]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kernel/cpu/common.c
Merge branch 'next' into for-linus
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / cpu / common.c
1 #include <linux/init.h>
2 #include <linux/kernel.h>
3 #include <linux/sched.h>
4 #include <linux/string.h>
5 #include <linux/bootmem.h>
6 #include <linux/bitops.h>
7 #include <linux/module.h>
8 #include <linux/kgdb.h>
9 #include <linux/topology.h>
10 #include <linux/delay.h>
11 #include <linux/smp.h>
12 #include <linux/percpu.h>
13 #include <asm/i387.h>
14 #include <asm/msr.h>
15 #include <asm/io.h>
16 #include <asm/linkage.h>
17 #include <asm/mmu_context.h>
18 #include <asm/mtrr.h>
19 #include <asm/mce.h>
20 #include <asm/pat.h>
21 #include <asm/asm.h>
22 #include <asm/numa.h>
23 #ifdef CONFIG_X86_LOCAL_APIC
24 #include <asm/mpspec.h>
25 #include <asm/apic.h>
26 #include <mach_apic.h>
27 #include <asm/genapic.h>
28 #endif
29
30 #include <asm/pda.h>
31 #include <asm/pgtable.h>
32 #include <asm/processor.h>
33 #include <asm/desc.h>
34 #include <asm/atomic.h>
35 #include <asm/proto.h>
36 #include <asm/sections.h>
37 #include <asm/setup.h>
38
39 #include "cpu.h"
40
41 static struct cpu_dev *this_cpu __cpuinitdata;
42
43 #ifdef CONFIG_X86_64
44 /* We need valid kernel segments for data and code in long mode too
45 * IRET will check the segment types kkeil 2000/10/28
46 * Also sysret mandates a special GDT layout
47 */
48 /* The TLS descriptors are currently at a different place compared to i386.
49 Hopefully nobody expects them at a fixed place (Wine?) */
50 DEFINE_PER_CPU(struct gdt_page, gdt_page) = { .gdt = {
51 [GDT_ENTRY_KERNEL32_CS] = { { { 0x0000ffff, 0x00cf9b00 } } },
52 [GDT_ENTRY_KERNEL_CS] = { { { 0x0000ffff, 0x00af9b00 } } },
53 [GDT_ENTRY_KERNEL_DS] = { { { 0x0000ffff, 0x00cf9300 } } },
54 [GDT_ENTRY_DEFAULT_USER32_CS] = { { { 0x0000ffff, 0x00cffb00 } } },
55 [GDT_ENTRY_DEFAULT_USER_DS] = { { { 0x0000ffff, 0x00cff300 } } },
56 [GDT_ENTRY_DEFAULT_USER_CS] = { { { 0x0000ffff, 0x00affb00 } } },
57 } };
58 #else
59 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
60 [GDT_ENTRY_KERNEL_CS] = { { { 0x0000ffff, 0x00cf9a00 } } },
61 [GDT_ENTRY_KERNEL_DS] = { { { 0x0000ffff, 0x00cf9200 } } },
62 [GDT_ENTRY_DEFAULT_USER_CS] = { { { 0x0000ffff, 0x00cffa00 } } },
63 [GDT_ENTRY_DEFAULT_USER_DS] = { { { 0x0000ffff, 0x00cff200 } } },
64 /*
65 * Segments used for calling PnP BIOS have byte granularity.
66 * They code segments and data segments have fixed 64k limits,
67 * the transfer segment sizes are set at run time.
68 */
69 /* 32-bit code */
70 [GDT_ENTRY_PNPBIOS_CS32] = { { { 0x0000ffff, 0x00409a00 } } },
71 /* 16-bit code */
72 [GDT_ENTRY_PNPBIOS_CS16] = { { { 0x0000ffff, 0x00009a00 } } },
73 /* 16-bit data */
74 [GDT_ENTRY_PNPBIOS_DS] = { { { 0x0000ffff, 0x00009200 } } },
75 /* 16-bit data */
76 [GDT_ENTRY_PNPBIOS_TS1] = { { { 0x00000000, 0x00009200 } } },
77 /* 16-bit data */
78 [GDT_ENTRY_PNPBIOS_TS2] = { { { 0x00000000, 0x00009200 } } },
79 /*
80 * The APM segments have byte granularity and their bases
81 * are set at run time. All have 64k limits.
