]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kernel/cpu/common.c
x86: cpu/common*.c, make 32-bit have 64-bit only functions
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kernel / cpu / common.c
1 #include <linux/init.h>
2 #include <linux/kernel.h>
3 #include <linux/sched.h>
4 #include <linux/string.h>
5 #include <linux/bootmem.h>
6 #include <linux/bitops.h>
7 #include <linux/module.h>
8 #include <linux/kgdb.h>
9 #include <linux/topology.h>
10 #include <linux/delay.h>
11 #include <linux/smp.h>
12 #include <linux/percpu.h>
13 #include <asm/i387.h>
14 #include <asm/msr.h>
15 #include <asm/io.h>
16 #include <asm/linkage.h>
17 #include <asm/mmu_context.h>
18 #include <asm/mtrr.h>
19 #include <asm/mce.h>
20 #include <asm/pat.h>
21 #include <asm/asm.h>
22 #include <asm/numa.h>
23 #ifdef CONFIG_X86_LOCAL_APIC
24 #include <asm/mpspec.h>
25 #include <asm/apic.h>
26 #include <mach_apic.h>
27 #include <asm/genapic.h>
28 #endif
29
30 #include <asm/pda.h>
31 #include <asm/pgtable.h>
32 #include <asm/processor.h>
33 #include <asm/desc.h>
34 #include <asm/atomic.h>
35 #include <asm/proto.h>
36 #include <asm/sections.h>
37 #include <asm/setup.h>
38
39 #include "cpu.h"
40
41 static struct cpu_dev *this_cpu __cpuinitdata;
42
43 #ifdef CONFIG_X86_64
44 /* We need valid kernel segments for data and code in long mode too
45 * IRET will check the segment types kkeil 2000/10/28
46 * Also sysret mandates a special GDT layout
47 */
48 /* The TLS descriptors are currently at a different place compared to i386.
49 Hopefully nobody expects them at a fixed place (Wine?) */
50 DEFINE_PER_CPU(struct gdt_page, gdt_page) = { .gdt = {
51 [GDT_ENTRY_KERNEL32_CS] = { { { 0x0000ffff, 0x00cf9b00 } } },
52 [GDT_ENTRY_KERNEL_CS] = { { { 0x0000ffff, 0x00af9b00 } } },
53 [GDT_ENTRY_KERNEL_DS] = { { { 0x0000ffff, 0x00cf9300 } } },
54 [GDT_ENTRY_DEFAULT_USER32_CS] = { { { 0x0000ffff, 0x00cffb00 } } },
55 [GDT_ENTRY_DEFAULT_USER_DS] = { { { 0x0000ffff, 0x00cff300 } } },
56 [GDT_ENTRY_DEFAULT_USER_CS] = { { { 0x0000ffff, 0x00affb00 } } },
57 } };
58 #else
59 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
60 [GDT_ENTRY_KERNEL_CS] = { { { 0x0000ffff, 0x00cf9a00 } } },
61 [GDT_ENTRY_KERNEL_DS] = { { { 0x0000ffff, 0x00cf9200 } } },
62 [GDT_ENTRY_DEFAULT_USER_CS] = { { { 0x0000ffff, 0x00cffa00 } } },
63 [GDT_ENTRY_DEFAULT_USER_DS] = { { { 0x0000ffff, 0x00cff200 } } },
64 /*
65 * Segments used for calling PnP BIOS have byte granularity.
66 * They code segments and data segments have fixed 64k limits,
67 * the transfer segment sizes are set at run time.
68 */
69 /* 32-bit code */
70 [GDT_ENTRY_PNPBIOS_CS32] = { { { 0x0000ffff, 0x00409a00 } } },
71 /* 16-bit code */
72 [GDT_ENTRY_PNPBIOS_CS16] = { { { 0x0000ffff, 0x00009a00 } } },
73 /* 16-bit data */
74 [GDT_ENTRY_PNPBIOS_DS] = { { { 0x0000ffff, 0x00009200 } } },
75 /* 16-bit data */
76 [GDT_ENTRY_PNPBIOS_TS1] = { { { 0x00000000, 0x00009200 } } },
77 /* 16-bit data */
78 [GDT_ENTRY_PNPBIOS_TS2] = { { { 0x00000000, 0x00009200 } } },
79 /*
80 * The APM segments have byte granularity and their bases
81 * are set at run time. All have 64k limits.
