]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - arch/x86/kernel/cpu/common.c
Merge branch 'stable' of git://git.kernel.org/pub/scm/linux/kernel/git/cmetcalf/linux...
[mirror_ubuntu-kernels.git] / arch / x86 / kernel / cpu / common.c
1 #include <linux/bootmem.h>
2 #include <linux/linkage.h>
3 #include <linux/bitops.h>
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/percpu.h>
7 #include <linux/string.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/init.h>
11 #include <linux/kgdb.h>
12 #include <linux/smp.h>
13 #include <linux/io.h>
14
15 #include <asm/stackprotector.h>
16 #include <asm/perf_event.h>
17 #include <asm/mmu_context.h>
18 #include <asm/archrandom.h>
19 #include <asm/hypervisor.h>
20 #include <asm/processor.h>
21 #include <asm/debugreg.h>
22 #include <asm/sections.h>
23 #include <linux/topology.h>
24 #include <linux/cpumask.h>
25 #include <asm/pgtable.h>
26 #include <linux/atomic.h>
27 #include <asm/proto.h>
28 #include <asm/setup.h>
29 #include <asm/apic.h>
30 #include <asm/desc.h>
31 #include <asm/i387.h>
32 #include <asm/fpu-internal.h>
33 #include <asm/mtrr.h>
34 #include <linux/numa.h>
35 #include <asm/asm.h>
36 #include <asm/cpu.h>
37 #include <asm/mce.h>
38 #include <asm/msr.h>
39 #include <asm/pat.h>
40
41 #ifdef CONFIG_X86_LOCAL_APIC
42 #include <asm/uv/uv.h>
43 #endif
44
45 #include "cpu.h"
46
47 /* all of these masks are initialized in setup_cpu_local_masks() */
48 cpumask_var_t cpu_initialized_mask;
49 cpumask_var_t cpu_callout_mask;
50 cpumask_var_t cpu_callin_mask;
51
52 /* representing cpus for which sibling maps can be computed */
53 cpumask_var_t cpu_sibling_setup_mask;
54
55 /* correctly size the local cpu masks */
56 void __init setup_cpu_local_masks(void)
57 {
58 alloc_bootmem_cpumask_var(&cpu_initialized_mask);
59 alloc_bootmem_cpumask_var(&cpu_callin_mask);
60 alloc_bootmem_cpumask_var(&cpu_callout_mask);
61 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
62 }
63
64 static void __cpuinit default_init(struct cpuinfo_x86 *c)
65 {
66 #ifdef CONFIG_X86_64
67 cpu_detect_cache_sizes(c);
68 #else
69 /* Not much we can do here... */
70 /* Check if at least it has cpuid */
71 if (c->cpuid_level == -1) {
72 /* No cpuid. It must be an ancient CPU */
73 if (c->x86 == 4)
74 strcpy(c->x86_model_id, "486");
75 else if (c->x86 == 3)
76 strcpy(c->x86_model_id, "386");
77 }
78 #endif
79 }
80
81 static const struct cpu_dev __cpuinitconst default_cpu = {
82 .c_init = default_init,
83 .c_vendor = "Unknown",
84 .c_x86_vendor = X86_VENDOR_UNKNOWN,
85 };
86
87 static const struct cpu_dev *this_cpu __cpuinitdata = &default_cpu;
88
89 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
90 #ifdef CONFIG_X86_64
91 /*
92 * We need valid kernel segments for data and code in long mode too
93 * IRET will check the segment types kkeil 2000/10/28
94 * Also sysret mandates a special GDT layout
95 *
96 * TLS descriptors are currently at a different place compared to i386.
97 * Hopefully nobody expects them at a fixed place (Wine?)
98 */
99 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
100 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
101 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
102 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
103 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
104 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
105 #else
106 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
107 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
108 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
109 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
110 /*
111 * Segments used for calling PnP BIOS have byte granularity.
112 * They code segments and data segments have fixed 64k limits,
113 * the transfer segment sizes are set at run time.
114 */
115 /* 32-bit code */
116 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
117 /* 16-bit code */
118 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
119 /* 16-bit data */
120 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
121 /* 16-bit data */
122 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
123 /* 16-bit data */
124 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
125 /*
126 * The APM segments have byte granularity and their bases
127 * are set at run time. All have 64k limits.
