]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kernel/cpu/common.c
Merge branch 'x86-fpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / cpu / common.c
1 #include <linux/bootmem.h>
2 #include <linux/linkage.h>
3 #include <linux/bitops.h>
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/percpu.h>
7 #include <linux/string.h>
8 #include <linux/ctype.h>
9 #include <linux/delay.h>
10 #include <linux/sched.h>
11 #include <linux/init.h>
12 #include <linux/kprobes.h>
13 #include <linux/kgdb.h>
14 #include <linux/smp.h>
15 #include <linux/io.h>
16 #include <linux/syscore_ops.h>
17
18 #include <asm/stackprotector.h>
19 #include <asm/perf_event.h>
20 #include <asm/mmu_context.h>
21 #include <asm/archrandom.h>
22 #include <asm/hypervisor.h>
23 #include <asm/processor.h>
24 #include <asm/tlbflush.h>
25 #include <asm/debugreg.h>
26 #include <asm/sections.h>
27 #include <asm/vsyscall.h>
28 #include <linux/topology.h>
29 #include <linux/cpumask.h>
30 #include <asm/pgtable.h>
31 #include <linux/atomic.h>
32 #include <asm/proto.h>
33 #include <asm/setup.h>
34 #include <asm/apic.h>
35 #include <asm/desc.h>
36 #include <asm/fpu/internal.h>
37 #include <asm/mtrr.h>
38 #include <linux/numa.h>
39 #include <asm/asm.h>
40 #include <asm/cpu.h>
41 #include <asm/mce.h>
42 #include <asm/msr.h>
43 #include <asm/pat.h>
44 #include <asm/microcode.h>
45 #include <asm/microcode_intel.h>
46
47 #ifdef CONFIG_X86_LOCAL_APIC
48 #include <asm/uv/uv.h>
49 #endif
50
51 #include "cpu.h"
52
53 /* all of these masks are initialized in setup_cpu_local_masks() */
54 cpumask_var_t cpu_initialized_mask;
55 cpumask_var_t cpu_callout_mask;
56 cpumask_var_t cpu_callin_mask;
57
58 /* representing cpus for which sibling maps can be computed */
59 cpumask_var_t cpu_sibling_setup_mask;
60
61 /* correctly size the local cpu masks */
62 void __init setup_cpu_local_masks(void)
63 {
64 alloc_bootmem_cpumask_var(&cpu_initialized_mask);
65 alloc_bootmem_cpumask_var(&cpu_callin_mask);
66 alloc_bootmem_cpumask_var(&cpu_callout_mask);
67 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
68 }
69
70 static void default_init(struct cpuinfo_x86 *c)
71 {
72 #ifdef CONFIG_X86_64
73 cpu_detect_cache_sizes(c);
74 #else
75 /* Not much we can do here... */
76 /* Check if at least it has cpuid */
77 if (c->cpuid_level == -1) {
78 /* No cpuid. It must be an ancient CPU */
79 if (c->x86 == 4)
80 strcpy(c->x86_model_id, "486");
81 else if (c->x86 == 3)
82 strcpy(c->x86_model_id, "386");
83 }
84 #endif
85 }
86
87 static const struct cpu_dev default_cpu = {
88 .c_init = default_init,
89 .c_vendor = "Unknown",
90 .c_x86_vendor = X86_VENDOR_UNKNOWN,
91 };
92
93 static const struct cpu_dev *this_cpu = &default_cpu;
94
95 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
96 #ifdef CONFIG_X86_64
97 /*
98 * We need valid kernel segments for data and code in long mode too
99 * IRET will check the segment types kkeil 2000/10/28
100 * Also sysret mandates a special GDT layout
101 *
102 * TLS descriptors are currently at a different place compared to i386.
103 * Hopefully nobody expects them at a fixed place (Wine?)
104 */
105 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
106 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
107 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
108 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
109 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
110 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
111 #else
112 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
113 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
114 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
115 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
116 /*
117 * Segments used for calling PnP BIOS have byte granularity.
118 * They code segments and data segments have fixed 64k limits,
119 * the transfer segment sizes are set at run time.
120 */
121 /* 32-bit code */
122 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
123 /* 16-bit code */
124 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
125 /* 16-bit data */
126 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
127 /* 16-bit data */
128 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
129 /* 16-bit data */
130 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
131 /*
132 * The APM segments have byte granularity and their bases
133 * are set at run time. All have 64k limits.
134 */
135 /* 32-bit code */
136 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
137 /* 16-bit code */
138 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
139 /* data */
140 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
141
142 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
143 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
144 GDT_STACK_CANARY_INIT
145 #endif
146 } };
147 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
148
149 static int __init x86_mpx_setup(char *s)
150 {
151 /* require an exact match without trailing characters */
152 if (strlen(s))
153 return 0;
154
155 /* do not emit a message if the feature is not present */
156 if (!boot_cpu_has(X86_FEATURE_MPX))
157 return 1;
158
159 setup_clear_cpu_cap(X86_FEATURE_MPX);
160 pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n");
161 return 1;
162 }
163 __setup("nompx", x86_mpx_setup);
164
165 #ifdef CONFIG_X86_32
166 static int cachesize_override = -1;
167 static int disable_x86_serial_nr = 1;
168
169 static int __init cachesize_setup(char *str)
170 {
171 get_option(&str, &cachesize_override);
172 return 1;
173 }
174 __setup("cachesize=", cachesize_setup);
175
176 static int __init x86_sep_setup(char *s)
177 {
178 setup_clear_cpu_cap(X86_FEATURE_SEP);
179 return 1;
180 }
181 __setup("nosep", x86_sep_setup);
182
183 /* Standard macro to see if a specific flag is changeable */
184 static inline int flag_is_changeable_p(u32 flag)
185 {
186 u32 f1, f2;
187
188 /*
189 * Cyrix and IDT cpus allow disabling of CPUID
190 * so the code below may return different results
191 * when it is executed before and after enabling
192 * the CPUID. Add "volatile" to not allow gcc to
193 * optimize the subsequent calls to this function.
