]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kernel/cpu/cpufreq/powernow-k8.c
Merge branch 'linux-next' of git://git.infradead.org/ubifs-2.6
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kernel / cpu / cpufreq / powernow-k8.c
1 /*
2 * (c) 2003-2006 Advanced Micro Devices, Inc.
3 * Your use of this code is subject to the terms and conditions of the
4 * GNU general public license version 2. See "COPYING" or
5 * http://www.gnu.org/licenses/gpl.html
6 *
7 * Support : mark.langsdorf@amd.com
8 *
9 * Based on the powernow-k7.c module written by Dave Jones.
10 * (C) 2003 Dave Jones on behalf of SuSE Labs
11 * (C) 2004 Dominik Brodowski <linux@brodo.de>
12 * (C) 2004 Pavel Machek <pavel@suse.cz>
13 * Licensed under the terms of the GNU GPL License version 2.
14 * Based upon datasheets & sample CPUs kindly provided by AMD.
15 *
16 * Valuable input gratefully received from Dave Jones, Pavel Machek,
17 * Dominik Brodowski, Jacob Shin, and others.
18 * Originally developed by Paul Devriendt.
19 * Processor information obtained from Chapter 9 (Power and Thermal Management)
20 * of the "BIOS and Kernel Developer's Guide for the AMD Athlon 64 and AMD
21 * Opteron Processors" available for download from www.amd.com
22 *
23 * Tables for specific CPUs can be inferred from
24 * http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/30430.pdf
25 */
26
27 #include <linux/kernel.h>
28 #include <linux/smp.h>
29 #include <linux/module.h>
30 #include <linux/init.h>
31 #include <linux/cpufreq.h>
32 #include <linux/slab.h>
33 #include <linux/string.h>
34 #include <linux/cpumask.h>
35 #include <linux/sched.h> /* for current / set_cpus_allowed() */
36 #include <linux/io.h>
37 #include <linux/delay.h>
38
39 #include <asm/msr.h>
40
41 #include <linux/acpi.h>
42 #include <linux/mutex.h>
43 #include <acpi/processor.h>
44
45 #define PFX "powernow-k8: "
46 #define VERSION "version 2.20.00"
47 #include "powernow-k8.h"
48
49 /* serialize freq changes */
50 static DEFINE_MUTEX(fidvid_mutex);
51
52 static DEFINE_PER_CPU(struct powernow_k8_data *, powernow_data);
53
54 static int cpu_family = CPU_OPTERON;
55
56 #ifndef CONFIG_SMP
57 static inline const struct cpumask *cpu_core_mask(int cpu)
58 {
59 return cpumask_of(0);
60 }
61 #endif
62
63 /* Return a frequency in MHz, given an input fid */
64 static u32 find_freq_from_fid(u32 fid)
65 {
66 return 800 + (fid * 100);
67 }
68
69 /* Return a frequency in KHz, given an input fid */
70 static u32 find_khz_freq_from_fid(u32 fid)
71 {
72 return 1000 * find_freq_from_fid(fid);
73 }
74
75 static u32 find_khz_freq_from_pstate(struct cpufreq_frequency_table *data,
76 u32 pstate)
77 {
78 return data[pstate].frequency;
79 }
80
81 /* Return the vco fid for an input fid
82 *
83 * Each "low" fid has corresponding "high" fid, and you can get to "low" fids
84 * only from corresponding high fids. This returns "high" fid corresponding to
85 * "low" one.
86 */
87 static u32 convert_fid_to_vco_fid(u32 fid)
88 {
89 if (fid < HI_FID_TABLE_BOTTOM)
90 return 8 + (2 * fid);
91 else
92 return fid;
93 }
94
95 /*
96 * Return 1 if the pending bit is set. Unless we just instructed the processor
97 * to transition to a new state, seeing this bit set is really bad news.
98 */
99 static int pending_bit_stuck(void)
100 {
101 u32 lo, hi;
102
103 if (cpu_family == CPU_HW_PSTATE)
104 return 0;
105
106 rdmsr(MSR_FIDVID_STATUS, lo, hi);
107 return lo & MSR_S_LO_CHANGE_PENDING ? 1 : 0;
108 }
109
110 /*
111 * Update the global current fid / vid values from the status msr.
112 * Returns 1 on error.
