]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kernel/cpu/common.c
x86: add generic clearcpuid=... option
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / cpu / common.c
1 #include <linux/init.h>
2 #include <linux/string.h>
3 #include <linux/delay.h>
4 #include <linux/smp.h>
5 #include <linux/module.h>
6 #include <linux/percpu.h>
7 #include <linux/bootmem.h>
8 #include <asm/semaphore.h>
9 #include <asm/processor.h>
10 #include <asm/i387.h>
11 #include <asm/msr.h>
12 #include <asm/io.h>
13 #include <asm/mmu_context.h>
14 #include <asm/mtrr.h>
15 #include <asm/mce.h>
16 #ifdef CONFIG_X86_LOCAL_APIC
17 #include <asm/mpspec.h>
18 #include <asm/apic.h>
19 #include <mach_apic.h>
20 #endif
21
22 #include "cpu.h"
23
24 DEFINE_PER_CPU(struct gdt_page, gdt_page) = { .gdt = {
25 [GDT_ENTRY_KERNEL_CS] = { { { 0x0000ffff, 0x00cf9a00 } } },
26 [GDT_ENTRY_KERNEL_DS] = { { { 0x0000ffff, 0x00cf9200 } } },
27 [GDT_ENTRY_DEFAULT_USER_CS] = { { { 0x0000ffff, 0x00cffa00 } } },
28 [GDT_ENTRY_DEFAULT_USER_DS] = { { { 0x0000ffff, 0x00cff200 } } },
29 /*
30 * Segments used for calling PnP BIOS have byte granularity.
31 * They code segments and data segments have fixed 64k limits,
32 * the transfer segment sizes are set at run time.
33 */
34 /* 32-bit code */
35 [GDT_ENTRY_PNPBIOS_CS32] = { { { 0x0000ffff, 0x00409a00 } } },
36 /* 16-bit code */
37 [GDT_ENTRY_PNPBIOS_CS16] = { { { 0x0000ffff, 0x00009a00 } } },
38 /* 16-bit data */
39 [GDT_ENTRY_PNPBIOS_DS] = { { { 0x0000ffff, 0x00009200 } } },
40 /* 16-bit data */
41 [GDT_ENTRY_PNPBIOS_TS1] = { { { 0x00000000, 0x00009200 } } },
42 /* 16-bit data */
43 [GDT_ENTRY_PNPBIOS_TS2] = { { { 0x00000000, 0x00009200 } } },
44 /*
45 * The APM segments have byte granularity and their bases
46 * are set at run time. All have 64k limits.
47 */
48 /* 32-bit code */
49 [GDT_ENTRY_APMBIOS_BASE] = { { { 0x0000ffff, 0x00409a00 } } },
50 /* 16-bit code */
51 [GDT_ENTRY_APMBIOS_BASE+1] = { { { 0x0000ffff, 0x00009a00 } } },
52 /* data */
53 [GDT_ENTRY_APMBIOS_BASE+2] = { { { 0x0000ffff, 0x00409200 } } },
54
55 [GDT_ENTRY_ESPFIX_SS] = { { { 0x00000000, 0x00c09200 } } },
56 [GDT_ENTRY_PERCPU] = { { { 0x00000000, 0x00000000 } } },
57 } };
58 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
59
60 __u32 cleared_cpu_caps[NCAPINTS] __cpuinitdata;
61
62 static int cachesize_override __cpuinitdata = -1;
63 static int disable_x86_serial_nr __cpuinitdata = 1;
64
65 struct cpu_dev * cpu_devs[X86_VENDOR_NUM] = {};
66
67 static void __cpuinit default_init(struct cpuinfo_x86 * c)
68 {
69 /* Not much we can do here... */
70 /* Check if at least it has cpuid */
71 if (c->cpuid_level == -1) {
72 /* No cpuid. It must be an ancient CPU */
73 if (c->x86 == 4)
74 strcpy(c->x86_model_id, "486");
75 else if (c->x86 == 3)
76 strcpy(c->x86_model_id, "386");
77 }
78 }
79
80 static struct cpu_dev __cpuinitdata default_cpu = {
81 .c_init = default_init,
82 .c_vendor = "Unknown",
83 };
84 static struct cpu_dev * this_cpu __cpuinitdata = &default_cpu;
85
86 static int __init cachesize_setup(char *str)
87 {
88 get_option (&str, &cachesize_override);
89 return 1;
90 }
91 __setup("cachesize=", cachesize_setup);
92
93 int __cpuinit get_model_name(struct cpuinfo_x86 *c)
94 {
95 unsigned int *v;
96 char *p, *q;
97
98 if (cpuid_eax(0x80000000) < 0x80000004)