194 */
195 asm volatile ("pushfl \n\t"
196 "pushfl \n\t"
197 "popl %0 \n\t"
198 "movl %0, %1 \n\t"
199 "xorl %2, %0 \n\t"
200 "pushl %0 \n\t"
201 "popfl \n\t"
202 "pushfl \n\t"
203 "popl %0 \n\t"
204 "popfl \n\t"
205
206 : "=&r" (f1), "=&r" (f2)
207 : "ir" (flag));
208
209 return ((f1^f2) & flag) != 0;
210 }
211
212 /* Probe for the CPUID instruction */
213 int have_cpuid_p(void)
214 {
215 return flag_is_changeable_p(X86_EFLAGS_ID);
216 }
217
218 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
219 {
220 unsigned long lo, hi;
221
222 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
223 return;
224
225 /* Disable processor serial number: */
226
227 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
228 lo |= 0x200000;
229 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
230
231 pr_notice("CPU serial number disabled.\n");
232 clear_cpu_cap(c, X86_FEATURE_PN);
233
234 /* Disabling the serial number may affect the cpuid level */
235 c->cpuid_level = cpuid_eax(0);
236 }
237
238 static int __init x86_serial_nr_setup(char *s)
239 {
240 disable_x86_serial_nr = 0;
241 return 1;
242 }
243 __setup("serialnumber", x86_serial_nr_setup);
244 #else
245 static inline int flag_is_changeable_p(u32 flag)
246 {
247 return 1;
248 }
249 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
250 {
251 }
252 #endif
253
254 static __init int setup_disable_smep(char *arg)
255 {
256 setup_clear_cpu_cap(X86_FEATURE_SMEP);
257 return 1;
258 }
259 __setup("nosmep", setup_disable_smep);
260
261 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
262 {
263 if (cpu_has(c, X86_FEATURE_SMEP))
264 cr4_set_bits(X86_CR4_SMEP);
265 }
266
267 static __init int setup_disable_smap(char *arg)
268 {
269 setup_clear_cpu_cap(X86_FEATURE_SMAP);
270 return 1;
271 }
272 __setup("nosmap", setup_disable_smap);
273
274 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
275 {
276 unsigned long eflags = native_save_fl();
277
278 /* This should have been cleared long ago */
279 BUG_ON(eflags & X86_EFLAGS_AC);
280
281 if (cpu_has(c, X86_FEATURE_SMAP)) {
282 #ifdef CONFIG_X86_SMAP
283 cr4_set_bits(X86_CR4_SMAP);
284 #else
285 cr4_clear_bits(X86_CR4_SMAP);
286 #endif
287 }
288 }
289
290 /*
291 * Some CPU features depend on higher CPUID levels, which may not always
292 * be available due to CPUID level capping or broken virtualization
293 * software. Add those features to this table to auto-disable them.
294 */
295 struct cpuid_dependent_feature {
296 u32 feature;
297 u32 level;
298 };
299
300 static const struct cpuid_dependent_feature
301 cpuid_dependent_features[] = {
302 { X86_FEATURE_MWAIT, 0x00000005 },
303 { X86_FEATURE_DCA, 0x00000009 },
304 { X86_FEATURE_XSAVE, 0x0000000d },
305 { 0, 0 }
306 };
307
308 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
309 {
310 const struct cpuid_dependent_feature *df;
311
312 for (df = cpuid_dependent_features; df->feature; df++) {
313
314 if (!cpu_has(c, df->feature))
315 continue;
316 /*
317 * Note: cpuid_level is set to -1 if unavailable, but
318 * extended_extended_level is set to 0 if unavailable
319 * and the legitimate extended levels are all negative
320 * when signed; hence the weird messing around with
321 * signs here...
322 */
323 if (!((s32)df->level < 0 ?
324 (u32)df->level > (u32)c->extended_cpuid_level :
325 (s32)df->level > (s32)c->cpuid_level))
326 continue;
327
328 clear_cpu_cap(c, df->feature);
329 if (!warn)
330 continue;
331
332 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
333 x86_cap_flag(df->feature), df->level);
334 }
335 }
336
337 /*
338 * Naming convention should be: <Name> [(<Codename>)]
339 * This table only is used unless init_<vendor>() below doesn't set it;
340 * in particular, if CPUID levels 0x80000002..4 are supported, this
341 * isn't used
342 */
343
344 /* Look up CPU names by table lookup. */
345 static const char *table_lookup_model(struct cpuinfo_x86 *c)
346 {
347 #ifdef CONFIG_X86_32
348 const struct legacy_cpu_model_info *info;
349
350 if (c->x86_model >= 16)
351 return NULL; /* Range check */
352
353 if (!this_cpu)
354 return NULL;
355
356 info = this_cpu->legacy_models;
357
358 while (info->family) {
359 if (info->family == c->x86)
360 return info->model_names[c->x86_model];
361 info++;
362 }
363 #endif
364 return NULL; /* Not found */
365 }
366
367 __u32 cpu_caps_cleared[NCAPINTS];
368 __u32 cpu_caps_set[NCAPINTS];
369
370 void load_percpu_segment(int cpu)
371 {
372 #ifdef CONFIG_X86_32
373 loadsegment(fs, __KERNEL_PERCPU);
374 #else
375 loadsegment(gs, 0);
376 wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
377 #endif
378 load_stack_canary_segment();
379 }
380
381 /*
382 * Current gdt points %fs at the "master" per-cpu area: after this,
383 * it's on the real one.