82 */
83 /* 32-bit code */
84 [GDT_ENTRY_APMBIOS_BASE] = { { { 0x0000ffff, 0x00409a00 } } },
85 /* 16-bit code */
86 [GDT_ENTRY_APMBIOS_BASE+1] = { { { 0x0000ffff, 0x00009a00 } } },
87 /* data */
88 [GDT_ENTRY_APMBIOS_BASE+2] = { { { 0x0000ffff, 0x00409200 } } },
89
90 [GDT_ENTRY_ESPFIX_SS] = { { { 0x00000000, 0x00c09200 } } },
91 [GDT_ENTRY_PERCPU] = { { { 0x00000000, 0x00000000 } } },
92 } };
93 #endif
94 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
95
96 #ifdef CONFIG_X86_32
97 static int cachesize_override __cpuinitdata = -1;
98 static int disable_x86_serial_nr __cpuinitdata = 1;
99
100 static int __init cachesize_setup(char *str)
101 {
102 get_option(&str, &cachesize_override);
103 return 1;
104 }
105 __setup("cachesize=", cachesize_setup);
106
107 /*
108 * Naming convention should be: <Name> [(<Codename>)]
109 * This table only is used unless init_<vendor>() below doesn't set it;
110 * in particular, if CPUID levels 0x80000002..4 are supported, this isn't used
111 *
112 */
113
114 /* Look up CPU names by table lookup. */
115 static char __cpuinit *table_lookup_model(struct cpuinfo_x86 *c)
116 {
117 struct cpu_model_info *info;
118
119 if (c->x86_model >= 16)
120 return NULL; /* Range check */
121
122 if (!this_cpu)
123 return NULL;
124
125 info = this_cpu->c_models;
126
127 while (info && info->family) {
128 if (info->family == c->x86)
129 return info->model_names[c->x86_model];
130 info++;
131 }
132 return NULL; /* Not found */
133 }
134
135 static int __init x86_fxsr_setup(char *s)
136 {
137 setup_clear_cpu_cap(X86_FEATURE_FXSR);
138 setup_clear_cpu_cap(X86_FEATURE_XMM);
139 return 1;
140 }
141 __setup("nofxsr", x86_fxsr_setup);
142
143 static int __init x86_sep_setup(char *s)
144 {
145 setup_clear_cpu_cap(X86_FEATURE_SEP);
146 return 1;
147 }
148 __setup("nosep", x86_sep_setup);
149
150 /* Standard macro to see if a specific flag is changeable */
151 static inline int flag_is_changeable_p(u32 flag)
152 {
153 u32 f1, f2;
154
155 asm("pushfl\n\t"
156 "pushfl\n\t"
157 "popl %0\n\t"
158 "movl %0,%1\n\t"
159 "xorl %2,%0\n\t"
160 "pushl %0\n\t"
161 "popfl\n\t"
162 "pushfl\n\t"
163 "popl %0\n\t"
164 "popfl\n\t"
165 : "=&r" (f1), "=&r" (f2)
166 : "ir" (flag));
167
168 return ((f1^f2) & flag) != 0;
169 }
170
171 /* Probe for the CPUID instruction */
172 static int __cpuinit have_cpuid_p(void)
173 {
174 return flag_is_changeable_p(X86_EFLAGS_ID);
175 }
176
177 static void __cpuinit squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
178 {
179 if (cpu_has(c, X86_FEATURE_PN) && disable_x86_serial_nr) {
180 /* Disable processor serial number */
181 unsigned long lo, hi;
182 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
183 lo |= 0x200000;
184 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
185 printk(KERN_NOTICE "CPU serial number disabled.\n");
186 clear_cpu_cap(c, X86_FEATURE_PN);
187
188 /* Disabling the serial number may affect the cpuid level */
189 c->cpuid_level = cpuid_eax(0);
190 }
191 }
192
193 static int __init x86_serial_nr_setup(char *s)
194 {
195 disable_x86_serial_nr = 0;
196 return 1;
197 }
198 __setup("serialnumber", x86_serial_nr_setup);
199 #else
200 /* Probe for the CPUID instruction */
201 static inline int have_cpuid_p(void)
202 {
203 return 1;
204 }
205 #endif
206
207 __u32 cleared_cpu_caps[NCAPINTS] __cpuinitdata;
208