128 */
129 /* 32-bit code */
130 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
131 /* 16-bit code */
132 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
133 /* data */
134 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
135
136 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
137 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
138 GDT_STACK_CANARY_INIT
139 #endif
140 } };
141 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
142
143 static int __init x86_xsave_setup(char *s)
144 {
145 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
146 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
147 return 1;
148 }
149 __setup("noxsave", x86_xsave_setup);
150
151 static int __init x86_xsaveopt_setup(char *s)
152 {
153 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
154 return 1;
155 }
156 __setup("noxsaveopt", x86_xsaveopt_setup);
157
158 #ifdef CONFIG_X86_32
159 static int cachesize_override __cpuinitdata = -1;
160 static int disable_x86_serial_nr __cpuinitdata = 1;
161
162 static int __init cachesize_setup(char *str)
163 {
164 get_option(&str, &cachesize_override);
165 return 1;
166 }
167 __setup("cachesize=", cachesize_setup);
168
169 static int __init x86_fxsr_setup(char *s)
170 {
171 setup_clear_cpu_cap(X86_FEATURE_FXSR);
172 setup_clear_cpu_cap(X86_FEATURE_XMM);
173 return 1;
174 }
175 __setup("nofxsr", x86_fxsr_setup);
176
177 static int __init x86_sep_setup(char *s)
178 {
179 setup_clear_cpu_cap(X86_FEATURE_SEP);
180 return 1;
181 }
182 __setup("nosep", x86_sep_setup);
183
184 /* Standard macro to see if a specific flag is changeable */
185 static inline int flag_is_changeable_p(u32 flag)
186 {
187 u32 f1, f2;
188
189 /*
190 * Cyrix and IDT cpus allow disabling of CPUID
191 * so the code below may return different results
192 * when it is executed before and after enabling
193 * the CPUID. Add "volatile" to not allow gcc to
194 * optimize the subsequent calls to this function.
195 */
196 asm volatile ("pushfl \n\t"
197 "pushfl \n\t"
198 "popl %0 \n\t"
199 "movl %0, %1 \n\t"
200 "xorl %2, %0 \n\t"
201 "pushl %0 \n\t"
202 "popfl \n\t"
203 "pushfl \n\t"
204 "popl %0 \n\t"
205 "popfl \n\t"
206
207 : "=&r" (f1), "=&r" (f2)
208 : "ir" (flag));
209
210 return ((f1^f2) & flag) != 0;
211 }
212
213 /* Probe for the CPUID instruction */
214 static int __cpuinit have_cpuid_p(void)
215 {
216 return flag_is_changeable_p(X86_EFLAGS_ID);
217 }
218
219 static void __cpuinit squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
220 {
221 unsigned long lo, hi;
222
223 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
224 return;
225
226 /* Disable processor serial number: */
227
228 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
229 lo |= 0x200000;
230 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
231
232 printk(KERN_NOTICE "CPU serial number disabled.\n");
233 clear_cpu_cap(c, X86_FEATURE_PN);
234
235 /* Disabling the serial number may affect the cpuid level */
236 c->cpuid_level = cpuid_eax(0);
237 }
238
239 static int __init x86_serial_nr_setup(char *s)
240 {
241 disable_x86_serial_nr = 0;
242 return 1;
243 }
244 __setup("serialnumber", x86_serial_nr_setup);
245 #else
246 static inline int flag_is_changeable_p(u32 flag)
247 {
248 return 1;
249 }
250 /* Probe for the CPUID instruction */
251 static inline int have_cpuid_p(void)
252 {
253 return 1;
254 }
255 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
256 {
257 }
258 #endif
259
260 static int disable_smep __cpuinitdata;
261 static __init int setup_disable_smep(char *arg)
262 {
263 disable_smep = 1;
264 return 1;
265 }
266 __setup("nosmep", setup_disable_smep);
267
268 static __cpuinit void setup_smep(struct cpuinfo_x86 *c)
269 {
270 if (cpu_has(c, X86_FEATURE_SMEP)) {
271 if (unlikely(disable_smep)) {
272 setup_clear_cpu_cap(X86_FEATURE_SMEP);
273 clear_in_cr4(X86_CR4_SMEP);
274 } else
275 set_in_cr4(X86_CR4_SMEP);
276 }
277 }
278
279 /*
280 * Some CPU features depend on higher CPUID levels, which may not always
281 * be available due to CPUID level capping or broken virtualization
282 * software. Add those features to this table to auto-disable them.
283 */
284 struct cpuid_dependent_feature {
285 u32 feature;
286 u32 level;
287 };
288
289 static const struct cpuid_dependent_feature __cpuinitconst
290 cpuid_dependent_features[] = {
291 { X86_FEATURE_MWAIT, 0x00000005 },
292 { X86_FEATURE_DCA, 0x00000009 },
293 { X86_FEATURE_XSAVE, 0x0000000d },
294 { 0, 0 }
295 };
296
297 static void __cpuinit filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
298 {
299 const struct cpuid_dependent_feature *df;
300
301 for (df = cpuid_dependent_features; df->feature; df++) {
302
303 if (!cpu_has(c, df->feature))
304 continue;
305 /*
306 * Note: cpuid_level is set to -1 if unavailable, but
307 * extended_extended_level is set to 0 if unavailable
308 * and the legitimate extended levels are all negative
309 * when signed; hence the weird messing around with
310 * signs here...
311 */
312 if (!((s32)df->level < 0 ?
