]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kernel/cpu/common.c
x86/entry: Clean up the SYSENTER_stack code
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / cpu / common.c
1 #include <linux/bootmem.h>
2 #include <linux/linkage.h>
3 #include <linux/bitops.h>
4 #include <linux/kernel.h>
5 #include <linux/export.h>
6 #include <linux/percpu.h>
7 #include <linux/string.h>
8 #include <linux/ctype.h>
9 #include <linux/delay.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/clock.h>
12 #include <linux/sched/task.h>
13 #include <linux/init.h>
14 #include <linux/kprobes.h>
15 #include <linux/kgdb.h>
16 #include <linux/smp.h>
17 #include <linux/io.h>
18 #include <linux/syscore_ops.h>
19
20 #include <asm/stackprotector.h>
21 #include <asm/perf_event.h>
22 #include <asm/mmu_context.h>
23 #include <asm/archrandom.h>
24 #include <asm/hypervisor.h>
25 #include <asm/processor.h>
26 #include <asm/tlbflush.h>
27 #include <asm/debugreg.h>
28 #include <asm/sections.h>
29 #include <asm/vsyscall.h>
30 #include <linux/topology.h>
31 #include <linux/cpumask.h>
32 #include <asm/pgtable.h>
33 #include <linux/atomic.h>
34 #include <asm/proto.h>
35 #include <asm/setup.h>
36 #include <asm/apic.h>
37 #include <asm/desc.h>
38 #include <asm/fpu/internal.h>
39 #include <asm/mtrr.h>
40 #include <asm/hwcap2.h>
41 #include <linux/numa.h>
42 #include <asm/asm.h>
43 #include <asm/bugs.h>
44 #include <asm/cpu.h>
45 #include <asm/mce.h>
46 #include <asm/msr.h>
47 #include <asm/pat.h>
48 #include <asm/microcode.h>
49 #include <asm/microcode_intel.h>
50
51 #ifdef CONFIG_X86_LOCAL_APIC
52 #include <asm/uv/uv.h>
53 #endif
54
55 #include "cpu.h"
56
57 u32 elf_hwcap2 __read_mostly;
58
59 /* all of these masks are initialized in setup_cpu_local_masks() */
60 cpumask_var_t cpu_initialized_mask;
61 cpumask_var_t cpu_callout_mask;
62 cpumask_var_t cpu_callin_mask;
63
64 /* representing cpus for which sibling maps can be computed */
65 cpumask_var_t cpu_sibling_setup_mask;
66
67 /* correctly size the local cpu masks */
68 void __init setup_cpu_local_masks(void)
69 {
70 alloc_bootmem_cpumask_var(&cpu_initialized_mask);
71 alloc_bootmem_cpumask_var(&cpu_callin_mask);
72 alloc_bootmem_cpumask_var(&cpu_callout_mask);
73 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
74 }
75
76 static void default_init(struct cpuinfo_x86 *c)
77 {
78 #ifdef CONFIG_X86_64
79 cpu_detect_cache_sizes(c);
80 #else
81 /* Not much we can do here... */
82 /* Check if at least it has cpuid */
83 if (c->cpuid_level == -1) {
84 /* No cpuid. It must be an ancient CPU */
85 if (c->x86 == 4)
86 strcpy(c->x86_model_id, "486");
87 else if (c->x86 == 3)
88 strcpy(c->x86_model_id, "386");
89 }
90 #endif
91 }
92
93 static const struct cpu_dev default_cpu = {
94 .c_init = default_init,
95 .c_vendor = "Unknown",
96 .c_x86_vendor = X86_VENDOR_UNKNOWN,
97 };
98
99 static const struct cpu_dev *this_cpu = &default_cpu;
100
101 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
102 #ifdef CONFIG_X86_64
103 /*
104 * We need valid kernel segments for data and code in long mode too
105 * IRET will check the segment types kkeil 2000/10/28
106 * Also sysret mandates a special GDT layout
107 *
108 * TLS descriptors are currently at a different place compared to i386.
109 * Hopefully nobody expects them at a fixed place (Wine?)
110 */
111 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
112 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
113 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
114 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
115 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
116 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
117 #else
118 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
119 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
120 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
121 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
122 /*
123 * Segments used for calling PnP BIOS have byte granularity.
124 * They code segments and data segments have fixed 64k limits,
125 * the transfer segment sizes are set at run time.
126 */
127 /* 32-bit code */
128 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
129 /* 16-bit code */
130 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
131 /* 16-bit data */
132 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
133 /* 16-bit data */
134 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
135 /* 16-bit data */
136 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
137 /*
138 * The APM segments have byte granularity and their bases
139 * are set at run time. All have 64k limits.
140 */
141 /* 32-bit code */
142 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
143 /* 16-bit code */
144 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
145 /* data */
146 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
147
148 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
149 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
150 GDT_STACK_CANARY_INIT
151 #endif
152 } };
153 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
154
155 static int __init x86_mpx_setup(char *s)
156 {
157 /* require an exact match without trailing characters */
158 if (strlen(s))
159 return 0;
160
161 /* do not emit a message if the feature is not present */
162 if (!boot_cpu_has(X86_FEATURE_MPX))
163 return 1;
164
165 setup_clear_cpu_cap(X86_FEATURE_MPX);
166 pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n");
167 return 1;
168 }
169 __setup("nompx", x86_mpx_setup);
170
171 #ifdef CONFIG_X86_64
172 static int __init x86_nopcid_setup(char *s)
173 {
174 /* nopcid doesn't accept parameters */
175 if (s)
176 return -EINVAL;
177
178 /* do not emit a message if the feature is not present */
179 if (!boot_cpu_has(X86_FEATURE_PCID))
180 return 0;
181
182 setup_clear_cpu_cap(X86_FEATURE_PCID);
183 pr_info("nopcid: PCID feature disabled\n");
184 return 0;
185 }
186 early_param("nopcid", x86_nopcid_setup);
187 #endif
188
189 static int __init x86_noinvpcid_setup(char *s)
190 {
191 /* noinvpcid doesn't accept parameters */
192 if (s)
193 return -EINVAL;
194
195 /* do not emit a message if the feature is not present */
196 if (!boot_cpu_has(X86_FEATURE_INVPCID))
197 return 0;
198
199 setup_clear_cpu_cap(X86_FEATURE_INVPCID);
200 pr_info("noinvpcid: INVPCID feature disabled\n");
201 return 0;
202 }
203 early_param("noinvpcid", x86_noinvpcid_setup);
204
205 #ifdef CONFIG_X86_32
206 static int cachesize_override = -1;
207 static int disable_x86_serial_nr = 1;
208
209 static int __init cachesize_setup(char *str)
210 {
211 get_option(&str, &cachesize_override);
212 return 1;
213 }
214 __setup("cachesize=", cachesize_setup);
215
216 static int __init x86_sep_setup(char *s)
217 {
218 setup_clear_cpu_cap(X86_FEATURE_SEP);
219 return 1;
220 }
221 __setup("nosep", x86_sep_setup);
222
223 /* Standard macro to see if a specific flag is changeable */
224 static inline int flag_is_changeable_p(u32 flag)
225 {
226 u32 f1, f2;
227
228 /*
229 * Cyrix and IDT cpus allow disabling of CPUID
230 * so the code below may return different results
231 * when it is executed before and after enabling
232 * the CPUID. Add "volatile" to not allow gcc to
233 * optimize the subsequent calls to this function.