113 */
114 static int query_current_values_with_pending_wait(struct powernow_k8_data *data)
115 {
116 u32 lo, hi;
117 u32 i = 0;
118
119 if (cpu_family == CPU_HW_PSTATE) {
120 if (data->currpstate == HW_PSTATE_INVALID) {
121 /* read (initial) hw pstate if not yet set */
122 rdmsr(MSR_PSTATE_STATUS, lo, hi);
123 i = lo & HW_PSTATE_MASK;
124
125 /*
126 * a workaround for family 11h erratum 311 might cause
127 * an "out-of-range Pstate if the core is in Pstate-0
128 */
129 if (i >= data->numps)
130 data->currpstate = HW_PSTATE_0;
131 else
132 data->currpstate = i;
133 }
134 return 0;
135 }
136 do {
137 if (i++ > 10000) {
138 dprintk("detected change pending stuck\n");
139 return 1;
140 }
141 rdmsr(MSR_FIDVID_STATUS, lo, hi);
142 } while (lo & MSR_S_LO_CHANGE_PENDING);
143
144 data->currvid = hi & MSR_S_HI_CURRENT_VID;
145 data->currfid = lo & MSR_S_LO_CURRENT_FID;
146
147 return 0;
148 }
149
150 /* the isochronous relief time */
151 static void count_off_irt(struct powernow_k8_data *data)
152 {
153 udelay((1 << data->irt) * 10);
154 return;
155 }
156
157 /* the voltage stabilization time */
158 static void count_off_vst(struct powernow_k8_data *data)
159 {
160 udelay(data->vstable * VST_UNITS_20US);
161 return;
162 }
163
164 /* need to init the control msr to a safe value (for each cpu) */
165 static void fidvid_msr_init(void)
166 {
167 u32 lo, hi;
168 u8 fid, vid;
169
170 rdmsr(MSR_FIDVID_STATUS, lo, hi);
171 vid = hi & MSR_S_HI_CURRENT_VID;
172 fid = lo & MSR_S_LO_CURRENT_FID;
173 lo = fid | (vid << MSR_C_LO_VID_SHIFT);
174 hi = MSR_C_HI_STP_GNT_BENIGN;
175 dprintk("cpu%d, init lo 0x%x, hi 0x%x\n", smp_processor_id(), lo, hi);
176 wrmsr(MSR_FIDVID_CTL, lo, hi);
177 }
178
179 /* write the new fid value along with the other control fields to the msr */
180 static int write_new_fid(struct powernow_k8_data *data, u32 fid)
181 {
182 u32 lo;
183 u32 savevid = data->currvid;
184 u32 i = 0;
185
186 if ((fid & INVALID_FID_MASK) || (data->currvid & INVALID_VID_MASK)) {
187 printk(KERN_ERR PFX "internal error - overflow on fid write\n");
188 return 1;
189 }
190
191 lo = fid;
192 lo |= (data->currvid << MSR_C_LO_VID_SHIFT);
193 lo |= MSR_C_LO_INIT_FID_VID;
194
195 dprintk("writing fid 0x%x, lo 0x%x, hi 0x%x\n",
196 fid, lo, data->plllock * PLL_LOCK_CONVERSION);
197
198 do {
199 wrmsr(MSR_FIDVID_CTL, lo, data->plllock * PLL_LOCK_CONVERSION);
200 if (i++ > 100) {
201 printk(KERN_ERR PFX
202 "Hardware error - pending bit very stuck - "
203 "no further pstate changes possible\n");
204 return 1;
205 }
206 } while (query_current_values_with_pending_wait(data));
207
208 count_off_irt(data);
209
210 if (savevid != data->currvid) {
211 printk(KERN_ERR PFX
212 "vid change on fid trans, old 0x%x, new 0x%x\n",
213 savevid, data->currvid);
214 return 1;
215 }
216
217 if (fid != data->currfid) {
218 printk(KERN_ERR PFX
219 "fid trans failed, fid 0x%x, curr 0x%x\n", fid,
220 data->currfid);
221 return 1;
222 }
223
224 return 0;
225 }
226
227 /* Write a new vid to the hardware */
228 static int write_new_vid(struct powernow_k8_data *data, u32 vid)
229 {
230 u32 lo;
231 u32 savefid = data->currfid;
232 int i = 0;
233
234 if ((data->currfid & INVALID_FID_MASK) || (vid & INVALID_VID_MASK)) {
235 printk(KERN_ERR PFX "internal error - overflow on vid write\n");
236 return 1;
237 }
238
239 lo = data->currfid;
240 lo |= (vid << MSR_C_LO_VID_SHIFT);
241 lo |= MSR_C_LO_INIT_FID_VID;
242
243 dprintk("writing vid 0x%x, lo 0x%x, hi 0x%x\n",
244 vid, lo, STOP_GRANT_5NS);
245
246 do {
247 wrmsr(MSR_FIDVID_CTL, lo, STOP_GRANT_5NS);
248 if (i++ > 100) {
249 printk(KERN_ERR PFX "internal error - pending bit "
250 "very stuck - no further pstate "
251 "changes possible\n");
252 return 1;
253 }
254 } while (query_current_values_with_pending_wait(data));
255
256 if (savefid != data->currfid) {
257 printk(KERN_ERR PFX "fid changed on vid trans, old "
258 "0x%x new 0x%x\n",
259 savefid, data->currfid);
260 return 1;
261 }
262
263 if (vid != data->currvid) {
264 printk(KERN_ERR PFX "vid trans failed, vid 0x%x, "
265 "curr 0x%x\n",
266 vid, data->currvid);
267 return 1;
268 }
269
270 return 0;
271 }
272
273 /*
274 * Reduce the vid by the max of step or reqvid.
275 * Decreasing vid codes represent increasing voltages:
276 * vid of 0 is 1.550V, vid of 0x1e is 0.800V, vid of VID_OFF is off.