209 /* Current gdt points %fs at the "master" per-cpu area: after this,
210 * it's on the real one. */
211 void switch_to_new_gdt(void)
212 {
213 struct desc_ptr gdt_descr;
214
215 gdt_descr.address = (long)get_cpu_gdt_table(smp_processor_id());
216 gdt_descr.size = GDT_SIZE - 1;
217 load_gdt(&gdt_descr);
218 asm("mov %0, %%fs" : : "r" (__KERNEL_PERCPU) : "memory");
219 }
220
221 static struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
222
223 static void __cpuinit default_init(struct cpuinfo_x86 *c)
224 {
225 /* Not much we can do here... */
226 /* Check if at least it has cpuid */
227 if (c->cpuid_level == -1) {
228 /* No cpuid. It must be an ancient CPU */
229 if (c->x86 == 4)
230 strcpy(c->x86_model_id, "486");
231 else if (c->x86 == 3)
232 strcpy(c->x86_model_id, "386");
233 }
234 }
235
236 static struct cpu_dev __cpuinitdata default_cpu = {
237 .c_init = default_init,
238 .c_vendor = "Unknown",
239 .c_x86_vendor = X86_VENDOR_UNKNOWN,
240 };
241
242 int __cpuinit get_model_name(struct cpuinfo_x86 *c)
243 {
244 unsigned int *v;
245 char *p, *q;
246
247 if (c->extended_cpuid_level < 0x80000004)
248 return 0;
249
250 v = (unsigned int *) c->x86_model_id;
251 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
252 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
253 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
254 c->x86_model_id[48] = 0;
255
256 /* Intel chips right-justify this string for some dumb reason;
257 undo that brain damage */
258 p = q = &c->x86_model_id[0];
259 while (*p == ' ')
260 p++;
261 if (p != q) {
262 while (*p)
263 *q++ = *p++;
264 while (q <= &c->x86_model_id[48])
265 *q++ = '\0'; /* Zero-pad the rest */
266 }
267
268 return 1;
269 }
270
271 void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
272 {
273 unsigned int n, dummy, ebx, ecx, edx, l2size;
274
275 n = c->extended_cpuid_level;
276
277 if (n >= 0x80000005) {
278 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
279 printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n",
280 edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
281 c->x86_cache_size = (ecx>>24) + (edx>>24);
282 }
283
284 if (n < 0x80000006) /* Some chips just has a large L1. */
285 return;
286
287 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
288 l2size = ecx >> 16;
289
290 /* do processor-specific cache resizing */
291 if (this_cpu->c_size_cache)
292 l2size = this_cpu->c_size_cache(c, l2size);
293
294 /* Allow user to override all this if necessary. */
295 if (cachesize_override != -1)
296 l2size = cachesize_override;
297
298 if (l2size == 0)
299 return; /* Again, no L2 cache is possible */
300
301 c->x86_cache_size = l2size;
302
303 printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
304 l2size, ecx & 0xFF);
305 }
306
307 void __cpuinit detect_ht(struct cpuinfo_x86 *c)
308 {
309 #ifdef CONFIG_X86_HT
310 u32 eax, ebx, ecx, edx;
311 int index_msb, core_bits;
312
313 if (!cpu_has(c, X86_FEATURE_HT))
314 return;
315
316 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
317 goto out;
318
319 cpuid(1, &eax, &ebx, &ecx, &edx);
320
321 smp_num_siblings = (ebx & 0xff0000) >> 16;
322
323 if (smp_num_siblings == 1) {
324 printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
325 } else if (smp_num_siblings > 1) {
326
327 if (smp_num_siblings > NR_CPUS) {