384 */
385 void switch_to_new_gdt(int cpu)
386 {
387 struct desc_ptr gdt_descr;
388
389 gdt_descr.address = (long)get_cpu_gdt_table(cpu);
390 gdt_descr.size = GDT_SIZE - 1;
391 load_gdt(&gdt_descr);
392 /* Reload the per-cpu base */
393
394 load_percpu_segment(cpu);
395 }
396
397 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
398
399 static void get_model_name(struct cpuinfo_x86 *c)
400 {
401 unsigned int *v;
402 char *p, *q, *s;
403
404 if (c->extended_cpuid_level < 0x80000004)
405 return;
406
407 v = (unsigned int *)c->x86_model_id;
408 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
409 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
410 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
411 c->x86_model_id[48] = 0;
412
413 /* Trim whitespace */
414 p = q = s = &c->x86_model_id[0];
415
416 while (*p == ' ')
417 p++;
418
419 while (*p) {
420 /* Note the last non-whitespace index */
421 if (!isspace(*p))
422 s = q;
423
424 *q++ = *p++;
425 }
426
427 *(s + 1) = '\0';
428 }
429
430 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
431 {
432 unsigned int n, dummy, ebx, ecx, edx, l2size;
433
434 n = c->extended_cpuid_level;
435
436 if (n >= 0x80000005) {
437 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
438 c->x86_cache_size = (ecx>>24) + (edx>>24);
439 #ifdef CONFIG_X86_64
440 /* On K8 L1 TLB is inclusive, so don't count it */
441 c->x86_tlbsize = 0;
442 #endif
443 }
444
445 if (n < 0x80000006) /* Some chips just has a large L1. */
446 return;
447
448 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
449 l2size = ecx >> 16;
450
451 #ifdef CONFIG_X86_64
452 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
453 #else
454 /* do processor-specific cache resizing */
455 if (this_cpu->legacy_cache_size)
456 l2size = this_cpu->legacy_cache_size(c, l2size);
457
458 /* Allow user to override all this if necessary. */
459 if (cachesize_override != -1)
460 l2size = cachesize_override;
461
462 if (l2size == 0)
463 return; /* Again, no L2 cache is possible */
464 #endif
465
466 c->x86_cache_size = l2size;
467 }
468
469 u16 __read_mostly tlb_lli_4k[NR_INFO];
470 u16 __read_mostly tlb_lli_2m[NR_INFO];
471 u16 __read_mostly tlb_lli_4m[NR_INFO];
472 u16 __read_mostly tlb_lld_4k[NR_INFO];
473 u16 __read_mostly tlb_lld_2m[NR_INFO];
474 u16 __read_mostly tlb_lld_4m[NR_INFO];
475 u16 __read_mostly tlb_lld_1g[NR_INFO];
476
477 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
478 {
479 if (this_cpu->c_detect_tlb)
480 this_cpu->c_detect_tlb(c);
481
482 pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
483 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
484 tlb_lli_4m[ENTRIES]);
485
486 pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
487 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
488 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
489 }
490
491 void detect_ht(struct cpuinfo_x86 *c)
492 {
493 #ifdef CONFIG_SMP
494 u32 eax, ebx, ecx, edx;
495 int index_msb, core_bits;
496 static bool printed;
497
498 if (!cpu_has(c, X86_FEATURE_HT))
499 return;
500
501 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
502 goto out;
503
504 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
505 return;
506
507 cpuid(1, &eax, &ebx, &ecx, &edx);
508
509 smp_num_siblings = (ebx & 0xff0000) >> 16;
510
511 if (smp_num_siblings == 1) {
512 pr_info_once("CPU0: Hyper-Threading is disabled\n");
513 goto out;
514 }
515
516 if (smp_num_siblings <= 1)
517 goto out;
518
519 index_msb = get_count_order(smp_num_siblings);
520 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
521
522 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
523
524 index_msb = get_count_order(smp_num_siblings);
525
526 core_bits = get_count_order(c->x86_max_cores);
527
528 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
529 ((1 << core_bits) - 1);
530
531 out:
532 if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
533 pr_info("CPU: Physical Processor ID: %d\n",
534 c->phys_proc_id);
535 pr_info("CPU: Processor Core ID: %d\n",
536 c->cpu_core_id);
537 printed = 1;
538 }
539 #endif
540 }
541
542 static void get_cpu_vendor(struct cpuinfo_x86 *c)
543 {
544 char *v = c->x86_vendor_id;
545 int i;
546
547 for (i = 0; i < X86_VENDOR_NUM; i++) {
548 if (!cpu_devs[i])
549 break;
550
551 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
552 (cpu_devs[i]->c_ident[1] &&
553 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
554
555 this_cpu = cpu_devs[i];
556 c->x86_vendor = this_cpu->c_x86_vendor;
557 return;
558 }
559 }
560
561 pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
562 "CPU: Your system may be unstable.\n", v);
563
564 c->x86_vendor = X86_VENDOR_UNKNOWN;
565 this_cpu = &default_cpu;
566 }
567
568 void cpu_detect(struct cpuinfo_x86 *c)
569 {
570 /* Get vendor name */
571 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
572 (unsigned int *)&c->x86_vendor_id[0],
573 (unsigned int *)&c->x86_vendor_id[8],
574 (unsigned int *)&c->x86_vendor_id[4]);
575
576 c->x86 = 4;
577 /* Intel-defined flags: level 0x00000001 */
578 if (c->cpuid_level >= 0x00000001) {
579 u32 junk, tfms, cap0, misc;
580
581 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
582 c->x86 = x86_family(tfms);
583 c->x86_model = x86_model(tfms);
584 c->x86_mask = x86_stepping(tfms);
585
586 if (cap0 & (1<<19)) {
587 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
588 c->x86_cache_alignment = c->x86_clflush_size;
589 }
590 }
591 }
592
593 void get_cpu_cap(struct cpuinfo_x86 *c)