313 (u32)df->level > (u32)c->extended_cpuid_level :
314 (s32)df->level > (s32)c->cpuid_level))
315 continue;
316
317 clear_cpu_cap(c, df->feature);
318 if (!warn)
319 continue;
320
321 printk(KERN_WARNING
322 "CPU: CPU feature %s disabled, no CPUID level 0x%x\n",
323 x86_cap_flags[df->feature], df->level);
324 }
325 }
326
327 /*
328 * Naming convention should be: <Name> [(<Codename>)]
329 * This table only is used unless init_<vendor>() below doesn't set it;
330 * in particular, if CPUID levels 0x80000002..4 are supported, this
331 * isn't used
332 */
333
334 /* Look up CPU names by table lookup. */
335 static const char *__cpuinit table_lookup_model(struct cpuinfo_x86 *c)
336 {
337 const struct cpu_model_info *info;
338
339 if (c->x86_model >= 16)
340 return NULL; /* Range check */
341
342 if (!this_cpu)
343 return NULL;
344
345 info = this_cpu->c_models;
346
347 while (info && info->family) {
348 if (info->family == c->x86)
349 return info->model_names[c->x86_model];
350 info++;
351 }
352 return NULL; /* Not found */
353 }
354
355 __u32 cpu_caps_cleared[NCAPINTS] __cpuinitdata;
356 __u32 cpu_caps_set[NCAPINTS] __cpuinitdata;
357
358 void load_percpu_segment(int cpu)
359 {
360 #ifdef CONFIG_X86_32
361 loadsegment(fs, __KERNEL_PERCPU);
362 #else
363 loadsegment(gs, 0);
364 wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
365 #endif
366 load_stack_canary_segment();
367 }
368
369 /*
370 * Current gdt points %fs at the "master" per-cpu area: after this,
371 * it's on the real one.
372 */
373 void switch_to_new_gdt(int cpu)
374 {
375 struct desc_ptr gdt_descr;
376
377 gdt_descr.address = (long)get_cpu_gdt_table(cpu);
378 gdt_descr.size = GDT_SIZE - 1;
379 load_gdt(&gdt_descr);
380 /* Reload the per-cpu base */
381
382 load_percpu_segment(cpu);
383 }
384
385 static const struct cpu_dev *__cpuinitdata cpu_devs[X86_VENDOR_NUM] = {};
386
387 static void __cpuinit get_model_name(struct cpuinfo_x86 *c)
388 {
389 unsigned int *v;
390 char *p, *q;
391
392 if (c->extended_cpuid_level < 0x80000004)
393 return;
394
395 v = (unsigned int *)c->x86_model_id;
396 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
397 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
398 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
399 c->x86_model_id[48] = 0;
400
401 /*
402 * Intel chips right-justify this string for some dumb reason;
403 * undo that brain damage:
404 */
405 p = q = &c->x86_model_id[0];
406 while (*p == ' ')
407 p++;
408 if (p != q) {
409 while (*p)
410 *q++ = *p++;
411 while (q <= &c->x86_model_id[48])
412 *q++ = '\0'; /* Zero-pad the rest */
413 }
414 }
415
416 void __cpuinit cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
417 {
418 unsigned int n, dummy, ebx, ecx, edx, l2size;
419
420 n = c->extended_cpuid_level;
421
422 if (n >= 0x80000005) {
423 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
424 c->x86_cache_size = (ecx>>24) + (edx>>24);
425 #ifdef CONFIG_X86_64
426 /* On K8 L1 TLB is inclusive, so don't count it */
427 c->x86_tlbsize = 0;
428 #endif
429 }
430
431 if (n < 0x80000006) /* Some chips just has a large L1. */
432 return;
433
434 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
435 l2size = ecx >> 16;
436
437 #ifdef CONFIG_X86_64
438 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
439 #else
440 /* do processor-specific cache resizing */
441 if (this_cpu->c_size_cache)
442 l2size = this_cpu->c_size_cache(c, l2size);
443
444 /* Allow user to override all this if necessary. */
445 if (cachesize_override != -1)
446 l2size = cachesize_override;
447
448 if (l2size == 0)
449 return; /* Again, no L2 cache is possible */
450 #endif
451
452 c->x86_cache_size = l2size;
453 }
454
455 void __cpuinit detect_ht(struct cpuinfo_x86 *c)
456 {
457 #ifdef CONFIG_X86_HT
458 u32 eax, ebx, ecx, edx;
459 int index_msb, core_bits;
460 static bool printed;
461
462 if (!cpu_has(c, X86_FEATURE_HT))
463 return;
464
465 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
466 goto out;
467
468 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
469 return;
470
471 cpuid(1, &eax, &ebx, &ecx, &edx);
472
473 smp_num_siblings = (ebx & 0xff0000) >> 16;
474
475 if (smp_num_siblings == 1) {
476 printk_once(KERN_INFO "CPU0: Hyper-Threading is disabled\n");
477 goto out;
478 }
479
480 if (smp_num_siblings <= 1)
481 goto out;
482
483 index_msb = get_count_order(smp_num_siblings);