328 printk(KERN_WARNING "CPU: Unsupported number of siblings %d",
329 smp_num_siblings);
330 smp_num_siblings = 1;
331 return;
332 }
333
334 index_msb = get_count_order(smp_num_siblings);
335 c->phys_proc_id = phys_pkg_id(c->initial_apicid, index_msb);
336
337
338 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
339
340 index_msb = get_count_order(smp_num_siblings);
341
342 core_bits = get_count_order(c->x86_max_cores);
343
344 c->cpu_core_id = phys_pkg_id(c->initial_apicid, index_msb) &
345 ((1 << core_bits) - 1);
346 }
347
348 out:
349 if ((c->x86_max_cores * smp_num_siblings) > 1) {
350 printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
351 c->phys_proc_id);
352 printk(KERN_INFO "CPU: Processor Core ID: %d\n",
353 c->cpu_core_id);
354 }
355 #endif
356 }
357
358 static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
359 {
360 char *v = c->x86_vendor_id;
361 int i;
362 static int printed;
363
364 for (i = 0; i < X86_VENDOR_NUM; i++) {
365 if (!cpu_devs[i])
366 break;
367
368 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
369 (cpu_devs[i]->c_ident[1] &&
370 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
371 this_cpu = cpu_devs[i];
372 c->x86_vendor = this_cpu->c_x86_vendor;
373 return;
374 }
375 }
376
377 if (!printed) {
378 printed++;
379 printk(KERN_ERR "CPU: Vendor unknown, using generic init.\n");
380 printk(KERN_ERR "CPU: Your system may be unstable.\n");
381 }
382
383 c->x86_vendor = X86_VENDOR_UNKNOWN;
384 this_cpu = &default_cpu;
385 }
386
387 void __cpuinit cpu_detect(struct cpuinfo_x86 *c)
388 {
389 /* Get vendor name */
390 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
391 (unsigned int *)&c->x86_vendor_id[0],
392 (unsigned int *)&c->x86_vendor_id[8],
393 (unsigned int *)&c->x86_vendor_id[4]);
394
395 c->x86 = 4;
396 /* Intel-defined flags: level 0x00000001 */
397 if (c->cpuid_level >= 0x00000001) {
398 u32 junk, tfms, cap0, misc;
399 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
400 c->x86 = (tfms >> 8) & 0xf;
401 c->x86_model = (tfms >> 4) & 0xf;
402 c->x86_mask = tfms & 0xf;
403 if (c->x86 == 0xf)
404 c->x86 += (tfms >> 20) & 0xff;
405 if (c->x86 >= 0x6)
406 c->x86_model += ((tfms >> 16) & 0xf) << 4;
407 if (cap0 & (1<<19)) {
408 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
409 c->x86_cache_alignment = c->x86_clflush_size;
410 }
411 }
412 }
413
414 static void __cpuinit get_cpu_cap(struct cpuinfo_x86 *c)
415 {
416 u32 tfms, xlvl;
417 u32 ebx;
418
419 /* Intel-defined flags: level 0x00000001 */
420 if (c->cpuid_level >= 0x00000001) {
421 u32 capability, excap;
422 cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
423 c->x86_capability[0] = capability;
424 c->x86_capability[4] = excap;
425 }
426
427 /* AMD-defined flags: level 0x80000001 */
428 xlvl = cpuid_eax(0x80000000);
429 c->extended_cpuid_level = xlvl;
430 if ((xlvl & 0xffff0000) == 0x80000000) {
431 if (xlvl >= 0x80000001) {
432 c->x86_capability[1] = cpuid_edx(0x80000001);
433 c->x86_capability[6] = cpuid_ecx(0x80000001);
434 }
435 }
436 }
437 /*
438 * Do minimum CPU detection early.
439 * Fields really needed: vendor, cpuid_level, family, model, mask,
440 * cache alignment.
441 * The others are not touched to avoid unwanted side effects.
442 *
443 * WARNING: this function is only called on the BP. Don't add code here
444 * that is supposed to run on all CPUs.