594 {
595 u32 eax, ebx, ecx, edx;
596
597 /* Intel-defined flags: level 0x00000001 */
598 if (c->cpuid_level >= 0x00000001) {
599 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
600
601 c->x86_capability[CPUID_1_ECX] = ecx;
602 c->x86_capability[CPUID_1_EDX] = edx;
603 }
604
605 /* Additional Intel-defined flags: level 0x00000007 */
606 if (c->cpuid_level >= 0x00000007) {
607 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
608
609 c->x86_capability[CPUID_7_0_EBX] = ebx;
610
611 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
612 }
613
614 /* Extended state features: level 0x0000000d */
615 if (c->cpuid_level >= 0x0000000d) {
616 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
617
618 c->x86_capability[CPUID_D_1_EAX] = eax;
619 }
620
621 /* Additional Intel-defined flags: level 0x0000000F */
622 if (c->cpuid_level >= 0x0000000F) {
623
624 /* QoS sub-leaf, EAX=0Fh, ECX=0 */
625 cpuid_count(0x0000000F, 0, &eax, &ebx, &ecx, &edx);
626 c->x86_capability[CPUID_F_0_EDX] = edx;
627
628 if (cpu_has(c, X86_FEATURE_CQM_LLC)) {
629 /* will be overridden if occupancy monitoring exists */
630 c->x86_cache_max_rmid = ebx;
631
632 /* QoS sub-leaf, EAX=0Fh, ECX=1 */
633 cpuid_count(0x0000000F, 1, &eax, &ebx, &ecx, &edx);
634 c->x86_capability[CPUID_F_1_EDX] = edx;
635
636 if (cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC)) {
637 c->x86_cache_max_rmid = ecx;
638 c->x86_cache_occ_scale = ebx;
639 }
640 } else {
641 c->x86_cache_max_rmid = -1;
642 c->x86_cache_occ_scale = -1;
643 }
644 }
645
646 /* AMD-defined flags: level 0x80000001 */
647 eax = cpuid_eax(0x80000000);
648 c->extended_cpuid_level = eax;
649
650 if ((eax & 0xffff0000) == 0x80000000) {
651 if (eax >= 0x80000001) {
652 cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
653
654 c->x86_capability[CPUID_8000_0001_ECX] = ecx;
655 c->x86_capability[CPUID_8000_0001_EDX] = edx;
656 }
657 }
658
659 if (c->extended_cpuid_level >= 0x80000008) {
660 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
661
662 c->x86_virt_bits = (eax >> 8) & 0xff;
663 c->x86_phys_bits = eax & 0xff;
664 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
665 }
666 #ifdef CONFIG_X86_32
667 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
668 c->x86_phys_bits = 36;
669 #endif
670
671 if (c->extended_cpuid_level >= 0x80000007)
672 c->x86_power = cpuid_edx(0x80000007);
673
674 if (c->extended_cpuid_level >= 0x8000000a)
675 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
676
677 init_scattered_cpuid_features(c);
678 }
679
680 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
681 {
682 #ifdef CONFIG_X86_32
683 int i;
684
685 /*
686 * First of all, decide if this is a 486 or higher
687 * It's a 486 if we can modify the AC flag
688 */
689 if (flag_is_changeable_p(X86_EFLAGS_AC))
690 c->x86 = 4;
691 else
692 c->x86 = 3;
693
694 for (i = 0; i < X86_VENDOR_NUM; i++)
695 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
696 c->x86_vendor_id[0] = 0;
697 cpu_devs[i]->c_identify(c);
698 if (c->x86_vendor_id[0]) {
699 get_cpu_vendor(c);
700 break;
701 }
702 }
703 #endif
704 }
705
706 /*
707 * Do minimum CPU detection early.
708 * Fields really needed: vendor, cpuid_level, family, model, mask,
709 * cache alignment.
710 * The others are not touched to avoid unwanted side effects.
711 *
712 * WARNING: this function is only called on the BP. Don't add code here
713 * that is supposed to run on all CPUs.
714 */
715 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
716 {
717 #ifdef CONFIG_X86_64
718 c->x86_clflush_size = 64;
719 c->x86_phys_bits = 36;
720 c->x86_virt_bits = 48;
721 #else
722 c->x86_clflush_size = 32;
723 c->x86_phys_bits = 32;
724 c->x86_virt_bits = 32;
725 #endif
726 c->x86_cache_alignment = c->x86_clflush_size;
727
728 memset(&c->x86_capability, 0, sizeof c->x86_capability);
729 c->extended_cpuid_level = 0;
730
731 if (!have_cpuid_p())
732 identify_cpu_without_cpuid(c);
733
734 /* cyrix could have cpuid enabled via c_identify()*/
735 if (!have_cpuid_p())
736 return;
737
738 cpu_detect(c);
739 get_cpu_vendor(c);
740 get_cpu_cap(c);
741
742 if (this_cpu->c_early_init)
743 this_cpu->c_early_init(c);
744
745 c->cpu_index = 0;
746 filter_cpuid_features(c, false);
747
748 if (this_cpu->c_bsp_init)
749 this_cpu->c_bsp_init(c);
750
751 setup_force_cpu_cap(X86_FEATURE_ALWAYS);
752 fpu__init_system(c);
753 }
754
755 void __init early_cpu_init(void)
756 {
757 const struct cpu_dev *const *cdev;
758 int count = 0;
759
760 #ifdef CONFIG_PROCESSOR_SELECT
761 pr_info("KERNEL supported cpus:\n");
762 #endif
763
764 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
765 const struct cpu_dev *cpudev = *cdev;
766
767 if (count >= X86_VENDOR_NUM)
768 break;
769 cpu_devs[count] = cpudev;
770 count++;
771
772 #ifdef CONFIG_PROCESSOR_SELECT
773 {
774 unsigned int j;
775
776 for (j = 0; j < 2; j++) {
777 if (!cpudev->c_ident[j])
778 continue;
779 pr_info(" %s %s\n", cpudev->c_vendor,
780 cpudev->c_ident[j]);
781 }
782 }
783 #endif
784 }
785 early_identify_cpu(&boot_cpu_data);
786 }
787
788 /*
789 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
790 * unfortunately, that's not true in practice because of early VIA
791 * chips and (more importantly) broken virtualizers that are not easy
792 * to detect. In the latter case it doesn't even *fail* reliably, so
793 * probing for it doesn't even work. Disable it completely on 32-bit
794 * unless we can find a reliable way to detect all the broken cases.
