendor_id[0] = 0;
792 cpu_devs[i]->c_identify(c);
793 if (c->x86_vendor_id[0]) {
794 get_cpu_vendor(c);
795 break;
796 }
797 }
798 #endif
799 }
800
801 /*
802 * Do minimum CPU detection early.
803 * Fields really needed: vendor, cpuid_level, family, model, mask,
804 * cache alignment.
805 * The others are not touched to avoid unwanted side effects.
806 *
807 * WARNING: this function is only called on the BP. Don't add code here
808 * that is supposed to run on all CPUs.
809 */
810 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
811 {
812 #ifdef CONFIG_X86_64
813 c->x86_clflush_size = 64;
814 c->x86_phys_bits = 36;
815 c->x86_virt_bits = 48;
816 #else
817 c->x86_clflush_size = 32;
818 c->x86_phys_bits = 32;
819 c->x86_virt_bits = 32;
820 #endif
821 c->x86_cache_alignment = c->x86_clflush_size;
822
823 memset(&c->x86_capability, 0, sizeof c->x86_capability);
824 c->extended_cpuid_level = 0;
825
826 /* cyrix could have cpuid enabled via c_identify()*/
827 if (have_cpuid_p()) {
828 cpu_detect(c);
829 get_cpu_vendor(c);
830 get_cpu_cap(c);
831 setup_force_cpu_cap(X86_FEATURE_CPUID);
832
833 if (this_cpu->c_early_init)
834 this_cpu->c_early_init(c);
835
836 c->cpu_index = 0;
837 filter_cpuid_features(c, false);
838
839 if (this_cpu->c_bsp_init)
840 this_cpu->c_bsp_init(c);
841 } else {
842 identify_cpu_without_cpuid(c);
843 setup_clear_cpu_cap(X86_FEATURE_CPUID);
844 }
845
846 setup_force_cpu_cap(X86_FEATURE_ALWAYS);
847 fpu__init_system(c);
848 }
849
850 void __init early_cpu_init(void)
851 {
852 const struct cpu_dev *const *cdev;
853 int count = 0;
854
855 #ifdef CONFIG_PROCESSOR_SELECT
856 pr_info("KERNEL supported cpus:\n");
857 #endif
858
859 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
860 const struct cpu_dev *cpudev = *cdev;
861
862 if (count >= X86_VENDOR_NUM)
863 break;
864 cpu_devs[count] = cpudev;
865 count++;
866
867 #ifdef CONFIG_PROCESSOR_SELECT
868 {
869 unsigned int j;
870
871 for (j = 0; j < 2; j++) {
872 if (!cpudev->c_ident[j])
873 continue;
874 pr_info(" %s %s\n", cpudev->c_vendor,
875 cpudev->c_ident[j]);
876 }
877 }
878 #endif
879 }
880 early_identify_cpu(&boot_cpu_data);
881 }
882
883 /*
884 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
885 * unfortunately, that's not true in practice because of early VIA
886 * chips and (more importantly) broken virtualizers that are not easy
887 * to detect. In the latter case it doesn't even *fail* reliably, so
888 * probing for it doesn't even work. Disable it completely on 32-bit
889 * unless we can find a reliable way to detect all the broken cases.
890 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
891 */
892 static void detect_nopl(struct cpuinfo_x86 *c)
893 {
894 #ifdef CONFIG_X86_32
895 clear_cpu_cap(c, X86_FEATURE_NOPL);
896 #else
897 set_cpu_cap(c, X86_FEATURE_NOPL);
898 #endif
899 }
900
901 static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
902 {
903 #ifdef CONFIG_X86_64
904 /*
905 * Empirically, writing zero to a segment selector on AMD does
906 * not clear the base, whereas writing zero to a segment
907 * selector on Intel does clear the base. Intel's behavior
908 * allows slightly faster context switches in the common case
909 * where GS is unused by the prev and next threads.
910 *
911 * Since neither vendor documents this anywhere that I can see,
912 * detect it directly instead of hardcoding the choice by
913 * vendor.
914 *
915 * I've designated AMD's behavior as the "bug" because it's
916 * counterintuitive and less friendly.
