]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kernel/cpu/common.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/shaggy...
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / cpu / common.c
1 #include <linux/bootmem.h>
2 #include <linux/linkage.h>
3 #include <linux/bitops.h>
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/percpu.h>
7 #include <linux/string.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/init.h>
11 #include <linux/kgdb.h>
12 #include <linux/smp.h>
13 #include <linux/io.h>
14
15 #include <asm/stackprotector.h>
16 #include <asm/mmu_context.h>
17 #include <asm/hypervisor.h>
18 #include <asm/processor.h>
19 #include <asm/sections.h>
20 #include <asm/topology.h>
21 #include <asm/cpumask.h>
22 #include <asm/pgtable.h>
23 #include <asm/atomic.h>
24 #include <asm/proto.h>
25 #include <asm/setup.h>
26 #include <asm/apic.h>
27 #include <asm/desc.h>
28 #include <asm/i387.h>
29 #include <asm/mtrr.h>
30 #include <asm/numa.h>
31 #include <asm/asm.h>
32 #include <asm/cpu.h>
33 #include <asm/mce.h>
34 #include <asm/msr.h>
35 #include <asm/pat.h>
36 #include <asm/smp.h>
37
38 #ifdef CONFIG_X86_LOCAL_APIC
39 #include <asm/uv/uv.h>
40 #endif
41
42 #include "cpu.h"
43
44 /* all of these masks are initialized in setup_cpu_local_masks() */
45 cpumask_var_t cpu_initialized_mask;
46 cpumask_var_t cpu_callout_mask;
47 cpumask_var_t cpu_callin_mask;
48
49 /* representing cpus for which sibling maps can be computed */
50 cpumask_var_t cpu_sibling_setup_mask;
51
52 /* correctly size the local cpu masks */
53 void __init setup_cpu_local_masks(void)
54 {
55 alloc_bootmem_cpumask_var(&cpu_initialized_mask);
56 alloc_bootmem_cpumask_var(&cpu_callin_mask);
57 alloc_bootmem_cpumask_var(&cpu_callout_mask);
58 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
59 }
60
61 static const struct cpu_dev *this_cpu __cpuinitdata;
62
63 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
64 #ifdef CONFIG_X86_64
65 /*
66 * We need valid kernel segments for data and code in long mode too
67 * IRET will check the segment types kkeil 2000/10/28
68 * Also sysret mandates a special GDT layout
69 *
70 * TLS descriptors are currently at a different place compared to i386.
71 * Hopefully nobody expects them at a fixed place (Wine?)
72 */
73 [GDT_ENTRY_KERNEL32_CS] = { { { 0x0000ffff, 0x00cf9b00 } } },
74 [GDT_ENTRY_KERNEL_CS] = { { { 0x0000ffff, 0x00af9b00 } } },
75 [GDT_ENTRY_KERNEL_DS] = { { { 0x0000ffff, 0x00cf9300 } } },
76 [GDT_ENTRY_DEFAULT_USER32_CS] = { { { 0x0000ffff, 0x00cffb00 } } },
77 [GDT_ENTRY_DEFAULT_USER_DS] = { { { 0x0000ffff, 0x00cff300 } } },
78 [GDT_ENTRY_DEFAULT_USER_CS] = { { { 0x0000ffff, 0x00affb00 } } },
79 #else
80 [GDT_ENTRY_KERNEL_CS] = { { { 0x0000ffff, 0x00cf9a00 } } },
81 [GDT_ENTRY_KERNEL_DS] = { { { 0x0000ffff, 0x00cf9200 } } },
82 [GDT_ENTRY_DEFAULT_USER_CS] = { { { 0x0000ffff, 0x00cffa00 } } },
83 [GDT_ENTRY_DEFAULT_USER_DS] = { { { 0x0000ffff, 0x00cff200 } } },
84 /*
85 * Segments used for calling PnP BIOS have byte granularity.
86 * They code segments and data segments have fixed 64k limits,
87 * the transfer segment sizes are set at run time.
88 */
89 /* 32-bit code */
90 [GDT_ENTRY_PNPBIOS_CS32] = { { { 0x0000ffff, 0x00409a00 } } },
91 /* 16-bit code */
92 [GDT_ENTRY_PNPBIOS_CS16] = { { { 0x0000ffff, 0x00009a00 } } },
93 /* 16-bit data */
94 [GDT_ENTRY_PNPBIOS_DS] = { { { 0x0000ffff, 0x00009200 } } },
95 /* 16-bit data */
96 [GDT_ENTRY_PNPBIOS_TS1] = { { { 0x00000000, 0x00009200 } } },
97 /* 16-bit data */
98 [GDT_ENTRY_PNPBIOS_TS2] = { { { 0x00000000, 0x00009200 } } },
99 /*
100 * The APM segments have byte granularity and their bases
101 * are set at run time. All have 64k limits.