234 */
235 asm volatile ("pushfl \n\t"
236 "pushfl \n\t"
237 "popl %0 \n\t"
238 "movl %0, %1 \n\t"
239 "xorl %2, %0 \n\t"
240 "pushl %0 \n\t"
241 "popfl \n\t"
242 "pushfl \n\t"
243 "popl %0 \n\t"
244 "popfl \n\t"
245
246 : "=&r" (f1), "=&r" (f2)
247 : "ir" (flag));
248
249 return ((f1^f2) & flag) != 0;
250 }
251
252 /* Probe for the CPUID instruction */
253 int have_cpuid_p(void)
254 {
255 return flag_is_changeable_p(X86_EFLAGS_ID);
256 }
257
258 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
259 {
260 unsigned long lo, hi;
261
262 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
263 return;
264
265 /* Disable processor serial number: */
266
267 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
268 lo |= 0x200000;
269 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
270
271 pr_notice("CPU serial number disabled.\n");
272 clear_cpu_cap(c, X86_FEATURE_PN);
273
274 /* Disabling the serial number may affect the cpuid level */
275 c->cpuid_level = cpuid_eax(0);
276 }
277
278 static int __init x86_serial_nr_setup(char *s)
279 {
280 disable_x86_serial_nr = 0;
281 return 1;
282 }
283 __setup("serialnumber", x86_serial_nr_setup);
284 #else
285 static inline int flag_is_changeable_p(u32 flag)
286 {
287 return 1;
288 }
289 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
290 {
291 }
292 #endif
293
294 static __init int setup_disable_smep(char *arg)
295 {
296 setup_clear_cpu_cap(X86_FEATURE_SMEP);
297 /* Check for things that depend on SMEP being enabled: */
298 check_mpx_erratum(&boot_cpu_data);
299 return 1;
300 }
301 __setup("nosmep", setup_disable_smep);
302
303 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
304 {
305 if (cpu_has(c, X86_FEATURE_SMEP))
306 cr4_set_bits(X86_CR4_SMEP);
307 }
308
309 static __init int setup_disable_smap(char *arg)
310 {
311 setup_clear_cpu_cap(X86_FEATURE_SMAP);
312 return 1;
313 }
314 __setup("nosmap", setup_disable_smap);
315
316 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
317 {
318 unsigned long eflags = native_save_fl();
319
320 /* This should have been cleared long ago */
321 BUG_ON(eflags & X86_EFLAGS_AC);
322
323 if (cpu_has(c, X86_FEATURE_SMAP)) {
324 #ifdef CONFIG_X86_SMAP
325 cr4_set_bits(X86_CR4_SMAP);
326 #else
327 cr4_clear_bits(X86_CR4_SMAP);
328 #endif
329 }
330 }
331
332 /*
333 * Protection Keys are not available in 32-bit mode.
334 */
335 static bool pku_disabled;
336
337 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
338 {
339 /* check the boot processor, plus compile options for PKU: */
340 if (!cpu_feature_enabled(X86_FEATURE_PKU))
341 return;
342 /* checks the actual processor's cpuid bits: */
343 if (!cpu_has(c, X86_FEATURE_PKU))
344 return;
345 if (pku_disabled)
346 return;
347
348 cr4_set_bits(X86_CR4_PKE);
349 /*
350 * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
351 * cpuid bit to be set. We need to ensure that we
352 * update that bit in this CPU's "cpu_info".
353 */
354 get_cpu_cap(c);
355 }
356
357 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
358 static __init int setup_disable_pku(char *arg)
359 {
360 /*
361 * Do not clear the X86_FEATURE_PKU bit. All of the
362 * runtime checks are against OSPKE so clearing the
363 * bit does nothing.
364 *
365 * This way, we will see "pku" in cpuinfo, but not
366 * "ospke", which is exactly what we want. It shows
367 * that the CPU has PKU, but the OS has not enabled it.
368 * This happens to be exactly how a system would look
369 * if we disabled the config option.
370 */
371 pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
372 pku_disabled = true;
373 return 1;
374 }
375 __setup("nopku", setup_disable_pku);
376 #endif /* CONFIG_X86_64 */
377
378 /*
379 * Some CPU features depend on higher CPUID levels, which may not always
380 * be available due to CPUID level capping or broken virtualization
381 * software. Add those features to this table to auto-disable them.
382 */
383 struct cpuid_dependent_feature {
384 u32 feature;
385 u32 level;
386 };
387
388 static const struct cpuid_dependent_feature
389 cpuid_dependent_features[] = {
390 { X86_FEATURE_MWAIT, 0x00000005 },
391 { X86_FEATURE_DCA, 0x00000009 },
392 { X86_FEATURE_XSAVE, 0x0000000d },
393 { 0, 0 }
394 };
395
396 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
397 {
398 const struct cpuid_dependent_feature *df;
399
400 for (df = cpuid_dependent_features; df->feature; df++) {
401
402 if (!cpu_has(c, df->feature))
403 continue;
404 /*
405 * Note: cpuid_level is set to -1 if unavailable, but
406 * extended_extended_level is set to 0 if unavailable
407 * and the legitimate extended levels are all negative
408 * when signed; hence the weird messing around with
409 * signs here...
410 */
411 if (!((s32)df->level < 0 ?
412 (u32)df->level > (u32)c->extended_cpuid_level :
413 (s32)df->level > (s32)c->cpuid_level))
414 continue;
415
416 clear_cpu_cap(c, df->feature);
417 if (!warn)
418 continue;
419
420 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
421 x86_cap_flag(df->feature), df->level);
422 }
423 }
424
425 /*
426 * Naming convention should be: <Name> [(<Codename>)]
427 * This table only is used unless init_<vendor>() below doesn't set it;
428 * in particular, if CPUID levels 0x80000002..4 are supported, this
429 * isn't used
430 */
431
432 /* Look up CPU names by table lookup. */
433 static const char *table_lookup_model(struct cpuinfo_x86 *c)
434 {
435 #ifdef CONFIG_X86_32
436 const struct legacy_cpu_model_info *info;
437
438 if (c->x86_model >= 16)
439 return NULL; /* Range check */
440
441 if (!this_cpu)
442 return NULL;
443
444 info = this_cpu->legacy_models;
445
446 while (info->family) {
447 if (info->family == c->x86)
448 return info->model_names[c->x86_model];
449 info++;
450 }
451 #endif
452 return NULL; /* Not found */
453 }
454
455 __u32 cpu_caps_cleared[NCAPINTS];
456 __u32 cpu_caps_set[NCAPINTS];
457
458 void load_percpu_segment(int cpu)
459 {
460 #ifdef CONFIG_X86_32
461 loadsegment(fs, __KERNEL_PERCPU);
462 #else
463 __loadsegment_simple(gs, 0);
464 wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
465 #endif
466 load_stack_canary_segment();
467 }
468
469 #ifdef CONFIG_X86_32
470 /* The 32-bit entry code needs to find cpu_entry_area. */
471 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
472 #endif
473
474 #ifdef CONFIG_X86_64
475 /*
476 * Special IST stacks which the CPU switches to when it calls
477 * an IST-marked descriptor entry. Up to 7 stacks (hardware
478 * limit), all of them are 4K, except the debug stack which
479 * is 8K.