445 */
446 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
447 {
448 c->x86_clflush_size = 32;
449 c->x86_cache_alignment = c->x86_clflush_size;
450
451 if (!have_cpuid_p())
452 return;
453
454 memset(&c->x86_capability, 0, sizeof c->x86_capability);
455
456 c->extended_cpuid_level = 0;
457
458 cpu_detect(c);
459
460 get_cpu_vendor(c);
461
462 get_cpu_cap(c);
463
464 if (this_cpu->c_early_init)
465 this_cpu->c_early_init(c);
466
467 validate_pat_support(c);
468 }
469
470 void __init early_cpu_init(void)
471 {
472 struct cpu_dev **cdev;
473 int count = 0;
474
475 printk("KERNEL supported cpus:\n");
476 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
477 struct cpu_dev *cpudev = *cdev;
478 unsigned int j;
479
480 if (count >= X86_VENDOR_NUM)
481 break;
482 cpu_devs[count] = cpudev;
483 count++;
484
485 for (j = 0; j < 2; j++) {
486 if (!cpudev->c_ident[j])
487 continue;
488 printk(" %s %s\n", cpudev->c_vendor,
489 cpudev->c_ident[j]);
490 }
491 }
492
493 early_identify_cpu(&boot_cpu_data);
494 }
495
496 /*
497 * The NOPL instruction is supposed to exist on all CPUs with
498 * family >= 6, unfortunately, that's not true in practice because
499 * of early VIA chips and (more importantly) broken virtualizers that
500 * are not easy to detect. Hence, probe for it based on first
501 * principles.
502 */
503 static void __cpuinit detect_nopl(struct cpuinfo_x86 *c)
504 {
505 const u32 nopl_signature = 0x888c53b1; /* Random number */
506 u32 has_nopl = nopl_signature;
507
508 clear_cpu_cap(c, X86_FEATURE_NOPL);
509 if (c->x86 >= 6) {
510 asm volatile("\n"
511 "1: .byte 0x0f,0x1f,0xc0\n" /* nopl %eax */
512 "2:\n"
513 " .section .fixup,\"ax\"\n"
514 "3: xor %0,%0\n"
515 " jmp 2b\n"
516 " .previous\n"
517 _ASM_EXTABLE(1b,3b)
518 : "+a" (has_nopl));
519
520 if (has_nopl == nopl_signature)
521 set_cpu_cap(c, X86_FEATURE_NOPL);
522 }
523 }
524
525 static void __cpuinit generic_identify(struct cpuinfo_x86 *c)
526 {
527 if (!have_cpuid_p())
528 return;
529
530 c->extended_cpuid_level = 0;
531
532 cpu_detect(c);
533
534 get_cpu_vendor(c);
535
536 get_cpu_cap(c);
537
538 if (c->cpuid_level >= 0x00000001) {
539 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
540 #ifdef CONFIG_X86_HT
541 c->apicid = phys_pkg_id(c->initial_apicid, 0);
542 c->phys_proc_id = c->initial_apicid;
543 #else
544 c->apicid = c->initial_apicid;
545 #endif
546 }
547
548 if (c->extended_cpuid_level >= 0x80000004)
549 get_model_name(c); /* Default name */
550
551 init_scattered_cpuid_features(c);
552 detect_nopl(c);
553 }
554
555 /*
556 * This does the hard work of actually picking apart the CPU stuff...
557 */
558 static void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
559 {
560 int i;
561
562 c->loops_per_jiffy = loops_per_jiffy;
563 c->x86_cache_size = -1;
564 c->x86_vendor = X86_VENDOR_UNKNOWN;
565 c->cpuid_level = -1; /* CPUID not detected */
566 c->x86_model = c->x86_mask = 0; /* So far unknown... */
567 c->x86_vendor_id[0] = '\0'; /* Unset */
568 c->x86_model_id[0] = '\0'; /* Unset */
569 c->x86_max_cores = 1;
570 c->x86_clflush_size = 32;
571 memset(&c->x86_capability, 0, sizeof c->x86_capability);
572
573 if (!have_cpuid_p()) {
574 /*
575 * First of all, decide if this is a 486 or higher
576 * It's a 486 if we can modify the AC flag
577 */
578 if (flag_is_changeable_p(X86_EFLAGS_AC))
579 c->x86 = 4;
580 else
581 c->x86 = 3;
582 }
583
584 generic_identify(c);
585
586 if (this_cpu->c_identify)
587 this_cpu->c_identify(c);
588
589 /*
590 * Vendor-specific initialization. In this section we
591 * canonicalize the feature flags, meaning if there are
592 * features a certain CPU supports which CPUID doesn't
593 * tell us, CPUID claiming incorrect flags, or other bugs,
594 * we handle them here.
595 *
596 * At the end of this section, c->x86_capability better
597 * indicate the features this CPU genuinely supports!