102 */
103 /* 32-bit code */
104 [GDT_ENTRY_APMBIOS_BASE] = { { { 0x0000ffff, 0x00409a00 } } },
105 /* 16-bit code */
106 [GDT_ENTRY_APMBIOS_BASE+1] = { { { 0x0000ffff, 0x00009a00 } } },
107 /* data */
108 [GDT_ENTRY_APMBIOS_BASE+2] = { { { 0x0000ffff, 0x00409200 } } },
109
110 [GDT_ENTRY_ESPFIX_SS] = { { { 0x00000000, 0x00c09200 } } },
111 [GDT_ENTRY_PERCPU] = { { { 0x0000ffff, 0x00cf9200 } } },
112 GDT_STACK_CANARY_INIT
113 #endif
114 } };
115 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
116
117 static int __init x86_xsave_setup(char *s)
118 {
119 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
120 return 1;
121 }
122 __setup("noxsave", x86_xsave_setup);
123
124 #ifdef CONFIG_X86_32
125 static int cachesize_override __cpuinitdata = -1;
126 static int disable_x86_serial_nr __cpuinitdata = 1;
127
128 static int __init cachesize_setup(char *str)
129 {
130 get_option(&str, &cachesize_override);
131 return 1;
132 }
133 __setup("cachesize=", cachesize_setup);
134
135 static int __init x86_fxsr_setup(char *s)
136 {
137 setup_clear_cpu_cap(X86_FEATURE_FXSR);
138 setup_clear_cpu_cap(X86_FEATURE_XMM);
139 return 1;
140 }
141 __setup("nofxsr", x86_fxsr_setup);
142
143 static int __init x86_sep_setup(char *s)
144 {
145 setup_clear_cpu_cap(X86_FEATURE_SEP);
146 return 1;
147 }
148 __setup("nosep", x86_sep_setup);
149
150 /* Standard macro to see if a specific flag is changeable */
151 static inline int flag_is_changeable_p(u32 flag)
152 {
153 u32 f1, f2;
154
155 /*
156 * Cyrix and IDT cpus allow disabling of CPUID
157 * so the code below may return different results
158 * when it is executed before and after enabling
159 * the CPUID. Add "volatile" to not allow gcc to
160 * optimize the subsequent calls to this function.
161 */
162 asm volatile ("pushfl \n\t"
163 "pushfl \n\t"
164 "popl %0 \n\t"
165 "movl %0, %1 \n\t"
166 "xorl %2, %0 \n\t"
167 "pushl %0 \n\t"
168 "popfl \n\t"
169 "pushfl \n\t"
170 "popl %0 \n\t"
171 "popfl \n\t"
172
173 : "=&r" (f1), "=&r" (f2)
174 : "ir" (flag));
175
176 return ((f1^f2) & flag) != 0;
177 }
178
179 /* Probe for the CPUID instruction */
180 static int __cpuinit have_cpuid_p(void)
181 {
182 return flag_is_changeable_p(X86_EFLAGS_ID);
183 }
184
185 static void __cpuinit squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
186 {
187 unsigned long lo, hi;
188
189 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
190 return;
191
192 /* Disable processor serial number: */
193
194 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
195 lo |= 0x200000;
196 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
197
198 printk(KERN_NOTICE "CPU serial number disabled.\n");
199 clear_cpu_cap(c, X86_FEATURE_PN);
200
201 /* Disabling the serial number may affect the cpuid level */
202 c->cpuid_level = cpuid_eax(0);
203 }
204
205 static int __init x86_serial_nr_setup(char *s)
206 {
207 disable_x86_serial_nr = 0;
208 return 1;
209 }
210 __setup("serialnumber", x86_serial_nr_setup);
211 #else
212 static inline int flag_is_changeable_p(u32 flag)
213 {
214 return 1;
215 }
216 /* Probe for the CPUID instruction */
217 static inline int have_cpuid_p(void)
218 {
219 return 1;
220 }
221 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
222 {
223 }
224 #endif
225
226 /*
227 * Some CPU features depend on higher CPUID levels, which may not always
228 * be available due to CPUID level capping or broken virtualization
229 * software. Add those features to this table to auto-disable them.
230 */
231 struct cpuid_dependent_feature {
232 u32 feature;
233 u32 level;
234 };
235
236 static const struct cpuid_dependent_feature __cpuinitconst
237 cpuid_dependent_features[] = {
238 { X86_FEATURE_MWAIT, 0x00000005 },
239 { X86_FEATURE_DCA, 0x00000009 },
240 { X86_FEATURE_XSAVE, 0x0000000d },
241 { 0, 0 }
242 };
243
244 static void __cpuinit filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
245 {
246 const struct cpuid_dependent_feature *df;
247
248 for (df = cpuid_dependent_features; df->feature; df++) {
249
250 if (!cpu_has(c, df->feature))
251 continue;
252 /*
253 * Note: cpuid_level is set to -1 if unavailable, but
254 * extended_extended_level is set to 0 if unavailable
255 * and the legitimate extended levels are all negative
256 * when signed; hence the weird messing around with
257 * signs here...
258 */
259 if (!((s32)df->level < 0 ?