99 return 0;
100
101 v = (unsigned int *) c->x86_model_id;
102 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
103 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
104 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
105 c->x86_model_id[48] = 0;
106
107 /* Intel chips right-justify this string for some dumb reason;
108 undo that brain damage */
109 p = q = &c->x86_model_id[0];
110 while ( *p == ' ' )
111 p++;
112 if ( p != q ) {
113 while ( *p )
114 *q++ = *p++;
115 while ( q <= &c->x86_model_id[48] )
116 *q++ = '\0'; /* Zero-pad the rest */
117 }
118
119 return 1;
120 }
121
122
123 void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
124 {
125 unsigned int n, dummy, ecx, edx, l2size;
126
127 n = cpuid_eax(0x80000000);
128
129 if (n >= 0x80000005) {
130 cpuid(0x80000005, &dummy, &dummy, &ecx, &edx);
131 printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n",
132 edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
133 c->x86_cache_size=(ecx>>24)+(edx>>24);
134 }
135
136 if (n < 0x80000006) /* Some chips just has a large L1. */
137 return;
138
139 ecx = cpuid_ecx(0x80000006);
140 l2size = ecx >> 16;
141
142 /* do processor-specific cache resizing */
143 if (this_cpu->c_size_cache)
144 l2size = this_cpu->c_size_cache(c,l2size);
145
146 /* Allow user to override all this if necessary. */
147 if (cachesize_override != -1)
148 l2size = cachesize_override;
149
150 if ( l2size == 0 )
151 return; /* Again, no L2 cache is possible */
152
153 c->x86_cache_size = l2size;
154
155 printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
156 l2size, ecx & 0xFF);
157 }
158
159 /* Naming convention should be: <Name> [(<Codename>)] */
160 /* This table only is used unless init_<vendor>() below doesn't set it; */
161 /* in particular, if CPUID levels 0x80000002..4 are supported, this isn't used */
162
163 /* Look up CPU names by table lookup. */
164 static char __cpuinit *table_lookup_model(struct cpuinfo_x86 *c)
165 {
166 struct cpu_model_info *info;
167
168 if ( c->x86_model >= 16 )
169 return NULL; /* Range check */
170
171 if (!this_cpu)
172 return NULL;
173
174 info = this_cpu->c_models;
175
176 while (info && info->family) {
177 if (info->family == c->x86)
178 return info->model_names[c->x86_model];
179 info++;
180 }
181 return NULL; /* Not found */
182 }
183
184
185 static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c, int early)
186 {
187 char *v = c->x86_vendor_id;
188 int i;
189 static int printed;
190
191 for (i = 0; i < X86_VENDOR_NUM; i++) {
192 if (cpu_devs[i]) {
193 if (!strcmp(v,cpu_devs[i]->c_ident[0]) ||
194 (cpu_devs[i]->c_ident[1] &&
195 !strcmp(v,cpu_devs[i]->c_ident[1]))) {
196 c->x86_vendor = i;
197 if (!early)
198 this_cpu = cpu_devs[i];
199 return;
200 }
201 }
202 }
203 if (!printed) {
204 printed++;
205 printk(KERN_ERR "CPU: Vendor unknown, using generic init.\n");
206 printk(KERN_ERR "CPU: Your system may be unstable.\n");
207 }
208 c->x86_vendor = X86_VENDOR_UNKNOWN;
209 this_cpu = &default_cpu;
210 }
211
212
213 static int __init x86_fxsr_setup(char * s)
214 {
215 setup_clear_cpu_cap(X86_FEATURE_FXSR);
216 setup_clear_cpu_cap(X86_FEATURE_XMM);
217 return 1;
218 }
219 __setup("nofxsr", x86_fxsr_setup);
220
221
222 static int __init x86_sep_setup(char * s)
223 {
224 setup_clear_cpu_cap(X86_FEATURE_SEP);
