]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kernel/cpu/common.c
x86: move nonx_setup etc from common.c to init_64.c
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kernel / cpu / common.c
1 #include <linux/init.h>
2 #include <linux/kernel.h>
3 #include <linux/sched.h>
4 #include <linux/string.h>
5 #include <linux/bootmem.h>
6 #include <linux/bitops.h>
7 #include <linux/module.h>
8 #include <linux/kgdb.h>
9 #include <linux/topology.h>
10 #include <linux/delay.h>
11 #include <linux/smp.h>
12 #include <linux/percpu.h>
13 #include <asm/i387.h>
14 #include <asm/msr.h>
15 #include <asm/io.h>
16 #include <asm/linkage.h>
17 #include <asm/mmu_context.h>
18 #include <asm/mtrr.h>
19 #include <asm/mce.h>
20 #include <asm/pat.h>
21 #include <asm/asm.h>
22 #include <asm/numa.h>
23 #ifdef CONFIG_X86_LOCAL_APIC
24 #include <asm/mpspec.h>
25 #include <asm/apic.h>
26 #include <mach_apic.h>
27 #include <asm/genapic.h>
28 #endif
29
30 #include <asm/pda.h>
31 #include <asm/pgtable.h>
32 #include <asm/processor.h>
33 #include <asm/desc.h>
34 #include <asm/atomic.h>
35 #include <asm/proto.h>
36 #include <asm/sections.h>
37 #include <asm/setup.h>
38
39 #include "cpu.h"
40
41 static struct cpu_dev *this_cpu __cpuinitdata;
42
43 #ifdef CONFIG_X86_64
44 /* We need valid kernel segments for data and code in long mode too
45 * IRET will check the segment types kkeil 2000/10/28
46 * Also sysret mandates a special GDT layout
47 */
48 /* The TLS descriptors are currently at a different place compared to i386.
49 Hopefully nobody expects them at a fixed place (Wine?) */
50 DEFINE_PER_CPU(struct gdt_page, gdt_page) = { .gdt = {
51 [GDT_ENTRY_KERNEL32_CS] = { { { 0x0000ffff, 0x00cf9b00 } } },
52 [GDT_ENTRY_KERNEL_CS] = { { { 0x0000ffff, 0x00af9b00 } } },
53 [GDT_ENTRY_KERNEL_DS] = { { { 0x0000ffff, 0x00cf9300 } } },
54 [GDT_ENTRY_DEFAULT_USER32_CS] = { { { 0x0000ffff, 0x00cffb00 } } },
55 [GDT_ENTRY_DEFAULT_USER_DS] = { { { 0x0000ffff, 0x00cff300 } } },
56 [GDT_ENTRY_DEFAULT_USER_CS] = { { { 0x0000ffff, 0x00affb00 } } },
57 } };
58 #else
59 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
60 [GDT_ENTRY_KERNEL_CS] = { { { 0x0000ffff, 0x00cf9a00 } } },
61 [GDT_ENTRY_KERNEL_DS] = { { { 0x0000ffff, 0x00cf9200 } } },
62 [GDT_ENTRY_DEFAULT_USER_CS] = { { { 0x0000ffff, 0x00cffa00 } } },
63 [GDT_ENTRY_DEFAULT_USER_DS] = { { { 0x0000ffff, 0x00cff200 } } },
64 /*
65 * Segments used for calling PnP BIOS have byte granularity.
66 * They code segments and data segments have fixed 64k limits,
67 * the transfer segment sizes are set at run time.
68 */
69 /* 32-bit code */
70 [GDT_ENTRY_PNPBIOS_CS32] = { { { 0x0000ffff, 0x00409a00 } } },
71 /* 16-bit code */
72 [GDT_ENTRY_PNPBIOS_CS16] = { { { 0x0000ffff, 0x00009a00 } } },
73 /* 16-bit data */
74 [GDT_ENTRY_PNPBIOS_DS] = { { { 0x0000ffff, 0x00009200 } } },
75 /* 16-bit data */
76 [GDT_ENTRY_PNPBIOS_TS1] = { { { 0x00000000, 0x00009200 } } },
77 /* 16-bit data */
78 [GDT_ENTRY_PNPBIOS_TS2] = { { { 0x00000000, 0x00009200 } } },
79 /*
80 * The APM segments have byte granularity and their bases
81 * are set at run time. All have 64k limits.