598 */
599 if (this_cpu->c_init)
600 this_cpu->c_init(c);
601
602 /* Disable the PN if appropriate */
603 squash_the_stupid_serial_number(c);
604
605 /*
606 * The vendor-specific functions might have changed features. Now
607 * we do "generic changes."
608 */
609
610 /* If the model name is still unset, do table lookup. */
611 if (!c->x86_model_id[0]) {
612 char *p;
613 p = table_lookup_model(c);
614 if (p)
615 strcpy(c->x86_model_id, p);
616 else
617 /* Last resort... */
618 sprintf(c->x86_model_id, "%02x/%02x",
619 c->x86, c->x86_model);
620 }
621
622 /*
623 * On SMP, boot_cpu_data holds the common feature set between
624 * all CPUs; so make sure that we indicate which features are
625 * common between the CPUs. The first time this routine gets
626 * executed, c == &boot_cpu_data.
627 */
628 if (c != &boot_cpu_data) {
629 /* AND the already accumulated flags with these */
630 for (i = 0; i < NCAPINTS; i++)
631 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
632 }
633
634 /* Clear all flags overriden by options */
635 for (i = 0; i < NCAPINTS; i++)
636 c->x86_capability[i] &= ~cleared_cpu_caps[i];
637
638 /* Init Machine Check Exception if available. */
639 mcheck_init(c);
640
641 select_idle_routine(c);
642 }
643
644 void __init identify_boot_cpu(void)
645 {
646 identify_cpu(&boot_cpu_data);
647 sysenter_setup();
648 enable_sep_cpu();
649 }
650
651 void __cpuinit identify_secondary_cpu(struct cpuinfo_x86 *c)
652 {
653 BUG_ON(c == &boot_cpu_data);
654 identify_cpu(c);
655 enable_sep_cpu();
656 mtrr_ap_init();
657 }
658
659 struct msr_range {
660 unsigned min;
661 unsigned max;
662 };
663
664 static struct msr_range msr_range_array[] __cpuinitdata = {
665 { 0x00000000, 0x00000418},
666 { 0xc0000000, 0xc000040b},
667 { 0xc0010000, 0xc0010142},
668 { 0xc0011000, 0xc001103b},
669 };
670
671 static void __cpuinit print_cpu_msr(void)
672 {
673 unsigned index;
674 u64 val;
675 int i;
676 unsigned index_min, index_max;
677
678 for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
679 index_min = msr_range_array[i].min;
680 index_max = msr_range_array[i].max;
681 for (index = index_min; index < index_max; index++) {
682 if (rdmsrl_amd_safe(index, &val))
683 continue;
684 printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
685 }
686 }
687 }
688
689 static int show_msr __cpuinitdata;
690 static __init int setup_show_msr(char *arg)
691 {
692 int num;
693
694 get_option(&arg, &num);
695
696 if (num > 0)
697 show_msr = num;
698 return 1;
699 }
700 __setup("show_msr=", setup_show_msr);
701
702 static __init int setup_noclflush(char *arg)
703 {
704 setup_clear_cpu_cap(X86_FEATURE_CLFLSH);
705 return 1;
706 }
707 __setup("noclflush", setup_noclflush);
708
709 void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
710 {
711 char *vendor = NULL;
712
713 if (c->x86_vendor < X86_VENDOR_NUM)
714 vendor = this_cpu->c_vendor;
715 else if (c->cpuid_level >= 0)
716 vendor = c->x86_vendor_id;
717
718 if (vendor && strncmp(c->x86_model_id, vendor, strlen(vendor)))
719 printk(KERN_CONT "%s ", vendor);
720
721 if (c->x86_model_id[0])
722 printk(KERN_CONT "%s", c->x86_model_id);
723 else
724 printk(KERN_CONT "%d86", c->x86);
725
726 if (c->x86_mask || c->cpuid_level >= 0)
727 printk(KERN_CONT " stepping %02x\n", c->x86_mask);
728 else
729 printk(KERN_CONT "\n");
730
731 #ifdef CONFIG_SMP
732 if (c->cpu_index < show_msr)
733 print_cpu_msr();
734 #else
735 if (show_msr)
736 print_cpu_msr();
737 #endif
738 }
739
740 static __init int setup_disablecpuid(char *arg)
741 {
742 int bit;
743 if (get_option(&arg, &bit) && bit < NCAPINTS*32)
744 setup_clear_cpu_cap(bit);
745 else
746 return 0;
747 return 1;
748 }
749 __setup("clearcpuid=", setup_disablecpuid);
750
751 cpumask_t cpu_initialized __cpuinitdata = CPU_MASK_NONE;
752
753 #ifdef CONFIG_X86_64
754 struct x8664_pda **_cpu_pda __read_mostly;
755 EXPORT_SYMBOL(_cpu_pda);
756
757 struct desc_ptr idt_descr = { 256 * 16 - 1, (unsigned long) idt_table };
758
759 char boot_cpu_stack[IRQSTACKSIZE] __page_aligned_bss;
760
761 unsigned long __supported_pte_mask __read_mostly = ~0UL;
762 EXPORT_SYMBOL_GPL(__supported_pte_mask);
763
764 static int do_not_nx __cpuinitdata;