277 */
278 static int decrease_vid_code_by_step(struct powernow_k8_data *data,
279 u32 reqvid, u32 step)
280 {
281 if ((data->currvid - reqvid) > step)
282 reqvid = data->currvid - step;
283
284 if (write_new_vid(data, reqvid))
285 return 1;
286
287 count_off_vst(data);
288
289 return 0;
290 }
291
292 /* Change hardware pstate by single MSR write */
293 static int transition_pstate(struct powernow_k8_data *data, u32 pstate)
294 {
295 wrmsr(MSR_PSTATE_CTRL, pstate, 0);
296 data->currpstate = pstate;
297 return 0;
298 }
299
300 /* Change Opteron/Athlon64 fid and vid, by the 3 phases. */
301 static int transition_fid_vid(struct powernow_k8_data *data,
302 u32 reqfid, u32 reqvid)
303 {
304 if (core_voltage_pre_transition(data, reqvid))
305 return 1;
306
307 if (core_frequency_transition(data, reqfid))
308 return 1;
309
310 if (core_voltage_post_transition(data, reqvid))
311 return 1;
312
313 if (query_current_values_with_pending_wait(data))
314 return 1;
315
316 if ((reqfid != data->currfid) || (reqvid != data->currvid)) {
317 printk(KERN_ERR PFX "failed (cpu%d): req 0x%x 0x%x, "
318 "curr 0x%x 0x%x\n",
319 smp_processor_id(),
320 reqfid, reqvid, data->currfid, data->currvid);
321 return 1;
322 }
323
324 dprintk("transitioned (cpu%d): new fid 0x%x, vid 0x%x\n",
325 smp_processor_id(), data->currfid, data->currvid);
326
327 return 0;
328 }
329
330 /* Phase 1 - core voltage transition ... setup voltage */
331 static int core_voltage_pre_transition(struct powernow_k8_data *data,
332 u32 reqvid)
333 {
334 u32 rvosteps = data->rvo;
335 u32 savefid = data->currfid;
336 u32 maxvid, lo;
337
338 dprintk("ph1 (cpu%d): start, currfid 0x%x, currvid 0x%x, "
339 "reqvid 0x%x, rvo 0x%x\n",
340 smp_processor_id(),
341 data->currfid, data->currvid, reqvid, data->rvo);
342
343 rdmsr(MSR_FIDVID_STATUS, lo, maxvid);
344 maxvid = 0x1f & (maxvid >> 16);
345 dprintk("ph1 maxvid=0x%x\n", maxvid);
346 if (reqvid < maxvid) /* lower numbers are higher voltages */
347 reqvid = maxvid;
348
349 while (data->currvid > reqvid) {
350 dprintk("ph1: curr 0x%x, req vid 0x%x\n",
351 data->currvid, reqvid);
352 if (decrease_vid_code_by_step(data, reqvid, data->vidmvs))
353 return 1;
354 }
355
356 while ((rvosteps > 0) && ((data->rvo + data->currvid) > reqvid)) {
357 if (data->currvid == maxvid) {
358 rvosteps = 0;
359 } else {
360 dprintk("ph1: changing vid for rvo, req 0x%x\n",
361 data->currvid - 1);
362 if (decrease_vid_code_by_step(data, data->currvid-1, 1))
363 return 1;
364 rvosteps--;
365 }
366 }
367
368 if (query_current_values_with_pending_wait(data))
369 return 1;
370
371 if (savefid != data->currfid) {
372 printk(KERN_ERR PFX "ph1 err, currfid changed 0x%x\n",
373 data->currfid);
374 return 1;
375 }
376
377 dprintk("ph1 complete, currfid 0x%x, currvid 0x%x\n",
378 data->currfid, data->currvid);
379
380 return 0;
381 }
382
383 /* Phase 2 - core frequency transition */
384 static int core_frequency_transition(struct powernow_k8_data *data, u32 reqfid)
385 {
386 u32 vcoreqfid, vcocurrfid, vcofiddiff;
387 u32 fid_interval, savevid = data->currvid;
388
389 if ((reqfid < HI_FID_TABLE_BOTTOM) &&
390 (data->currfid < HI_FID_TABLE_BOTTOM)) {
391 printk(KERN_ERR PFX "ph2: illegal lo-lo transition "
392 "0x%x 0x%x\n", reqfid, data->currfid);
393 return 1;
394 }
395
396 if (data->currfid == reqfid) {
397 printk(KERN_ERR PFX "ph2 null fid transition 0x%x\n",
398 data->currfid);
399 return 0;
400 }
401
402 dprintk("ph2 (cpu%d): starting, currfid 0x%x, currvid 0x%x, "
403 "reqfid 0x%x\n",
404 smp_processor_id(),
405 data->currfid, data->currvid, reqfid);
406
407 vcoreqfid = convert_fid_to_vco_fid(reqfid);
408 vcocurrfid = convert_fid_to_vco_fid(data->currfid);
409 vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
410 : vcoreqfid - vcocurrfid;
411
412 while (vcofiddiff > 2) {
413 (data->currfid & 1) ? (fid_interval = 1) : (fid_interval = 2);
414
415 if (reqfid > data->currfid) {
416 if (data->currfid > LO_FID_TABLE_TOP) {
417 if (write_new_fid(data,
418 data->currfid + fid_interval))
419 return 1;
420 } else {
421 if (write_new_fid
422 (data,
423 2 + convert_fid_to_vco_fid(data->currfid)))
424 return 1;
425 }
426 } else {
427 if (write_new_fid(data, data->currfid - fid_interval))
428 return 1;
429 }
430
431 vcocurrfid = convert_fid_to_vco_fid(data->currfid);
432 vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
433 : vcoreqfid - vcocurrfid;
434 }
435
436 if (write_new_fid(data, reqfid))
437 return 1;
438
439 if (query_current_values_with_pending_wait(data))