260 (u32)df->level > (u32)c->extended_cpuid_level :
261 (s32)df->level > (s32)c->cpuid_level))
262 continue;
263
264 clear_cpu_cap(c, df->feature);
265 if (!warn)
266 continue;
267
268 printk(KERN_WARNING
269 "CPU: CPU feature %s disabled, no CPUID level 0x%x\n",
270 x86_cap_flags[df->feature], df->level);
271 }
272 }
273
274 /*
275 * Naming convention should be: <Name> [(<Codename>)]
276 * This table only is used unless init_<vendor>() below doesn't set it;
277 * in particular, if CPUID levels 0x80000002..4 are supported, this
278 * isn't used
279 */
280
281 /* Look up CPU names by table lookup. */
282 static const char *__cpuinit table_lookup_model(struct cpuinfo_x86 *c)
283 {
284 const struct cpu_model_info *info;
285
286 if (c->x86_model >= 16)
287 return NULL; /* Range check */
288
289 if (!this_cpu)
290 return NULL;
291
292 info = this_cpu->c_models;
293
294 while (info && info->family) {
295 if (info->family == c->x86)
296 return info->model_names[c->x86_model];
297 info++;
298 }
299 return NULL; /* Not found */
300 }
301
302 __u32 cpu_caps_cleared[NCAPINTS] __cpuinitdata;
303 __u32 cpu_caps_set[NCAPINTS] __cpuinitdata;
304
305 void load_percpu_segment(int cpu)
306 {
307 #ifdef CONFIG_X86_32
308 loadsegment(fs, __KERNEL_PERCPU);
309 #else
310 loadsegment(gs, 0);
311 wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
312 #endif
313 load_stack_canary_segment();
314 }
315
316 /*
317 * Current gdt points %fs at the "master" per-cpu area: after this,
318 * it's on the real one.
319 */
320 void switch_to_new_gdt(int cpu)
321 {
322 struct desc_ptr gdt_descr;
323
324 gdt_descr.address = (long)get_cpu_gdt_table(cpu);
325 gdt_descr.size = GDT_SIZE - 1;
326 load_gdt(&gdt_descr);
327 /* Reload the per-cpu base */
328
329 load_percpu_segment(cpu);
330 }
331
332 static const struct cpu_dev *__cpuinitdata cpu_devs[X86_VENDOR_NUM] = {};
333
334 static void __cpuinit default_init(struct cpuinfo_x86 *c)
335 {
336 #ifdef CONFIG_X86_64
337 display_cacheinfo(c);
338 #else
339 /* Not much we can do here... */
340 /* Check if at least it has cpuid */
341 if (c->cpuid_level == -1) {
342 /* No cpuid. It must be an ancient CPU */
343 if (c->x86 == 4)
344 strcpy(c->x86_model_id, "486");
345 else if (c->x86 == 3)
346 strcpy(c->x86_model_id, "386");
347 }
348 #endif
349 }
350
351 static const struct cpu_dev __cpuinitconst default_cpu = {
352 .c_init = default_init,
353 .c_vendor = "Unknown",
354 .c_x86_vendor = X86_VENDOR_UNKNOWN,
355 };
356
357 static void __cpuinit get_model_name(struct cpuinfo_x86 *c)
358 {
359 unsigned int *v;
360 char *p, *q;
361
362 if (c->extended_cpuid_level < 0x80000004)
363 return;
364
365 v = (unsigned int *)c->x86_model_id;
366 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
367 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
368 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
369 c->x86_model_id[48] = 0;
370
371 /*
372 * Intel chips right-justify this string for some dumb reason;
373 * undo that brain damage:
374 */
375 p = q = &c->x86_model_id[0];
376 while (*p == ' ')
377 p++;
378 if (p != q) {
379 while (*p)
380 *q++ = *p++;
381 while (q <= &c->x86_model_id[48])
382 *q++ = '\0'; /* Zero-pad the rest */
383 }
384 }
385
386 void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
387 {
388 unsigned int n, dummy, ebx, ecx, edx, l2size;
389
390 n = c->extended_cpuid_level;
391
392 if (n >= 0x80000005) {
393 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
394 printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n",
395 edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
396 c->x86_cache_size = (ecx>>24) + (edx>>24);
397 #ifdef CONFIG_X86_64
398 /* On K8 L1 TLB is inclusive, so don't count it */
399 c->x86_tlbsize = 0;
400 #endif
401 }
402
403 if (n < 0x80000006) /* Some chips just has a large L1. */
404 return;
405
406 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
407 l2size = ecx >> 16;
408
409 #ifdef CONFIG_X86_64
410 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
411 #else
412 /* do processor-specific cache resizing */
413 if (this_cpu->c_size_cache)
414 l2size = this_cpu->c_size_cache(c, l2size);
415
416 /* Allow user to override all this if necessary. */
417 if (cachesize_override != -1)
418 l2size = cachesize_override;
419
420 if (l2size == 0)
421 return; /* Again, no L2 cache is possible */
422 #endif
423
424 c->x86_cache_size = l2size;
425
426 printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
427 l2size, ecx & 0xFF);
428 }
429
430 void __cpuinit detect_ht(struct cpuinfo_x86 *c)
431 {
432 #ifdef CONFIG_X86_HT
433 u32 eax, ebx, ecx, edx;