480 */
481 static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
482 [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ,
483 [DEBUG_STACK - 1] = DEBUG_STKSZ
484 };
485
486 static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
487 [(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]);
488 #endif
489
490 static void __init
491 set_percpu_fixmap_pages(int idx, void *ptr, int pages, pgprot_t prot)
492 {
493 for ( ; pages; pages--, idx--, ptr += PAGE_SIZE)
494 __set_fixmap(idx, per_cpu_ptr_to_phys(ptr), prot);
495 }
496
497 /* Setup the fixmap mappings only once per-processor */
498 static void __init setup_cpu_entry_area(int cpu)
499 {
500 #ifdef CONFIG_X86_64
501 extern char _entry_trampoline[];
502
503 /* On 64-bit systems, we use a read-only fixmap GDT. */
504 pgprot_t gdt_prot = PAGE_KERNEL_RO;
505 #else
506 /*
507 * On native 32-bit systems, the GDT cannot be read-only because
508 * our double fault handler uses a task gate, and entering through
509 * a task gate needs to change an available TSS to busy. If the GDT
510 * is read-only, that will triple fault.
511 *
512 * On Xen PV, the GDT must be read-only because the hypervisor requires
513 * it.
514 */
515 pgprot_t gdt_prot = boot_cpu_has(X86_FEATURE_XENPV) ?
516 PAGE_KERNEL_RO : PAGE_KERNEL;
517 #endif
518
519 __set_fixmap(get_cpu_entry_area_index(cpu, gdt), get_cpu_gdt_paddr(cpu), gdt_prot);
520
521 /*
522 * The Intel SDM says (Volume 3, 7.2.1):
523 *
524 * Avoid placing a page boundary in the part of the TSS that the
525 * processor reads during a task switch (the first 104 bytes). The
526 * processor may not correctly perform address translations if a
527 * boundary occurs in this area. During a task switch, the processor
528 * reads and writes into the first 104 bytes of each TSS (using
529 * contiguous physical addresses beginning with the physical address
530 * of the first byte of the TSS). So, after TSS access begins, if
531 * part of the 104 bytes is not physically contiguous, the processor
532 * will access incorrect information without generating a page-fault
533 * exception.
534 *
535 * There are also a lot of errata involving the TSS spanning a page
536 * boundary. Assert that we're not doing that.
537 */
538 BUILD_BUG_ON((offsetof(struct tss_struct, x86_tss) ^
539 offsetofend(struct tss_struct, x86_tss)) & PAGE_MASK);
540 BUILD_BUG_ON(sizeof(struct tss_struct) % PAGE_SIZE != 0);
541 set_percpu_fixmap_pages(get_cpu_entry_area_index(cpu, tss),
542 &per_cpu(cpu_tss, cpu),
543 sizeof(struct tss_struct) / PAGE_SIZE,
544 PAGE_KERNEL);
545
546 #ifdef CONFIG_X86_32
547 per_cpu(cpu_entry_area, cpu) = get_cpu_entry_area(cpu);
548 #endif
549
550 #ifdef CONFIG_X86_64
551 BUILD_BUG_ON(sizeof(exception_stacks) % PAGE_SIZE != 0);
552 BUILD_BUG_ON(sizeof(exception_stacks) !=
553 sizeof(((struct cpu_entry_area *)0)->exception_stacks));
554 set_percpu_fixmap_pages(get_cpu_entry_area_index(cpu, exception_stacks),
555 &per_cpu(exception_stacks, cpu),
556 sizeof(exception_stacks) / PAGE_SIZE,
557 PAGE_KERNEL);
558
559 __set_fixmap(get_cpu_entry_area_index(cpu, entry_trampoline),
560 __pa_symbol(_entry_trampoline), PAGE_KERNEL_RX);
561 #endif
562 }
563
564 void __init setup_cpu_entry_areas(void)
565 {
566 unsigned int cpu;
567
568 for_each_possible_cpu(cpu)
569 setup_cpu_entry_area(cpu);
570 }
571
572 /* Load the original GDT from the per-cpu structure */
573 void load_direct_gdt(int cpu)
574 {
575 struct desc_ptr gdt_descr;
576
577 gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
578 gdt_descr.size = GDT_SIZE - 1;
579 load_gdt(&gdt_descr);
580 }
581 EXPORT_SYMBOL_GPL(load_direct_gdt);
582
583 /* Load a fixmap remapping of the per-cpu GDT */
584 void load_fixmap_gdt(int cpu)
585 {
586 struct desc_ptr gdt_descr;
587
588 gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
589 gdt_descr.size = GDT_SIZE - 1;
590 load_gdt(&gdt_descr);
591 }
592 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
593
594 /*
595 * Current gdt points %fs at the "master" per-cpu area: after this,
596 * it's on the real one.