82 */
83 /* 32-bit code */
84 [GDT_ENTRY_APMBIOS_BASE] = { { { 0x0000ffff, 0x00409a00 } } },
85 /* 16-bit code */
86 [GDT_ENTRY_APMBIOS_BASE+1] = { { { 0x0000ffff, 0x00009a00 } } },
87 /* data */
88 [GDT_ENTRY_APMBIOS_BASE+2] = { { { 0x0000ffff, 0x00409200 } } },
89
90 [GDT_ENTRY_ESPFIX_SS] = { { { 0x00000000, 0x00c09200 } } },
91 [GDT_ENTRY_PERCPU] = { { { 0x00000000, 0x00000000 } } },
92 } };
93 #endif
94 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
95
96 #ifdef CONFIG_X86_32
97 static int cachesize_override __cpuinitdata = -1;
98 static int disable_x86_serial_nr __cpuinitdata = 1;
99
100 static int __init cachesize_setup(char *str)
101 {
102 get_option(&str, &cachesize_override);
103 return 1;
104 }
105 __setup("cachesize=", cachesize_setup);
106
107 static int __init x86_fxsr_setup(char *s)
108 {
109 setup_clear_cpu_cap(X86_FEATURE_FXSR);
110 setup_clear_cpu_cap(X86_FEATURE_XMM);
111 return 1;
112 }
113 __setup("nofxsr", x86_fxsr_setup);
114
115 static int __init x86_sep_setup(char *s)
116 {
117 setup_clear_cpu_cap(X86_FEATURE_SEP);
118 return 1;
119 }
120 __setup("nosep", x86_sep_setup);
121
122 /* Standard macro to see if a specific flag is changeable */
123 static inline int flag_is_changeable_p(u32 flag)
124 {
125 u32 f1, f2;
126
127 asm("pushfl\n\t"
128 "pushfl\n\t"
129 "popl %0\n\t"
130 "movl %0,%1\n\t"
131 "xorl %2,%0\n\t"
132 "pushl %0\n\t"
133 "popfl\n\t"
134 "pushfl\n\t"
135 "popl %0\n\t"
136 "popfl\n\t"
137 : "=&r" (f1), "=&r" (f2)
138 : "ir" (flag));
139
140 return ((f1^f2) & flag) != 0;
141 }
142
143 /* Probe for the CPUID instruction */
144 static int __cpuinit have_cpuid_p(void)
145 {
146 return flag_is_changeable_p(X86_EFLAGS_ID);
147 }
148
149 static void __cpuinit squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
150 {
151 if (cpu_has(c, X86_FEATURE_PN) && disable_x86_serial_nr) {
152 /* Disable processor serial number */
153 unsigned long lo, hi;
154 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
155 lo |= 0x200000;
156 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
157 printk(KERN_NOTICE "CPU serial number disabled.\n");
158 clear_cpu_cap(c, X86_FEATURE_PN);
159
160 /* Disabling the serial number may affect the cpuid level */
161 c->cpuid_level = cpuid_eax(0);
162 }
163 }
164
165 static int __init x86_serial_nr_setup(char *s)
166 {
167 disable_x86_serial_nr = 0;
168 return 1;
169 }
170 __setup("serialnumber", x86_serial_nr_setup);
171 #else
172 static inline int flag_is_changeable_p(u32 flag)
173 {
174 return 1;
175 }
176 /* Probe for the CPUID instruction */
177 static inline int have_cpuid_p(void)
178 {
179 return 1;
180 }
181 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
182 {
183 }
184 #endif
185
186 /*
187 * Naming convention should be: <Name> [(<Codename>)]
188 * This table only is used unless init_<vendor>() below doesn't set it;
189 * in particular, if CPUID levels 0x80000002..4 are supported, this isn't used
190 *
191 */
192
193 /* Look up CPU names by table lookup. */
194 static char __cpuinit *table_lookup_model(struct cpuinfo_x86 *c)
195 {
196 struct cpu_model_info *info;
197
198 if (c->x86_model >= 16)
199 return NULL; /* Range check */
200
201 if (!this_cpu)
202 return NULL;
203
204 info = this_cpu->c_models;
205
206 while (info && info->family) {
207 if (info->family == c->x86)
208 return info->model_names[c->x86_model];
209 info++;
210 }
211 return NULL; /* Not found */
212 }
213
214 __u32 cleared_cpu_caps[NCAPINTS] __cpuinitdata;
215
216 /* Current gdt points %fs at the "master" per-cpu area: after this,
217 * it's on the real one. */
218 void switch_to_new_gdt(void)
219 {
220 struct desc_ptr gdt_descr;
221
222 gdt_descr.address = (long)get_cpu_gdt_table(smp_processor_id());
223 gdt_descr.size = GDT_SIZE - 1;
224 load_gdt(&gdt_descr);
225 #ifdef CONFIG_X86_32
226 asm("mov %0, %%fs" : : "r" (__KERNEL_PERCPU) : "memory");
227 #endif
228 }
229
230 static struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
231
232 static void __cpuinit default_init(struct cpuinfo_x86 *c)
233 {
234 #ifdef CONFIG_X86_64
235 display_cacheinfo(c);
236 #else
237 /* Not much we can do here... */
238 /* Check if at least it has cpuid */
239 if (c->cpuid_level == -1) {
240 /* No cpuid. It must be an ancient CPU */