765
766 /* noexec=on|off
767 Control non executable mappings for 64bit processes.
768
769 on Enable(default)
770 off Disable
771 */
772 static int __init nonx_setup(char *str)
773 {
774 if (!str)
775 return -EINVAL;
776 if (!strncmp(str, "on", 2)) {
777 __supported_pte_mask |= _PAGE_NX;
778 do_not_nx = 0;
779 } else if (!strncmp(str, "off", 3)) {
780 do_not_nx = 1;
781 __supported_pte_mask &= ~_PAGE_NX;
782 }
783 return 0;
784 }
785 early_param("noexec", nonx_setup);
786
787 int force_personality32;
788
789 /* noexec32=on|off
790 Control non executable heap for 32bit processes.
791 To control the stack too use noexec=off
792
793 on PROT_READ does not imply PROT_EXEC for 32bit processes (default)
794 off PROT_READ implies PROT_EXEC
795 */
796 static int __init nonx32_setup(char *str)
797 {
798 if (!strcmp(str, "on"))
799 force_personality32 &= ~READ_IMPLIES_EXEC;
800 else if (!strcmp(str, "off"))
801 force_personality32 |= READ_IMPLIES_EXEC;
802 return 1;
803 }
804 __setup("noexec32=", nonx32_setup);
805
806 void pda_init(int cpu)
807 {
808 struct x8664_pda *pda = cpu_pda(cpu);
809
810 /* Setup up data that may be needed in __get_free_pages early */
811 loadsegment(fs, 0);
812 loadsegment(gs, 0);
813 /* Memory clobbers used to order PDA accessed */
814 mb();
815 wrmsrl(MSR_GS_BASE, pda);
816 mb();
817
818 pda->cpunumber = cpu;
819 pda->irqcount = -1;
820 pda->kernelstack = (unsigned long)stack_thread_info() -
821 PDA_STACKOFFSET + THREAD_SIZE;
822 pda->active_mm = &init_mm;
823 pda->mmu_state = 0;
824
825 if (cpu == 0) {
826 /* others are initialized in smpboot.c */
827 pda->pcurrent = &init_task;
828 pda->irqstackptr = boot_cpu_stack;
829 pda->irqstackptr += IRQSTACKSIZE - 64;
830 } else {
831 if (!pda->irqstackptr) {
832 pda->irqstackptr = (char *)
833 __get_free_pages(GFP_ATOMIC, IRQSTACK_ORDER);
834 if (!pda->irqstackptr)
835 panic("cannot allocate irqstack for cpu %d",
836 cpu);
837 pda->irqstackptr += IRQSTACKSIZE - 64;
838 }
839
840 if (pda->nodenumber == 0 && cpu_to_node(cpu) != NUMA_NO_NODE)
841 pda->nodenumber = cpu_to_node(cpu);
842 }
843 }
844
845 char boot_exception_stacks[(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ +
846 DEBUG_STKSZ] __page_aligned_bss;
847
848 extern asmlinkage void ignore_sysret(void);
849
850 /* May not be marked __init: used by software suspend */
851 void syscall_init(void)
852 {
853 /*
854 * LSTAR and STAR live in a bit strange symbiosis.