440 return 1;
441
442 if (data->currfid != reqfid) {
443 printk(KERN_ERR PFX
444 "ph2: mismatch, failed fid transition, "
445 "curr 0x%x, req 0x%x\n",
446 data->currfid, reqfid);
447 return 1;
448 }
449
450 if (savevid != data->currvid) {
451 printk(KERN_ERR PFX "ph2: vid changed, save 0x%x, curr 0x%x\n",
452 savevid, data->currvid);
453 return 1;
454 }
455
456 dprintk("ph2 complete, currfid 0x%x, currvid 0x%x\n",
457 data->currfid, data->currvid);
458
459 return 0;
460 }
461
462 /* Phase 3 - core voltage transition flow ... jump to the final vid. */
463 static int core_voltage_post_transition(struct powernow_k8_data *data,
464 u32 reqvid)
465 {
466 u32 savefid = data->currfid;
467 u32 savereqvid = reqvid;
468
469 dprintk("ph3 (cpu%d): starting, currfid 0x%x, currvid 0x%x\n",
470 smp_processor_id(),
471 data->currfid, data->currvid);
472
473 if (reqvid != data->currvid) {
474 if (write_new_vid(data, reqvid))
475 return 1;
476
477 if (savefid != data->currfid) {
478 printk(KERN_ERR PFX
479 "ph3: bad fid change, save 0x%x, curr 0x%x\n",
480 savefid, data->currfid);
481 return 1;
482 }
483
484 if (data->currvid != reqvid) {
485 printk(KERN_ERR PFX
486 "ph3: failed vid transition\n, "
487 "req 0x%x, curr 0x%x",
488 reqvid, data->currvid);
489 return 1;
490 }
491 }
492
493 if (query_current_values_with_pending_wait(data))
494 return 1;
495
496 if (savereqvid != data->currvid) {
497 dprintk("ph3 failed, currvid 0x%x\n", data->currvid);
498 return 1;
499 }
500
501 if (savefid != data->currfid) {
502 dprintk("ph3 failed, currfid changed 0x%x\n",
503 data->currfid);
504 return 1;
505 }
506
507 dprintk("ph3 complete, currfid 0x%x, currvid 0x%x\n",
508 data->currfid, data->currvid);
509
510 return 0;
511 }
512
513 static int check_supported_cpu(unsigned int cpu)
514 {
515 cpumask_t oldmask;
516 u32 eax, ebx, ecx, edx;
517 unsigned int rc = 0;
518
519 oldmask = current->cpus_allowed;
520 set_cpus_allowed_ptr(current, &cpumask_of_cpu(cpu));
521
522 if (smp_processor_id() != cpu) {
523 printk(KERN_ERR PFX "limiting to cpu %u failed\n", cpu);
524 goto out;
525 }
526
527 if (current_cpu_data.x86_vendor != X86_VENDOR_AMD)
528 goto out;
529
530 eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
531 if (((eax & CPUID_XFAM) != CPUID_XFAM_K8) &&
532 ((eax & CPUID_XFAM) < CPUID_XFAM_10H))
533 goto out;
534
535 if ((eax & CPUID_XFAM) == CPUID_XFAM_K8) {
536 if (((eax & CPUID_USE_XFAM_XMOD) != CPUID_USE_XFAM_XMOD) ||
537 ((eax & CPUID_XMOD) > CPUID_XMOD_REV_MASK)) {
538 printk(KERN_INFO PFX
539 "Processor cpuid %x not supported\n", eax);
540 goto out;
541 }
542
543 eax = cpuid_eax(CPUID_GET_MAX_CAPABILITIES);
544 if (eax < CPUID_FREQ_VOLT_CAPABILITIES) {
545 printk(KERN_INFO PFX
546 "No frequency change capabilities detected\n");
547 goto out;
548 }
549
550 cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
551 if ((edx & P_STATE_TRANSITION_CAPABLE)
552 != P_STATE_TRANSITION_CAPABLE) {
553 printk(KERN_INFO PFX
554 "Power state transitions not supported\n");
555 goto out;
556 }
557 } else { /* must be a HW Pstate capable processor */
558 cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
559 if ((edx & USE_HW_PSTATE) == USE_HW_PSTATE)
560 cpu_family = CPU_HW_PSTATE;
561 else
562 goto out;
563 }
564
565 rc = 1;
566
567 out:
568 set_cpus_allowed_ptr(current, &oldmask);
569 return rc;
570 }
571
572 static int check_pst_table(struct powernow_k8_data *data, struct pst_s *pst,
573 u8 maxvid)
574 {
575 unsigned int j;
576 u8 lastfid = 0xff;
577
578 for (j = 0; j < data->numps; j++) {
579 if (pst[j].vid > LEAST_VID) {
580 printk(KERN_ERR FW_BUG PFX "vid %d invalid : 0x%x\n",
581 j, pst[j].vid);
582 return -EINVAL;
583 }
584 if (pst[j].vid < data->rvo) {
585 /* vid + rvo >= 0 */
586 printk(KERN_ERR FW_BUG PFX "0 vid exceeded with pstate"
587 " %d\n", j);
588 return -ENODEV;
589 }
590 if (pst[j].vid < maxvid + data->rvo) {
591 /* vid + rvo >= maxvid */
592 printk(KERN_ERR FW_BUG PFX "maxvid exceeded with pstate"
593 " %d\n", j);
594 return -ENODEV;
595 }
596 if (pst[j].fid > MAX_FID) {
597 printk(KERN_ERR FW_BUG PFX "maxfid exceeded with pstate"
598 " %d\n", j);
599 return -ENODEV;
600 }
601 if (j && (pst[j].fid < HI_FID_TABLE_BOTTOM)) {
602 /* Only first fid is allowed to be in "low" range */
603 printk(KERN_ERR FW_BUG PFX "two low fids - %d : "
604 "0x%x\n", j, pst[j].fid);
605 return -EINVAL;
606 }
607 if (pst[j].fid < lastfid)
608 lastfid = pst[j].fid;
609 }
610 if (lastfid & 1) {
611 printk(KERN_ERR FW_BUG PFX "lastfid invalid\n");
612 return -EINVAL;