241 if (c->x86 == 4)
242 strcpy(c->x86_model_id, "486");
243 else if (c->x86 == 3)
244 strcpy(c->x86_model_id, "386");
245 }
246 #endif
247 }
248
249 static struct cpu_dev __cpuinitdata default_cpu = {
250 .c_init = default_init,
251 .c_vendor = "Unknown",
252 .c_x86_vendor = X86_VENDOR_UNKNOWN,
253 };
254
255 int __cpuinit get_model_name(struct cpuinfo_x86 *c)
256 {
257 unsigned int *v;
258 char *p, *q;
259
260 if (c->extended_cpuid_level < 0x80000004)
261 return 0;
262
263 v = (unsigned int *) c->x86_model_id;
264 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
265 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
266 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
267 c->x86_model_id[48] = 0;
268
269 /* Intel chips right-justify this string for some dumb reason;
270 undo that brain damage */
271 p = q = &c->x86_model_id[0];
272 while (*p == ' ')
273 p++;
274 if (p != q) {
275 while (*p)
276 *q++ = *p++;
277 while (q <= &c->x86_model_id[48])
278 *q++ = '\0'; /* Zero-pad the rest */
279 }
280
281 return 1;
282 }
283
284 void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
285 {
286 unsigned int n, dummy, ebx, ecx, edx, l2size;
287
288 n = c->extended_cpuid_level;
289
290 if (n >= 0x80000005) {
291 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
292 printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n",
293 edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
294 c->x86_cache_size = (ecx>>24) + (edx>>24);
295 #ifdef CONFIG_X86_64
296 /* On K8 L1 TLB is inclusive, so don't count it */
297 c->x86_tlbsize = 0;
298 #endif
299 }
300
301 if (n < 0x80000006) /* Some chips just has a large L1. */
302 return;
303
304 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
305 l2size = ecx >> 16;
306
307 #ifdef CONFIG_X86_64
308 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
309 #else
310 /* do processor-specific cache resizing */
311 if (this_cpu->c_size_cache)
312 l2size = this_cpu->c_size_cache(c, l2size);
313
314 /* Allow user to override all this if necessary. */
315 if (cachesize_override != -1)
316 l2size = cachesize_override;
317
318 if (l2size == 0)
319 return; /* Again, no L2 cache is possible */
320 #endif
321
322 c->x86_cache_size = l2size;
323
324 printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
325 l2size, ecx & 0xFF);
326 }
327
328 void __cpuinit detect_ht(struct cpuinfo_x86 *c)
329 {
330 #ifdef CONFIG_X86_HT
331 u32 eax, ebx, ecx, edx;
332 int index_msb, core_bits;
333
334 if (!cpu_has(c, X86_FEATURE_HT))
335 return;
336
337 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
338 goto out;
339
340 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
341 return;
342
343 cpuid(1, &eax, &ebx, &ecx, &edx);
344
345 smp_num_siblings = (ebx & 0xff0000) >> 16;
346
347 if (smp_num_siblings == 1) {
348 printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
349 } else if (smp_num_siblings > 1) {
350
351 if (smp_num_siblings > NR_CPUS) {
352 printk(KERN_WARNING "CPU: Unsupported number of siblings %d",
353 smp_num_siblings);
354 smp_num_siblings = 1;
355 return;
356 }
357
358 index_msb = get_count_order(smp_num_siblings);
359 #ifdef CONFIG_X86_64
360 c->phys_proc_id = phys_pkg_id(index_msb);
361 #else
362 c->phys_proc_id = phys_pkg_id(c->initial_apicid, index_msb);
363 #endif
364
365 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
366
367 index_msb = get_count_order(smp_num_siblings);
368
369 core_bits = get_count_order(c->x86_max_cores);
370
371 #ifdef CONFIG_X86_64
372 c->cpu_core_id = phys_pkg_id(index_msb) &
373 ((1 << core_bits) - 1);
374 #else
375 c->cpu_core_id = phys_pkg_id(c->initial_apicid, index_msb) &
376 ((1 << core_bits) - 1);
377 #endif
378 }
379
380 out:
381 if ((c->x86_max_cores * smp_num_siblings) > 1) {
382 printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
383 c->phys_proc_id);
384 printk(KERN_INFO "CPU: Processor Core ID: %d\n",
385 c->cpu_core_id);
386 }
387 #endif
388 }
389
390 static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
391 {
392 char *v = c->x86_vendor_id;
393 int i;
394 static int printed;
395
396 for (i = 0; i < X86_VENDOR_NUM; i++) {
397 if (!cpu_devs[i])
398 break;
399
400 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
401 (cpu_devs[i]->c_ident[1] &&