855 * They both write to the same internal register. STAR allows to
856 * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
857 */
858 wrmsrl(MSR_STAR, ((u64)__USER32_CS)<<48 | ((u64)__KERNEL_CS)<<32);
859 wrmsrl(MSR_LSTAR, system_call);
860 wrmsrl(MSR_CSTAR, ignore_sysret);
861
862 #ifdef CONFIG_IA32_EMULATION
863 syscall32_cpu_init();
864 #endif
865
866 /* Flags to clear on syscall */
867 wrmsrl(MSR_SYSCALL_MASK,
868 X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|X86_EFLAGS_IOPL);
869 }
870
871 void __cpuinit check_efer(void)
872 {
873 unsigned long efer;
874
875 rdmsrl(MSR_EFER, efer);
876 if (!(efer & EFER_NX) || do_not_nx)
877 __supported_pte_mask &= ~_PAGE_NX;
878 }
879
880 unsigned long kernel_eflags;
881
882 /*
883 * Copies of the original ist values from the tss are only accessed during
884 * debugging, no special alignment required.
885 */
886 DEFINE_PER_CPU(struct orig_ist, orig_ist);
887
888 #else
889
890 /* Make sure %fs is initialized properly in idle threads */
891 struct pt_regs * __cpuinit idle_regs(struct pt_regs *regs)
892 {
893 memset(regs, 0, sizeof(struct pt_regs));
894 regs->fs = __KERNEL_PERCPU;
895 return regs;
896 }
897 #endif
898
899 /*
900 * cpu_init() initializes state that is per-CPU. Some data is already
901 * initialized (naturally) in the bootstrap process, such as the GDT
902 * and IDT. We reload them nevertheless, this function acts as a
903 * 'CPU state barrier', nothing should get across.
904 */
905 void __cpuinit cpu_init(void)
906 {
907 int cpu = smp_processor_id();
908 struct task_struct *curr = current;
909 struct tss_struct *t = &per_cpu(init_tss, cpu);
910 struct thread_struct *thread = &curr->thread;
911
912 if (cpu_test_and_set(cpu, cpu_initialized)) {
913 printk(KERN_WARNING "CPU#%d already initialized!\n", cpu);
914 for (;;) local_irq_enable();
915 }
916
917 printk(KERN_INFO "Initializing CPU#%d\n", cpu);
918
919 if (cpu_has_vme || cpu_has_tsc || cpu_has_de)
920 clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
921
922 load_idt(&idt_descr);
923 switch_to_new_gdt();
924
925 /*
926 * Set up and load the per-CPU TSS and LDT
927 */
928 atomic_inc(&init_mm.mm_count);
929 curr->active_mm = &init_mm;
930 if (curr->mm)
931 BUG();
932 enter_lazy_tlb(&init_mm, curr);
933
934 load_sp0(t, thread);
935 set_tss_desc(cpu, t);
936 load_TR_desc();
937 load_LDT(&init_mm.context);
938
939 #ifdef CONFIG_DOUBLEFAULT
940 /* Set up doublefault TSS pointer in the GDT */
941 __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
942 #endif
943
944 /* Clear %gs. */
945 asm volatile ("mov %0, %%gs" : : "r" (0));
946
947 /* Clear all 6 debug registers: */
948 set_debugreg(0, 0);
949 set_debugreg(0, 1);
950 set_debugreg(0, 2);
951 set_debugreg(0, 3);
952 set_debugreg(0, 6);
953 set_debugreg(0, 7);
954
955 /*
956 * Force FPU initialization:
957 */
958 if (cpu_has_xsave)
959 current_thread_info()->status = TS_XSAVE;
960 else
961 current_thread_info()->status = 0;
962 clear_used_math();
963 mxcsr_feature_mask_init();
964
965 /*
966 * Boot processor to setup the FP and extended state context info.
967 */
968 if (!smp_processor_id())
969 init_thread_xstate();
970
971 xsave_init();
972 }
973
974 #ifdef CONFIG_HOTPLUG_CPU
975 void __cpuinit cpu_uninit(void)
976 {
977 int cpu = raw_smp_processor_id();
978 cpu_clear(cpu, cpu_initialized);
979
980 /* lazy TLB state */
981 per_cpu(cpu_tlbstate, cpu).state = 0;
982 per_cpu(cpu_tlbstate, cpu).active_mm = &init_mm;
983 }
984 #endif