597 */
598 void switch_to_new_gdt(int cpu)
599 {
600 /* Load the original GDT */
601 load_direct_gdt(cpu);
602 /* Reload the per-cpu base */
603 load_percpu_segment(cpu);
604 }
605
606 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
607
608 static void get_model_name(struct cpuinfo_x86 *c)
609 {
610 unsigned int *v;
611 char *p, *q, *s;
612
613 if (c->extended_cpuid_level < 0x80000004)
614 return;
615
616 v = (unsigned int *)c->x86_model_id;
617 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
618 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
619 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
620 c->x86_model_id[48] = 0;
621
622 /* Trim whitespace */
623 p = q = s = &c->x86_model_id[0];
624
625 while (*p == ' ')
626 p++;
627
628 while (*p) {
629 /* Note the last non-whitespace index */
630 if (!isspace(*p))
631 s = q;
632
633 *q++ = *p++;
634 }
635
636 *(s + 1) = '\0';
637 }
638
639 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
640 {
641 unsigned int n, dummy, ebx, ecx, edx, l2size;
642
643 n = c->extended_cpuid_level;
644
645 if (n >= 0x80000005) {
646 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
647 c->x86_cache_size = (ecx>>24) + (edx>>24);
648 #ifdef CONFIG_X86_64
649 /* On K8 L1 TLB is inclusive, so don't count it */
650 c->x86_tlbsize = 0;
651 #endif
652 }
653
654 if (n < 0x80000006) /* Some chips just has a large L1. */
655 return;
656
657 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
658 l2size = ecx >> 16;
659
660 #ifdef CONFIG_X86_64
661 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
662 #else
663 /* do processor-specific cache resizing */
664 if (this_cpu->legacy_cache_size)
665 l2size = this_cpu->legacy_cache_size(c, l2size);
666
667 /* Allow user to override all this if necessary. */
668 if (cachesize_override != -1)
669 l2size = cachesize_override;
670
671 if (l2size == 0)
672 return; /* Again, no L2 cache is possible */
673 #endif
674
675 c->x86_cache_size = l2size;
676 }
677
678 u16 __read_mostly tlb_lli_4k[NR_INFO];
679 u16 __read_mostly tlb_lli_2m[NR_INFO];
680 u16 __read_mostly tlb_lli_4m[NR_INFO];
681 u16 __read_mostly tlb_lld_4k[NR_INFO];
682 u16 __read_mostly tlb_lld_2m[NR_INFO];
683 u16 __read_mostly tlb_lld_4m[NR_INFO];
684 u16 __read_mostly tlb_lld_1g[NR_INFO];
685
686 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
687 {
688 if (this_cpu->c_detect_tlb)
689 this_cpu->c_detect_tlb(c);
690
691 pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
692 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
693 tlb_lli_4m[ENTRIES]);
694
695 pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
696 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
697 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
698 }
699
700 void detect_ht(struct cpuinfo_x86 *c)
701 {
702 #ifdef CONFIG_SMP
703 u32 eax, ebx, ecx, edx;
704 int index_msb, core_bits;
705 static bool printed;
706
707 if (!cpu_has(c, X86_FEATURE_HT))
708 return;
709
710 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
711 goto out;
712
713 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
714 return;
715
716 cpuid(1, &eax, &ebx, &ecx, &edx);
717
718 smp_num_siblings = (ebx & 0xff0000) >> 16;
719
720 if (smp_num_siblings == 1) {
721 pr_info_once("CPU0: Hyper-Threading is disabled\n");
722 goto out;
723 }
724
725 if (smp_num_siblings <= 1)
726 goto out;
727
728 index_msb = get_count_order(smp_num_siblings);
729 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
730
731 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
732
733 index_msb = get_count_order(smp_num_siblings);
734
735 core_bits = get_count_order(c->x86_max_cores);
736
737 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
738 ((1 << core_bits) - 1);
739
740 out:
741 if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
742 pr_info("CPU: Physical Processor ID: %d\n",
743 c->phys_proc_id);
744 pr_info("CPU: Processor Core ID: %d\n",
745 c->cpu_core_id);
746 printed = 1;
747 }
748 #endif
749 }
750
751 static void get_cpu_vendor(struct cpuinfo_x86 *c)
752 {
753 char *v = c->x86_vendor_id;
754 int i;
755
756 for (i = 0; i < X86_VENDOR_NUM; i++) {
757 if (!cpu_devs[i])
758 break;
759
760 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
761 (cpu_devs[i]->c_ident[1] &&
762 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
763
764 this_cpu = cpu_devs[i];
765 c->x86_vendor = this_cpu->c_x86_vendor;
766 return;
767 }
768 }
769
770 pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
771 "CPU: Your system may be unstable.\n", v);
772
773 c->x86_vendor = X86_VENDOR_UNKNOWN;
774 this_cpu = &default_cpu;
775 }
776
777 void cpu_detect(struct cpuinfo_x86 *c)
778 {
779 /* Get vendor name */
780 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
781 (unsigned int *)&c->x86_vendor_id[0],
782 (unsigned int *)&c->x86_vendor_id[8],
783 (unsigned int *)&c->x86_vendor_id[4]);
784
785 c->x86 = 4;
786 /* Intel-defined flags: level 0x00000001 */
787 if (c->cpuid_level >= 0x00000001) {
788 u32 junk, tfms, cap0, misc;
789
790 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
791 c->x86 = x86_family(tfms);
792 c->x86_model = x86_model(tfms);
793 c->x86_mask = x86_stepping(tfms);
794
795 if (cap0 & (1<<19)) {
796 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
797 c->x86_cache_alignment = c->x86_clflush_size;
798 }
799 }
800 }
801
802 static void apply_forced_caps(struct cpuinfo_x86 *c)
803 {
804 int i;
805
806 for (i = 0; i < NCAPINTS; i++) {
807 c->x86_capability[i] &= ~cpu_caps_cleared[i];
808 c->x86_capability[i] |= cpu_caps_set[i];
809 }
810 }
811
812 void get_cpu_cap(struct cpuinfo_x86 *c)
813 {
814 u32 eax, ebx, ecx, edx;
815
816 /* Intel-defined flags: level 0x00000001 */
817 if (c->cpuid_level >= 0x00000001) {
818 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
819
820 c->x86_capability[CPUID_1_ECX] = ecx;
821 c->x86_capability[CPUID_1_EDX] = edx;
822 }
823
824 /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
825 if (c->cpuid_level >= 0x00000006)
826 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
827
828 /* Additional Intel-defined flags: level 0x00000007 */
829 if (c->cpuid_level >= 0x00000007) {
830 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
831 c->x86_capability[CPUID_7_0_EBX] = ebx;
832 c->x86_capability[CPUID_7_ECX] = ecx;
833 }
834
835 /* Extended state features: level 0x0000000d */
836 if (c->cpuid_level >= 0x0000000d) {
837 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
838
839 c->x86_capability[CPUID_D_1_EAX] = eax;
840 }
841
842 /* Additional Intel-defined flags: level 0x0000000F */
843 if (c->cpuid_level >= 0x0000000F) {
844
845 /* QoS sub-leaf, EAX=0Fh, ECX=0 */
846 cpuid_count(0x0000000F, 0, &eax, &ebx, &ecx, &edx);
847 c->x86_capability[CPUID_F_0_EDX] = edx;
848
849 if (cpu_has(c, X86_FEATURE_CQM_LLC)) {
850 /* will be overridden if occupancy monitoring exists */
851 c->x86_cache_max_rmid = ebx;
852
853 /* QoS sub-leaf, EAX=0Fh, ECX=1 */
854 cpuid_count(0x0000000F, 1, &eax, &ebx, &ecx, &edx);
855 c->x86_capability[CPUID_F_1_EDX] = edx;
856
857 if ((cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC)) ||
858 ((cpu_has(c, X86_FEATURE_CQM_MBM_TOTAL)) ||
859 (cpu_has(c, X86_FEATURE_CQM_MBM_LOCAL)))) {
860 c->x86_cache_max_rmid = ecx;
861 c->x86_cache_occ_scale = ebx;
862 }
863 } else {
864 c->x86_cache_max_rmid = -1;
865 c->x86_cache_occ_scale = -1;
866 }
867 }
868
869 /* AMD-defined flags: level 0x80000001 */
870 eax = cpuid_eax(0x80000000);
871 c->extended_cpuid_level = eax;
872
873 if ((eax & 0xffff0000) == 0x80000000) {
874 if (eax >= 0x80000001) {
875 cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
876
877 c->x86_capability[CPUID_8000_0001_ECX] = ecx;
878 c->x86_capability[CPUID_8000_0001_EDX] = edx;
879 }
880 }
881
882 if (c->extended_cpuid_level >= 0x80000007) {
883 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
884
885 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
886 c->x86_power = edx;
887 }
888
889 if (c->extended_cpuid_level >= 0x80000008) {
890 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
891
892 c->x86_virt_bits = (eax >> 8) & 0xff;
893 c->x86_phys_bits = eax & 0xff;
894 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
895 }
896 #ifdef CONFIG_X86_32
897 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
898 c->x86_phys_bits = 36;
899 #endif
900
901 if (c->extended_cpuid_level >= 0x8000000a)
902 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
903
904 init_scattered_cpuid_features(c);
905
906 /*
907 * Clear/Set all flags overridden by options, after probe.