434 int index_msb, core_bits;
435
436 if (!cpu_has(c, X86_FEATURE_HT))
437 return;
438
439 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
440 goto out;
441
442 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
443 return;
444
445 cpuid(1, &eax, &ebx, &ecx, &edx);
446
447 smp_num_siblings = (ebx & 0xff0000) >> 16;
448
449 if (smp_num_siblings == 1) {
450 printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
451 goto out;
452 }
453
454 if (smp_num_siblings <= 1)
455 goto out;
456
457 if (smp_num_siblings > nr_cpu_ids) {
458 pr_warning("CPU: Unsupported number of siblings %d",
459 smp_num_siblings);
460 smp_num_siblings = 1;
461 return;
462 }
463
464 index_msb = get_count_order(smp_num_siblings);
465 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
466
467 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
468
469 index_msb = get_count_order(smp_num_siblings);
470
471 core_bits = get_count_order(c->x86_max_cores);
472
473 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
474 ((1 << core_bits) - 1);
475
476 out:
477 if ((c->x86_max_cores * smp_num_siblings) > 1) {
478 printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
479 c->phys_proc_id);
480 printk(KERN_INFO "CPU: Processor Core ID: %d\n",
481 c->cpu_core_id);
482 }
483 #endif
484 }
485
486 static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
487 {
488 char *v = c->x86_vendor_id;
489 static int printed;
490 int i;
491
492 for (i = 0; i < X86_VENDOR_NUM; i++) {
493 if (!cpu_devs[i])
494 break;
495
496 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
497 (cpu_devs[i]->c_ident[1] &&
498 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
499
500 this_cpu = cpu_devs[i];
501 c->x86_vendor = this_cpu->c_x86_vendor;
502 return;
503 }
504 }
505
506 if (!printed) {
507 printed++;
508 printk(KERN_ERR
509 "CPU: vendor_id '%s' unknown, using generic init.\n", v);
510
511 printk(KERN_ERR "CPU: Your system may be unstable.\n");
512 }
513
514 c->x86_vendor = X86_VENDOR_UNKNOWN;
515 this_cpu = &default_cpu;
516 }
517
518 void __cpuinit cpu_detect(struct cpuinfo_x86 *c)
519 {
520 /* Get vendor name */
521 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
522 (unsigned int *)&c->x86_vendor_id[0],
523 (unsigned int *)&c->x86_vendor_id[8],
524 (unsigned int *)&c->x86_vendor_id[4]);
525
526 c->x86 = 4;
527 /* Intel-defined flags: level 0x00000001 */
528 if (c->cpuid_level >= 0x00000001) {
529 u32 junk, tfms, cap0, misc;
530
531 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
532 c->x86 = (tfms >> 8) & 0xf;
533 c->x86_model = (tfms >> 4) & 0xf;
534 c->x86_mask = tfms & 0xf;
535
536 if (c->x86 == 0xf)
537 c->x86 += (tfms >> 20) & 0xff;
538 if (c->x86 >= 0x6)
539 c->x86_model += ((tfms >> 16) & 0xf) << 4;
540
541 if (cap0 & (1<<19)) {
542 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
543 c->x86_cache_alignment = c->x86_clflush_size;
544 }
545 }
546 }
547
548 static void __cpuinit get_cpu_cap(struct cpuinfo_x86 *c)
549 {
550 u32 tfms, xlvl;
551 u32 ebx;
552
553 /* Intel-defined flags: level 0x00000001 */
554 if (c->cpuid_level >= 0x00000001) {
555 u32 capability, excap;
556
557 cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
558 c->x86_capability[0] = capability;
559 c->x86_capability[4] = excap;
560 }
561
562 /* AMD-defined flags: level 0x80000001 */
563 xlvl = cpuid_eax(0x80000000);
564 c->extended_cpuid_level = xlvl;
565
566 if ((xlvl & 0xffff0000) == 0x80000000) {
567 if (xlvl >= 0x80000001) {
568 c->x86_capability[1] = cpuid_edx(0x80000001);
569 c->x86_capability[6] = cpuid_ecx(0x80000001);
570 }
571 }
572
573 if (c->extended_cpuid_level >= 0x80000008) {
574 u32 eax = cpuid_eax(0x80000008);
575
576 c->x86_virt_bits = (eax >> 8) & 0xff;
577 c->x86_phys_bits = eax & 0xff;
578 }
579 #ifdef CONFIG_X86_32
580 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
581 c->x86_phys_bits = 36;
582 #endif
583
584 if (c->extended_cpuid_level >= 0x80000007)
585 c->x86_power = cpuid_edx(0x80000007);
586
587 }
588
589 static void __cpuinit identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
590 {
591 #ifdef CONFIG_X86_32
592 int i;
593
594 /*
595 * First of all, decide if this is a 486 or higher
596 * It's a 486 if we can modify the AC flag
597 */
598 if (flag_is_changeable_p(X86_EFLAGS_AC))
599 c->x86 = 4;
600 else
601 c->x86 = 3;
602
603 for (i = 0; i < X86_VENDOR_NUM; i++)
604 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
605 c->x86_vendor_id[0] = 0;
606 cpu_devs[i]->c_identify(c);
607 if (c->x86_vendor_id[0]) {
608 get_cpu_vendor(c);
609 break;
610 }
611 }
612 #endif
613 }
614
615 /*
616 * Do minimum CPU detection early.