225 return 1;
226 }
227 __setup("nosep", x86_sep_setup);
228
229
230 /* Standard macro to see if a specific flag is changeable */
231 static inline int flag_is_changeable_p(u32 flag)
232 {
233 u32 f1, f2;
234
235 asm("pushfl\n\t"
236 "pushfl\n\t"
237 "popl %0\n\t"
238 "movl %0,%1\n\t"
239 "xorl %2,%0\n\t"
240 "pushl %0\n\t"
241 "popfl\n\t"
242 "pushfl\n\t"
243 "popl %0\n\t"
244 "popfl\n\t"
245 : "=&r" (f1), "=&r" (f2)
246 : "ir" (flag));
247
248 return ((f1^f2) & flag) != 0;
249 }
250
251
252 /* Probe for the CPUID instruction */
253 static int __cpuinit have_cpuid_p(void)
254 {
255 return flag_is_changeable_p(X86_EFLAGS_ID);
256 }
257
258 void __init cpu_detect(struct cpuinfo_x86 *c)
259 {
260 /* Get vendor name */
261 cpuid(0x00000000, &c->cpuid_level,
262 (int *)&c->x86_vendor_id[0],
263 (int *)&c->x86_vendor_id[8],
264 (int *)&c->x86_vendor_id[4]);
265
266 c->x86 = 4;
267 if (c->cpuid_level >= 0x00000001) {
268 u32 junk, tfms, cap0, misc;
269 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
270 c->x86 = (tfms >> 8) & 15;
271 c->x86_model = (tfms >> 4) & 15;
272 if (c->x86 == 0xf)
273 c->x86 += (tfms >> 20) & 0xff;
274 if (c->x86 >= 0x6)
275 c->x86_model += ((tfms >> 16) & 0xF) << 4;
276 c->x86_mask = tfms & 15;
277 if (cap0 & (1<<19))
278 c->x86_cache_alignment = ((misc >> 8) & 0xff) * 8;
279 }
280 }
281
282 /* Do minimum CPU detection early.
283 Fields really needed: vendor, cpuid_level, family, model, mask, cache alignment.
284 The others are not touched to avoid unwanted side effects.
285
286 WARNING: this function is only called on the BP. Don't add code here
287 that is supposed to run on all CPUs. */
288 static void __init early_cpu_detect(void)
289 {
290 struct cpuinfo_x86 *c = &boot_cpu_data;
291
292 c->x86_cache_alignment = 32;
293
294 if (!have_cpuid_p())
295 return;
296
297 cpu_detect(c);
298
299 get_cpu_vendor(c, 1);
300
301 switch (c->x86_vendor) {
302 case X86_VENDOR_AMD:
303 early_init_amd(c);
304 break;
305 case X86_VENDOR_INTEL:
306 early_init_intel(c);
307 break;
308 }
309 }
310
311 static void __cpuinit generic_identify(struct cpuinfo_x86 * c)
312 {
313 u32 tfms, xlvl;
314 int ebx;
315
316 if (have_cpuid_p()) {
317 /* Get vendor name */
318 cpuid(0x00000000, &c->cpuid_level,
319 (int *)&c->x86_vendor_id[0],
320 (int *)&c->x86_vendor_id[8],
321 (int *)&c->x86_vendor_id[4]);
322
323 get_cpu_vendor(c, 0);
324 /* Initialize the standard set of capabilities */
325 /* Note that the vendor-specific code below might override */
326
327 /* Intel-defined flags: level 0x00000001 */
328 if ( c->cpuid_level >= 0x00000001 ) {
329 u32 capability, excap;
330 cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
331 c->x86_capability[0] = capability;
332 c->x86_capability[4] = excap;
333 c->x86 = (tfms >> 8) & 15;
334 c->x86_model = (tfms >> 4) & 15;
335 if (c->x86 == 0xf)
336 c->x86 += (tfms >> 20) & 0xff;
337 if (c->x86 >= 0x6)
338 c->x86_model += ((tfms >> 16) & 0xF) << 4;
339 c->x86_mask = tfms & 15;
340 #ifdef CONFIG_X86_HT
341 c->apicid = phys_pkg_id((ebx >> 24) & 0xFF, 0);
342 #else
343 c->apicid = (ebx >> 24) & 0xFF;
344 #endif
345 if (c->x86_capability[0] & (1<<19))
346 c->x86_clflush_size = ((ebx >> 8) & 0xff) * 8;
347 } else {
348 /* Have CPUID level 0 only - unheard of */
349 c->x86 = 4;
350 }
351