484 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
485
486 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
487
488 index_msb = get_count_order(smp_num_siblings);
489
490 core_bits = get_count_order(c->x86_max_cores);
491
492 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
493 ((1 << core_bits) - 1);
494
495 out:
496 if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
497 printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
498 c->phys_proc_id);
499 printk(KERN_INFO "CPU: Processor Core ID: %d\n",
500 c->cpu_core_id);
501 printed = 1;
502 }
503 #endif
504 }
505
506 static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
507 {
508 char *v = c->x86_vendor_id;
509 int i;
510
511 for (i = 0; i < X86_VENDOR_NUM; i++) {
512 if (!cpu_devs[i])
513 break;
514
515 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
516 (cpu_devs[i]->c_ident[1] &&
517 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
518
519 this_cpu = cpu_devs[i];
520 c->x86_vendor = this_cpu->c_x86_vendor;
521 return;
522 }
523 }
524
525 printk_once(KERN_ERR
526 "CPU: vendor_id '%s' unknown, using generic init.\n" \
527 "CPU: Your system may be unstable.\n", v);
528
529 c->x86_vendor = X86_VENDOR_UNKNOWN;
530 this_cpu = &default_cpu;
531 }
532
533 void __cpuinit cpu_detect(struct cpuinfo_x86 *c)
534 {
535 /* Get vendor name */
536 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
537 (unsigned int *)&c->x86_vendor_id[0],
538 (unsigned int *)&c->x86_vendor_id[8],
539 (unsigned int *)&c->x86_vendor_id[4]);
540
541 c->x86 = 4;
542 /* Intel-defined flags: level 0x00000001 */
543 if (c->cpuid_level >= 0x00000001) {
544 u32 junk, tfms, cap0, misc;
545
546 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
547 c->x86 = (tfms >> 8) & 0xf;
548 c->x86_model = (tfms >> 4) & 0xf;
549 c->x86_mask = tfms & 0xf;
550
551 if (c->x86 == 0xf)
552 c->x86 += (tfms >> 20) & 0xff;
553 if (c->x86 >= 0x6)
554 c->x86_model += ((tfms >> 16) & 0xf) << 4;
555
556 if (cap0 & (1<<19)) {
557 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
558 c->x86_cache_alignment = c->x86_clflush_size;
559 }
560 }
561 }
562
563 void __cpuinit get_cpu_cap(struct cpuinfo_x86 *c)
564 {
565 u32 tfms, xlvl;
566 u32 ebx;
567
568 /* Intel-defined flags: level 0x00000001 */
569 if (c->cpuid_level >= 0x00000001) {
570 u32 capability, excap;
571
572 cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
573 c->x86_capability[0] = capability;
574 c->x86_capability[4] = excap;
575 }
576
577 /* Additional Intel-defined flags: level 0x00000007 */
578 if (c->cpuid_level >= 0x00000007) {
579 u32 eax, ebx, ecx, edx;
580
581 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
582
583 c->x86_capability[9] = ebx;
584 }
585
586 /* AMD-defined flags: level 0x80000001 */
587 xlvl = cpuid_eax(0x80000000);
588 c->extended_cpuid_level = xlvl;
589
590 if ((xlvl & 0xffff0000) == 0x80000000) {
591 if (xlvl >= 0x80000001) {
592 c->x86_capability[1] = cpuid_edx(0x80000001);
593 c->x86_capability[6] = cpuid_ecx(0x80000001);
594 }
595 }
596
597 if (c->extended_cpuid_level >= 0x80000008) {
598 u32 eax = cpuid_eax(0x80000008);
599
600 c->x86_virt_bits = (eax >> 8) & 0xff;
601 c->x86_phys_bits = eax & 0xff;
602 }
603 #ifdef CONFIG_X86_32
604 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
605 c->x86_phys_bits = 36;
606 #endif
607
608 if (c->extended_cpuid_level >= 0x80000007)
609 c->x86_power = cpuid_edx(0x80000007);
610
611 init_scattered_cpuid_features(c);
612 }
613
614 static void __cpuinit identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
615 {
616 #ifdef CONFIG_X86_32
617 int i;
618
619 /*
620 * First of all, decide if this is a 486 or higher
621 * It's a 486 if we can modify the AC flag
622 */
623 if (flag_is_changeable_p(X86_EFLAGS_AC))
624 c->x86 = 4;
625 else
626 c->x86 = 3;
627
628 for (i = 0; i < X86_VENDOR_NUM; i++)
629 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
630 c->x86_vendor_id[0] = 0;
631 cpu_devs[i]->c_identify(c);
632 if (c->x86_vendor_id[0]) {
633 get_cpu_vendor(c);
634 break;
635 }
636 }
637 #endif
638 }
639
640 /*
641 * Do minimum CPU detection early.
642 * Fields really needed: vendor, cpuid_level, family, model, mask,
643 * cache alignment.
644 * The others are not touched to avoid unwanted side effects.
645 *
646 * WARNING: this function is only called on the BP. Don't add code here
647 * that is supposed to run on all CPUs.