617 * Fields really needed: vendor, cpuid_level, family, model, mask,
618 * cache alignment.
619 * The others are not touched to avoid unwanted side effects.
620 *
621 * WARNING: this function is only called on the BP. Don't add code here
622 * that is supposed to run on all CPUs.
623 */
624 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
625 {
626 #ifdef CONFIG_X86_64
627 c->x86_clflush_size = 64;
628 c->x86_phys_bits = 36;
629 c->x86_virt_bits = 48;
630 #else
631 c->x86_clflush_size = 32;
632 c->x86_phys_bits = 32;
633 c->x86_virt_bits = 32;
634 #endif
635 c->x86_cache_alignment = c->x86_clflush_size;
636
637 memset(&c->x86_capability, 0, sizeof c->x86_capability);
638 c->extended_cpuid_level = 0;
639
640 if (!have_cpuid_p())
641 identify_cpu_without_cpuid(c);
642
643 /* cyrix could have cpuid enabled via c_identify()*/
644 if (!have_cpuid_p())
645 return;
646
647 cpu_detect(c);
648
649 get_cpu_vendor(c);
650
651 get_cpu_cap(c);
652
653 if (this_cpu->c_early_init)
654 this_cpu->c_early_init(c);
655
656 #ifdef CONFIG_SMP
657 c->cpu_index = boot_cpu_id;
658 #endif
659 filter_cpuid_features(c, false);
660 }
661
662 void __init early_cpu_init(void)
663 {
664 const struct cpu_dev *const *cdev;
665 int count = 0;
666
667 printk(KERN_INFO "KERNEL supported cpus:\n");
668 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
669 const struct cpu_dev *cpudev = *cdev;
670 unsigned int j;
671
672 if (count >= X86_VENDOR_NUM)
673 break;
674 cpu_devs[count] = cpudev;
675 count++;
676
677 for (j = 0; j < 2; j++) {
678 if (!cpudev->c_ident[j])
679 continue;
680 printk(KERN_INFO " %s %s\n", cpudev->c_vendor,
681 cpudev->c_ident[j]);
682 }
683 }
684
685 early_identify_cpu(&boot_cpu_data);
686 }
687
688 /*
689 * The NOPL instruction is supposed to exist on all CPUs with
690 * family >= 6; unfortunately, that's not true in practice because
691 * of early VIA chips and (more importantly) broken virtualizers that
692 * are not easy to detect. In the latter case it doesn't even *fail*
693 * reliably, so probing for it doesn't even work. Disable it completely
694 * unless we can find a reliable way to detect all the broken cases.
695 */
696 static void __cpuinit detect_nopl(struct cpuinfo_x86 *c)
697 {
698 clear_cpu_cap(c, X86_FEATURE_NOPL);
699 }
700
701 static void __cpuinit generic_identify(struct cpuinfo_x86 *c)
702 {
703 c->extended_cpuid_level = 0;
704
705 if (!have_cpuid_p())
706 identify_cpu_without_cpuid(c);
707
708 /* cyrix could have cpuid enabled via c_identify()*/
709 if (!have_cpuid_p())
710 return;
711
712 cpu_detect(c);
713
714 get_cpu_vendor(c);
715
716 get_cpu_cap(c);
717
718 if (c->cpuid_level >= 0x00000001) {
719 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
720 #ifdef CONFIG_X86_32
721 # ifdef CONFIG_X86_HT
722 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
723 # else
724 c->apicid = c->initial_apicid;
725 # endif
726 #endif
727
728 #ifdef CONFIG_X86_HT
729 c->phys_proc_id = c->initial_apicid;
730 #endif
731 }
732
733 get_model_name(c); /* Default name */
734
735 init_scattered_cpuid_features(c);
736 detect_nopl(c);
737 }
738
739 /*
740 * This does the hard work of actually picking apart the CPU stuff...
741 */
742 static void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
743 {
744 int i;
745
746 c->loops_per_jiffy = loops_per_jiffy;
747 c->x86_cache_size = -1;
748 c->x86_vendor = X86_VENDOR_UNKNOWN;
749 c->x86_model = c->x86_mask = 0; /* So far unknown... */
750 c->x86_vendor_id[0] = '\0'; /* Unset */
751 c->x86_model_id[0] = '\0'; /* Unset */
752 c->x86_max_cores = 1;
753 c->x86_coreid_bits = 0;
754 #ifdef CONFIG_X86_64
755 c->x86_clflush_size = 64;
756 c->x86_phys_bits = 36;
757 c->x86_virt_bits = 48;
758 #else
759 c->cpuid_level = -1; /* CPUID not detected */
760 c->x86_clflush_size = 32;
761 c->x86_phys_bits = 32;
762 c->x86_virt_bits = 32;
763 #endif
764 c->x86_cache_alignment = c->x86_clflush_size;
765 memset(&c->x86_capability, 0, sizeof c->x86_capability);
766
767 generic_identify(c);
768
769 if (this_cpu->c_identify)
770 this_cpu->c_identify(c);
771
772 /* Clear/Set all flags overriden by options, after probe */
773 for (i = 0; i < NCAPINTS; i++) {
774 c->x86_capability[i] &= ~cpu_caps_cleared[i];
775 c->x86_capability[i] |= cpu_caps_set[i];
776 }
777
778 #ifdef CONFIG_X86_64
779 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
780 #endif
781
782 /*
783 * Vendor-specific initialization. In this section we
784 * canonicalize the feature flags, meaning if there are
785 * features a certain CPU supports which CPUID doesn't
786 * tell us, CPUID claiming incorrect flags, or other bugs,
787 * we handle them here.