613 }
614 if (lastfid > LO_FID_TABLE_TOP)
615 printk(KERN_INFO FW_BUG PFX
616 "first fid not from lo freq table\n");
617
618 return 0;
619 }
620
621 static void invalidate_entry(struct powernow_k8_data *data, unsigned int entry)
622 {
623 data->powernow_table[entry].frequency = CPUFREQ_ENTRY_INVALID;
624 }
625
626 static void print_basics(struct powernow_k8_data *data)
627 {
628 int j;
629 for (j = 0; j < data->numps; j++) {
630 if (data->powernow_table[j].frequency !=
631 CPUFREQ_ENTRY_INVALID) {
632 if (cpu_family == CPU_HW_PSTATE) {
633 printk(KERN_INFO PFX
634 " %d : pstate %d (%d MHz)\n", j,
635 data->powernow_table[j].index,
636 data->powernow_table[j].frequency/1000);
637 } else {
638 printk(KERN_INFO PFX
639 " %d : fid 0x%x (%d MHz), vid 0x%x\n",
640 j,
641 data->powernow_table[j].index & 0xff,
642 data->powernow_table[j].frequency/1000,
643 data->powernow_table[j].index >> 8);
644 }
645 }
646 }
647 if (data->batps)
648 printk(KERN_INFO PFX "Only %d pstates on battery\n",
649 data->batps);
650 }
651
652 static u32 freq_from_fid_did(u32 fid, u32 did)
653 {
654 u32 mhz = 0;
655
656 if (boot_cpu_data.x86 == 0x10)
657 mhz = (100 * (fid + 0x10)) >> did;
658 else if (boot_cpu_data.x86 == 0x11)
659 mhz = (100 * (fid + 8)) >> did;
660 else
661 BUG();
662
663 return mhz * 1000;
664 }
665
666 static int fill_powernow_table(struct powernow_k8_data *data,
667 struct pst_s *pst, u8 maxvid)
668 {
669 struct cpufreq_frequency_table *powernow_table;
670 unsigned int j;
671
672 if (data->batps) {
673 /* use ACPI support to get full speed on mains power */
674 printk(KERN_WARNING PFX
675 "Only %d pstates usable (use ACPI driver for full "
676 "range\n", data->batps);
677 data->numps = data->batps;
678 }
679
680 for (j = 1; j < data->numps; j++) {
681 if (pst[j-1].fid >= pst[j].fid) {
682 printk(KERN_ERR PFX "PST out of sequence\n");
683 return -EINVAL;
684 }
685 }
686
687 if (data->numps < 2) {
688 printk(KERN_ERR PFX "no p states to transition\n");
689 return -ENODEV;
690 }
691
692 if (check_pst_table(data, pst, maxvid))
693 return -EINVAL;
694
695 powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
696 * (data->numps + 1)), GFP_KERNEL);
697 if (!powernow_table) {
698 printk(KERN_ERR PFX "powernow_table memory alloc failure\n");
699 return -ENOMEM;
700 }
701
702 for (j = 0; j < data->numps; j++) {
703 int freq;
704 powernow_table[j].index = pst[j].fid; /* lower 8 bits */
705 powernow_table[j].index |= (pst[j].vid << 8); /* upper 8 bits */
706 freq = find_khz_freq_from_fid(pst[j].fid);
707 powernow_table[j].frequency = freq;
708 }
709 powernow_table[data->numps].frequency = CPUFREQ_TABLE_END;
710 powernow_table[data->numps].index = 0;
711
712 if (query_current_values_with_pending_wait(data)) {
713 kfree(powernow_table);
714 return -EIO;
715 }
716
717 dprintk("cfid 0x%x, cvid 0x%x\n", data->currfid, data->currvid);
718 data->powernow_table = powernow_table;
719 if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu)
720 print_basics(data);
721
722 for (j = 0; j < data->numps; j++)
723 if ((pst[j].fid == data->currfid) &&
724 (pst[j].vid == data->currvid))
725 return 0;
726
727 dprintk("currfid/vid do not match PST, ignoring\n");
728 return 0;
729 }
730
731 /* Find and validate the PSB/PST table in BIOS. */
732 static int find_psb_table(struct powernow_k8_data *data)
733 {
734 struct psb_s *psb;
735 unsigned int i;
736 u32 mvs;
737 u8 maxvid;
738 u32 cpst = 0;
739 u32 thiscpuid;
740
741 for (i = 0xc0000; i < 0xffff0; i += 0x10) {
742 /* Scan BIOS looking for the signature. */
743 /* It can not be at ffff0 - it is too big. */
744
745 psb = phys_to_virt(i);
746 if (memcmp(psb, PSB_ID_STRING, PSB_ID_STRING_LEN) != 0)
747 continue;
748
749 dprintk("found PSB header at 0x%p\n", psb);
750
751 dprintk("table vers: 0x%x\n", psb->tableversion);
752 if (psb->tableversion != PSB_VERSION_1_4) {
753 printk(KERN_ERR FW_BUG PFX "PSB table is not v1.4\n");
754 return -ENODEV;
755 }
756
757 dprintk("flags: 0x%x\n", psb->flags1);
758 if (psb->flags1) {
759 printk(KERN_ERR FW_BUG PFX "unknown flags\n");
760 return -ENODEV;
761 }
762
763 data->vstable = psb->vstable;
764 dprintk("voltage stabilization time: %d(*20us)\n",
765 data->vstable);
766
767 dprintk("flags2: 0x%x\n", psb->flags2);
768 data->rvo = psb->flags2 & 3;
769 data->irt = ((psb->flags2) >> 2) & 3;
770 mvs = ((psb->flags2) >> 4) & 3;
771 data->vidmvs = 1 << mvs;
772 data->batps = ((psb->flags2) >> 6) & 3;
773
774 dprintk("ramp voltage offset: %d\n", data->rvo);