917 */
918
919 unsigned long old_base, tmp;
920 rdmsrl(MSR_FS_BASE, old_base);
921 wrmsrl(MSR_FS_BASE, 1);
922 loadsegment(fs, 0);
923 rdmsrl(MSR_FS_BASE, tmp);
924 if (tmp != 0)
925 set_cpu_bug(c, X86_BUG_NULL_SEG);
926 wrmsrl(MSR_FS_BASE, old_base);
927 #endif
928 }
929
930 static void generic_identify(struct cpuinfo_x86 *c)
931 {
932 c->extended_cpuid_level = 0;
933
934 if (!have_cpuid_p())
935 identify_cpu_without_cpuid(c);
936
937 /* cyrix could have cpuid enabled via c_identify()*/
938 if (!have_cpuid_p())
939 return;
940
941 cpu_detect(c);
942
943 get_cpu_vendor(c);
944
945 get_cpu_cap(c);
946
947 if (c->cpuid_level >= 0x00000001) {
948 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
949 #ifdef CONFIG_X86_32
950 # ifdef CONFIG_SMP
951 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
952 # else
953 c->apicid = c->initial_apicid;
954 # endif
955 #endif
956 c->phys_proc_id = c->initial_apicid;
957 }
958
959 get_model_name(c); /* Default name */
960
961 detect_nopl(c);
962
963 detect_null_seg_behavior(c);
964
965 /*
966 * ESPFIX is a strange bug. All real CPUs have it. Paravirt
967 * systems that run Linux at CPL > 0 may or may not have the
968 * issue, but, even if they have the issue, there's absolutely
969 * nothing we can do about it because we can't use the real IRET
970 * instruction.
971 *
972 * NB: For the time being, only 32-bit kernels support
973 * X86_BUG_ESPFIX as such. 64-bit kernels directly choose
974 * whether to apply espfix using paravirt hooks. If any
975 * non-paravirt system ever shows up that does *not* have the
976 * ESPFIX issue, we can change this.
977 */
978 #ifdef CONFIG_X86_32
979 # ifdef CONFIG_PARAVIRT
980 do {
981 extern void native_iret(void);
982 if (pv_cpu_ops.iret == native_iret)
983 set_cpu_bug(c, X86_BUG_ESPFIX);
984 } while (0);
985 # else
986 set_cpu_bug(c, X86_BUG_ESPFIX);
987 # endif
988 #endif
989 }
990
991 static void x86_init_cache_qos(struct cpuinfo_x86 *c)
992 {
993 /*
994 * The heavy lifting of max_rmid and cache_occ_scale are handled
995 * in get_cpu_cap(). Here we just set the max_rmid for the boot_cpu
996 * in case CQM bits really aren't there in this CPU.
997 */
998 if (c != &boot_cpu_data) {
999 boot_cpu_data.x86_cache_max_rmid =
1000 min(boot_cpu_data.x86_cache_max_rmid,
1001 c->x86_cache_max_rmid);
1002 }
1003 }
1004
1005 /*
1006 * Validate that ACPI/mptables have the same information about the
1007 * effective APIC id and update the package map.
1008 */
1009 static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1010 {
1011 #ifdef CONFIG_SMP
1012 unsigned int apicid, cpu = smp_processor_id();
1013
1014 apicid = apic->cpu_present_to_apicid(cpu);
1015
1016 if (apicid != c->apicid) {
1017 pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1018 cpu, apicid, c->initial_apicid);
1019 }
1020 BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1021 #else
1022 c->logical_proc_id = 0;
1023 #endif
1024 }
1025
1026 /*
1027 * This does the hard work of actually picking apart the CPU stuff...