788 *
789 * At the end of this section, c->x86_capability better
790 * indicate the features this CPU genuinely supports!
791 */
792 if (this_cpu->c_init)
793 this_cpu->c_init(c);
794
795 /* Disable the PN if appropriate */
796 squash_the_stupid_serial_number(c);
797
798 /*
799 * The vendor-specific functions might have changed features.
800 * Now we do "generic changes."
801 */
802
803 /* Filter out anything that depends on CPUID levels we don't have */
804 filter_cpuid_features(c, true);
805
806 /* If the model name is still unset, do table lookup. */
807 if (!c->x86_model_id[0]) {
808 const char *p;
809 p = table_lookup_model(c);
810 if (p)
811 strcpy(c->x86_model_id, p);
812 else
813 /* Last resort... */
814 sprintf(c->x86_model_id, "%02x/%02x",
815 c->x86, c->x86_model);
816 }
817
818 #ifdef CONFIG_X86_64
819 detect_ht(c);
820 #endif
821
822 init_hypervisor(c);
823
824 /*
825 * Clear/Set all flags overriden by options, need do it
826 * before following smp all cpus cap AND.
827 */
828 for (i = 0; i < NCAPINTS; i++) {
829 c->x86_capability[i] &= ~cpu_caps_cleared[i];
830 c->x86_capability[i] |= cpu_caps_set[i];
831 }
832
833 /*
834 * On SMP, boot_cpu_data holds the common feature set between
835 * all CPUs; so make sure that we indicate which features are
836 * common between the CPUs. The first time this routine gets
837 * executed, c == &boot_cpu_data.
838 */
839 if (c != &boot_cpu_data) {
840 /* AND the already accumulated flags with these */
841 for (i = 0; i < NCAPINTS; i++)
842 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
843 }
844
845 #ifdef CONFIG_X86_MCE
846 /* Init Machine Check Exception if available. */
847 mcheck_init(c);
848 #endif
849
850 select_idle_routine(c);
851
852 #if defined(CONFIG_NUMA) && defined(CONFIG_X86_64)
853 numa_add_cpu(smp_processor_id());
854 #endif
855 }
856
857 #ifdef CONFIG_X86_64
858 static void vgetcpu_set_mode(void)
859 {
860 if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP))
861 vgetcpu_mode = VGETCPU_RDTSCP;
862 else
863 vgetcpu_mode = VGETCPU_LSL;
864 }
865 #endif
866
867 void __init identify_boot_cpu(void)
868 {
869 identify_cpu(&boot_cpu_data);
870 init_c1e_mask();
871 #ifdef CONFIG_X86_32
872 sysenter_setup();
873 enable_sep_cpu();
874 #else
875 vgetcpu_set_mode();
876 #endif
877 }
878
879 void __cpuinit identify_secondary_cpu(struct cpuinfo_x86 *c)
880 {
881 BUG_ON(c == &boot_cpu_data);
882 identify_cpu(c);
883 #ifdef CONFIG_X86_32
884 enable_sep_cpu();
885 #endif
886 mtrr_ap_init();
887 }
888
889 struct msr_range {
890 unsigned min;
891 unsigned max;
892 };
893
894 static const struct msr_range msr_range_array[] __cpuinitconst = {
895 { 0x00000000, 0x00000418},
896 { 0xc0000000, 0xc000040b},
897 { 0xc0010000, 0xc0010142},
898 { 0xc0011000, 0xc001103b},
899 };
900
901 static void __cpuinit print_cpu_msr(void)
902 {
903 unsigned index_min, index_max;
904 unsigned index;
905 u64 val;
906 int i;
907
908 for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
909 index_min = msr_range_array[i].min;
910 index_max = msr_range_array[i].max;
911
912 for (index = index_min; index < index_max; index++) {
913 if (rdmsrl_amd_safe(index, &val))
914 continue;
915 printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
916 }
917 }
918 }
919
920 static int show_msr __cpuinitdata;
921
922 static __init int setup_show_msr(char *arg)
923 {
924 int num;
925
926 get_option(&arg, &num);
927
928 if (num > 0)
929 show_msr = num;
930 return 1;
931 }
932 __setup("show_msr=", setup_show_msr);
933
934 static __init int setup_noclflush(char *arg)
935 {
936 setup_clear_cpu_cap(X86_FEATURE_CLFLSH);
937 return 1;
938 }
939 __setup("noclflush", setup_noclflush);
940
941 void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
942 {
943 const char *vendor = NULL;
944
945 if (c->x86_vendor < X86_VENDOR_NUM) {
946 vendor = this_cpu->c_vendor;
947 } else {