775 dprintk("isochronous relief time: %d\n", data->irt);
776 dprintk("maximum voltage step: %d - 0x%x\n", mvs, data->vidmvs);
777
778 dprintk("numpst: 0x%x\n", psb->num_tables);
779 cpst = psb->num_tables;
780 if ((psb->cpuid == 0x00000fc0) ||
781 (psb->cpuid == 0x00000fe0)) {
782 thiscpuid = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
783 if ((thiscpuid == 0x00000fc0) ||
784 (thiscpuid == 0x00000fe0))
785 cpst = 1;
786 }
787 if (cpst != 1) {
788 printk(KERN_ERR FW_BUG PFX "numpst must be 1\n");
789 return -ENODEV;
790 }
791
792 data->plllock = psb->plllocktime;
793 dprintk("plllocktime: 0x%x (units 1us)\n", psb->plllocktime);
794 dprintk("maxfid: 0x%x\n", psb->maxfid);
795 dprintk("maxvid: 0x%x\n", psb->maxvid);
796 maxvid = psb->maxvid;
797
798 data->numps = psb->numps;
799 dprintk("numpstates: 0x%x\n", data->numps);
800 return fill_powernow_table(data,
801 (struct pst_s *)(psb+1), maxvid);
802 }
803 /*
804 * If you see this message, complain to BIOS manufacturer. If
805 * he tells you "we do not support Linux" or some similar
806 * nonsense, remember that Windows 2000 uses the same legacy
807 * mechanism that the old Linux PSB driver uses. Tell them it
808 * is broken with Windows 2000.
809 *
810 * The reference to the AMD documentation is chapter 9 in the
811 * BIOS and Kernel Developer's Guide, which is available on
812 * www.amd.com
813 */
814 printk(KERN_ERR FW_BUG PFX "No PSB or ACPI _PSS objects\n");
815 return -ENODEV;
816 }
817
818 static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data,
819 unsigned int index)
820 {
821 acpi_integer control;
822
823 if (!data->acpi_data.state_count || (cpu_family == CPU_HW_PSTATE))
824 return;
825
826 control = data->acpi_data.states[index].control; data->irt = (control
827 >> IRT_SHIFT) & IRT_MASK; data->rvo = (control >>
828 RVO_SHIFT) & RVO_MASK; data->exttype = (control
829 >> EXT_TYPE_SHIFT) & EXT_TYPE_MASK;
830 data->plllock = (control >> PLL_L_SHIFT) & PLL_L_MASK; data->vidmvs = 1
831 << ((control >> MVS_SHIFT) & MVS_MASK); data->vstable =
832 (control >> VST_SHIFT) & VST_MASK; }
833
834 static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data)
835 {
836 struct cpufreq_frequency_table *powernow_table;
837 int ret_val = -ENODEV;
838 acpi_integer control, status;
839
840 if (acpi_processor_register_performance(&data->acpi_data, data->cpu)) {
841 dprintk("register performance failed: bad ACPI data\n");
842 return -EIO;
843 }
844
845 /* verify the data contained in the ACPI structures */
846 if (data->acpi_data.state_count <= 1) {
847 dprintk("No ACPI P-States\n");
848 goto err_out;
849 }
850
851 control = data->acpi_data.control_register.space_id;
852 status = data->acpi_data.status_register.space_id;
853
854 if ((control != ACPI_ADR_SPACE_FIXED_HARDWARE) ||
855 (status != ACPI_ADR_SPACE_FIXED_HARDWARE)) {
856 dprintk("Invalid control/status registers (%x - %x)\n",
857 control, status);
858 goto err_out;
859 }
860
861 /* fill in data->powernow_table */
862 powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
863 * (data->acpi_data.state_count + 1)), GFP_KERNEL);
864 if (!powernow_table) {
865 dprintk("powernow_table memory alloc failure\n");
866 goto err_out;
867 }
868
869 if (cpu_family == CPU_HW_PSTATE)
870 ret_val = fill_powernow_table_pstate(data, powernow_table);
871 else
872 ret_val = fill_powernow_table_fidvid(data, powernow_table);
873 if (ret_val)
874 goto err_out_mem;
875
876 powernow_table[data->acpi_data.state_count].frequency =
877 CPUFREQ_TABLE_END;
878 powernow_table[data->acpi_data.state_count].index = 0;
879 data->powernow_table = powernow_table;
880
881 /* fill in data */
882 data->numps = data->acpi_data.state_count;
883 if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu)
884 print_basics(data);
885 powernow_k8_acpi_pst_values(data, 0);
886
887 /* notify BIOS that we exist */
888 acpi_processor_notify_smm(THIS_MODULE);
889
890 if (!zalloc_cpumask_var(&data->acpi_data.shared_cpu_map, GFP_KERNEL)) {
891 printk(KERN_ERR PFX
892 "unable to alloc powernow_k8_data cpumask\n");
893 ret_val = -ENOMEM;
894 goto err_out_mem;
895 }
896
897 return 0;
898
899 err_out_mem:
900 kfree(powernow_table);
901
902 err_out:
903 acpi_processor_unregister_performance(&data->acpi_data, data->cpu);
904
905 /* data->acpi_data.state_count informs us at ->exit()
906 * whether ACPI was used */
907 data->acpi_data.state_count = 0;
908
909 return ret_val;
910 }
911
912 static int fill_powernow_table_pstate(struct powernow_k8_data *data,
913 struct cpufreq_frequency_table *powernow_table)