1028 */
1029 static void identify_cpu(struct cpuinfo_x86 *c)
1030 {
1031 int i;
1032
1033 c->loops_per_jiffy = loops_per_jiffy;
1034 c->x86_cache_size = -1;
1035 c->x86_vendor = X86_VENDOR_UNKNOWN;
1036 c->x86_model = c->x86_mask = 0; /* So far unknown... */
1037 c->x86_vendor_id[0] = '\0'; /* Unset */
1038 c->x86_model_id[0] = '\0'; /* Unset */
1039 c->x86_max_cores = 1;
1040 c->x86_coreid_bits = 0;
1041 c->cu_id = 0xff;
1042 #ifdef CONFIG_X86_64
1043 c->x86_clflush_size = 64;
1044 c->x86_phys_bits = 36;
1045 c->x86_virt_bits = 48;
1046 #else
1047 c->cpuid_level = -1; /* CPUID not detected */
1048 c->x86_clflush_size = 32;
1049 c->x86_phys_bits = 32;
1050 c->x86_virt_bits = 32;
1051 #endif
1052 c->x86_cache_alignment = c->x86_clflush_size;
1053 memset(&c->x86_capability, 0, sizeof c->x86_capability);
1054
1055 generic_identify(c);
1056
1057 if (this_cpu->c_identify)
1058 this_cpu->c_identify(c);
1059
1060 /* Clear/Set all flags overridden by options, after probe */
1061 apply_forced_caps(c);
1062
1063 #ifdef CONFIG_X86_64
1064 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1065 #endif
1066
1067 /*
1068 * Vendor-specific initialization. In this section we
1069 * canonicalize the feature flags, meaning if there are
1070 * features a certain CPU supports which CPUID doesn't
1071 * tell us, CPUID claiming incorrect flags, or other bugs,
1072 * we handle them here.
1073 *
1074 * At the end of this section, c->x86_capability better
1075 * indicate the features this CPU genuinely supports!
1076 */
1077 if (this_cpu->c_init)
1078 this_cpu->c_init(c);
1079
1080 /* Disable the PN if appropriate */
1081 squash_the_stupid_serial_number(c);
1082
1083 /* Set up SMEP/SMAP */
1084 setup_smep(c);
1085 setup_smap(c);
1086
1087 /*
1088 * The vendor-specific functions might have changed features.
1089 * Now we do "generic changes."
1090 */
1091
1092 /* Filter out anything that depends on CPUID levels we don't have */
1093 filter_cpuid_features(c, true);
1094
1095 /* If the model name is still unset, do table lookup. */
1096 if (!c->x86_model_id[0]) {
1097 const char *p;
1098 p = table_lookup_model(c);
1099 if (p)
1100 strcpy(c->x86_model_id, p);
1101 else
1102 /* Last resort... */
1103 sprintf(c->x86_model_id, "%02x/%02x",
1104 c->x86, c->x86_model);
1105 }
1106
1107 #ifdef CONFIG_X86_64
1108 detect_ht(c);
1109 #endif
1110
1111 init_hypervisor(c);
1112 x86_init_rdrand(c);
1113 x86_init_cache_qos(c);
1114 setup_pku(c);
1115
1116 /*
1117 * Clear/Set all flags overridden by options, need do it
1118 * before following smp all cpus cap AND.
1119 */
1120 apply_forced_caps(c);
1121
1122 /*
1123 * On SMP, boot_cpu_data holds the common feature set between
1124 * all CPUs; so make sure that we indicate which features are
1125 * common between the CPUs. The first time this routine gets
1126 * executed, c == &boot_cpu_data.
1127 */
1128 if (c != &boot_cpu_data) {
1129 /* AND the already accumulated flags with these */
1130 for (i = 0; i < NCAPINTS; i++)
1131 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1132
1133 /* OR, i.e. replicate the bug flags */
1134 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1135 c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1136 }
1137
1138 /* Init Machine Check Exception if available. */
1139 mcheck_cpu_init(c);
1140
1141 select_idle_routine(c);
1142
1143 #ifdef CONFIG_NUMA
1144 numa_add_cpu(smp_processor_id());
1145 #endif
1146 }
1147
1148 /*
1149 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1150 * on 32-bit kernels:
1151 */
1152 #ifdef CONFIG_X86_32
1153 void enable_sep_cpu(void)
1154 {
1155 struct tss_struct *tss;
1156 int cpu;
1157
1158 if (!boot_cpu_has(X86_FEATURE_SEP))
1159 return;
1160
1161 cpu = get_cpu();
1162 tss = &per_cpu(cpu_tss, cpu);
1163
1164 /*
1165 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1166 * see the big comment in struct x86_hw_tss's definition.