908 * This needs to happen each time we re-probe, which may happen
909 * several times during CPU initialization.
910 */
911 apply_forced_caps(c);
912 }
913
914 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
915 {
916 #ifdef CONFIG_X86_32
917 int i;
918
919 /*
920 * First of all, decide if this is a 486 or higher
921 * It's a 486 if we can modify the AC flag
922 */
923 if (flag_is_changeable_p(X86_EFLAGS_AC))
924 c->x86 = 4;
925 else
926 c->x86 = 3;
927
928 for (i = 0; i < X86_VENDOR_NUM; i++)
929 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
930 c->x86_vendor_id[0] = 0;
931 cpu_devs[i]->c_identify(c);
932 if (c->x86_vendor_id[0]) {
933 get_cpu_vendor(c);
934 break;
935 }
936 }
937 #endif
938 }
939
940 /*
941 * Do minimum CPU detection early.
942 * Fields really needed: vendor, cpuid_level, family, model, mask,
943 * cache alignment.
944 * The others are not touched to avoid unwanted side effects.
945 *
946 * WARNING: this function is only called on the BP. Don't add code here
947 * that is supposed to run on all CPUs.
948 */
949 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
950 {
951 #ifdef CONFIG_X86_64
952 c->x86_clflush_size = 64;
953 c->x86_phys_bits = 36;
954 c->x86_virt_bits = 48;
955 #else
956 c->x86_clflush_size = 32;
957 c->x86_phys_bits = 32;
958 c->x86_virt_bits = 32;
959 #endif
960 c->x86_cache_alignment = c->x86_clflush_size;
961
962 memset(&c->x86_capability, 0, sizeof c->x86_capability);
963 c->extended_cpuid_level = 0;
964
965 /* cyrix could have cpuid enabled via c_identify()*/
966 if (have_cpuid_p()) {
967 cpu_detect(c);
968 get_cpu_vendor(c);
969 get_cpu_cap(c);
970 setup_force_cpu_cap(X86_FEATURE_CPUID);
971
972 if (this_cpu->c_early_init)
973 this_cpu->c_early_init(c);
974
975 c->cpu_index = 0;
976 filter_cpuid_features(c, false);
977
978 if (this_cpu->c_bsp_init)
979 this_cpu->c_bsp_init(c);
980 } else {
981 identify_cpu_without_cpuid(c);
982 setup_clear_cpu_cap(X86_FEATURE_CPUID);
983 }
984
985 setup_force_cpu_cap(X86_FEATURE_ALWAYS);
986 fpu__init_system(c);
987 }
988
989 void __init early_cpu_init(void)
990 {
991 const struct cpu_dev *const *cdev;
992 int count = 0;
993
994 #ifdef CONFIG_PROCESSOR_SELECT
995 pr_info("KERNEL supported cpus:\n");
996 #endif
997
998 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
999 const struct cpu_dev *cpudev = *cdev;
1000
1001 if (count >= X86_VENDOR_NUM)
1002 break;
1003 cpu_devs[count] = cpudev;
1004 count++;
1005
1006 #ifdef CONFIG_PROCESSOR_SELECT
1007 {
1008 unsigned int j;
1009
1010 for (j = 0; j < 2; j++) {
1011 if (!cpudev->c_ident[j])
1012 continue;
1013 pr_info(" %s %s\n", cpudev->c_vendor,
1014 cpudev->c_ident[j]);
1015 }
1016 }
1017 #endif
1018 }
1019 early_identify_cpu(&boot_cpu_data);
1020 }
1021
1022 /*
1023 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1024 * unfortunately, that's not true in practice because of early VIA
1025 * chips and (more importantly) broken virtualizers that are not easy
1026 * to detect. In the latter case it doesn't even *fail* reliably, so
1027 * probing for it doesn't even work. Disable it completely on 32-bit
1028 * unless we can find a reliable way to detect all the broken cases.
1029 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1030 */
1031 static void detect_nopl(struct cpuinfo_x86 *c)
1032 {
1033 #ifdef CONFIG_X86_32
1034 clear_cpu_cap(c, X86_FEATURE_NOPL);
1035 #else
1036 set_cpu_cap(c, X86_FEATURE_NOPL);
1037 #endif
1038 }
1039
1040 static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
1041 {
1042 #ifdef CONFIG_X86_64
1043 /*
1044 * Empirically, writing zero to a segment selector on AMD does
1045 * not clear the base, whereas writing zero to a segment
1046 * selector on Intel does clear the base. Intel's behavior
1047 * allows slightly faster context switches in the common case
1048 * where GS is unused by the prev and next threads.
1049 *
1050 * Since neither vendor documents this anywhere that I can see,
1051 * detect it directly instead of hardcoding the choice by
1052 * vendor.
1053 *
1054 * I've designated AMD's behavior as the "bug" because it's
1055 * counterintuitive and less friendly.
1056 */
1057
1058 unsigned long old_base, tmp;
1059 rdmsrl(MSR_FS_BASE, old_base);
1060 wrmsrl(MSR_FS_BASE, 1);
1061 loadsegment(fs, 0);
1062 rdmsrl(MSR_FS_BASE, tmp);
1063 if (tmp != 0)
1064 set_cpu_bug(c, X86_BUG_NULL_SEG);
1065 wrmsrl(MSR_FS_BASE, old_base);
1066 #endif
1067 }
1068
1069 static void generic_identify(struct cpuinfo_x86 *c)
1070 {
1071 c->extended_cpuid_level = 0;
1072
1073 if (!have_cpuid_p())
1074 identify_cpu_without_cpuid(c);
1075
1076 /* cyrix could have cpuid enabled via c_identify()*/
1077 if (!have_cpuid_p())
1078 return;
1079
1080 cpu_detect(c);
1081
1082 get_cpu_vendor(c);
1083
1084 get_cpu_cap(c);
1085
1086 if (c->cpuid_level >= 0x00000001) {
1087 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1088 #ifdef CONFIG_X86_32
1089 # ifdef CONFIG_SMP
1090 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1091 # else
1092 c->apicid = c->initial_apicid;
1093 # endif
1094 #endif
1095 c->phys_proc_id = c->initial_apicid;
1096 }
1097
1098 get_model_name(c); /* Default name */
1099
1100 detect_nopl(c);
1101
1102 detect_null_seg_behavior(c);
1103
1104 /*
1105 * ESPFIX is a strange bug. All real CPUs have it. Paravirt
1106 * systems that run Linux at CPL > 0 may or may not have the
1107 * issue, but, even if they have the issue, there's absolutely
1108 * nothing we can do about it because we can't use the real IRET
1109 * instruction.