402 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
403 this_cpu = cpu_devs[i];
404 c->x86_vendor = this_cpu->c_x86_vendor;
405 return;
406 }
407 }
408
409 if (!printed) {
410 printed++;
411 printk(KERN_ERR "CPU: Vendor unknown, using generic init.\n");
412 printk(KERN_ERR "CPU: Your system may be unstable.\n");
413 }
414
415 c->x86_vendor = X86_VENDOR_UNKNOWN;
416 this_cpu = &default_cpu;
417 }
418
419 void __cpuinit cpu_detect(struct cpuinfo_x86 *c)
420 {
421 /* Get vendor name */
422 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
423 (unsigned int *)&c->x86_vendor_id[0],
424 (unsigned int *)&c->x86_vendor_id[8],
425 (unsigned int *)&c->x86_vendor_id[4]);
426
427 c->x86 = 4;
428 /* Intel-defined flags: level 0x00000001 */
429 if (c->cpuid_level >= 0x00000001) {
430 u32 junk, tfms, cap0, misc;
431 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
432 c->x86 = (tfms >> 8) & 0xf;
433 c->x86_model = (tfms >> 4) & 0xf;
434 c->x86_mask = tfms & 0xf;
435 if (c->x86 == 0xf)
436 c->x86 += (tfms >> 20) & 0xff;
437 if (c->x86 >= 0x6)
438 c->x86_model += ((tfms >> 16) & 0xf) << 4;
439 if (cap0 & (1<<19)) {
440 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
441 c->x86_cache_alignment = c->x86_clflush_size;
442 }
443 }
444 }
445
446 static void __cpuinit get_cpu_cap(struct cpuinfo_x86 *c)
447 {
448 u32 tfms, xlvl;
449 u32 ebx;
450
451 /* Intel-defined flags: level 0x00000001 */
452 if (c->cpuid_level >= 0x00000001) {
453 u32 capability, excap;
454 cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
455 c->x86_capability[0] = capability;
456 c->x86_capability[4] = excap;
457 }
458
459 /* AMD-defined flags: level 0x80000001 */
460 xlvl = cpuid_eax(0x80000000);
461 c->extended_cpuid_level = xlvl;
462 if ((xlvl & 0xffff0000) == 0x80000000) {
463 if (xlvl >= 0x80000001) {
464 c->x86_capability[1] = cpuid_edx(0x80000001);
465 c->x86_capability[6] = cpuid_ecx(0x80000001);
466 }
467 }
468
469 #ifdef CONFIG_X86_64
470 /* Transmeta-defined flags: level 0x80860001 */
471 xlvl = cpuid_eax(0x80860000);
472 if ((xlvl & 0xffff0000) == 0x80860000) {
473 /* Don't set x86_cpuid_level here for now to not confuse. */
474 if (xlvl >= 0x80860001)
475 c->x86_capability[2] = cpuid_edx(0x80860001);
476 }
477
478 if (c->extended_cpuid_level >= 0x80000007)
479 c->x86_power = cpuid_edx(0x80000007);
480
481 if (c->extended_cpuid_level >= 0x80000008) {
482 u32 eax = cpuid_eax(0x80000008);
483
484 c->x86_virt_bits = (eax >> 8) & 0xff;
485 c->x86_phys_bits = eax & 0xff;
486 }
487 #endif
488 }
489 /*
490 * Do minimum CPU detection early.
491 * Fields really needed: vendor, cpuid_level, family, model, mask,
492 * cache alignment.
493 * The others are not touched to avoid unwanted side effects.
494 *
495 * WARNING: this function is only called on the BP. Don't add code here
496 * that is supposed to run on all CPUs.
497 */
498 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
499 {
500 #ifdef CONFIG_X86_64
501 c->x86_clflush_size = 64;
502 #else
503 c->x86_clflush_size = 32;
504 #endif
505 c->x86_cache_alignment = c->x86_clflush_size;
506
507 if (!have_cpuid_p())
508 return;
509
510 memset(&c->x86_capability, 0, sizeof c->x86_capability);
511
512 c->extended_cpuid_level = 0;
513
514 cpu_detect(c);
515
516 get_cpu_vendor(c);
517
518 get_cpu_cap(c);
519
520 if (this_cpu->c_early_init)
521 this_cpu->c_early_init(c);
522
523 validate_pat_support(c);
524 }
525
526 void __init early_cpu_init(void)
527 {
528 struct cpu_dev **cdev;
529 int count = 0;
530
531 printk("KERNEL supported cpus:\n");
532 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
533 struct cpu_dev *cpudev = *cdev;
534 unsigned int j;
535
536 if (count >= X86_VENDOR_NUM)
537 break;
538 cpu_devs[count] = cpudev;
539 count++;
540
541 for (j = 0; j < 2; j++) {
542 if (!cpudev->c_ident[j])
543 continue;
544 printk(" %s %s\n", cpudev->c_vendor,
545 cpudev->c_ident[j]);
546 }
547 }
548
549 early_identify_cpu(&boot_cpu_data);
550 }
551
552 /*
553 * The NOPL instruction is supposed to exist on all CPUs with
554 * family >= 6, unfortunately, that's not true in practice because
555 * of early VIA chips and (more importantly) broken virtualizers that
556 * are not easy to detect. Hence, probe for it based on first
557 * principles.