82 */
83 /* 32-bit code */
84 [GDT_ENTRY_APMBIOS_BASE] = { { { 0x0000ffff, 0x00409a00 } } },
85 /* 16-bit code */
86 [GDT_ENTRY_APMBIOS_BASE+1] = { { { 0x0000ffff, 0x00009a00 } } },
87 /* data */
88 [GDT_ENTRY_APMBIOS_BASE+2] = { { { 0x0000ffff, 0x00409200 } } },
89
90 [GDT_ENTRY_ESPFIX_SS] = { { { 0x00000000, 0x00c09200 } } },
91 [GDT_ENTRY_PERCPU] = { { { 0x00000000, 0x00000000 } } },
92 } };
93 #endif
94 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
95
96 #ifdef CONFIG_X86_32
97 static int cachesize_override __cpuinitdata = -1;
98 static int disable_x86_serial_nr __cpuinitdata = 1;
99
100 static int __init cachesize_setup(char *str)
101 {
102 get_option(&str, &cachesize_override);
103 return 1;
104 }
105 __setup("cachesize=", cachesize_setup);
106
107 static int __init x86_fxsr_setup(char *s)
108 {
109 setup_clear_cpu_cap(X86_FEATURE_FXSR);
110 setup_clear_cpu_cap(X86_FEATURE_XMM);
111 return 1;
112 }
113 __setup("nofxsr", x86_fxsr_setup);
114
115 static int __init x86_sep_setup(char *s)
116 {
117 setup_clear_cpu_cap(X86_FEATURE_SEP);
118 return 1;
119 }
120 __setup("nosep", x86_sep_setup);
121
122 /* Standard macro to see if a specific flag is changeable */
123 static inline int flag_is_changeable_p(u32 flag)
124 {
125 u32 f1, f2;
126
127 asm("pushfl\n\t"
128 "pushfl\n\t"
129 "popl %0\n\t"
130 "movl %0,%1\n\t"
131 "xorl %2,%0\n\t"
132 "pushl %0\n\t"
133 "popfl\n\t"
134 "pushfl\n\t"
135 "popl %0\n\t"
136 "popfl\n\t"
137 : "=&r" (f1), "=&r" (f2)
138 : "ir" (flag));
139
140 return ((f1^f2) & flag) != 0;
141 }
142
143 /* Probe for the CPUID instruction */
144 static int __cpuinit have_cpuid_p(void)
145 {
146 return flag_is_changeable_p(X86_EFLAGS_ID);
147 }
148
149 static void __cpuinit squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
150 {
151 if (cpu_has(c, X86_FEATURE_PN) && disable_x86_serial_nr) {
152 /* Disable processor serial number */
153 unsigned long lo, hi;
154 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
155 lo |= 0x200000;
156 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
157 printk(KERN_NOTICE "CPU serial number disabled.\n");
158 clear_cpu_cap(c, X86_FEATURE_PN);
159
160 /* Disabling the serial number may affect the cpuid level */
161 c->cpuid_level = cpuid_eax(0);
162 }
163 }
164
165 static int __init x86_serial_nr_setup(char *s)
166 {
167 disable_x86_serial_nr = 0;
168 return 1;
169 }
170 __setup("serialnumber", x86_serial_nr_setup);
171 #else
172 static inline int flag_is_changeable_p(u32 flag)
173 {
174 return 1;
175 }
176 /* Probe for the CPUID instruction */
177 static inline int have_cpuid_p(void)
178 {
179 return 1;
180 }
181 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
182 {
183 }
184 #endif
185
186 /*
187 * Naming convention should be: <Name> [(<Codename>)]
188 * This table only is used unless init_<vendor>() below doesn't set it;
189 * in particular, if CPUID levels 0x80000002..4 are supported, this isn't used
190 *
191 */
192
193 /* Look up CPU names by table lookup. */
194 static char __cpuinit *table_lookup_model(struct cpuinfo_x86 *c)
195 {
196 struct cpu_model_info *info;
197
198 if (c->x86_model >= 16)
199 return NULL; /* Range check */
200
201 if (!this_cpu)
202 return NULL;
203
204 info = this_cpu->c_models;
205
206 while (info && info->family) {
207 if (info->family == c->x86)
208 return info->model_names[c->x86_model];
209 info++;
210 }
211 return NULL; /* Not found */
212 }
213
214 __u32 cleared_cpu_caps[NCAPINTS] __cpuinitdata;
215
216 /* Current gdt points %fs at the "master" per-cpu area: after this,
217 * it's on the real one. */
218 void switch_to_new_gdt(void)
219 {
220 struct desc_ptr gdt_descr;
221
222 gdt_descr.address = (long)get_cpu_gdt_table(smp_processor_id());
223 gdt_descr.size = GDT_SIZE - 1;
224 load_gdt(&gdt_descr);
225 #ifdef CONFIG_X86_32
226 asm("mov %0, %%fs" : : "r" (__KERNEL_PERCPU) : "memory");
227 #endif
228 }