1110 *
1111 * NB: For the time being, only 32-bit kernels support
1112 * X86_BUG_ESPFIX as such. 64-bit kernels directly choose
1113 * whether to apply espfix using paravirt hooks. If any
1114 * non-paravirt system ever shows up that does *not* have the
1115 * ESPFIX issue, we can change this.
1116 */
1117 #ifdef CONFIG_X86_32
1118 # ifdef CONFIG_PARAVIRT
1119 do {
1120 extern void native_iret(void);
1121 if (pv_cpu_ops.iret == native_iret)
1122 set_cpu_bug(c, X86_BUG_ESPFIX);
1123 } while (0);
1124 # else
1125 set_cpu_bug(c, X86_BUG_ESPFIX);
1126 # endif
1127 #endif
1128 }
1129
1130 static void x86_init_cache_qos(struct cpuinfo_x86 *c)
1131 {
1132 /*
1133 * The heavy lifting of max_rmid and cache_occ_scale are handled
1134 * in get_cpu_cap(). Here we just set the max_rmid for the boot_cpu
1135 * in case CQM bits really aren't there in this CPU.
1136 */
1137 if (c != &boot_cpu_data) {
1138 boot_cpu_data.x86_cache_max_rmid =
1139 min(boot_cpu_data.x86_cache_max_rmid,
1140 c->x86_cache_max_rmid);
1141 }
1142 }
1143
1144 /*
1145 * Validate that ACPI/mptables have the same information about the
1146 * effective APIC id and update the package map.
1147 */
1148 static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1149 {
1150 #ifdef CONFIG_SMP
1151 unsigned int apicid, cpu = smp_processor_id();
1152
1153 apicid = apic->cpu_present_to_apicid(cpu);
1154
1155 if (apicid != c->apicid) {
1156 pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1157 cpu, apicid, c->initial_apicid);
1158 }
1159 BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1160 #else
1161 c->logical_proc_id = 0;
1162 #endif
1163 }
1164
1165 /*
1166 * This does the hard work of actually picking apart the CPU stuff...
1167 */
1168 static void identify_cpu(struct cpuinfo_x86 *c)
1169 {
1170 int i;
1171
1172 c->loops_per_jiffy = loops_per_jiffy;
1173 c->x86_cache_size = -1;
1174 c->x86_vendor = X86_VENDOR_UNKNOWN;
1175 c->x86_model = c->x86_mask = 0; /* So far unknown... */
1176 c->x86_vendor_id[0] = '\0'; /* Unset */
1177 c->x86_model_id[0] = '\0'; /* Unset */
1178 c->x86_max_cores = 1;
1179 c->x86_coreid_bits = 0;
1180 c->cu_id = 0xff;
1181 #ifdef CONFIG_X86_64
1182 c->x86_clflush_size = 64;
1183 c->x86_phys_bits = 36;
1184 c->x86_virt_bits = 48;
1185 #else
1186 c->cpuid_level = -1; /* CPUID not detected */
1187 c->x86_clflush_size = 32;
1188 c->x86_phys_bits = 32;
1189 c->x86_virt_bits = 32;
1190 #endif
1191 c->x86_cache_alignment = c->x86_clflush_size;
1192 memset(&c->x86_capability, 0, sizeof c->x86_capability);
1193
1194 generic_identify(c);
1195
1196 if (this_cpu->c_identify)
1197 this_cpu->c_identify(c);
1198
1199 /* Clear/Set all flags overridden by options, after probe */
1200 apply_forced_caps(c);
1201
1202 #ifdef CONFIG_X86_64
1203 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1204 #endif
1205
1206 /*
1207 * Vendor-specific initialization. In this section we
1208 * canonicalize the feature flags, meaning if there are
1209 * features a certain CPU supports which CPUID doesn't
1210 * tell us, CPUID claiming incorrect flags, or other bugs,
1211 * we handle them here.
1212 *
1213 * At the end of this section, c->x86_capability better
1214 * indicate the features this CPU genuinely supports!
1215 */
1216 if (this_cpu->c_init)
1217 this_cpu->c_init(c);
1218
1219 /* Disable the PN if appropriate */
1220 squash_the_stupid_serial_number(c);
1221
1222 /* Set up SMEP/SMAP */
1223 setup_smep(c);
1224 setup_smap(c);
1225
1226 /*
1227 * The vendor-specific functions might have changed features.
1228 * Now we do "generic changes."
1229 */
1230
1231 /* Filter out anything that depends on CPUID levels we don't have */
1232 filter_cpuid_features(c, true);
1233
1234 /* If the model name is still unset, do table lookup. */
1235 if (!c->x86_model_id[0]) {
1236 const char *p;
1237 p = table_lookup_model(c);
1238 if (p)
1239 strcpy(c->x86_model_id, p);
1240 else
1241 /* Last resort... */
1242 sprintf(c->x86_model_id, "%02x/%02x",
1243 c->x86, c->x86_model);
1244 }
1245
1246 #ifdef CONFIG_X86_64
1247 detect_ht(c);
1248 #endif
1249
1250 x86_init_rdrand(c);
1251 x86_init_cache_qos(c);
1252 setup_pku(c);
1253
1254 /*
1255 * Clear/Set all flags overridden by options, need do it
1256 * before following smp all cpus cap AND.
1257 */
1258 apply_forced_caps(c);
1259
1260 /*
1261 * On SMP, boot_cpu_data holds the common feature set between
1262 * all CPUs; so make sure that we indicate which features are
1263 * common between the CPUs. The first time this routine gets
1264 * executed, c == &boot_cpu_data.
1265 */
1266 if (c != &boot_cpu_data) {
1267 /* AND the already accumulated flags with these */
1268 for (i = 0; i < NCAPINTS; i++)
1269 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1270
1271 /* OR, i.e. replicate the bug flags */
1272 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1273 c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1274 }
1275
1276 /* Init Machine Check Exception if available. */
1277 mcheck_cpu_init(c);
1278
1279 select_idle_routine(c);
1280
1281 #ifdef CONFIG_NUMA
1282 numa_add_cpu(smp_processor_id());
1283 #endif
1284 }
1285
1286 /*
1287 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1288 * on 32-bit kernels:
1289 */
1290 #ifdef CONFIG_X86_32
1291 void enable_sep_cpu(void)
1292 {
1293 struct tss_struct *tss;
1294 int cpu;
1295
1296 if (!boot_cpu_has(X86_FEATURE_SEP))
1297 return;
1298
1299 cpu = get_cpu();
1300 tss = &per_cpu(cpu_tss, cpu);
1301
1302 /*
1303 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1304 * see the big comment in struct x86_hw_tss's definition.