795 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
796 */
797 static void detect_nopl(struct cpuinfo_x86 *c)
798 {
799 #ifdef CONFIG_X86_32
800 clear_cpu_cap(c, X86_FEATURE_NOPL);
801 #else
802 set_cpu_cap(c, X86_FEATURE_NOPL);
803 #endif
804
805 /*
806 * ESPFIX is a strange bug. All real CPUs have it. Paravirt
807 * systems that run Linux at CPL > 0 may or may not have the
808 * issue, but, even if they have the issue, there's absolutely
809 * nothing we can do about it because we can't use the real IRET
810 * instruction.
811 *
812 * NB: For the time being, only 32-bit kernels support
813 * X86_BUG_ESPFIX as such. 64-bit kernels directly choose
814 * whether to apply espfix using paravirt hooks. If any
815 * non-paravirt system ever shows up that does *not* have the
816 * ESPFIX issue, we can change this.
817 */
818 #ifdef CONFIG_X86_32
819 #ifdef CONFIG_PARAVIRT
820 do {
821 extern void native_iret(void);
822 if (pv_cpu_ops.iret == native_iret)
823 set_cpu_bug(c, X86_BUG_ESPFIX);
824 } while (0);
825 #else
826 set_cpu_bug(c, X86_BUG_ESPFIX);
827 #endif
828 #endif
829 }
830
831 static void generic_identify(struct cpuinfo_x86 *c)
832 {
833 c->extended_cpuid_level = 0;
834
835 if (!have_cpuid_p())
836 identify_cpu_without_cpuid(c);
837
838 /* cyrix could have cpuid enabled via c_identify()*/
839 if (!have_cpuid_p())
840 return;
841
842 cpu_detect(c);
843
844 get_cpu_vendor(c);
845
846 get_cpu_cap(c);
847
848 if (c->cpuid_level >= 0x00000001) {
849 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
850 #ifdef CONFIG_X86_32
851 # ifdef CONFIG_SMP
852 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
853 # else
854 c->apicid = c->initial_apicid;
855 # endif
856 #endif
857 c->phys_proc_id = c->initial_apicid;
858 }
859
860 get_model_name(c); /* Default name */
861
862 detect_nopl(c);
863 }
864
865 static void x86_init_cache_qos(struct cpuinfo_x86 *c)
866 {
867 /*
868 * The heavy lifting of max_rmid and cache_occ_scale are handled
869 * in get_cpu_cap(). Here we just set the max_rmid for the boot_cpu
870 * in case CQM bits really aren't there in this CPU.
871 */
872 if (c != &boot_cpu_data) {
873 boot_cpu_data.x86_cache_max_rmid =
874 min(boot_cpu_data.x86_cache_max_rmid,
875 c->x86_cache_max_rmid);
876 }
877 }
878
879 /*
880 * This does the hard work of actually picking apart the CPU stuff...
881 */
882 static void identify_cpu(struct cpuinfo_x86 *c)
883 {
884 int i;
885
886 c->loops_per_jiffy = loops_per_jiffy;
887 c->x86_cache_size = -1;
888 c->x86_vendor = X86_VENDOR_UNKNOWN;
889 c->x86_model = c->x86_mask = 0; /* So far unknown... */
890 c->x86_vendor_id[0] = '\0'; /* Unset */
891 c->x86_model_id[0] = '\0'; /* Unset */
892 c->x86_max_cores = 1;
893 c->x86_coreid_bits = 0;
894 #ifdef CONFIG_X86_64
895 c->x86_clflush_size = 64;
896 c->x86_phys_bits = 36;
897 c->x86_virt_bits = 48;
898 #else
899 c->cpuid_level = -1; /* CPUID not detected */
900 c->x86_clflush_size = 32;
901 c->x86_phys_bits = 32;
902 c->x86_virt_bits = 32;
903 #endif
904 c->x86_cache_alignment = c->x86_clflush_size;
905 memset(&c->x86_capability, 0, sizeof c->x86_capability);
906
907 generic_identify(c);
908
909 if (this_cpu->c_identify)
910 this_cpu->c_identify(c);
911
912 /* Clear/Set all flags overriden by options, after probe */
913 for (i = 0; i < NCAPINTS; i++) {
914 c->x86_capability[i] &= ~cpu_caps_cleared[i];
915 c->x86_capability[i] |= cpu_caps_set[i];
916 }
917
918 #ifdef CONFIG_X86_64
919 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
920 #endif
921
922 /*
923 * Vendor-specific initialization. In this section we
924 * canonicalize the feature flags, meaning if there are
925 * features a certain CPU supports which CPUID doesn't
926 * tell us, CPUID claiming incorrect flags, or other bugs,
927 * we handle them here.
928 *
929 * At the end of this section, c->x86_capability better
930 * indicate the features this CPU genuinely supports!
931 */
932 if (this_cpu->c_init)
933 this_cpu->c_init(c);
934
935 /* Disable the PN if appropriate */
936 squash_the_stupid_serial_number(c);
937
938 /* Set up SMEP/SMAP */
939 setup_smep(c);
940 setup_smap(c);
941
942 /*
943 * The vendor-specific functions might have changed features.