648 */
649 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
650 {
651 #ifdef CONFIG_X86_64
652 c->x86_clflush_size = 64;
653 c->x86_phys_bits = 36;
654 c->x86_virt_bits = 48;
655 #else
656 c->x86_clflush_size = 32;
657 c->x86_phys_bits = 32;
658 c->x86_virt_bits = 32;
659 #endif
660 c->x86_cache_alignment = c->x86_clflush_size;
661
662 memset(&c->x86_capability, 0, sizeof c->x86_capability);
663 c->extended_cpuid_level = 0;
664
665 if (!have_cpuid_p())
666 identify_cpu_without_cpuid(c);
667
668 /* cyrix could have cpuid enabled via c_identify()*/
669 if (!have_cpuid_p())
670 return;
671
672 cpu_detect(c);
673
674 get_cpu_vendor(c);
675
676 get_cpu_cap(c);
677
678 if (this_cpu->c_early_init)
679 this_cpu->c_early_init(c);
680
681 c->cpu_index = 0;
682 filter_cpuid_features(c, false);
683
684 setup_smep(c);
685
686 if (this_cpu->c_bsp_init)
687 this_cpu->c_bsp_init(c);
688 }
689
690 void __init early_cpu_init(void)
691 {
692 const struct cpu_dev *const *cdev;
693 int count = 0;
694
695 #ifdef CONFIG_PROCESSOR_SELECT
696 printk(KERN_INFO "KERNEL supported cpus:\n");
697 #endif
698
699 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
700 const struct cpu_dev *cpudev = *cdev;
701
702 if (count >= X86_VENDOR_NUM)
703 break;
704 cpu_devs[count] = cpudev;
705 count++;
706
707 #ifdef CONFIG_PROCESSOR_SELECT
708 {
709 unsigned int j;
710
711 for (j = 0; j < 2; j++) {
712 if (!cpudev->c_ident[j])
713 continue;
714 printk(KERN_INFO " %s %s\n", cpudev->c_vendor,
715 cpudev->c_ident[j]);
716 }
717 }
718 #endif
719 }
720 early_identify_cpu(&boot_cpu_data);
721 }
722
723 /*
724 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
725 * unfortunately, that's not true in practice because of early VIA
726 * chips and (more importantly) broken virtualizers that are not easy
727 * to detect. In the latter case it doesn't even *fail* reliably, so
728 * probing for it doesn't even work. Disable it completely on 32-bit
729 * unless we can find a reliable way to detect all the broken cases.
730 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
731 */
732 static void __cpuinit detect_nopl(struct cpuinfo_x86 *c)
733 {
734 #ifdef CONFIG_X86_32
735 clear_cpu_cap(c, X86_FEATURE_NOPL);
736 #else
737 set_cpu_cap(c, X86_FEATURE_NOPL);
738 #endif
739 }
740
741 static void __cpuinit generic_identify(struct cpuinfo_x86 *c)
742 {
743 c->extended_cpuid_level = 0;
744
745 if (!have_cpuid_p())
746 identify_cpu_without_cpuid(c);
747
748 /* cyrix could have cpuid enabled via c_identify()*/
749 if (!have_cpuid_p())
750 return;
751
752 cpu_detect(c);
753
754 get_cpu_vendor(c);
755
756 get_cpu_cap(c);
757
758 if (c->cpuid_level >= 0x00000001) {
759 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
760 #ifdef CONFIG_X86_32
761 # ifdef CONFIG_X86_HT
762 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
763 # else
764 c->apicid = c->initial_apicid;
765 # endif
766 #endif
767 c->phys_proc_id = c->initial_apicid;
768 }
769
770 setup_smep(c);
771
772 get_model_name(c); /* Default name */
773
774 detect_nopl(c);
775 }
776
777 /*
778 * This does the hard work of actually picking apart the CPU stuff...
779 */
780 static void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
781 {
782 int i;
783
784 c->loops_per_jiffy = loops_per_jiffy;
785 c->x86_cache_size = -1;
786 c->x86_vendor = X86_VENDOR_UNKNOWN;
787 c->x86_model = c->x86_mask = 0; /* So far unknown... */
788 c->x86_vendor_id[0] = '\0'; /* Unset */
789 c->x86_model_id[0] = '\0'; /* Unset */
790 c->x86_max_cores = 1;
791 c->x86_coreid_bits = 0;
792 #ifdef CONFIG_X86_64
793 c->x86_clflush_size = 64;
794 c->x86_phys_bits = 36;
795 c->x86_virt_bits = 48;
796 #else
797 c->cpuid_level = -1; /* CPUID not detected */
798 c->x86_clflush_size = 32;
799 c->x86_phys_bits = 32;
800 c->x86_virt_bits = 32;
801 #endif
802 c->x86_cache_alignment = c->x86_clflush_size;
803 memset(&c->x86_capability, 0, sizeof c->x86_capability);
804
805 generic_identify(c);
806
807 if (this_cpu->c_identify)
808 this_cpu->c_identify(c);
809
810 /* Clear/Set all flags overriden by options, after probe */
811 for (i = 0; i < NCAPINTS; i++) {
812 c->x86_capability[i] &= ~cpu_caps_cleared[i];
813 c->x86_capability[i] |= cpu_caps_set[i];
814 }
815
816 #ifdef CONFIG_X86_64
817 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
818 #endif
819
820 /*
821 * Vendor-specific initialization. In this section we
822 * canonicalize the feature flags, meaning if there are
823 * features a certain CPU supports which CPUID doesn't
824 * tell us, CPUID claiming incorrect flags, or other bugs,
825 * we handle them here.
826 *
827 * At the end of this section, c->x86_capability better
828 * indicate the features this CPU genuinely supports!
829 */
830 if (this_cpu->c_init)
831 this_cpu->c_init(c);
832
833 /* Disable the PN if appropriate */
834 squash_the_stupid_serial_number(c);
835
836 /*
837 * The vendor-specific functions might have changed features.
838 * Now we do "generic changes."