948 if (c->cpuid_level >= 0)
949 vendor = c->x86_vendor_id;
950 }
951
952 if (vendor && !strstr(c->x86_model_id, vendor))
953 printk(KERN_CONT "%s ", vendor);
954
955 if (c->x86_model_id[0])
956 printk(KERN_CONT "%s", c->x86_model_id);
957 else
958 printk(KERN_CONT "%d86", c->x86);
959
960 if (c->x86_mask || c->cpuid_level >= 0)
961 printk(KERN_CONT " stepping %02x\n", c->x86_mask);
962 else
963 printk(KERN_CONT "\n");
964
965 #ifdef CONFIG_SMP
966 if (c->cpu_index < show_msr)
967 print_cpu_msr();
968 #else
969 if (show_msr)
970 print_cpu_msr();
971 #endif
972 }
973
974 static __init int setup_disablecpuid(char *arg)
975 {
976 int bit;
977
978 if (get_option(&arg, &bit) && bit < NCAPINTS*32)
979 setup_clear_cpu_cap(bit);
980 else
981 return 0;
982
983 return 1;
984 }
985 __setup("clearcpuid=", setup_disablecpuid);
986
987 #ifdef CONFIG_X86_64
988 struct desc_ptr idt_descr = { 256 * 16 - 1, (unsigned long) idt_table };
989
990 DEFINE_PER_CPU_FIRST(union irq_stack_union,
991 irq_stack_union) __aligned(PAGE_SIZE);
992
993 DEFINE_PER_CPU(char *, irq_stack_ptr) =
994 init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64;
995
996 DEFINE_PER_CPU(unsigned long, kernel_stack) =
997 (unsigned long)&init_thread_union - KERNEL_STACK_OFFSET + THREAD_SIZE;
998 EXPORT_PER_CPU_SYMBOL(kernel_stack);
999
1000 DEFINE_PER_CPU(unsigned int, irq_count) = -1;
1001
1002 /*
1003 * Special IST stacks which the CPU switches to when it calls
1004 * an IST-marked descriptor entry. Up to 7 stacks (hardware
1005 * limit), all of them are 4K, except the debug stack which
1006 * is 8K.
1007 */
1008 static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
1009 [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ,
1010 [DEBUG_STACK - 1] = DEBUG_STKSZ
1011 };
1012
1013 static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
1014 [(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ])
1015 __aligned(PAGE_SIZE);
1016
1017 /* May not be marked __init: used by software suspend */
1018 void syscall_init(void)
1019 {
1020 /*
1021 * LSTAR and STAR live in a bit strange symbiosis.
1022 * They both write to the same internal register. STAR allows to
1023 * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
1024 */
1025 wrmsrl(MSR_STAR, ((u64)__USER32_CS)<<48 | ((u64)__KERNEL_CS)<<32);
1026 wrmsrl(MSR_LSTAR, system_call);
1027 wrmsrl(MSR_CSTAR, ignore_sysret);
1028
1029 #ifdef CONFIG_IA32_EMULATION
1030 syscall32_cpu_init();
1031 #endif
1032
1033 /* Flags to clear on syscall */
1034 wrmsrl(MSR_SYSCALL_MASK,
1035 X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|X86_EFLAGS_IOPL);
1036 }
1037
1038 unsigned long kernel_eflags;
1039
1040 /*
1041 * Copies of the original ist values from the tss are only accessed during
1042 * debugging, no special alignment required.
1043 */
1044 DEFINE_PER_CPU(struct orig_ist, orig_ist);
1045
1046 #else /* CONFIG_X86_64 */
1047
1048 #ifdef CONFIG_CC_STACKPROTECTOR
1049 DEFINE_PER_CPU(unsigned long, stack_canary);
1050 #endif
1051
1052 /* Make sure %fs and %gs are initialized properly in idle threads */
1053 struct pt_regs * __cpuinit idle_regs(struct pt_regs *regs)
1054 {
1055 memset(regs, 0, sizeof(struct pt_regs));
1056 regs->fs = __KERNEL_PERCPU;
1057 regs->gs = __KERNEL_STACK_CANARY;
1058
1059 return regs;
1060 }
1061 #endif /* CONFIG_X86_64 */
1062
1063 /*
1064 * Clear all 6 debug registers:
1065 */
1066 static void clear_all_debug_regs(void)
1067 {
1068 int i;
1069
1070 for (i = 0; i < 8; i++) {
1071 /* Ignore db4, db5 */
1072 if ((i == 4) || (i == 5))
1073 continue;
1074
1075 set_debugreg(0, i);
1076 }
1077 }
1078
1079 /*
1080 * cpu_init() initializes state that is per-CPU. Some data is already
1081 * initialized (naturally) in the bootstrap process, such as the GDT
1082 * and IDT. We reload them nevertheless, this function acts as a
1083 * 'CPU state barrier', nothing should get across.