1305 */
1306
1307 tss->x86_tss.ss1 = __KERNEL_CS;
1308 wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1309 wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_SYSENTER_stack(cpu) + 1), 0);
1310 wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1311
1312 put_cpu();
1313 }
1314 #endif
1315
1316 void __init identify_boot_cpu(void)
1317 {
1318 identify_cpu(&boot_cpu_data);
1319 #ifdef CONFIG_X86_32
1320 sysenter_setup();
1321 enable_sep_cpu();
1322 #endif
1323 cpu_detect_tlb(&boot_cpu_data);
1324 }
1325
1326 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1327 {
1328 BUG_ON(c == &boot_cpu_data);
1329 identify_cpu(c);
1330 #ifdef CONFIG_X86_32
1331 enable_sep_cpu();
1332 #endif
1333 mtrr_ap_init();
1334 validate_apic_and_package_id(c);
1335 }
1336
1337 static __init int setup_noclflush(char *arg)
1338 {
1339 setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1340 setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1341 return 1;
1342 }
1343 __setup("noclflush", setup_noclflush);
1344
1345 void print_cpu_info(struct cpuinfo_x86 *c)
1346 {
1347 const char *vendor = NULL;
1348
1349 if (c->x86_vendor < X86_VENDOR_NUM) {
1350 vendor = this_cpu->c_vendor;
1351 } else {
1352 if (c->cpuid_level >= 0)
1353 vendor = c->x86_vendor_id;
1354 }
1355
1356 if (vendor && !strstr(c->x86_model_id, vendor))
1357 pr_cont("%s ", vendor);
1358
1359 if (c->x86_model_id[0])
1360 pr_cont("%s", c->x86_model_id);
1361 else
1362 pr_cont("%d86", c->x86);
1363
1364 pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1365
1366 if (c->x86_mask || c->cpuid_level >= 0)
1367 pr_cont(", stepping: 0x%x)\n", c->x86_mask);
1368 else
1369 pr_cont(")\n");
1370 }
1371
1372 /*
1373 * clearcpuid= was already parsed in fpu__init_parse_early_param.
1374 * But we need to keep a dummy __setup around otherwise it would
1375 * show up as an environment variable for init.
1376 */
1377 static __init int setup_clearcpuid(char *arg)
1378 {
1379 return 1;
1380 }
1381 __setup("clearcpuid=", setup_clearcpuid);
1382
1383 #ifdef CONFIG_X86_64
1384 struct desc_ptr idt_descr __ro_after_init = {
1385 .size = NR_VECTORS * 16 - 1,
1386 .address = (unsigned long) idt_table,
1387 };
1388 const struct desc_ptr debug_idt_descr = {
1389 .size = NR_VECTORS * 16 - 1,
1390 .address = (unsigned long) debug_idt_table,
1391 };
1392
1393 DEFINE_PER_CPU_FIRST(union irq_stack_union,
1394 irq_stack_union) __aligned(PAGE_SIZE) __visible;
1395
1396 /*
1397 * The following percpu variables are hot. Align current_task to
1398 * cacheline size such that they fall in the same cacheline.
1399 */
1400 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1401 &init_task;
1402 EXPORT_PER_CPU_SYMBOL(current_task);
1403
1404 DEFINE_PER_CPU(char *, irq_stack_ptr) =
1405 init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE;
1406
1407 DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1408
1409 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1410 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1411
1412 /* May not be marked __init: used by software suspend */
1413 void syscall_init(void)
1414 {
1415 extern char _entry_trampoline[];
1416 extern char entry_SYSCALL_64_trampoline[];
1417
1418 int cpu = smp_processor_id();
1419 unsigned long SYSCALL64_entry_trampoline =
1420 (unsigned long)get_cpu_entry_area(cpu)->entry_trampoline +
1421 (entry_SYSCALL_64_trampoline - _entry_trampoline);
1422
1423 wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1424 wrmsrl(MSR_LSTAR, SYSCALL64_entry_trampoline);
1425
1426 #ifdef CONFIG_IA32_EMULATION
1427 wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1428 /*
1429 * This only works on Intel CPUs.
1430 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1431 * This does not cause SYSENTER to jump to the wrong location, because
1432 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1433 */
1434 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1435 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_SYSENTER_stack(cpu) + 1));
1436 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1437 #else
1438 wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1439 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1440 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1441 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1442 #endif
1443
1444 /* Flags to clear on syscall */
1445 wrmsrl(MSR_SYSCALL_MASK,
1446 X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1447 X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1448 }
1449
1450 /*
1451 * Copies of the original ist values from the tss are only accessed during
1452 * debugging, no special alignment required.
1453 */
1454 DEFINE_PER_CPU(struct orig_ist, orig_ist);
1455
1456 static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
1457 DEFINE_PER_CPU(int, debug_stack_usage);
1458
1459 int is_debug_stack(unsigned long addr)
1460 {
1461 return __this_cpu_read(debug_stack_usage) ||
1462 (addr <= __this_cpu_read(debug_stack_addr) &&
1463 addr > (__this_cpu_read(debug_stack_addr) - DEBUG_STKSZ));
1464 }
1465 NOKPROBE_SYMBOL(is_debug_stack);
1466
1467 DEFINE_PER_CPU(u32, debug_idt_ctr);
1468
1469 void debug_stack_set_zero(void)
1470 {
1471 this_cpu_inc(debug_idt_ctr);
1472 load_current_idt();
1473 }
1474 NOKPROBE_SYMBOL(debug_stack_set_zero);
1475
1476 void debug_stack_reset(void)
1477 {
1478 if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
1479 return;
1480 if (this_cpu_dec_return(debug_idt_ctr) == 0)
1481 load_current_idt();
1482 }
1483 NOKPROBE_SYMBOL(debug_stack_reset);
1484
1485 #else /* CONFIG_X86_64 */
1486
1487 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1488 EXPORT_PER_CPU_SYMBOL(current_task);
1489 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1490 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1491
1492 /*
1493 * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1494 * the top of the kernel stack. Use an extra percpu variable to track the
1495 * top of the kernel stack directly.