558 *
559 * Note: no 64-bit chip is known to lack these, but put the code here
560 * for consistency with 32 bits, and to make it utterly trivial to
561 * diagnose the problem should it ever surface.
562 */
563 static void __cpuinit detect_nopl(struct cpuinfo_x86 *c)
564 {
565 const u32 nopl_signature = 0x888c53b1; /* Random number */
566 u32 has_nopl = nopl_signature;
567
568 clear_cpu_cap(c, X86_FEATURE_NOPL);
569 if (c->x86 >= 6) {
570 asm volatile("\n"
571 "1: .byte 0x0f,0x1f,0xc0\n" /* nopl %eax */
572 "2:\n"
573 " .section .fixup,\"ax\"\n"
574 "3: xor %0,%0\n"
575 " jmp 2b\n"
576 " .previous\n"
577 _ASM_EXTABLE(1b,3b)
578 : "+a" (has_nopl));
579
580 if (has_nopl == nopl_signature)
581 set_cpu_cap(c, X86_FEATURE_NOPL);
582 }
583 }
584
585 static void __cpuinit generic_identify(struct cpuinfo_x86 *c)
586 {
587 if (!have_cpuid_p())
588 return;
589
590 c->extended_cpuid_level = 0;
591
592 cpu_detect(c);
593
594 get_cpu_vendor(c);
595
596 get_cpu_cap(c);
597
598 if (c->cpuid_level >= 0x00000001) {
599 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
600 #ifdef CONFIG_X86_32
601 # ifdef CONFIG_X86_HT
602 c->apicid = phys_pkg_id(c->initial_apicid, 0);
603 # else
604 c->apicid = c->initial_apicid;
605 # endif
606 #endif
607
608 #ifdef CONFIG_X86_HT
609 c->phys_proc_id = c->initial_apicid;
610 #endif
611 }
612
613 if (c->extended_cpuid_level >= 0x80000004)
614 get_model_name(c); /* Default name */
615
616 init_scattered_cpuid_features(c);
617 detect_nopl(c);
618 }
619
620 /*
621 * This does the hard work of actually picking apart the CPU stuff...
622 */
623 static void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
624 {
625 int i;
626
627 c->loops_per_jiffy = loops_per_jiffy;
628 c->x86_cache_size = -1;
629 c->x86_vendor = X86_VENDOR_UNKNOWN;
630 c->x86_model = c->x86_mask = 0; /* So far unknown... */
631 c->x86_vendor_id[0] = '\0'; /* Unset */
632 c->x86_model_id[0] = '\0'; /* Unset */
633 c->x86_max_cores = 1;
634 #ifdef CONFIG_X86_64
635 c->x86_coreid_bits = 0;
636 c->x86_clflush_size = 64;
637 #else
638 c->cpuid_level = -1; /* CPUID not detected */
639 c->x86_clflush_size = 32;
640 #endif
641 c->x86_cache_alignment = c->x86_clflush_size;
642 memset(&c->x86_capability, 0, sizeof c->x86_capability);
643
644 if (!have_cpuid_p()) {
645 /*
646 * First of all, decide if this is a 486 or higher
647 * It's a 486 if we can modify the AC flag
648 */
649 if (flag_is_changeable_p(X86_EFLAGS_AC))
650 c->x86 = 4;
651 else
652 c->x86 = 3;
653 }
654
655 generic_identify(c);
656
657 if (this_cpu->c_identify)
658 this_cpu->c_identify(c);
659
660 #ifdef CONFIG_X86_64
661 c->apicid = phys_pkg_id(0);
662 #endif
663
664 /*
665 * Vendor-specific initialization. In this section we
666 * canonicalize the feature flags, meaning if there are
667 * features a certain CPU supports which CPUID doesn't
668 * tell us, CPUID claiming incorrect flags, or other bugs,
669 * we handle them here.
670 *
671 * At the end of this section, c->x86_capability better
672 * indicate the features this CPU genuinely supports!
673 */
674 if (this_cpu->c_init)
675 this_cpu->c_init(c);
676
677 /* Disable the PN if appropriate */
678 squash_the_stupid_serial_number(c);
679
680 /*
681 * The vendor-specific functions might have changed features. Now
682 * we do "generic changes."
683 */
684
685 /* If the model name is still unset, do table lookup. */
686 if (!c->x86_model_id[0]) {
687 char *p;
688 p = table_lookup_model(c);
689 if (p)
690 strcpy(c->x86_model_id, p);
691 else
692 /* Last resort... */
693 sprintf(c->x86_model_id, "%02x/%02x",
694 c->x86, c->x86_model);
695 }
696
697 #ifdef CONFIG_X86_64
698 detect_ht(c);
699 #endif
700
701 /*
702 * On SMP, boot_cpu_data holds the common feature set between
703 * all CPUs; so make sure that we indicate which features are
704 * common between the CPUs. The first time this routine gets
705 * executed, c == &boot_cpu_data.