1084 * A lot of state is already set up in PDA init for 64 bit
1085 */
1086 #ifdef CONFIG_X86_64
1087
1088 void __cpuinit cpu_init(void)
1089 {
1090 struct orig_ist *orig_ist;
1091 struct task_struct *me;
1092 struct tss_struct *t;
1093 unsigned long v;
1094 int cpu;
1095 int i;
1096
1097 cpu = stack_smp_processor_id();
1098 t = &per_cpu(init_tss, cpu);
1099 orig_ist = &per_cpu(orig_ist, cpu);
1100
1101 #ifdef CONFIG_NUMA
1102 if (cpu != 0 && percpu_read(node_number) == 0 &&
1103 cpu_to_node(cpu) != NUMA_NO_NODE)
1104 percpu_write(node_number, cpu_to_node(cpu));
1105 #endif
1106
1107 me = current;
1108
1109 if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask))
1110 panic("CPU#%d already initialized!\n", cpu);
1111
1112 printk(KERN_INFO "Initializing CPU#%d\n", cpu);
1113
1114 clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1115
1116 /*
1117 * Initialize the per-CPU GDT with the boot GDT,
1118 * and set up the GDT descriptor:
1119 */
1120
1121 switch_to_new_gdt(cpu);
1122 loadsegment(fs, 0);
1123
1124 load_idt((const struct desc_ptr *)&idt_descr);
1125
1126 memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1127 syscall_init();
1128
1129 wrmsrl(MSR_FS_BASE, 0);
1130 wrmsrl(MSR_KERNEL_GS_BASE, 0);
1131 barrier();
1132
1133 check_efer();
1134 if (cpu != 0)
1135 enable_x2apic();
1136
1137 /*
1138 * set up and load the per-CPU TSS
1139 */
1140 if (!orig_ist->ist[0]) {
1141 char *estacks = per_cpu(exception_stacks, cpu);
1142
1143 for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1144 estacks += exception_stack_sizes[v];
1145 orig_ist->ist[v] = t->x86_tss.ist[v] =
1146 (unsigned long)estacks;
1147 }
1148 }
1149
1150 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1151
1152 /*
1153 * <= is required because the CPU will access up to
1154 * 8 bits beyond the end of the IO permission bitmap.
1155 */
1156 for (i = 0; i <= IO_BITMAP_LONGS; i++)
1157 t->io_bitmap[i] = ~0UL;
1158
1159 atomic_inc(&init_mm.mm_count);
1160 me->active_mm = &init_mm;
1161 BUG_ON(me->mm);
1162 enter_lazy_tlb(&init_mm, me);
1163
1164 load_sp0(t, &current->thread);
1165 set_tss_desc(cpu, t);
1166 load_TR_desc();
1167 load_LDT(&init_mm.context);
1168
1169 #ifdef CONFIG_KGDB
1170 /*
1171 * If the kgdb is connected no debug regs should be altered. This
1172 * is only applicable when KGDB and a KGDB I/O module are built
1173 * into the kernel and you are using early debugging with
1174 * kgdbwait. KGDB will control the kernel HW breakpoint registers.
1175 */
1176 if (kgdb_connected && arch_kgdb_ops.correct_hw_break)
1177 arch_kgdb_ops.correct_hw_break();
1178 else
1179 #endif
1180 clear_all_debug_regs();
1181
1182 fpu_init();
1183
1184 raw_local_save_flags(kernel_eflags);
1185
1186 if (is_uv_system())
1187 uv_cpu_init();
1188 }
1189
1190 #else
1191
1192 void __cpuinit cpu_init(void)
1193 {
1194 int cpu = smp_processor_id();
1195 struct task_struct *curr = current;
1196 struct tss_struct *t = &per_cpu(init_tss, cpu);
1197 struct thread_struct *thread = &curr->thread;
1198
1199 if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask)) {
1200 printk(KERN_WARNING "CPU#%d already initialized!\n", cpu);
1201 for (;;)
1202 local_irq_enable();
1203 }
1204
1205 printk(KERN_INFO "Initializing CPU#%d\n", cpu);
1206
1207 if (cpu_has_vme || cpu_has_tsc || cpu_has_de)
1208 clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1209
1210 load_idt(&idt_descr);
1211 switch_to_new_gdt(cpu);
1212
1213 /*
1214 * Set up and load the per-CPU TSS and LDT
1215 */
1216 atomic_inc(&init_mm.mm_count);
1217 curr->active_mm = &init_mm;
1218 BUG_ON(curr->mm);
1219 enter_lazy_tlb(&init_mm, curr);
1220
1221 load_sp0(t, thread);
1222 set_tss_desc(cpu, t);
1223 load_TR_desc();
1224 load_LDT(&init_mm.context);
1225
1226 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1227
1228 #ifdef CONFIG_DOUBLEFAULT
1229 /* Set up doublefault TSS pointer in the GDT */
1230 __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1231 #endif
1232
1233 clear_all_debug_regs();
1234
1235 /*
1236 * Force FPU initialization:
1237 */
1238 if (cpu_has_xsave)
1239 current_thread_info()->status = TS_XSAVE;
1240 else
1241 current_thread_info()->status = 0;
1242 clear_used_math();
1243 mxcsr_feature_mask_init();
1244
1245 /*
1246 * Boot processor to setup the FP and extended state context info.
1247 */
1248 if (smp_processor_id() == boot_cpu_id)
1249 init_thread_xstate();
1250
1251 xsave_init();
1252 }
1253 #endif