914 {
915 int i;
916 u32 hi = 0, lo = 0;
917 rdmsr(MSR_PSTATE_CUR_LIMIT, hi, lo);
918 data->max_hw_pstate = (hi & HW_PSTATE_MAX_MASK) >> HW_PSTATE_MAX_SHIFT;
919
920 for (i = 0; i < data->acpi_data.state_count; i++) {
921 u32 index;
922
923 index = data->acpi_data.states[i].control & HW_PSTATE_MASK;
924 if (index > data->max_hw_pstate) {
925 printk(KERN_ERR PFX "invalid pstate %d - "
926 "bad value %d.\n", i, index);
927 printk(KERN_ERR PFX "Please report to BIOS "
928 "manufacturer\n");
929 invalidate_entry(data, i);
930 continue;
931 }
932 rdmsr(MSR_PSTATE_DEF_BASE + index, lo, hi);
933 if (!(hi & HW_PSTATE_VALID_MASK)) {
934 dprintk("invalid pstate %d, ignoring\n", index);
935 invalidate_entry(data, i);
936 continue;
937 }
938
939 powernow_table[i].index = index;
940
941 /* Frequency may be rounded for these */
942 if (boot_cpu_data.x86 == 0x10 || boot_cpu_data.x86 == 0x11) {
943 powernow_table[i].frequency =
944 freq_from_fid_did(lo & 0x3f, (lo >> 6) & 7);
945 } else
946 powernow_table[i].frequency =
947 data->acpi_data.states[i].core_frequency * 1000;
948 }
949 return 0;
950 }
951
952 static int fill_powernow_table_fidvid(struct powernow_k8_data *data,
953 struct cpufreq_frequency_table *powernow_table)
954 {
955 int i;
956 int cntlofreq = 0;
957
958 for (i = 0; i < data->acpi_data.state_count; i++) {
959 u32 fid;
960 u32 vid;
961 u32 freq, index;
962 acpi_integer status, control;
963
964 if (data->exttype) {
965 status = data->acpi_data.states[i].status;
966 fid = status & EXT_FID_MASK;
967 vid = (status >> VID_SHIFT) & EXT_VID_MASK;
968 } else {
969 control = data->acpi_data.states[i].control;
970 fid = control & FID_MASK;
971 vid = (control >> VID_SHIFT) & VID_MASK;
972 }
973
974 dprintk(" %d : fid 0x%x, vid 0x%x\n", i, fid, vid);
975
976 index = fid | (vid<<8);
977 powernow_table[i].index = index;
978
979 freq = find_khz_freq_from_fid(fid);
980 powernow_table[i].frequency = freq;
981
982 /* verify frequency is OK */
983 if ((freq > (MAX_FREQ * 1000)) || (freq < (MIN_FREQ * 1000))) {
984 dprintk("invalid freq %u kHz, ignoring\n", freq);
985 invalidate_entry(data, i);
986 continue;
987 }
988
989 /* verify voltage is OK -
990 * BIOSs are using "off" to indicate invalid */
991 if (vid == VID_OFF) {
992 dprintk("invalid vid %u, ignoring\n", vid);
993 invalidate_entry(data, i);
994 continue;
995 }
996
997 /* verify only 1 entry from the lo frequency table */
998 if (fid < HI_FID_TABLE_BOTTOM) {
999 if (cntlofreq) {
1000 /* if both entries are the same,
1001 * ignore this one ... */
1002 if ((freq != powernow_table[cntlofreq].frequency) ||
1003 (index != powernow_table[cntlofreq].index)) {
1004 printk(KERN_ERR PFX
1005 "Too many lo freq table "
1006 "entries\n");
1007 return 1;
1008 }
1009
1010 dprintk("double low frequency table entry, "
1011 "ignoring it.\n");
1012 invalidate_entry(data, i);
1013 continue;
1014 } else
1015 cntlofreq = i;
1016 }
1017
1018 if (freq != (data->acpi_data.states[i].core_frequency * 1000)) {
1019 printk(KERN_INFO PFX "invalid freq entries "
1020 "%u kHz vs. %u kHz\n", freq,
1021 (unsigned int)
1022 (data->acpi_data.states[i].core_frequency
1023 * 1000));
1024 invalidate_entry(data, i);
1025 continue;
1026 }
1027 }
1028 return 0;
1029 }
1030
1031 static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data)
1032 {
1033 if (data->acpi_data.state_count)
1034 acpi_processor_unregister_performance(&data->acpi_data,
1035 data->cpu);
1036 free_cpumask_var(data->acpi_data.shared_cpu_map);
1037 }
1038
1039 static int get_transition_latency(struct powernow_k8_data *data)
1040 {
1041 int max_latency = 0;
1042 int i;
1043 for (i = 0; i < data->acpi_data.state_count; i++) {
1044 int cur_latency = data->acpi_data.states[i].transition_latency
1045 + data->acpi_data.states[i].bus_master_latency;
1046 if (cur_latency > max_latency)
1047 max_latency = cur_latency;
1048 }
1049 /* value in usecs, needs to be in nanoseconds */
1050 return 1000 * max_latency;
1051 }
1052
1053 /* Take a frequency, and issue the fid/vid transition command */
1054 static int transition_frequency_fidvid(struct powernow_k8_data *data,
1055 unsigned int index)
1056 {
1057 u32 fid = 0;
1058 u32 vid = 0;
1059 int res, i;
1060 struct cpufreq_freqs freqs;
1061
1062 dprintk("cpu %d transition to index %u\n", smp_processor_id(), index);
1063
1064 /* fid/vid correctness check for k8 */
1065 /* fid are the lower 8 bits of the index we stored into
1066 * the cpufreq frequency table in find_psb_table, vid
1067 * are the upper 8 bits.