706 */
707 if (c != &boot_cpu_data) {
708 /* AND the already accumulated flags with these */
709 for (i = 0; i < NCAPINTS; i++)
710 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
711 }
712
713 /* Clear all flags overriden by options */
714 for (i = 0; i < NCAPINTS; i++)
715 c->x86_capability[i] &= ~cleared_cpu_caps[i];
716
717 #ifdef CONFIG_X86_MCE
718 /* Init Machine Check Exception if available. */
719 mcheck_init(c);
720 #endif
721
722 select_idle_routine(c);
723
724 #if defined(CONFIG_NUMA) && defined(CONFIG_X86_64)
725 numa_add_cpu(smp_processor_id());
726 #endif
727 }
728
729 void __init identify_boot_cpu(void)
730 {
731 identify_cpu(&boot_cpu_data);
732 #ifdef CONFIG_X86_32
733 sysenter_setup();
734 enable_sep_cpu();
735 #endif
736 }
737
738 void __cpuinit identify_secondary_cpu(struct cpuinfo_x86 *c)
739 {
740 BUG_ON(c == &boot_cpu_data);
741 identify_cpu(c);
742 #ifdef CONFIG_X86_32
743 enable_sep_cpu();
744 #endif
745 mtrr_ap_init();
746 }
747
748 struct msr_range {
749 unsigned min;
750 unsigned max;
751 };
752
753 static struct msr_range msr_range_array[] __cpuinitdata = {
754 { 0x00000000, 0x00000418},
755 { 0xc0000000, 0xc000040b},
756 { 0xc0010000, 0xc0010142},
757 { 0xc0011000, 0xc001103b},
758 };
759
760 static void __cpuinit print_cpu_msr(void)
761 {
762 unsigned index;
763 u64 val;
764 int i;
765 unsigned index_min, index_max;
766
767 for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
768 index_min = msr_range_array[i].min;
769 index_max = msr_range_array[i].max;
770 for (index = index_min; index < index_max; index++) {
771 if (rdmsrl_amd_safe(index, &val))
772 continue;
773 printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
774 }
775 }
776 }
777
778 static int show_msr __cpuinitdata;
779 static __init int setup_show_msr(char *arg)
780 {
781 int num;
782
783 get_option(&arg, &num);
784
785 if (num > 0)
786 show_msr = num;
787 return 1;
788 }
789 __setup("show_msr=", setup_show_msr);
790
791 static __init int setup_noclflush(char *arg)
792 {
793 setup_clear_cpu_cap(X86_FEATURE_CLFLSH);
794 return 1;
795 }
796 __setup("noclflush", setup_noclflush);
797
798 void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
799 {
800 char *vendor = NULL;
801
802 if (c->x86_vendor < X86_VENDOR_NUM)
803 vendor = this_cpu->c_vendor;
804 else if (c->cpuid_level >= 0)
805 vendor = c->x86_vendor_id;
806
807 if (vendor && strncmp(c->x86_model_id, vendor, strlen(vendor)))
808 printk(KERN_CONT "%s ", vendor);
809
810 if (c->x86_model_id[0])
811 printk(KERN_CONT "%s", c->x86_model_id);
812 else
813 printk(KERN_CONT "%d86", c->x86);
814
815 if (c->x86_mask || c->cpuid_level >= 0)
816 printk(KERN_CONT " stepping %02x\n", c->x86_mask);
817 else
818 printk(KERN_CONT "\n");
819
820 #ifdef CONFIG_SMP
821 if (c->cpu_index < show_msr)
822 print_cpu_msr();
823 #else
824 if (show_msr)
825 print_cpu_msr();
826 #endif
827 }
828
829 static __init int setup_disablecpuid(char *arg)
830 {
831 int bit;
832 if (get_option(&arg, &bit) && bit < NCAPINTS*32)
833 setup_clear_cpu_cap(bit);
834 else
835 return 0;
836 return 1;
837 }
838 __setup("clearcpuid=", setup_disablecpuid);
839
840 cpumask_t cpu_initialized __cpuinitdata = CPU_MASK_NONE;
841
842 #ifdef CONFIG_X86_64
843 struct x8664_pda **_cpu_pda __read_mostly;
844 EXPORT_SYMBOL(_cpu_pda);
845
846 struct desc_ptr idt_descr = { 256 * 16 - 1, (unsigned long) idt_table };
847
848 char boot_cpu_stack[IRQSTACKSIZE] __page_aligned_bss;
849
850 void pda_init(int cpu)
851 {
852 struct x8664_pda *pda = cpu_pda(cpu);
853
854 /* Setup up data that may be needed in __get_free_pages early */
855 loadsegment(fs, 0);
856 loadsegment(gs, 0);
857 /* Memory clobbers used to order PDA accessed */
858 mb();
859 wrmsrl(MSR_GS_BASE, pda);
860 mb();
861
862 pda->cpunumber = cpu;
863 pda->irqcount = -1;
864 pda->kernelstack = (unsigned long)stack_thread_info() -
865 PDA_STACKOFFSET + THREAD_SIZE;
866 pda->active_mm = &init_mm;
867 pda->mmu_state = 0;
868
869 if (cpu == 0) {
870 /* others are initialized in smpboot.c */
871 pda->pcurrent = &init_task;
872 pda->irqstackptr = boot_cpu_stack;
873 pda->irqstackptr += IRQSTACKSIZE - 64;
874 } else {
875 if (!pda->irqstackptr) {
876 pda->irqstackptr = (char *)
877 __get_free_pages(GFP_ATOMIC, IRQSTACK_ORDER);
878 if (!pda->irqstackptr)
879 panic("cannot allocate irqstack for cpu %d",
880 cpu);
881 pda->irqstackptr += IRQSTACKSIZE - 64;
882 }
883
884 if (pda->nodenumber == 0 && cpu_to_node(cpu) != NUMA_NO_NODE)
885 pda->nodenumber = cpu_to_node(cpu);
886 }
887 }
888
889 char boot_exception_stacks[(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ +
890 DEBUG_STKSZ] __page_aligned_bss;
891
892 extern asmlinkage void ignore_sysret(void);
893
894 /* May not be marked __init: used by software suspend */
895 void syscall_init(void)
896 {
897 /*
898 * LSTAR and STAR live in a bit strange symbiosis.