839 */
840
841 /* Filter out anything that depends on CPUID levels we don't have */
842 filter_cpuid_features(c, true);
843
844 /* If the model name is still unset, do table lookup. */
845 if (!c->x86_model_id[0]) {
846 const char *p;
847 p = table_lookup_model(c);
848 if (p)
849 strcpy(c->x86_model_id, p);
850 else
851 /* Last resort... */
852 sprintf(c->x86_model_id, "%02x/%02x",
853 c->x86, c->x86_model);
854 }
855
856 #ifdef CONFIG_X86_64
857 detect_ht(c);
858 #endif
859
860 init_hypervisor(c);
861 x86_init_rdrand(c);
862
863 /*
864 * Clear/Set all flags overriden by options, need do it
865 * before following smp all cpus cap AND.
866 */
867 for (i = 0; i < NCAPINTS; i++) {
868 c->x86_capability[i] &= ~cpu_caps_cleared[i];
869 c->x86_capability[i] |= cpu_caps_set[i];
870 }
871
872 /*
873 * On SMP, boot_cpu_data holds the common feature set between
874 * all CPUs; so make sure that we indicate which features are
875 * common between the CPUs. The first time this routine gets
876 * executed, c == &boot_cpu_data.
877 */
878 if (c != &boot_cpu_data) {
879 /* AND the already accumulated flags with these */
880 for (i = 0; i < NCAPINTS; i++)
881 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
882 }
883
884 /* Init Machine Check Exception if available. */
885 mcheck_cpu_init(c);
886
887 select_idle_routine(c);
888
889 #ifdef CONFIG_NUMA
890 numa_add_cpu(smp_processor_id());
891 #endif
892 }
893
894 #ifdef CONFIG_X86_64
895 static void vgetcpu_set_mode(void)
896 {
897 if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP))
898 vgetcpu_mode = VGETCPU_RDTSCP;
899 else
900 vgetcpu_mode = VGETCPU_LSL;
901 }
902 #endif
903
904 void __init identify_boot_cpu(void)
905 {
906 identify_cpu(&boot_cpu_data);
907 init_amd_e400_c1e_mask();
908 #ifdef CONFIG_X86_32
909 sysenter_setup();
910 enable_sep_cpu();
911 #else
912 vgetcpu_set_mode();
913 #endif
914 }
915
916 void __cpuinit identify_secondary_cpu(struct cpuinfo_x86 *c)
917 {
918 BUG_ON(c == &boot_cpu_data);
919 identify_cpu(c);
920 #ifdef CONFIG_X86_32
921 enable_sep_cpu();
922 #endif
923 mtrr_ap_init();
924 }
925
926 struct msr_range {
927 unsigned min;
928 unsigned max;
929 };
930
931 static const struct msr_range msr_range_array[] __cpuinitconst = {
932 { 0x00000000, 0x00000418},
933 { 0xc0000000, 0xc000040b},
934 { 0xc0010000, 0xc0010142},
935 { 0xc0011000, 0xc001103b},
936 };
937
938 static void __cpuinit __print_cpu_msr(void)
939 {
940 unsigned index_min, index_max;
941 unsigned index;
942 u64 val;
943 int i;
944
945 for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
946 index_min = msr_range_array[i].min;
947 index_max = msr_range_array[i].max;
948
949 for (index = index_min; index < index_max; index++) {
950 if (rdmsrl_amd_safe(index, &val))
951 continue;
952 printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
953 }
954 }
955 }
956
957 static int show_msr __cpuinitdata;
958
959 static __init int setup_show_msr(char *arg)
960 {
961 int num;
962
963 get_option(&arg, &num);
964
965 if (num > 0)
966 show_msr = num;
967 return 1;
968 }
969 __setup("show_msr=", setup_show_msr);
970
971 static __init int setup_noclflush(char *arg)
972 {
973 setup_clear_cpu_cap(X86_FEATURE_CLFLSH);
974 return 1;
975 }
976 __setup("noclflush", setup_noclflush);
977
978 void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
979 {
980 const char *vendor = NULL;
981
982 if (c->x86_vendor < X86_VENDOR_NUM) {
983 vendor = this_cpu->c_vendor;
984 } else {
985 if (c->cpuid_level >= 0)
986 vendor = c->x86_vendor_id;
987 }
988
989 if (vendor && !strstr(c->x86_model_id, vendor))
990 printk(KERN_CONT "%s ", vendor);
991
992 if (c->x86_model_id[0])
993 printk(KERN_CONT "%s", c->x86_model_id);
994 else
995 printk(KERN_CONT "%d86", c->x86);
996
997 if (c->x86_mask || c->cpuid_level >= 0)
998 printk(KERN_CONT " stepping %02x\n", c->x86_mask);
999 else
1000 printk(KERN_CONT "\n");
1001
1002 print_cpu_msr(c);
1003 }
1004
1005 void __cpuinit print_cpu_msr(struct cpuinfo_x86 *c)
1006 {
1007 if (c->cpu_index < show_msr)
1008 __print_cpu_msr();
1009 }
1010
1011 static __init int setup_disablecpuid(char *arg)
1012 {
1013 int bit;
1014
1015 if (get_option(&arg, &bit) && bit < NCAPINTS*32)
1016 setup_clear_cpu_cap(bit);
1017 else
1018 return 0;
1019
1020 return 1;
1021 }
1022 __setup("clearcpuid=", setup_disablecpuid);
1023
1024 #ifdef CONFIG_X86_64
1025 struct desc_ptr idt_descr = { NR_VECTORS * 16 - 1, (unsigned long) idt_table };
1026 struct desc_ptr nmi_idt_descr = { NR_VECTORS * 16 - 1,
1027 (unsigned long) nmi_idt_table };
1028
1029 DEFINE_PER_CPU_FIRST(union irq_stack_union,
1030 irq_stack_union) __aligned(PAGE_SIZE);
1031
1032 /*
1033 * The following four percpu variables are hot. Align current_task to
1034 * cacheline size such that all four fall in the same cacheline.