229
230 static struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
231
232 static void __cpuinit default_init(struct cpuinfo_x86 *c)
233 {
234 #ifdef CONFIG_X86_64
235 display_cacheinfo(c);
236 #else
237 /* Not much we can do here... */
238 /* Check if at least it has cpuid */
239 if (c->cpuid_level == -1) {
240 /* No cpuid. It must be an ancient CPU */
241 if (c->x86 == 4)
242 strcpy(c->x86_model_id, "486");
243 else if (c->x86 == 3)
244 strcpy(c->x86_model_id, "386");
245 }
246 #endif
247 }
248
249 static struct cpu_dev __cpuinitdata default_cpu = {
250 .c_init = default_init,
251 .c_vendor = "Unknown",
252 .c_x86_vendor = X86_VENDOR_UNKNOWN,
253 };
254
255 static void __cpuinit get_model_name(struct cpuinfo_x86 *c)
256 {
257 unsigned int *v;
258 char *p, *q;
259
260 if (c->extended_cpuid_level < 0x80000004)
261 return;
262
263 v = (unsigned int *) c->x86_model_id;
264 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
265 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
266 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
267 c->x86_model_id[48] = 0;
268
269 /* Intel chips right-justify this string for some dumb reason;
270 undo that brain damage */
271 p = q = &c->x86_model_id[0];
272 while (*p == ' ')
273 p++;
274 if (p != q) {
275 while (*p)
276 *q++ = *p++;
277 while (q <= &c->x86_model_id[48])
278 *q++ = '\0'; /* Zero-pad the rest */
279 }
280 }
281
282 void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
283 {
284 unsigned int n, dummy, ebx, ecx, edx, l2size;
285
286 n = c->extended_cpuid_level;
287
288 if (n >= 0x80000005) {
289 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
290 printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n",
291 edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
292 c->x86_cache_size = (ecx>>24) + (edx>>24);
293 #ifdef CONFIG_X86_64
294 /* On K8 L1 TLB is inclusive, so don't count it */
295 c->x86_tlbsize = 0;
296 #endif
297 }
298
299 if (n < 0x80000006) /* Some chips just has a large L1. */
300 return;
301
302 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
303 l2size = ecx >> 16;
304
305 #ifdef CONFIG_X86_64
306 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
307 #else
308 /* do processor-specific cache resizing */
309 if (this_cpu->c_size_cache)
310 l2size = this_cpu->c_size_cache(c, l2size);
311
312 /* Allow user to override all this if necessary. */
313 if (cachesize_override != -1)
314 l2size = cachesize_override;
315
316 if (l2size == 0)
317 return; /* Again, no L2 cache is possible */
318 #endif
319
320 c->x86_cache_size = l2size;
321
322 printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
323 l2size, ecx & 0xFF);
324 }
325
326 void __cpuinit detect_ht(struct cpuinfo_x86 *c)
327 {
328 #ifdef CONFIG_X86_HT
329 u32 eax, ebx, ecx, edx;
330 int index_msb, core_bits;
331
332 if (!cpu_has(c, X86_FEATURE_HT))
333 return;
334
335 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
336 goto out;
337
338 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
339 return;
340
341 cpuid(1, &eax, &ebx, &ecx, &edx);
342
343 smp_num_siblings = (ebx & 0xff0000) >> 16;
344
345 if (smp_num_siblings == 1) {
346 printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
347 } else if (smp_num_siblings > 1) {
348
349 if (smp_num_siblings > NR_CPUS) {
350 printk(KERN_WARNING "CPU: Unsupported number of siblings %d",
351 smp_num_siblings);
352 smp_num_siblings = 1;
353 return;
354 }
355
356 index_msb = get_count_order(smp_num_siblings);
357 #ifdef CONFIG_X86_64
358 c->phys_proc_id = phys_pkg_id(index_msb);
359 #else
360 c->phys_proc_id = phys_pkg_id(c->initial_apicid, index_msb);
361 #endif
362
363 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
364
365 index_msb = get_count_order(smp_num_siblings);
366
367 core_bits = get_count_order(c->x86_max_cores);
368
369 #ifdef CONFIG_X86_64
370 c->cpu_core_id = phys_pkg_id(index_msb) &