1496 */
1497 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1498 (unsigned long)&init_thread_union + THREAD_SIZE;
1499 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1500
1501 #ifdef CONFIG_CC_STACKPROTECTOR
1502 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1503 #endif
1504
1505 #endif /* CONFIG_X86_64 */
1506
1507 /*
1508 * Clear all 6 debug registers:
1509 */
1510 static void clear_all_debug_regs(void)
1511 {
1512 int i;
1513
1514 for (i = 0; i < 8; i++) {
1515 /* Ignore db4, db5 */
1516 if ((i == 4) || (i == 5))
1517 continue;
1518
1519 set_debugreg(0, i);
1520 }
1521 }
1522
1523 #ifdef CONFIG_KGDB
1524 /*
1525 * Restore debug regs if using kgdbwait and you have a kernel debugger
1526 * connection established.
1527 */
1528 static void dbg_restore_debug_regs(void)
1529 {
1530 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1531 arch_kgdb_ops.correct_hw_break();
1532 }
1533 #else /* ! CONFIG_KGDB */
1534 #define dbg_restore_debug_regs()
1535 #endif /* ! CONFIG_KGDB */
1536
1537 static void wait_for_master_cpu(int cpu)
1538 {
1539 #ifdef CONFIG_SMP
1540 /*
1541 * wait for ACK from master CPU before continuing
1542 * with AP initialization
1543 */
1544 WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1545 while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1546 cpu_relax();
1547 #endif
1548 }
1549
1550 /*
1551 * cpu_init() initializes state that is per-CPU. Some data is already
1552 * initialized (naturally) in the bootstrap process, such as the GDT
1553 * and IDT. We reload them nevertheless, this function acts as a
1554 * 'CPU state barrier', nothing should get across.
1555 * A lot of state is already set up in PDA init for 64 bit
1556 */
1557 #ifdef CONFIG_X86_64
1558
1559 void cpu_init(void)
1560 {
1561 struct orig_ist *oist;
1562 struct task_struct *me;
1563 struct tss_struct *t;
1564 unsigned long v;
1565 int cpu = raw_smp_processor_id();
1566 int i;
1567
1568 wait_for_master_cpu(cpu);
1569
1570 /*
1571 * Initialize the CR4 shadow before doing anything that could
1572 * try to read it.
1573 */
1574 cr4_init_shadow();
1575
1576 if (cpu)
1577 load_ucode_ap();
1578
1579 t = &per_cpu(cpu_tss, cpu);
1580 oist = &per_cpu(orig_ist, cpu);
1581
1582 #ifdef CONFIG_NUMA
1583 if (this_cpu_read(numa_node) == 0 &&
1584 early_cpu_to_node(cpu) != NUMA_NO_NODE)
1585 set_numa_node(early_cpu_to_node(cpu));
1586 #endif
1587
1588 me = current;
1589
1590 pr_debug("Initializing CPU#%d\n", cpu);
1591
1592 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1593
1594 /*
1595 * Initialize the per-CPU GDT with the boot GDT,
1596 * and set up the GDT descriptor:
1597 */
1598
1599 switch_to_new_gdt(cpu);
1600 loadsegment(fs, 0);
1601
1602 load_current_idt();
1603
1604 memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1605 syscall_init();
1606
1607 wrmsrl(MSR_FS_BASE, 0);
1608 wrmsrl(MSR_KERNEL_GS_BASE, 0);
1609 barrier();
1610
1611 x86_configure_nx();
1612 x2apic_setup();
1613
1614 /*
1615 * set up and load the per-CPU TSS
1616 */
1617 if (!oist->ist[0]) {
1618 char *estacks = get_cpu_entry_area(cpu)->exception_stacks;
1619
1620 for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1621 estacks += exception_stack_sizes[v];
1622 oist->ist[v] = t->x86_tss.ist[v] =
1623 (unsigned long)estacks;
1624 if (v == DEBUG_STACK-1)
1625 per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
1626 }
1627 }
1628
1629 t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
1630
1631 /*
1632 * <= is required because the CPU will access up to
1633 * 8 bits beyond the end of the IO permission bitmap.
1634 */
1635 for (i = 0; i <= IO_BITMAP_LONGS; i++)
1636 t->io_bitmap[i] = ~0UL;
1637
1638 mmgrab(&init_mm);
1639 me->active_mm = &init_mm;
1640 BUG_ON(me->mm);
1641 enter_lazy_tlb(&init_mm, me);
1642
1643 /*
1644 * Initialize the TSS. sp0 points to the entry trampoline stack
1645 * regardless of what task is running.
1646 */
1647 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1648 load_TR_desc();
1649 load_sp0((unsigned long)(cpu_SYSENTER_stack(cpu) + 1));
1650
1651 load_mm_ldt(&init_mm);
1652
1653 clear_all_debug_regs();
1654 dbg_restore_debug_regs();
1655
1656 fpu__init_cpu();
1657
1658 if (is_uv_system())
1659 uv_cpu_init();
1660
1661 load_fixmap_gdt(cpu);
1662 }
1663
1664 #else
1665
1666 void cpu_init(void)
1667 {
1668 int cpu = smp_processor_id();
1669 struct task_struct *curr = current;
1670 struct tss_struct *t = &per_cpu(cpu_tss, cpu);
1671
1672 wait_for_master_cpu(cpu);
1673
1674 /*
1675 * Initialize the CR4 shadow before doing anything that could
1676 * try to read it.
1677 */
1678 cr4_init_shadow();
1679
1680 show_ucode_info_early();
1681
1682 pr_info("Initializing CPU#%d\n", cpu);
1683
1684 if (cpu_feature_enabled(X86_FEATURE_VME) ||
1685 boot_cpu_has(X86_FEATURE_TSC) ||
1686 boot_cpu_has(X86_FEATURE_DE))
1687 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1688
1689 load_current_idt();
1690 switch_to_new_gdt(cpu);
1691
1692 /*
1693 * Set up and load the per-CPU TSS and LDT
1694 */
1695 mmgrab(&init_mm);
1696 curr->active_mm = &init_mm;
1697 BUG_ON(curr->mm);
1698 enter_lazy_tlb(&init_mm, curr);
1699
1700 /*
1701 * Initialize the TSS. Don't bother initializing sp0, as the initial
1702 * task never enters user mode.
1703 */
1704 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1705 load_TR_desc();
1706
1707 load_mm_ldt(&init_mm);
1708
1709 t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
1710
1711 #ifdef CONFIG_DOUBLEFAULT
1712 /* Set up doublefault TSS pointer in the GDT */
1713 __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1714 #endif
1715
1716 clear_all_debug_regs();
1717 dbg_restore_debug_regs();
1718
1719 fpu__init_cpu();
1720
1721 load_fixmap_gdt(cpu);
1722 }
1723 #endif
1724
1725 static void bsp_resume(void)
1726 {
1727 if (this_cpu->c_bsp_resume)
1728 this_cpu->c_bsp_resume(&boot_cpu_data);
1729 }
1730
1731 static struct syscore_ops cpu_syscore_ops = {
1732 .resume = bsp_resume,
1733 };
1734
1735 static int __init init_cpu_syscore(void)
1736 {
1737 register_syscore_ops(&cpu_syscore_ops);
1738 return 0;
1739 }
1740 core_initcall(init_cpu_syscore);