899 * They both write to the same internal register. STAR allows to
900 * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
901 */
902 wrmsrl(MSR_STAR, ((u64)__USER32_CS)<<48 | ((u64)__KERNEL_CS)<<32);
903 wrmsrl(MSR_LSTAR, system_call);
904 wrmsrl(MSR_CSTAR, ignore_sysret);
905
906 #ifdef CONFIG_IA32_EMULATION
907 syscall32_cpu_init();
908 #endif
909
910 /* Flags to clear on syscall */
911 wrmsrl(MSR_SYSCALL_MASK,
912 X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|X86_EFLAGS_IOPL);
913 }
914
915 unsigned long kernel_eflags;
916
917 /*
918 * Copies of the original ist values from the tss are only accessed during
919 * debugging, no special alignment required.
920 */
921 DEFINE_PER_CPU(struct orig_ist, orig_ist);
922
923 #else
924
925 /* Make sure %fs is initialized properly in idle threads */
926 struct pt_regs * __cpuinit idle_regs(struct pt_regs *regs)
927 {
928 memset(regs, 0, sizeof(struct pt_regs));
929 regs->fs = __KERNEL_PERCPU;
930 return regs;
931 }
932 #endif
933
934 /*
935 * cpu_init() initializes state that is per-CPU. Some data is already
936 * initialized (naturally) in the bootstrap process, such as the GDT
937 * and IDT. We reload them nevertheless, this function acts as a
938 * 'CPU state barrier', nothing should get across.
939 * A lot of state is already set up in PDA init for 64 bit
940 */
941 #ifdef CONFIG_X86_64
942 void __cpuinit cpu_init(void)
943 {
944 int cpu = stack_smp_processor_id();
945 struct tss_struct *t = &per_cpu(init_tss, cpu);
946 struct orig_ist *orig_ist = &per_cpu(orig_ist, cpu);
947 unsigned long v;
948 char *estacks = NULL;
949 struct task_struct *me;
950 int i;
951
952 /* CPU 0 is initialised in head64.c */
953 if (cpu != 0)
954 pda_init(cpu);
955 else
956 estacks = boot_exception_stacks;
957
958 me = current;
959
960 if (cpu_test_and_set(cpu, cpu_initialized))
961 panic("CPU#%d already initialized!\n", cpu);
962
963 printk(KERN_INFO "Initializing CPU#%d\n", cpu);
964
965 clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
966
967 /*
968 * Initialize the per-CPU GDT with the boot GDT,
969 * and set up the GDT descriptor:
970 */
971
972 switch_to_new_gdt();
973 load_idt((const struct desc_ptr *)&idt_descr);
974
975 memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
976 syscall_init();
977
978 wrmsrl(MSR_FS_BASE, 0);
979 wrmsrl(MSR_KERNEL_GS_BASE, 0);
980 barrier();
981
982 check_efer();
983 if (cpu != 0 && x2apic)
984 enable_x2apic();
985
986 /*
987 * set up and load the per-CPU TSS
988 */
989 if (!orig_ist->ist[0]) {
990 static const unsigned int order[N_EXCEPTION_STACKS] = {
991 [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STACK_ORDER,
992 [DEBUG_STACK - 1] = DEBUG_STACK_ORDER
993 };
994 for (v = 0; v < N_EXCEPTION_STACKS; v++) {
995 if (cpu) {
996 estacks = (char *)__get_free_pages(GFP_ATOMIC, order[v]);
997 if (!estacks)
998 panic("Cannot allocate exception "
999 "stack %ld %d\n", v, cpu);
1000 }
1001 estacks += PAGE_SIZE << order[v];
1002 orig_ist->ist[v] = t->x86_tss.ist[v] =
1003 (unsigned long)estacks;
1004 }
1005 }
1006
1007 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1008 /*
1009 * <= is required because the CPU will access up to
1010 * 8 bits beyond the end of the IO permission bitmap.