1167 */
1168
1169 tss->x86_tss.ss1 = __KERNEL_CS;
1170 wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1171
1172 wrmsr(MSR_IA32_SYSENTER_ESP,
1173 (unsigned long)tss + offsetofend(struct tss_struct, SYSENTER_stack),
1174 0);
1175
1176 wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1177
1178 put_cpu();
1179 }
1180 #endif
1181
1182 void __init identify_boot_cpu(void)
1183 {
1184 identify_cpu(&boot_cpu_data);
1185 #ifdef CONFIG_X86_32
1186 sysenter_setup();
1187 enable_sep_cpu();
1188 #endif
1189 cpu_detect_tlb(&boot_cpu_data);
1190 }
1191
1192 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1193 {
1194 BUG_ON(c == &boot_cpu_data);
1195 identify_cpu(c);
1196 #ifdef CONFIG_X86_32
1197 enable_sep_cpu();
1198 #endif
1199 mtrr_ap_init();
1200 validate_apic_and_package_id(c);
1201 }
1202
1203 static __init int setup_noclflush(char *arg)
1204 {
1205 setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1206 setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1207 return 1;
1208 }
1209 __setup("noclflush", setup_noclflush);
1210
1211 void print_cpu_info(struct cpuinfo_x86 *c)
1212 {
1213 const char *vendor = NULL;
1214
1215 if (c->x86_vendor < X86_VENDOR_NUM) {
1216 vendor = this_cpu->c_vendor;
1217 } else {
1218 if (c->cpuid_level >= 0)
1219 vendor = c->x86_vendor_id;
1220 }
1221
1222 if (vendor && !strstr(c->x86_model_id, vendor))
1223 pr_cont("%s ", vendor);
1224
1225 if (c->x86_model_id[0])
1226 pr_cont("%s", c->x86_model_id);
1227 else
1228 pr_cont("%d86", c->x86);
1229
1230 pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1231
1232 if (c->x86_mask || c->cpuid_level >= 0)
1233 pr_cont(", stepping: 0x%x)\n", c->x86_mask);
1234 else
1235 pr_cont(")\n");
1236 }
1237
1238 static __init int setup_disablecpuid(char *arg)
1239 {
1240 int bit;
1241
1242 if (get_option(&arg, &bit) && bit >= 0 && bit < NCAPINTS * 32)
1243 setup_clear_cpu_cap(bit);
1244 else
1245 return 0;
1246
1247 return 1;
1248 }
1249 __setup("clearcpuid=", setup_disablecpuid);
1250
1251 #ifdef CONFIG_X86_64
1252 struct desc_ptr idt_descr __ro_after_init = {
1253 .size = NR_VECTORS * 16 - 1,
1254 .address = (unsigned long) idt_table,
1255 };
1256 const struct desc_ptr debug_idt_descr = {
1257 .size = NR_VECTORS * 16 - 1,
1258 .address = (unsigned long) debug_idt_table,
1259 };
1260
1261 DEFINE_PER_CPU_FIRST(union irq_stack_union,
1262 irq_stack_union) __aligned(PAGE_SIZE) __visible;
1263
1264 /*
1265 * The following percpu variables are hot. Align current_task to
1266 * cacheline size such that they fall in the same cacheline.
1267 */
1268 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1269 &init_task;
1270 EXPORT_PER_CPU_SYMBOL(current_task);
1271
1272 DEFINE_PER_CPU(char *, irq_stack_ptr) =
1273 init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE;
1274
1275 DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1276
1277 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1278 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1279
1280 /*
1281 * Special IST stacks which the CPU switches to when it calls
1282 * an IST-marked descriptor entry. Up to 7 stacks (hardware
1283 * limit), all of them are 4K, except the debug stack which
1284 * is 8K.
1285 */
1286 static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
1287 [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ,
1288 [DEBUG_STACK - 1] = DEBUG_STKSZ
1289 };
1290
1291 static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
1292 [(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]);
1293
1294 /* May not be marked __init: used by software suspend */
1295 void syscall_init(void)
1296 {
1297 wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1298 wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1299
1300 #ifdef CONFIG_IA32_EMULATION
1301 wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1302 /*
1303 * This only works on Intel CPUs.
1304 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1305 * This does not cause SYSENTER to jump to the wrong location, because
1306 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1307 */
1308 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1309 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1310 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1311 #else
1312 wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1313 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1314 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1315 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1316 #endif
1317
1318 /* Flags to clear on syscall */
1319 wrmsrl(MSR_SYSCALL_MASK,
1320 X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1321 X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1322 }
1323
1324 /*
1325 * Copies of the original ist values from the tss are only accessed during
1326 * debugging, no special alignment required.