371 ((1 << core_bits) - 1);
372 #else
373 c->cpu_core_id = phys_pkg_id(c->initial_apicid, index_msb) &
374 ((1 << core_bits) - 1);
375 #endif
376 }
377
378 out:
379 if ((c->x86_max_cores * smp_num_siblings) > 1) {
380 printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
381 c->phys_proc_id);
382 printk(KERN_INFO "CPU: Processor Core ID: %d\n",
383 c->cpu_core_id);
384 }
385 #endif
386 }
387
388 static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
389 {
390 char *v = c->x86_vendor_id;
391 int i;
392 static int printed;
393
394 for (i = 0; i < X86_VENDOR_NUM; i++) {
395 if (!cpu_devs[i])
396 break;
397
398 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
399 (cpu_devs[i]->c_ident[1] &&
400 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
401 this_cpu = cpu_devs[i];
402 c->x86_vendor = this_cpu->c_x86_vendor;
403 return;
404 }
405 }
406
407 if (!printed) {
408 printed++;
409 printk(KERN_ERR "CPU: vendor_id '%s' unknown, using generic init.\n", v);
410 printk(KERN_ERR "CPU: Your system may be unstable.\n");
411 }
412
413 c->x86_vendor = X86_VENDOR_UNKNOWN;
414 this_cpu = &default_cpu;
415 }
416
417 void __cpuinit cpu_detect(struct cpuinfo_x86 *c)
418 {
419 /* Get vendor name */
420 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
421 (unsigned int *)&c->x86_vendor_id[0],
422 (unsigned int *)&c->x86_vendor_id[8],
423 (unsigned int *)&c->x86_vendor_id[4]);
424
425 c->x86 = 4;
426 /* Intel-defined flags: level 0x00000001 */
427 if (c->cpuid_level >= 0x00000001) {
428 u32 junk, tfms, cap0, misc;
429 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
430 c->x86 = (tfms >> 8) & 0xf;
431 c->x86_model = (tfms >> 4) & 0xf;
432 c->x86_mask = tfms & 0xf;
433 if (c->x86 == 0xf)
434 c->x86 += (tfms >> 20) & 0xff;
435 if (c->x86 >= 0x6)
436 c->x86_model += ((tfms >> 16) & 0xf) << 4;
437 if (cap0 & (1<<19)) {
438 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
439 c->x86_cache_alignment = c->x86_clflush_size;
440 }
441 }
442 }
443
444 static void __cpuinit get_cpu_cap(struct cpuinfo_x86 *c)
445 {
446 u32 tfms, xlvl;
447 u32 ebx;
448
449 /* Intel-defined flags: level 0x00000001 */
450 if (c->cpuid_level >= 0x00000001) {
451 u32 capability, excap;
452 cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
453 c->x86_capability[0] = capability;
454 c->x86_capability[4] = excap;
455 }
456
457 /* AMD-defined flags: level 0x80000001 */
458 xlvl = cpuid_eax(0x80000000);
459 c->extended_cpuid_level = xlvl;
460 if ((xlvl & 0xffff0000) == 0x80000000) {
461 if (xlvl >= 0x80000001) {
462 c->x86_capability[1] = cpuid_edx(0x80000001);
463 c->x86_capability[6] = cpuid_ecx(0x80000001);
464 }
465 }
466
467 #ifdef CONFIG_X86_64
468 if (c->extended_cpuid_level >= 0x80000008) {
469 u32 eax = cpuid_eax(0x80000008);
470
471 c->x86_virt_bits = (eax >> 8) & 0xff;
472 c->x86_phys_bits = eax & 0xff;
473 }
474 #endif
475
476 if (c->extended_cpuid_level >= 0x80000007)
477 c->x86_power = cpuid_edx(0x80000007);
478
479 }
480
481 static void __cpuinit identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
482 {
483 #ifdef CONFIG_X86_32
484 int i;
485
486 /*
487 * First of all, decide if this is a 486 or higher
488 * It's a 486 if we can modify the AC flag
489 */
490 if (flag_is_changeable_p(X86_EFLAGS_AC))
491 c->x86 = 4;
492 else
493 c->x86 = 3;
494
495 for (i = 0; i < X86_VENDOR_NUM; i++)
496 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
497 c->x86_vendor_id[0] = 0;
498 cpu_devs[i]->c_identify(c);
499 if (c->x86_vendor_id[0]) {
500 get_cpu_vendor(c);
501 break;
502 }
503 }
504 #endif
505 }
506
507 /*
508 * Do minimum CPU detection early.
509 * Fields really needed: vendor, cpuid_level, family, model, mask,
510 * cache alignment.
511 * The others are not touched to avoid unwanted side effects.
512 *
513 * WARNING: this function is only called on the BP. Don't add code here
514 * that is supposed to run on all CPUs.