1011 */
1012 for (i = 0; i <= IO_BITMAP_LONGS; i++)
1013 t->io_bitmap[i] = ~0UL;
1014
1015 atomic_inc(&init_mm.mm_count);
1016 me->active_mm = &init_mm;
1017 if (me->mm)
1018 BUG();
1019 enter_lazy_tlb(&init_mm, me);
1020
1021 load_sp0(t, &current->thread);
1022 set_tss_desc(cpu, t);
1023 load_TR_desc();
1024 load_LDT(&init_mm.context);
1025
1026 #ifdef CONFIG_KGDB
1027 /*
1028 * If the kgdb is connected no debug regs should be altered. This
1029 * is only applicable when KGDB and a KGDB I/O module are built
1030 * into the kernel and you are using early debugging with
1031 * kgdbwait. KGDB will control the kernel HW breakpoint registers.
1032 */
1033 if (kgdb_connected && arch_kgdb_ops.correct_hw_break)
1034 arch_kgdb_ops.correct_hw_break();
1035 else {
1036 #endif
1037 /*
1038 * Clear all 6 debug registers:
1039 */
1040
1041 set_debugreg(0UL, 0);
1042 set_debugreg(0UL, 1);
1043 set_debugreg(0UL, 2);
1044 set_debugreg(0UL, 3);
1045 set_debugreg(0UL, 6);
1046 set_debugreg(0UL, 7);
1047 #ifdef CONFIG_KGDB
1048 /* If the kgdb is connected no debug regs should be altered. */
1049 }
1050 #endif
1051
1052 fpu_init();
1053
1054 raw_local_save_flags(kernel_eflags);
1055
1056 if (is_uv_system())
1057 uv_cpu_init();
1058 }
1059
1060 #else
1061
1062 void __cpuinit cpu_init(void)
1063 {
1064 int cpu = smp_processor_id();
1065 struct task_struct *curr = current;
1066 struct tss_struct *t = &per_cpu(init_tss, cpu);
1067 struct thread_struct *thread = &curr->thread;
1068
1069 if (cpu_test_and_set(cpu, cpu_initialized)) {
1070 printk(KERN_WARNING "CPU#%d already initialized!\n", cpu);
1071 for (;;) local_irq_enable();
1072 }
1073
1074 printk(KERN_INFO "Initializing CPU#%d\n", cpu);
1075
1076 if (cpu_has_vme || cpu_has_tsc || cpu_has_de)
1077 clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1078
1079 load_idt(&idt_descr);
1080 switch_to_new_gdt();
1081
1082 /*
1083 * Set up and load the per-CPU TSS and LDT
1084 */
1085 atomic_inc(&init_mm.mm_count);
1086 curr->active_mm = &init_mm;
1087 if (curr->mm)
1088 BUG();
1089 enter_lazy_tlb(&init_mm, curr);
1090
1091 load_sp0(t, thread);
1092 set_tss_desc(cpu, t);
1093 load_TR_desc();
1094 load_LDT(&init_mm.context);
1095
1096 #ifdef CONFIG_DOUBLEFAULT
1097 /* Set up doublefault TSS pointer in the GDT */
1098 __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1099 #endif
1100
1101 /* Clear %gs. */
1102 asm volatile ("mov %0, %%gs" : : "r" (0));
1103
1104 /* Clear all 6 debug registers: */
1105 set_debugreg(0, 0);
1106 set_debugreg(0, 1);
1107 set_debugreg(0, 2);
1108 set_debugreg(0, 3);
1109 set_debugreg(0, 6);
1110 set_debugreg(0, 7);
1111
1112 /*
1113 * Force FPU initialization:
1114 */
1115 if (cpu_has_xsave)
1116 current_thread_info()->status = TS_XSAVE;
1117 else
1118 current_thread_info()->status = 0;
1119 clear_used_math();
1120 mxcsr_feature_mask_init();
1121
1122 /*
1123 * Boot processor to setup the FP and extended state context info.
1124 */
1125 if (!smp_processor_id())
1126 init_thread_xstate();
1127
1128 xsave_init();
1129 }
1130
1131 #ifdef CONFIG_HOTPLUG_CPU
1132 void __cpuinit cpu_uninit(void)
1133 {
1134 int cpu = raw_smp_processor_id();
1135 cpu_clear(cpu, cpu_initialized);
1136
1137 /* lazy TLB state */
1138 per_cpu(cpu_tlbstate, cpu).state = 0;
1139 per_cpu(cpu_tlbstate, cpu).active_mm = &init_mm;
1140 }
1141 #endif
1142
1143 #endif