1327 */
1328 DEFINE_PER_CPU(struct orig_ist, orig_ist);
1329
1330 static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
1331 DEFINE_PER_CPU(int, debug_stack_usage);
1332
1333 int is_debug_stack(unsigned long addr)
1334 {
1335 return __this_cpu_read(debug_stack_usage) ||
1336 (addr <= __this_cpu_read(debug_stack_addr) &&
1337 addr > (__this_cpu_read(debug_stack_addr) - DEBUG_STKSZ));
1338 }
1339 NOKPROBE_SYMBOL(is_debug_stack);
1340
1341 DEFINE_PER_CPU(u32, debug_idt_ctr);
1342
1343 void debug_stack_set_zero(void)
1344 {
1345 this_cpu_inc(debug_idt_ctr);
1346 load_current_idt();
1347 }
1348 NOKPROBE_SYMBOL(debug_stack_set_zero);
1349
1350 void debug_stack_reset(void)
1351 {
1352 if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
1353 return;
1354 if (this_cpu_dec_return(debug_idt_ctr) == 0)
1355 load_current_idt();
1356 }
1357 NOKPROBE_SYMBOL(debug_stack_reset);
1358
1359 #else /* CONFIG_X86_64 */
1360
1361 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1362 EXPORT_PER_CPU_SYMBOL(current_task);
1363 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1364 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1365
1366 /*
1367 * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1368 * the top of the kernel stack. Use an extra percpu variable to track the
1369 * top of the kernel stack directly.
1370 */
1371 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1372 (unsigned long)&init_thread_union + THREAD_SIZE;
1373 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1374
1375 #ifdef CONFIG_CC_STACKPROTECTOR
1376 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1377 #endif
1378
1379 #endif /* CONFIG_X86_64 */
1380
1381 /*
1382 * Clear all 6 debug registers:
1383 */
1384 static void clear_all_debug_regs(void)
1385 {
1386 int i;
1387
1388 for (i = 0; i < 8; i++) {
1389 /* Ignore db4, db5 */
1390 if ((i == 4) || (i == 5))
1391 continue;
1392
1393 set_debugreg(0, i);
1394 }
1395 }
1396
1397 #ifdef CONFIG_KGDB
1398 /*
1399 * Restore debug regs if using kgdbwait and you have a kernel debugger
1400 * connection established.
1401 */
1402 static void dbg_restore_debug_regs(void)
1403 {
1404 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1405 arch_kgdb_ops.correct_hw_break();
1406 }
1407 #else /* ! CONFIG_KGDB */
1408 #define dbg_restore_debug_regs()
1409 #endif /* ! CONFIG_KGDB */
1410
1411 static void wait_for_master_cpu(int cpu)
1412 {
1413 #ifdef CONFIG_SMP
1414 /*
1415 * wait for ACK from master CPU before continuing
1416 * with AP initialization
1417 */
1418 WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1419 while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1420 cpu_relax();
1421 #endif
1422 }
1423
1424 /*
1425 * cpu_init() initializes state that is per-CPU. Some data is already
1426 * initialized (naturally) in the bootstrap process, such as the GDT
1427 * and IDT. We reload them nevertheless, this function acts as a
1428 * 'CPU state barrier', nothing should get across.
1429 * A lot of state is already set up in PDA init for 64 bit
1430 */
1431 #ifdef CONFIG_X86_64
1432
1433 void cpu_init(void)
1434 {
1435 struct orig_ist *oist;
1436 struct task_struct *me;
1437 struct tss_struct *t;
1438 unsigned long v;
1439 int cpu = raw_smp_processor_id();
1440 int i;
1441
1442 wait_for_master_cpu(cpu);
1443
1444 /*
1445 * Initialize the CR4 shadow before doing anything that could
1446 * try to read it.