515 */
516 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
517 {
518 #ifdef CONFIG_X86_64
519 c->x86_clflush_size = 64;
520 #else
521 c->x86_clflush_size = 32;
522 #endif
523 c->x86_cache_alignment = c->x86_clflush_size;
524
525 memset(&c->x86_capability, 0, sizeof c->x86_capability);
526 c->extended_cpuid_level = 0;
527
528 if (!have_cpuid_p())
529 identify_cpu_without_cpuid(c);
530
531 /* cyrix could have cpuid enabled via c_identify()*/
532 if (!have_cpuid_p())
533 return;
534
535 cpu_detect(c);
536
537 get_cpu_vendor(c);
538
539 get_cpu_cap(c);
540
541 if (this_cpu->c_early_init)
542 this_cpu->c_early_init(c);
543
544 validate_pat_support(c);
545 }
546
547 void __init early_cpu_init(void)
548 {
549 struct cpu_dev **cdev;
550 int count = 0;
551
552 printk("KERNEL supported cpus:\n");
553 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
554 struct cpu_dev *cpudev = *cdev;
555 unsigned int j;
556
557 if (count >= X86_VENDOR_NUM)
558 break;
559 cpu_devs[count] = cpudev;
560 count++;
561
562 for (j = 0; j < 2; j++) {
563 if (!cpudev->c_ident[j])
564 continue;
565 printk(" %s %s\n", cpudev->c_vendor,
566 cpudev->c_ident[j]);
567 }
568 }
569
570 early_identify_cpu(&boot_cpu_data);
571 }
572
573 /*
574 * The NOPL instruction is supposed to exist on all CPUs with
575 * family >= 6; unfortunately, that's not true in practice because
576 * of early VIA chips and (more importantly) broken virtualizers that
577 * are not easy to detect. In the latter case it doesn't even *fail*
578 * reliably, so probing for it doesn't even work. Disable it completely
579 * unless we can find a reliable way to detect all the broken cases.
580 */
581 static void __cpuinit detect_nopl(struct cpuinfo_x86 *c)
582 {
583 clear_cpu_cap(c, X86_FEATURE_NOPL);
584 }
585
586 static void __cpuinit generic_identify(struct cpuinfo_x86 *c)
587 {
588 c->extended_cpuid_level = 0;
589
590 if (!have_cpuid_p())
591 identify_cpu_without_cpuid(c);
592
593 /* cyrix could have cpuid enabled via c_identify()*/
594 if (!have_cpuid_p())
595 return;
596
597 cpu_detect(c);
598
599 get_cpu_vendor(c);
600
601 get_cpu_cap(c);
602
603 if (c->cpuid_level >= 0x00000001) {
604 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
605 #ifdef CONFIG_X86_32
606 # ifdef CONFIG_X86_HT
607 c->apicid = phys_pkg_id(c->initial_apicid, 0);
608 # else
609 c->apicid = c->initial_apicid;
610 # endif
611 #endif
612
613 #ifdef CONFIG_X86_HT
614 c->phys_proc_id = c->initial_apicid;
615 #endif
616 }
617
618 get_model_name(c); /* Default name */
619
620 init_scattered_cpuid_features(c);
621 detect_nopl(c);
622 }
623
624 /*
625 * This does the hard work of actually picking apart the CPU stuff...
626 */
627 static void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
628 {
629 int i;
630
631 c->loops_per_jiffy = loops_per_jiffy;
632 c->x86_cache_size = -1;
633 c->x86_vendor = X86_VENDOR_UNKNOWN;
634 c->x86_model = c->x86_mask = 0; /* So far unknown... */
635 c->x86_vendor_id[0] = '\0'; /* Unset */
636 c->x86_model_id[0] = '\0'; /* Unset */
637 c->x86_max_cores = 1;
638 c->x86_coreid_bits = 0;
639 #ifdef CONFIG_X86_64
640 c->x86_clflush_size = 64;
641 #else
642 c->cpuid_level = -1; /* CPUID not detected */
643 c->x86_clflush_size = 32;
644 #endif
645 c->x86_cache_alignment = c->x86_clflush_size;
646 memset(&c->x86_capability, 0, sizeof c->x86_capability);
647
648 generic_identify(c);
649
650 if (this_cpu->c_identify)
651 this_cpu->c_identify(c);
652
653 #ifdef CONFIG_X86_64
654 c->apicid = phys_pkg_id(0);
655 #endif
656
657 /*
658 * Vendor-specific initialization. In this section we
659 * canonicalize the feature flags, meaning if there are
660 * features a certain CPU supports which CPUID doesn't
661 * tell us, CPUID claiming incorrect flags, or other bugs,
662 * we handle them here.
663 *
664 * At the end of this section, c->x86_capability better
665 * indicate the features this CPU genuinely supports!
666 */
667 if (this_cpu->c_init)
668 this_cpu->c_init(c);
669
670 /* Disable the PN if appropriate */
671 squash_the_stupid_serial_number(c);
672
673 /*
674 * The vendor-specific functions might have changed features. Now
675 * we do "generic changes."
676 */
677
678 /* If the model name is still unset, do table lookup. */
679 if (!c->x86_model_id[0]) {
680 char *p;
681 p = table_lookup_model(c);
682 if (p)
683 strcpy(c->x86_model_id, p);
684 else
685 /* Last resort... */
686 sprintf(c->x86_model_id, "%02x/%02x",
687 c->x86, c->x86_model);
688 }
689
690 #ifdef CONFIG_X86_64
691 detect_ht(c);
692 #endif
693
694 /*
695 * On SMP, boot_cpu_data holds the common feature set between
696 * all CPUs; so make sure that we indicate which features are
697 * common between the CPUs. The first time this routine gets
698 * executed, c == &boot_cpu_data.