1035 */
1036 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1037 &init_task;
1038 EXPORT_PER_CPU_SYMBOL(current_task);
1039
1040 DEFINE_PER_CPU(unsigned long, kernel_stack) =
1041 (unsigned long)&init_thread_union - KERNEL_STACK_OFFSET + THREAD_SIZE;
1042 EXPORT_PER_CPU_SYMBOL(kernel_stack);
1043
1044 DEFINE_PER_CPU(char *, irq_stack_ptr) =
1045 init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64;
1046
1047 DEFINE_PER_CPU(unsigned int, irq_count) = -1;
1048
1049 DEFINE_PER_CPU(struct task_struct *, fpu_owner_task);
1050
1051 /*
1052 * Special IST stacks which the CPU switches to when it calls
1053 * an IST-marked descriptor entry. Up to 7 stacks (hardware
1054 * limit), all of them are 4K, except the debug stack which
1055 * is 8K.
1056 */
1057 static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
1058 [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ,
1059 [DEBUG_STACK - 1] = DEBUG_STKSZ
1060 };
1061
1062 static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
1063 [(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]);
1064
1065 /* May not be marked __init: used by software suspend */
1066 void syscall_init(void)
1067 {
1068 /*
1069 * LSTAR and STAR live in a bit strange symbiosis.
1070 * They both write to the same internal register. STAR allows to
1071 * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
1072 */
1073 wrmsrl(MSR_STAR, ((u64)__USER32_CS)<<48 | ((u64)__KERNEL_CS)<<32);
1074 wrmsrl(MSR_LSTAR, system_call);
1075 wrmsrl(MSR_CSTAR, ignore_sysret);
1076
1077 #ifdef CONFIG_IA32_EMULATION
1078 syscall32_cpu_init();
1079 #endif
1080
1081 /* Flags to clear on syscall */
1082 wrmsrl(MSR_SYSCALL_MASK,
1083 X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|X86_EFLAGS_IOPL);
1084 }
1085
1086 unsigned long kernel_eflags;
1087
1088 /*
1089 * Copies of the original ist values from the tss are only accessed during
1090 * debugging, no special alignment required.
1091 */
1092 DEFINE_PER_CPU(struct orig_ist, orig_ist);
1093
1094 static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
1095 DEFINE_PER_CPU(int, debug_stack_usage);
1096
1097 int is_debug_stack(unsigned long addr)
1098 {
1099 return __get_cpu_var(debug_stack_usage) ||
1100 (addr <= __get_cpu_var(debug_stack_addr) &&
1101 addr > (__get_cpu_var(debug_stack_addr) - DEBUG_STKSZ));
1102 }
1103
1104 void debug_stack_set_zero(void)
1105 {
1106 load_idt((const struct desc_ptr *)&nmi_idt_descr);
1107 }
1108
1109 void debug_stack_reset(void)
1110 {
1111 load_idt((const struct desc_ptr *)&idt_descr);
1112 }
1113
1114 #else /* CONFIG_X86_64 */
1115
1116 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1117 EXPORT_PER_CPU_SYMBOL(current_task);
1118 DEFINE_PER_CPU(struct task_struct *, fpu_owner_task);
1119
1120 #ifdef CONFIG_CC_STACKPROTECTOR
1121 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1122 #endif
1123
1124 /* Make sure %fs and %gs are initialized properly in idle threads */
1125 struct pt_regs * __cpuinit idle_regs(struct pt_regs *regs)
1126 {
1127 memset(regs, 0, sizeof(struct pt_regs));
1128 regs->fs = __KERNEL_PERCPU;
1129 regs->gs = __KERNEL_STACK_CANARY;
1130
1131 return regs;
1132 }
1133 #endif /* CONFIG_X86_64 */
1134
1135 /*
1136 * Clear all 6 debug registers:
1137 */
1138 static void clear_all_debug_regs(void)
1139 {
1140 int i;
1141
1142 for (i = 0; i < 8; i++) {
1143 /* Ignore db4, db5 */
1144 if ((i == 4) || (i == 5))
1145 continue;
1146
1147 set_debugreg(0, i);
1148 }
1149 }
1150
1151 #ifdef CONFIG_KGDB
1152 /*
1153 * Restore debug regs if using kgdbwait and you have a kernel debugger
1154 * connection established.