352 /* AMD-defined flags: level 0x80000001 */
353 xlvl = cpuid_eax(0x80000000);
354 if ( (xlvl & 0xffff0000) == 0x80000000 ) {
355 if ( xlvl >= 0x80000001 ) {
356 c->x86_capability[1] = cpuid_edx(0x80000001);
357 c->x86_capability[6] = cpuid_ecx(0x80000001);
358 }
359 if ( xlvl >= 0x80000004 )
360 get_model_name(c); /* Default name */
361 }
362
363 init_scattered_cpuid_features(c);
364 }
365
366 #ifdef CONFIG_X86_HT
367 c->phys_proc_id = (cpuid_ebx(1) >> 24) & 0xff;
368 #endif
369 }
370
371 static void __cpuinit squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
372 {
373 if (cpu_has(c, X86_FEATURE_PN) && disable_x86_serial_nr ) {
374 /* Disable processor serial number */
375 unsigned long lo,hi;
376 rdmsr(MSR_IA32_BBL_CR_CTL,lo,hi);
377 lo |= 0x200000;
378 wrmsr(MSR_IA32_BBL_CR_CTL,lo,hi);
379 printk(KERN_NOTICE "CPU serial number disabled.\n");
380 clear_bit(X86_FEATURE_PN, c->x86_capability);
381
382 /* Disabling the serial number may affect the cpuid level */
383 c->cpuid_level = cpuid_eax(0);
384 }
385 }
386
387 static int __init x86_serial_nr_setup(char *s)
388 {
389 disable_x86_serial_nr = 0;
390 return 1;
391 }
392 __setup("serialnumber", x86_serial_nr_setup);
393
394
395
396 /*
397 * This does the hard work of actually picking apart the CPU stuff...
398 */
399 void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
400 {
401 int i;
402
403 c->loops_per_jiffy = loops_per_jiffy;
404 c->x86_cache_size = -1;
405 c->x86_vendor = X86_VENDOR_UNKNOWN;
406 c->cpuid_level = -1; /* CPUID not detected */
407 c->x86_model = c->x86_mask = 0; /* So far unknown... */
408 c->x86_vendor_id[0] = '\0'; /* Unset */
409 c->x86_model_id[0] = '\0'; /* Unset */
410 c->x86_max_cores = 1;
411 c->x86_clflush_size = 32;
412 memset(&c->x86_capability, 0, sizeof c->x86_capability);
413
414 if (!have_cpuid_p()) {
415 /* First of all, decide if this is a 486 or higher */
416 /* It's a 486 if we can modify the AC flag */
417 if ( flag_is_changeable_p(X86_EFLAGS_AC) )
418 c->x86 = 4;
419 else
420 c->x86 = 3;
421 }
422
423 generic_identify(c);
424
425 if (this_cpu->c_identify)
426 this_cpu->c_identify(c);
427
428 /*
429 * Vendor-specific initialization. In this section we
430 * canonicalize the feature flags, meaning if there are
431 * features a certain CPU supports which CPUID doesn't
432 * tell us, CPUID claiming incorrect flags, or other bugs,
433 * we handle them here.
434 *
435 * At the end of this section, c->x86_capability better
436 * indicate the features this CPU genuinely supports!
437 */
438 if (this_cpu->c_init)
439 this_cpu->c_init(c);
440
441 /* Disable the PN if appropriate */
442 squash_the_stupid_serial_number(c);
443
444 /*
445 * The vendor-specific functions might have changed features. Now
446 * we do "generic changes."
447 */
448
449 /* If the model name is still unset, do table lookup. */
450 if ( !c->x86_model_id[0] ) {
451 char *p;
452 p = table_lookup_model(c);
453 if ( p )
454 strcpy(c->x86_model_id, p);
455 else
456 /* Last resort... */
457 sprintf(c->x86_model_id, "%02x/%02x",
458 c->x86, c->x86_model);
459 }
460
461 /*
462 * On SMP, boot_cpu_data holds the common feature set between
463 * all CPUs; so make sure that we indicate which features are
464 * common between the CPUs. The first time this routine gets
465 * executed, c == &boot_cpu_data.