699 */
700 if (c != &boot_cpu_data) {
701 /* AND the already accumulated flags with these */
702 for (i = 0; i < NCAPINTS; i++)
703 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
704 }
705
706 /* Clear all flags overriden by options */
707 for (i = 0; i < NCAPINTS; i++)
708 c->x86_capability[i] &= ~cleared_cpu_caps[i];
709
710 #ifdef CONFIG_X86_MCE
711 /* Init Machine Check Exception if available. */
712 mcheck_init(c);
713 #endif
714
715 select_idle_routine(c);
716
717 #if defined(CONFIG_NUMA) && defined(CONFIG_X86_64)
718 numa_add_cpu(smp_processor_id());
719 #endif
720 }
721
722 void __init identify_boot_cpu(void)
723 {
724 identify_cpu(&boot_cpu_data);
725 #ifdef CONFIG_X86_32
726 sysenter_setup();
727 enable_sep_cpu();
728 #endif
729 }
730
731 void __cpuinit identify_secondary_cpu(struct cpuinfo_x86 *c)
732 {
733 BUG_ON(c == &boot_cpu_data);
734 identify_cpu(c);
735 #ifdef CONFIG_X86_32
736 enable_sep_cpu();
737 #endif
738 mtrr_ap_init();
739 }
740
741 struct msr_range {
742 unsigned min;
743 unsigned max;
744 };
745
746 static struct msr_range msr_range_array[] __cpuinitdata = {
747 { 0x00000000, 0x00000418},
748 { 0xc0000000, 0xc000040b},
749 { 0xc0010000, 0xc0010142},
750 { 0xc0011000, 0xc001103b},
751 };
752
753 static void __cpuinit print_cpu_msr(void)
754 {
755 unsigned index;
756 u64 val;
757 int i;
758 unsigned index_min, index_max;
759
760 for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
761 index_min = msr_range_array[i].min;
762 index_max = msr_range_array[i].max;
763 for (index = index_min; index < index_max; index++) {
764 if (rdmsrl_amd_safe(index, &val))
765 continue;
766 printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
767 }
768 }
769 }
770
771 static int show_msr __cpuinitdata;
772 static __init int setup_show_msr(char *arg)
773 {
774 int num;
775
776 get_option(&arg, &num);
777
778 if (num > 0)
779 show_msr = num;
780 return 1;
781 }
782 __setup("show_msr=", setup_show_msr);
783
784 static __init int setup_noclflush(char *arg)
785 {
786 setup_clear_cpu_cap(X86_FEATURE_CLFLSH);
787 return 1;
788 }
789 __setup("noclflush", setup_noclflush);
790
791 void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
792 {
793 char *vendor = NULL;
794
795 if (c->x86_vendor < X86_VENDOR_NUM)
796 vendor = this_cpu->c_vendor;
797 else if (c->cpuid_level >= 0)
798 vendor = c->x86_vendor_id;
799
800 if (vendor && strncmp(c->x86_model_id, vendor, strlen(vendor)))
801 printk(KERN_CONT "%s ", vendor);
802
803 if (c->x86_model_id[0])
804 printk(KERN_CONT "%s", c->x86_model_id);
805 else
806 printk(KERN_CONT "%d86", c->x86);
807
808 if (c->x86_mask || c->cpuid_level >= 0)
809 printk(KERN_CONT " stepping %02x\n", c->x86_mask);
810 else
811 printk(KERN_CONT "\n");
812
813 #ifdef CONFIG_SMP
814 if (c->cpu_index < show_msr)
815 print_cpu_msr();
816 #else
817 if (show_msr)
818 print_cpu_msr();
819 #endif
820 }
821
822 static __init int setup_disablecpuid(char *arg)
823 {
824 int bit;
825 if (get_option(&arg, &bit) && bit < NCAPINTS*32)
826 setup_clear_cpu_cap(bit);
827 else
828 return 0;
829 return 1;
830 }
831 __setup("clearcpuid=", setup_disablecpuid);
832
833 cpumask_t cpu_initialized __cpuinitdata = CPU_MASK_NONE;
834
835 #ifdef CONFIG_X86_64
836 struct x8664_pda **_cpu_pda __read_mostly;
837 EXPORT_SYMBOL(_cpu_pda);
838
839 struct desc_ptr idt_descr = { 256 * 16 - 1, (unsigned long) idt_table };
840
841 char boot_cpu_stack[IRQSTACKSIZE] __page_aligned_bss;
842
843 void __cpuinit pda_init(int cpu)
844 {
845 struct x8664_pda *pda = cpu_pda(cpu);
846
847 /* Setup up data that may be needed in __get_free_pages early */
848 loadsegment(fs, 0);
849 loadsegment(gs, 0);
850 /* Memory clobbers used to order PDA accessed */
851 mb();
852 wrmsrl(MSR_GS_BASE, pda);
853 mb();
854
855 pda->cpunumber = cpu;
856 pda->irqcount = -1;
857 pda->kernelstack = (unsigned long)stack_thread_info() -
858 PDA_STACKOFFSET + THREAD_SIZE;
859 pda->active_mm = &init_mm;
860 pda->mmu_state = 0;
861
862 if (cpu == 0) {
863 /* others are initialized in smpboot.c */
864 pda->pcurrent = &init_task;