1155 */
1156 static void dbg_restore_debug_regs(void)
1157 {
1158 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1159 arch_kgdb_ops.correct_hw_break();
1160 }
1161 #else /* ! CONFIG_KGDB */
1162 #define dbg_restore_debug_regs()
1163 #endif /* ! CONFIG_KGDB */
1164
1165 /*
1166 * cpu_init() initializes state that is per-CPU. Some data is already
1167 * initialized (naturally) in the bootstrap process, such as the GDT
1168 * and IDT. We reload them nevertheless, this function acts as a
1169 * 'CPU state barrier', nothing should get across.
1170 * A lot of state is already set up in PDA init for 64 bit
1171 */
1172 #ifdef CONFIG_X86_64
1173
1174 void __cpuinit cpu_init(void)
1175 {
1176 struct orig_ist *oist;
1177 struct task_struct *me;
1178 struct tss_struct *t;
1179 unsigned long v;
1180 int cpu;
1181 int i;
1182
1183 cpu = stack_smp_processor_id();
1184 t = &per_cpu(init_tss, cpu);
1185 oist = &per_cpu(orig_ist, cpu);
1186
1187 #ifdef CONFIG_NUMA
1188 if (cpu != 0 && percpu_read(numa_node) == 0 &&
1189 early_cpu_to_node(cpu) != NUMA_NO_NODE)
1190 set_numa_node(early_cpu_to_node(cpu));
1191 #endif
1192
1193 me = current;
1194
1195 if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask))
1196 panic("CPU#%d already initialized!\n", cpu);
1197
1198 pr_debug("Initializing CPU#%d\n", cpu);
1199
1200 clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1201
1202 /*
1203 * Initialize the per-CPU GDT with the boot GDT,
1204 * and set up the GDT descriptor:
1205 */
1206
1207 switch_to_new_gdt(cpu);
1208 loadsegment(fs, 0);
1209
1210 load_idt((const struct desc_ptr *)&idt_descr);
1211
1212 memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1213 syscall_init();
1214
1215 wrmsrl(MSR_FS_BASE, 0);
1216 wrmsrl(MSR_KERNEL_GS_BASE, 0);
1217 barrier();
1218
1219 x86_configure_nx();
1220 if (cpu != 0)
1221 enable_x2apic();
1222
1223 /*
1224 * set up and load the per-CPU TSS
1225 */
1226 if (!oist->ist[0]) {
1227 char *estacks = per_cpu(exception_stacks, cpu);
1228
1229 for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1230 estacks += exception_stack_sizes[v];
1231 oist->ist[v] = t->x86_tss.ist[v] =
1232 (unsigned long)estacks;
1233 if (v == DEBUG_STACK-1)
1234 per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
1235 }
1236 }
1237
1238 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1239
1240 /*
1241 * <= is required because the CPU will access up to
1242 * 8 bits beyond the end of the IO permission bitmap.
1243 */
1244 for (i = 0; i <= IO_BITMAP_LONGS; i++)
1245 t->io_bitmap[i] = ~0UL;
1246
1247 atomic_inc(&init_mm.mm_count);
1248 me->active_mm = &init_mm;
1249 BUG_ON(me->mm);
1250 enter_lazy_tlb(&init_mm, me);
1251
1252 load_sp0(t, &current->thread);
1253 set_tss_desc(cpu, t);
1254 load_TR_desc();
1255 load_LDT(&init_mm.context);
1256
1257 clear_all_debug_regs();
1258 dbg_restore_debug_regs();
1259
1260 fpu_init();
1261 xsave_init();
1262
1263 raw_local_save_flags(kernel_eflags);
1264
1265 if (is_uv_system())
1266 uv_cpu_init();
1267 }
1268
1269 #else
1270
1271 void __cpuinit cpu_init(void)
1272 {
1273 int cpu = smp_processor_id();
1274 struct task_struct *curr = current;
1275 struct tss_struct *t = &per_cpu(init_tss, cpu);
1276 struct thread_struct *thread = &curr->thread;
1277
1278 if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask)) {
1279 printk(KERN_WARNING "CPU#%d already initialized!\n", cpu);
1280 for (;;)
1281 local_irq_enable();
1282 }
1283
1284 printk(KERN_INFO "Initializing CPU#%d\n", cpu);
1285
1286 if (cpu_has_vme || cpu_has_tsc || cpu_has_de)
1287 clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1288
1289 load_idt(&idt_descr);
1290 switch_to_new_gdt(cpu);
1291
1292 /*
1293 * Set up and load the per-CPU TSS and LDT
1294 */
1295 atomic_inc(&init_mm.mm_count);
1296 curr->active_mm = &init_mm;
1297 BUG_ON(curr->mm);
1298 enter_lazy_tlb(&init_mm, curr);
1299
1300 load_sp0(t, thread);
1301 set_tss_desc(cpu, t);
1302 load_TR_desc();
1303 load_LDT(&init_mm.context);
1304
1305 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1306
1307 #ifdef CONFIG_DOUBLEFAULT
1308 /* Set up doublefault TSS pointer in the GDT */
1309 __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1310 #endif
1311
1312 clear_all_debug_regs();
1313 dbg_restore_debug_regs();
1314
1315 fpu_init();
1316 xsave_init();
1317 }
1318 #endif