1447 */
1448 cr4_init_shadow();
1449
1450 if (cpu)
1451 load_ucode_ap();
1452
1453 t = &per_cpu(cpu_tss, cpu);
1454 oist = &per_cpu(orig_ist, cpu);
1455
1456 #ifdef CONFIG_NUMA
1457 if (this_cpu_read(numa_node) == 0 &&
1458 early_cpu_to_node(cpu) != NUMA_NO_NODE)
1459 set_numa_node(early_cpu_to_node(cpu));
1460 #endif
1461
1462 me = current;
1463
1464 pr_debug("Initializing CPU#%d\n", cpu);
1465
1466 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1467
1468 /*
1469 * Initialize the per-CPU GDT with the boot GDT,
1470 * and set up the GDT descriptor:
1471 */
1472
1473 switch_to_new_gdt(cpu);
1474 loadsegment(fs, 0);
1475
1476 load_current_idt();
1477
1478 memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1479 syscall_init();
1480
1481 wrmsrl(MSR_FS_BASE, 0);
1482 wrmsrl(MSR_KERNEL_GS_BASE, 0);
1483 barrier();
1484
1485 x86_configure_nx();
1486 x2apic_setup();
1487
1488 /*
1489 * set up and load the per-CPU TSS
1490 */
1491 if (!oist->ist[0]) {
1492 char *estacks = per_cpu(exception_stacks, cpu);
1493
1494 for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1495 estacks += exception_stack_sizes[v];
1496 oist->ist[v] = t->x86_tss.ist[v] =
1497 (unsigned long)estacks;
1498 if (v == DEBUG_STACK-1)
1499 per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
1500 }
1501 }
1502
1503 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1504
1505 /*
1506 * <= is required because the CPU will access up to
1507 * 8 bits beyond the end of the IO permission bitmap.
1508 */
1509 for (i = 0; i <= IO_BITMAP_LONGS; i++)
1510 t->io_bitmap[i] = ~0UL;
1511
1512 mmgrab(&init_mm);
1513 me->active_mm = &init_mm;
1514 BUG_ON(me->mm);
1515 enter_lazy_tlb(&init_mm, me);
1516
1517 load_sp0(t, &current->thread);
1518 set_tss_desc(cpu, t);
1519 load_TR_desc();
1520 load_mm_ldt(&init_mm);
1521
1522 clear_all_debug_regs();
1523 dbg_restore_debug_regs();
1524
1525 fpu__init_cpu();
1526
1527 if (is_uv_system())
1528 uv_cpu_init();
1529 }
1530
1531 #else
1532
1533 void cpu_init(void)
1534 {
1535 int cpu = smp_processor_id();
1536 struct task_struct *curr = current;
1537 struct tss_struct *t = &per_cpu(cpu_tss, cpu);
1538 struct thread_struct *thread = &curr->thread;
1539
1540 wait_for_master_cpu(cpu);
1541
1542 /*
1543 * Initialize the CR4 shadow before doing anything that could
1544 * try to read it.
1545 */
1546 cr4_init_shadow();
1547
1548 show_ucode_info_early();
1549
1550 pr_info("Initializing CPU#%d\n", cpu);
1551
1552 if (cpu_feature_enabled(X86_FEATURE_VME) ||
1553 boot_cpu_has(X86_FEATURE_TSC) ||
1554 boot_cpu_has(X86_FEATURE_DE))
1555 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1556
1557 load_current_idt();
1558 switch_to_new_gdt(cpu);
1559
1560 /*
1561 * Set up and load the per-CPU TSS and LDT
1562 */
1563 mmgrab(&init_mm);
1564 curr->active_mm = &init_mm;
1565 BUG_ON(curr->mm);
1566 enter_lazy_tlb(&init_mm, curr);
1567
1568 load_sp0(t, thread);
1569 set_tss_desc(cpu, t);
1570 load_TR_desc();
1571 load_mm_ldt(&init_mm);
1572
1573 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1574
1575 #ifdef CONFIG_DOUBLEFAULT
1576 /* Set up doublefault TSS pointer in the GDT */
1577 __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1578 #endif
1579
1580 clear_all_debug_regs();
1581 dbg_restore_debug_regs();
1582
1583 fpu__init_cpu();
1584 }
1585 #endif
1586
1587 static void bsp_resume(void)
1588 {
1589 if (this_cpu->c_bsp_resume)
1590 this_cpu->c_bsp_resume(&boot_cpu_data);
1591 }
1592
1593 static struct syscore_ops cpu_syscore_ops = {
1594 .resume = bsp_resume,
1595 };
1596
1597 static int __init init_cpu_syscore(void)
1598 {
1599 register_syscore_ops(&cpu_syscore_ops);
1600 return 0;
1601 }
1602 core_initcall(init_cpu_syscore);