865 pda->irqstackptr = boot_cpu_stack;
866 pda->irqstackptr += IRQSTACKSIZE - 64;
867 } else {
868 if (!pda->irqstackptr) {
869 pda->irqstackptr = (char *)
870 __get_free_pages(GFP_ATOMIC, IRQSTACK_ORDER);
871 if (!pda->irqstackptr)
872 panic("cannot allocate irqstack for cpu %d",
873 cpu);
874 pda->irqstackptr += IRQSTACKSIZE - 64;
875 }
876
877 if (pda->nodenumber == 0 && cpu_to_node(cpu) != NUMA_NO_NODE)
878 pda->nodenumber = cpu_to_node(cpu);
879 }
880 }
881
882 char boot_exception_stacks[(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ +
883 DEBUG_STKSZ] __page_aligned_bss;
884
885 extern asmlinkage void ignore_sysret(void);
886
887 /* May not be marked __init: used by software suspend */
888 void syscall_init(void)
889 {
890 /*
891 * LSTAR and STAR live in a bit strange symbiosis.
892 * They both write to the same internal register. STAR allows to
893 * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
894 */
895 wrmsrl(MSR_STAR, ((u64)__USER32_CS)<<48 | ((u64)__KERNEL_CS)<<32);
896 wrmsrl(MSR_LSTAR, system_call);
897 wrmsrl(MSR_CSTAR, ignore_sysret);
898
899 #ifdef CONFIG_IA32_EMULATION
900 syscall32_cpu_init();
901 #endif
902
903 /* Flags to clear on syscall */
904 wrmsrl(MSR_SYSCALL_MASK,
905 X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|X86_EFLAGS_IOPL);
906 }
907
908 unsigned long kernel_eflags;
909
910 /*
911 * Copies of the original ist values from the tss are only accessed during
912 * debugging, no special alignment required.
913 */
914 DEFINE_PER_CPU(struct orig_ist, orig_ist);
915
916 #else
917
918 /* Make sure %fs is initialized properly in idle threads */
919 struct pt_regs * __cpuinit idle_regs(struct pt_regs *regs)
920 {
921 memset(regs, 0, sizeof(struct pt_regs));
922 regs->fs = __KERNEL_PERCPU;
923 return regs;
924 }
925 #endif
926
927 /*
928 * cpu_init() initializes state that is per-CPU. Some data is already
929 * initialized (naturally) in the bootstrap process, such as the GDT
930 * and IDT. We reload them nevertheless, this function acts as a
931 * 'CPU state barrier', nothing should get across.
932 * A lot of state is already set up in PDA init for 64 bit
933 */
934 #ifdef CONFIG_X86_64
935 void __cpuinit cpu_init(void)
936 {
937 int cpu = stack_smp_processor_id();
938 struct tss_struct *t = &per_cpu(init_tss, cpu);
939 struct orig_ist *orig_ist = &per_cpu(orig_ist, cpu);
940 unsigned long v;
941 char *estacks = NULL;
942 struct task_struct *me;
943 int i;
944
945 /* CPU 0 is initialised in head64.c */
946 if (cpu != 0)
947 pda_init(cpu);
948 else
949 estacks = boot_exception_stacks;
950
951 me = current;
952
953 if (cpu_test_and_set(cpu, cpu_initialized))
954 panic("CPU#%d already initialized!\n", cpu);
955
956 printk(KERN_INFO "Initializing CPU#%d\n", cpu);
957
958 clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
959
960 /*
961 * Initialize the per-CPU GDT with the boot GDT,
962 * and set up the GDT descriptor:
963 */
964
965 switch_to_new_gdt();
966 load_idt((const struct desc_ptr *)&idt_descr);
967
968 memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
969 syscall_init();
970
971 wrmsrl(MSR_FS_BASE, 0);
972 wrmsrl(MSR_KERNEL_GS_BASE, 0);
973 barrier();
974
975 check_efer();
976 if (cpu != 0 && x2apic)
977 enable_x2apic();
978
979 /*
980 * set up and load the per-CPU TSS
981 */
982 if (!orig_ist->ist[0]) {
983 static const unsigned int order[N_EXCEPTION_STACKS] = {
984 [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STACK_ORDER,
985 [DEBUG_STACK - 1] = DEBUG_STACK_ORDER
986 };
987 for (v = 0; v < N_EXCEPTION_STACKS; v++) {
988 if (cpu) {
989 estacks = (char *)__get_free_pages(GFP_ATOMIC, order[v]);
990 if (!estacks)
991 panic("Cannot allocate exception "
992 "stack %ld %d\n", v, cpu);
993 }
994 estacks += PAGE_SIZE << order[v];
995 orig_ist->ist[v] = t->x86_tss.ist[v] =
996 (unsigned long)estacks;
997 }
998 }
999
1000 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1001 /*
1002 * <= is required because the CPU will access up to
1003 * 8 bits beyond the end of the IO permission bitmap.