944 * Now we do "generic changes."
945 */
946
947 /* Filter out anything that depends on CPUID levels we don't have */
948 filter_cpuid_features(c, true);
949
950 /* If the model name is still unset, do table lookup. */
951 if (!c->x86_model_id[0]) {
952 const char *p;
953 p = table_lookup_model(c);
954 if (p)
955 strcpy(c->x86_model_id, p);
956 else
957 /* Last resort... */
958 sprintf(c->x86_model_id, "%02x/%02x",
959 c->x86, c->x86_model);
960 }
961
962 #ifdef CONFIG_X86_64
963 detect_ht(c);
964 #endif
965
966 init_hypervisor(c);
967 x86_init_rdrand(c);
968 x86_init_cache_qos(c);
969
970 /*
971 * Clear/Set all flags overriden by options, need do it
972 * before following smp all cpus cap AND.
973 */
974 for (i = 0; i < NCAPINTS; i++) {
975 c->x86_capability[i] &= ~cpu_caps_cleared[i];
976 c->x86_capability[i] |= cpu_caps_set[i];
977 }
978
979 /*
980 * On SMP, boot_cpu_data holds the common feature set between
981 * all CPUs; so make sure that we indicate which features are
982 * common between the CPUs. The first time this routine gets
983 * executed, c == &boot_cpu_data.
984 */
985 if (c != &boot_cpu_data) {
986 /* AND the already accumulated flags with these */
987 for (i = 0; i < NCAPINTS; i++)
988 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
989
990 /* OR, i.e. replicate the bug flags */
991 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
992 c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
993 }
994
995 /* Init Machine Check Exception if available. */
996 mcheck_cpu_init(c);
997
998 select_idle_routine(c);
999
1000 #ifdef CONFIG_NUMA
1001 numa_add_cpu(smp_processor_id());
1002 #endif
1003 /* The boot/hotplug time assigment got cleared, restore it */
1004 c->logical_proc_id = topology_phys_to_logical_pkg(c->phys_proc_id);
1005 }
1006
1007 /*
1008 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1009 * on 32-bit kernels:
1010 */
1011 #ifdef CONFIG_X86_32
1012 void enable_sep_cpu(void)
1013 {
1014 struct tss_struct *tss;
1015 int cpu;
1016
1017 cpu = get_cpu();
1018 tss = &per_cpu(cpu_tss, cpu);
1019
1020 if (!boot_cpu_has(X86_FEATURE_SEP))
1021 goto out;
1022
1023 /*
1024 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1025 * see the big comment in struct x86_hw_tss's definition.
1026 */
1027
1028 tss->x86_tss.ss1 = __KERNEL_CS;
1029 wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1030
1031 wrmsr(MSR_IA32_SYSENTER_ESP,
1032 (unsigned long)tss + offsetofend(struct tss_struct, SYSENTER_stack),
1033 0);
1034
1035 wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1036
1037 out:
1038 put_cpu();
1039 }
1040 #endif
1041
1042 void __init identify_boot_cpu(void)
1043 {
1044 identify_cpu(&boot_cpu_data);
1045 init_amd_e400_c1e_mask();
1046 #ifdef CONFIG_X86_32
1047 sysenter_setup();
1048 enable_sep_cpu();
1049 #endif
1050 cpu_detect_tlb(&boot_cpu_data);
1051 }
1052
1053 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1054 {
1055 BUG_ON(c == &boot_cpu_data);
1056 identify_cpu(c);
1057 #ifdef CONFIG_X86_32
1058 enable_sep_cpu();
1059 #endif
1060 mtrr_ap_init();
1061 }
1062
1063 struct msr_range {
1064 unsigned min;
1065 unsigned max;
1066 };
1067
1068 static const struct msr_range msr_range_array[] = {
1069 { 0x00000000, 0x00000418},
1070 { 0xc0000000, 0xc000040b},
1071 { 0xc0010000, 0xc0010142},
1072 { 0xc0011000, 0xc001103b},
1073 };
1074
1075 static void __print_cpu_msr(void)
1076 {
1077 unsigned index_min, index_max;
1078 unsigned index;
1079 u64 val;
1080 int i;
1081
1082 for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
1083 index_min = msr_range_array[i].min;
1084 index_max = msr_range_array[i].max;
1085
1086 for (index = index_min; index < index_max; index++) {
1087 if (rdmsrl_safe(index, &val))
1088 continue;
1089 pr_info(" MSR%08x: %016llx\n", index, val);
1090 }
1091 }
1092 }
1093
1094 static int show_msr;
1095
1096 static __init int setup_show_msr(char *arg)
1097 {
1098 int num;
1099
1100 get_option(&arg, &num);
1101
1102 if (num > 0)
1103 show_msr = num;
1104 return 1;
1105 }
1106 __setup("show_msr=", setup_show_msr);
1107
1108 static __init int setup_noclflush(char *arg)
1109 {
1110 setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1111 setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1112 return 1;
1113 }
1114 __setup("noclflush", setup_noclflush);
1115
1116 void print_cpu_info(struct cpuinfo_x86 *c)
1117 {
1118 const char *vendor = NULL;
1119
1120 if (c->x86_vendor < X86_VENDOR_NUM) {
1121 vendor = this_cpu->c_vendor;
1122 } else {
1123 if (c->cpuid_level >= 0)
1124 vendor = c->x86_vendor_id;
1125 }
1126
1127 if (vendor && !strstr(c->x86_model_id, vendor))
1128 pr_cont("%s ", vendor);
1129
1130 if (c->x86_model_id[0])
1131 pr_cont("%s", c->x86_model_id);
1132 else
1133 pr_cont("%d86", c->x86);
1134
1135 pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1136
1137 if (c->x86_mask || c->cpuid_level >= 0)
1138 pr_cont(", stepping: 0x%x)\n", c->x86_mask);
1139 else
1140 pr_cont(")\n");
1141
1142 print_cpu_msr(c);
1143 }
1144
1145 void print_cpu_msr(struct cpuinfo_x86 *c)
1146 {
1147 if (c->cpu_index < show_msr)
1148 __print_cpu_msr();
1149 }
1150
1151 static __init int setup_disablecpuid(char *arg)
1152 {
1153 int bit;
1154
1155 if (get_option(&arg, &bit) && bit < NCAPINTS*32)
1156 setup_clear_cpu_cap(bit);
1157 else
1158 return 0;
1159
1160 return 1;
1161 }
1162 __setup("clearcpuid=", setup_disablecpuid);
1163
1164 #ifdef CONFIG_X86_64
1165 struct desc_ptr idt_descr = { NR_VECTORS * 16 - 1, (unsigned long) idt_table };
1166 struct desc_ptr debug_idt_descr = { NR_VECTORS * 16 - 1,
1167 (unsigned long) debug_idt_table };
1168
1169 DEFINE_PER_CPU_FIRST(union irq_stack_union,
1170 irq_stack_union) __aligned(PAGE_SIZE) __visible;
1171
1172 /*
1173 * The following percpu variables are hot. Align current_task to
1174 * cacheline size such that they fall in the same cacheline.