466 */
467 if ( c != &boot_cpu_data ) {
468 /* AND the already accumulated flags with these */
469 for ( i = 0 ; i < NCAPINTS ; i++ )
470 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
471 }
472
473 /* Clear all flags overriden by options */
474 for (i = 0; i < NCAPINTS; i++)
475 c->x86_capability[i] ^= cleared_cpu_caps[i];
476
477 /* Init Machine Check Exception if available. */
478 mcheck_init(c);
479
480 select_idle_routine(c);
481 }
482
483 void __init identify_boot_cpu(void)
484 {
485 identify_cpu(&boot_cpu_data);
486 sysenter_setup();
487 enable_sep_cpu();
488 mtrr_bp_init();
489 }
490
491 void __cpuinit identify_secondary_cpu(struct cpuinfo_x86 *c)
492 {
493 BUG_ON(c == &boot_cpu_data);
494 identify_cpu(c);
495 enable_sep_cpu();
496 mtrr_ap_init();
497 }
498
499 #ifdef CONFIG_X86_HT
500 void __cpuinit detect_ht(struct cpuinfo_x86 *c)
501 {
502 u32 eax, ebx, ecx, edx;
503 int index_msb, core_bits;
504
505 cpuid(1, &eax, &ebx, &ecx, &edx);
506
507 if (!cpu_has(c, X86_FEATURE_HT) || cpu_has(c, X86_FEATURE_CMP_LEGACY))
508 return;
509
510 smp_num_siblings = (ebx & 0xff0000) >> 16;
511
512 if (smp_num_siblings == 1) {
513 printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
514 } else if (smp_num_siblings > 1 ) {
515
516 if (smp_num_siblings > NR_CPUS) {
517 printk(KERN_WARNING "CPU: Unsupported number of the "
518 "siblings %d", smp_num_siblings);
519 smp_num_siblings = 1;
520 return;
521 }
522
523 index_msb = get_count_order(smp_num_siblings);
524 c->phys_proc_id = phys_pkg_id((ebx >> 24) & 0xFF, index_msb);
525
526 printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
527 c->phys_proc_id);
528
529 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
530
531 index_msb = get_count_order(smp_num_siblings) ;
532
533 core_bits = get_count_order(c->x86_max_cores);
534
535 c->cpu_core_id = phys_pkg_id((ebx >> 24) & 0xFF, index_msb) &
536 ((1 << core_bits) - 1);
537
538 if (c->x86_max_cores > 1)
539 printk(KERN_INFO "CPU: Processor Core ID: %d\n",
540 c->cpu_core_id);
541 }
542 }
543 #endif
544
545 static __init int setup_noclflush(char *arg)
546 {
547 setup_clear_cpu_cap(X86_FEATURE_CLFLSH);
548 return 1;
549 }
550 __setup("noclflush", setup_noclflush);
551
552 void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
553 {
554 char *vendor = NULL;
555
556 if (c->x86_vendor < X86_VENDOR_NUM)
557 vendor = this_cpu->c_vendor;
558 else if (c->cpuid_level >= 0)
559 vendor = c->x86_vendor_id;
560
561 if (vendor && strncmp(c->x86_model_id, vendor, strlen(vendor)))
562 printk("%s ", vendor);
563
564 if (!c->x86_model_id[0])
565 printk("%d86", c->x86);
566 else
567 printk("%s", c->x86_model_id);
568
569 if (c->x86_mask || c->cpuid_level >= 0)
570 printk(" stepping %02x\n", c->x86_mask);
571 else
572 printk("\n");
573 }
574
575 static __init int setup_disablecpuid(char *arg)
576 {
577 int bit;
578 if (get_option(&arg, &bit) && bit < NCAPINTS*32)
579 setup_clear_cpu_cap(bit);
580 else
581 return 0;
582 return 1;
583 }
584 __setup("clearcpuid=", setup_disablecpuid);
585
586 cpumask_t cpu_initialized __cpuinitdata = CPU_MASK_NONE;
587
588 /* This is hacky. :)
589 * We're emulating future behavior.
590 * In the future, the cpu-specific init functions will be called implicitly
591 * via the magic of initcalls.
592 * They will insert themselves into the cpu_devs structure.
593 * Then, when cpu_init() is called, we can just iterate over that array.