1004 */
1005 for (i = 0; i <= IO_BITMAP_LONGS; i++)
1006 t->io_bitmap[i] = ~0UL;
1007
1008 atomic_inc(&init_mm.mm_count);
1009 me->active_mm = &init_mm;
1010 if (me->mm)
1011 BUG();
1012 enter_lazy_tlb(&init_mm, me);
1013
1014 load_sp0(t, &current->thread);
1015 set_tss_desc(cpu, t);
1016 load_TR_desc();
1017 load_LDT(&init_mm.context);
1018
1019 #ifdef CONFIG_KGDB
1020 /*
1021 * If the kgdb is connected no debug regs should be altered. This
1022 * is only applicable when KGDB and a KGDB I/O module are built
1023 * into the kernel and you are using early debugging with
1024 * kgdbwait. KGDB will control the kernel HW breakpoint registers.
1025 */
1026 if (kgdb_connected && arch_kgdb_ops.correct_hw_break)
1027 arch_kgdb_ops.correct_hw_break();
1028 else {
1029 #endif
1030 /*
1031 * Clear all 6 debug registers:
1032 */
1033
1034 set_debugreg(0UL, 0);
1035 set_debugreg(0UL, 1);
1036 set_debugreg(0UL, 2);
1037 set_debugreg(0UL, 3);
1038 set_debugreg(0UL, 6);
1039 set_debugreg(0UL, 7);
1040 #ifdef CONFIG_KGDB
1041 /* If the kgdb is connected no debug regs should be altered. */
1042 }
1043 #endif
1044
1045 fpu_init();
1046
1047 raw_local_save_flags(kernel_eflags);
1048
1049 if (is_uv_system())
1050 uv_cpu_init();
1051 }
1052
1053 #else
1054
1055 void __cpuinit cpu_init(void)
1056 {
1057 int cpu = smp_processor_id();
1058 struct task_struct *curr = current;
1059 struct tss_struct *t = &per_cpu(init_tss, cpu);
1060 struct thread_struct *thread = &curr->thread;
1061
1062 if (cpu_test_and_set(cpu, cpu_initialized)) {
1063 printk(KERN_WARNING "CPU#%d already initialized!\n", cpu);
1064 for (;;) local_irq_enable();
1065 }
1066
1067 printk(KERN_INFO "Initializing CPU#%d\n", cpu);
1068
1069 if (cpu_has_vme || cpu_has_tsc || cpu_has_de)
1070 clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1071
1072 load_idt(&idt_descr);
1073 switch_to_new_gdt();
1074
1075 /*
1076 * Set up and load the per-CPU TSS and LDT
1077 */
1078 atomic_inc(&init_mm.mm_count);
1079 curr->active_mm = &init_mm;
1080 if (curr->mm)
1081 BUG();
1082 enter_lazy_tlb(&init_mm, curr);
1083
1084 load_sp0(t, thread);
1085 set_tss_desc(cpu, t);
1086 load_TR_desc();
1087 load_LDT(&init_mm.context);
1088
1089 #ifdef CONFIG_DOUBLEFAULT
1090 /* Set up doublefault TSS pointer in the GDT */
1091 __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1092 #endif
1093
1094 /* Clear %gs. */
1095 asm volatile ("mov %0, %%gs" : : "r" (0));
1096
1097 /* Clear all 6 debug registers: */
1098 set_debugreg(0, 0);
1099 set_debugreg(0, 1);
1100 set_debugreg(0, 2);
1101 set_debugreg(0, 3);
1102 set_debugreg(0, 6);
1103 set_debugreg(0, 7);
1104
1105 /*
1106 * Force FPU initialization:
1107 */
1108 if (cpu_has_xsave)
1109 current_thread_info()->status = TS_XSAVE;
1110 else
1111 current_thread_info()->status = 0;
1112 clear_used_math();
1113 mxcsr_feature_mask_init();
1114
1115 /*
1116 * Boot processor to setup the FP and extended state context info.
1117 */
1118 if (!smp_processor_id())
1119 init_thread_xstate();
1120
1121 xsave_init();
1122 }
1123
1124
1125 #endif