1175 */
1176 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1177 &init_task;
1178 EXPORT_PER_CPU_SYMBOL(current_task);
1179
1180 DEFINE_PER_CPU(char *, irq_stack_ptr) =
1181 init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64;
1182
1183 DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1184
1185 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1186 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1187
1188 /*
1189 * Special IST stacks which the CPU switches to when it calls
1190 * an IST-marked descriptor entry. Up to 7 stacks (hardware
1191 * limit), all of them are 4K, except the debug stack which
1192 * is 8K.
1193 */
1194 static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
1195 [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ,
1196 [DEBUG_STACK - 1] = DEBUG_STKSZ
1197 };
1198
1199 static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
1200 [(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]);
1201
1202 /* May not be marked __init: used by software suspend */
1203 void syscall_init(void)
1204 {
1205 /*
1206 * LSTAR and STAR live in a bit strange symbiosis.
1207 * They both write to the same internal register. STAR allows to
1208 * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
1209 */
1210 wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1211 wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1212
1213 #ifdef CONFIG_IA32_EMULATION
1214 wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1215 /*
1216 * This only works on Intel CPUs.
1217 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1218 * This does not cause SYSENTER to jump to the wrong location, because
1219 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1220 */
1221 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1222 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1223 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1224 #else
1225 wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1226 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1227 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1228 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1229 #endif
1230
1231 /* Flags to clear on syscall */
1232 wrmsrl(MSR_SYSCALL_MASK,
1233 X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1234 X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1235 }
1236
1237 /*
1238 * Copies of the original ist values from the tss are only accessed during
1239 * debugging, no special alignment required.
1240 */
1241 DEFINE_PER_CPU(struct orig_ist, orig_ist);
1242
1243 static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
1244 DEFINE_PER_CPU(int, debug_stack_usage);
1245
1246 int is_debug_stack(unsigned long addr)
1247 {
1248 return __this_cpu_read(debug_stack_usage) ||
1249 (addr <= __this_cpu_read(debug_stack_addr) &&
1250 addr > (__this_cpu_read(debug_stack_addr) - DEBUG_STKSZ));
1251 }
1252 NOKPROBE_SYMBOL(is_debug_stack);
1253
1254 DEFINE_PER_CPU(u32, debug_idt_ctr);
1255
1256 void debug_stack_set_zero(void)
1257 {
1258 this_cpu_inc(debug_idt_ctr);
1259 load_current_idt();
1260 }
1261 NOKPROBE_SYMBOL(debug_stack_set_zero);
1262
1263 void debug_stack_reset(void)
1264 {
1265 if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
1266 return;
1267 if (this_cpu_dec_return(debug_idt_ctr) == 0)
1268 load_current_idt();
1269 }
1270 NOKPROBE_SYMBOL(debug_stack_reset);
1271
1272 #else /* CONFIG_X86_64 */
1273
1274 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1275 EXPORT_PER_CPU_SYMBOL(current_task);
1276 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1277 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1278
1279 /*
1280 * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1281 * the top of the kernel stack. Use an extra percpu variable to track the
1282 * top of the kernel stack directly.
1283 */
1284 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1285 (unsigned long)&init_thread_union + THREAD_SIZE;
1286 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1287
1288 #ifdef CONFIG_CC_STACKPROTECTOR
1289 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1290 #endif
1291
1292 #endif /* CONFIG_X86_64 */
1293
1294 /*
1295 * Clear all 6 debug registers:
1296 */
1297 static void clear_all_debug_regs(void)
1298 {
1299 int i;
1300
1301 for (i = 0; i < 8; i++) {
1302 /* Ignore db4, db5 */
1303 if ((i == 4) || (i == 5))
1304 continue;
1305
1306 set_debugreg(0, i);
1307 }
1308 }
1309
1310 #ifdef CONFIG_KGDB
1311 /*
1312 * Restore debug regs if using kgdbwait and you have a kernel debugger
1313 * connection established.
1314 */
1315 static void dbg_restore_debug_regs(void)
1316 {
1317 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1318 arch_kgdb_ops.correct_hw_break();
1319 }
1320 #else /* ! CONFIG_KGDB */
1321 #define dbg_restore_debug_regs()
1322 #endif /* ! CONFIG_KGDB */
1323
1324 static void wait_for_master_cpu(int cpu)
1325 {
1326 #ifdef CONFIG_SMP
1327 /*
1328 * wait for ACK from master CPU before continuing
1329 * with AP initialization
1330 */
1331 WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1332 while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1333 cpu_relax();
1334 #endif
1335 }
1336
1337 /*
1338 * cpu_init() initializes state that is per-CPU. Some data is already
1339 * initialized (naturally) in the bootstrap process, such as the GDT
1340 * and IDT. We reload them nevertheless, this function acts as a
1341 * 'CPU state barrier', nothing should get across.