594 */
595
596 extern int intel_cpu_init(void);
597 extern int cyrix_init_cpu(void);
598 extern int nsc_init_cpu(void);
599 extern int amd_init_cpu(void);
600 extern int centaur_init_cpu(void);
601 extern int transmeta_init_cpu(void);
602 extern int nexgen_init_cpu(void);
603 extern int umc_init_cpu(void);
604
605 void __init early_cpu_init(void)
606 {
607 intel_cpu_init();
608 cyrix_init_cpu();
609 nsc_init_cpu();
610 amd_init_cpu();
611 centaur_init_cpu();
612 transmeta_init_cpu();
613 nexgen_init_cpu();
614 umc_init_cpu();
615 early_cpu_detect();
616
617 #ifdef CONFIG_DEBUG_PAGEALLOC
618 /* pse is not compatible with on-the-fly unmapping,
619 * disable it even if the cpus claim to support it.
620 */
621 setup_clear_cpu_cap(X86_FEATURE_PSE);
622 #endif
623 }
624
625 /* Make sure %fs is initialized properly in idle threads */
626 struct pt_regs * __devinit idle_regs(struct pt_regs *regs)
627 {
628 memset(regs, 0, sizeof(struct pt_regs));
629 regs->fs = __KERNEL_PERCPU;
630 return regs;
631 }
632
633 /* Current gdt points %fs at the "master" per-cpu area: after this,
634 * it's on the real one. */
635 void switch_to_new_gdt(void)
636 {
637 struct desc_ptr gdt_descr;
638
639 gdt_descr.address = (long)get_cpu_gdt_table(smp_processor_id());
640 gdt_descr.size = GDT_SIZE - 1;
641 load_gdt(&gdt_descr);
642 asm("mov %0, %%fs" : : "r" (__KERNEL_PERCPU) : "memory");
643 }
644
645 /*
646 * cpu_init() initializes state that is per-CPU. Some data is already
647 * initialized (naturally) in the bootstrap process, such as the GDT
648 * and IDT. We reload them nevertheless, this function acts as a
649 * 'CPU state barrier', nothing should get across.
650 */
651 void __cpuinit cpu_init(void)
652 {
653 int cpu = smp_processor_id();
654 struct task_struct *curr = current;
655 struct tss_struct * t = &per_cpu(init_tss, cpu);
656 struct thread_struct *thread = &curr->thread;
657
658 if (cpu_test_and_set(cpu, cpu_initialized)) {
659 printk(KERN_WARNING "CPU#%d already initialized!\n", cpu);
660 for (;;) local_irq_enable();
661 }
662
663 printk(KERN_INFO "Initializing CPU#%d\n", cpu);
664
665 if (cpu_has_vme || cpu_has_tsc || cpu_has_de)
666 clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
667
668 load_idt(&idt_descr);
669 switch_to_new_gdt();
670
671 /*
672 * Set up and load the per-CPU TSS and LDT
673 */
674 atomic_inc(&init_mm.mm_count);
675 curr->active_mm = &init_mm;
676 if (curr->mm)
677 BUG();
678 enter_lazy_tlb(&init_mm, curr);
679
680 load_sp0(t, thread);
681 set_tss_desc(cpu,t);
682 load_TR_desc();
683 load_LDT(&init_mm.context);
684
685 #ifdef CONFIG_DOUBLEFAULT
686 /* Set up doublefault TSS pointer in the GDT */
687 __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
688 #endif
689
690 /* Clear %gs. */
691 asm volatile ("mov %0, %%gs" : : "r" (0));
692
693 /* Clear all 6 debug registers: */
694 set_debugreg(0, 0);
695 set_debugreg(0, 1);
696 set_debugreg(0, 2);
697 set_debugreg(0, 3);
698 set_debugreg(0, 6);
699 set_debugreg(0, 7);
700
701 /*
702 * Force FPU initialization:
703 */
704 current_thread_info()->status = 0;
705 clear_used_math();
706 mxcsr_feature_mask_init();
707 }
708
709 #ifdef CONFIG_HOTPLUG_CPU
710 void __cpuinit cpu_uninit(void)
711 {
712 int cpu = raw_smp_processor_id();
713 cpu_clear(cpu, cpu_initialized);
714
715 /* lazy TLB state */
716 per_cpu(cpu_tlbstate, cpu).state = 0;
717 per_cpu(cpu_tlbstate, cpu).active_mm = &init_mm;
718 }
719 #endif