1342 * A lot of state is already set up in PDA init for 64 bit
1343 */
1344 #ifdef CONFIG_X86_64
1345
1346 void cpu_init(void)
1347 {
1348 struct orig_ist *oist;
1349 struct task_struct *me;
1350 struct tss_struct *t;
1351 unsigned long v;
1352 int cpu = stack_smp_processor_id();
1353 int i;
1354
1355 wait_for_master_cpu(cpu);
1356
1357 /*
1358 * Initialize the CR4 shadow before doing anything that could
1359 * try to read it.
1360 */
1361 cr4_init_shadow();
1362
1363 /*
1364 * Load microcode on this cpu if a valid microcode is available.
1365 * This is early microcode loading procedure.
1366 */
1367 load_ucode_ap();
1368
1369 t = &per_cpu(cpu_tss, cpu);
1370 oist = &per_cpu(orig_ist, cpu);
1371
1372 #ifdef CONFIG_NUMA
1373 if (this_cpu_read(numa_node) == 0 &&
1374 early_cpu_to_node(cpu) != NUMA_NO_NODE)
1375 set_numa_node(early_cpu_to_node(cpu));
1376 #endif
1377
1378 me = current;
1379
1380 pr_debug("Initializing CPU#%d\n", cpu);
1381
1382 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1383
1384 /*
1385 * Initialize the per-CPU GDT with the boot GDT,
1386 * and set up the GDT descriptor:
1387 */
1388
1389 switch_to_new_gdt(cpu);
1390 loadsegment(fs, 0);
1391
1392 load_current_idt();
1393
1394 memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1395 syscall_init();
1396
1397 wrmsrl(MSR_FS_BASE, 0);
1398 wrmsrl(MSR_KERNEL_GS_BASE, 0);
1399 barrier();
1400
1401 x86_configure_nx();
1402 x2apic_setup();
1403
1404 /*
1405 * set up and load the per-CPU TSS
1406 */
1407 if (!oist->ist[0]) {
1408 char *estacks = per_cpu(exception_stacks, cpu);
1409
1410 for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1411 estacks += exception_stack_sizes[v];
1412 oist->ist[v] = t->x86_tss.ist[v] =
1413 (unsigned long)estacks;
1414 if (v == DEBUG_STACK-1)
1415 per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
1416 }
1417 }
1418
1419 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1420
1421 /*
1422 * <= is required because the CPU will access up to
1423 * 8 bits beyond the end of the IO permission bitmap.
1424 */
1425 for (i = 0; i <= IO_BITMAP_LONGS; i++)
1426 t->io_bitmap[i] = ~0UL;
1427
1428 atomic_inc(&init_mm.mm_count);
1429 me->active_mm = &init_mm;
1430 BUG_ON(me->mm);
1431 enter_lazy_tlb(&init_mm, me);
1432
1433 load_sp0(t, &current->thread);
1434 set_tss_desc(cpu, t);
1435 load_TR_desc();
1436 load_mm_ldt(&init_mm);
1437
1438 clear_all_debug_regs();
1439 dbg_restore_debug_regs();
1440
1441 fpu__init_cpu();
1442
1443 if (is_uv_system())
1444 uv_cpu_init();
1445 }
1446
1447 #else
1448
1449 void cpu_init(void)
1450 {
1451 int cpu = smp_processor_id();
1452 struct task_struct *curr = current;
1453 struct tss_struct *t = &per_cpu(cpu_tss, cpu);
1454 struct thread_struct *thread = &curr->thread;
1455
1456 wait_for_master_cpu(cpu);
1457
1458 /*
1459 * Initialize the CR4 shadow before doing anything that could
1460 * try to read it.
1461 */
1462 cr4_init_shadow();
1463
1464 show_ucode_info_early();
1465
1466 pr_info("Initializing CPU#%d\n", cpu);
1467
1468 if (cpu_feature_enabled(X86_FEATURE_VME) ||
1469 cpu_has_tsc ||
1470 boot_cpu_has(X86_FEATURE_DE))
1471 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1472
1473 load_current_idt();
1474 switch_to_new_gdt(cpu);
1475
1476 /*
1477 * Set up and load the per-CPU TSS and LDT
1478 */
1479 atomic_inc(&init_mm.mm_count);
1480 curr->active_mm = &init_mm;
1481 BUG_ON(curr->mm);
1482 enter_lazy_tlb(&init_mm, curr);
1483
1484 load_sp0(t, thread);
1485 set_tss_desc(cpu, t);
1486 load_TR_desc();
1487 load_mm_ldt(&init_mm);
1488
1489 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1490
1491 #ifdef CONFIG_DOUBLEFAULT
1492 /* Set up doublefault TSS pointer in the GDT */
1493 __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1494 #endif
1495
1496 clear_all_debug_regs();
1497 dbg_restore_debug_regs();
1498
1499 fpu__init_cpu();
1500 }
1501 #endif
1502
1503 static void bsp_resume(void)
1504 {
1505 if (this_cpu->c_bsp_resume)
1506 this_cpu->c_bsp_resume(&boot_cpu_data);
1507 }
1508
1509 static struct syscore_ops cpu_syscore_ops = {
1510 .resume = bsp_resume,
1511 };
1512
1513 static int __init init_cpu_syscore(void)
1514 {
1515 register_syscore_ops(&cpu_syscore_ops);
1516 return 0;
1517 }
1518 core_initcall(init_cpu_syscore);