1068 */
1069 fid = data->powernow_table[index].index & 0xFF;
1070 vid = (data->powernow_table[index].index & 0xFF00) >> 8;
1071
1072 dprintk("table matched fid 0x%x, giving vid 0x%x\n", fid, vid);
1073
1074 if (query_current_values_with_pending_wait(data))
1075 return 1;
1076
1077 if ((data->currvid == vid) && (data->currfid == fid)) {
1078 dprintk("target matches current values (fid 0x%x, vid 0x%x)\n",
1079 fid, vid);
1080 return 0;
1081 }
1082
1083 if ((fid < HI_FID_TABLE_BOTTOM) &&
1084 (data->currfid < HI_FID_TABLE_BOTTOM)) {
1085 printk(KERN_ERR PFX
1086 "ignoring illegal change in lo freq table-%x to 0x%x\n",
1087 data->currfid, fid);
1088 return 1;
1089 }
1090
1091 dprintk("cpu %d, changing to fid 0x%x, vid 0x%x\n",
1092 smp_processor_id(), fid, vid);
1093 freqs.old = find_khz_freq_from_fid(data->currfid);
1094 freqs.new = find_khz_freq_from_fid(fid);
1095
1096 for_each_cpu_mask_nr(i, *(data->available_cores)) {
1097 freqs.cpu = i;
1098 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1099 }
1100
1101 res = transition_fid_vid(data, fid, vid);
1102 freqs.new = find_khz_freq_from_fid(data->currfid);
1103
1104 for_each_cpu_mask_nr(i, *(data->available_cores)) {
1105 freqs.cpu = i;
1106 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1107 }
1108 return res;
1109 }
1110
1111 /* Take a frequency, and issue the hardware pstate transition command */
1112 static int transition_frequency_pstate(struct powernow_k8_data *data,
1113 unsigned int index)
1114 {
1115 u32 pstate = 0;
1116 int res, i;
1117 struct cpufreq_freqs freqs;
1118
1119 dprintk("cpu %d transition to index %u\n", smp_processor_id(), index);
1120
1121 /* get MSR index for hardware pstate transition */
1122 pstate = index & HW_PSTATE_MASK;
1123 if (pstate > data->max_hw_pstate)
1124 return 0;
1125 freqs.old = find_khz_freq_from_pstate(data->powernow_table,
1126 data->currpstate);
1127 freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate);
1128
1129 for_each_cpu_mask_nr(i, *(data->available_cores)) {
1130 freqs.cpu = i;
1131 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1132 }
1133
1134 res = transition_pstate(data, pstate);
1135 freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate);
1136
1137 for_each_cpu_mask_nr(i, *(data->available_cores)) {
1138 freqs.cpu = i;
1139 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1140 }
1141 return res;
1142 }
1143
1144 /* Driver entry point to switch to the target frequency */
1145 static int powernowk8_target(struct cpufreq_policy *pol,
1146 unsigned targfreq, unsigned relation)
1147 {
1148 cpumask_t oldmask;
1149 struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1150 u32 checkfid;
1151 u32 checkvid;
1152 unsigned int newstate;
1153 int ret = -EIO;
1154
1155 if (!data)
1156 return -EINVAL;
1157
1158 checkfid = data->currfid;
1159 checkvid = data->currvid;
1160
1161 /* only run on specific CPU from here on */
1162 oldmask = current->cpus_allowed;
1163 set_cpus_allowed_ptr(current, &cpumask_of_cpu(pol->cpu));
1164
1165 if (smp_processor_id() != pol->cpu) {
1166 printk(KERN_ERR PFX "limiting to cpu %u failed\n", pol->cpu);
1167 goto err_out;
1168 }
1169
1170 if (pending_bit_stuck()) {
1171 printk(KERN_ERR PFX "failing targ, change pending bit set\n");
1172 goto err_out;
1173 }
1174
1175 dprintk("targ: cpu %d, %d kHz, min %d, max %d, relation %d\n",
1176 pol->cpu, targfreq, pol->min, pol->max, relation);
1177
1178 if (query_current_values_with_pending_wait(data))
1179 goto err_out;
1180
1181 if (cpu_family != CPU_HW_PSTATE) {
1182 dprintk("targ: curr fid 0x%x, vid 0x%x\n",
1183 data->currfid, data->currvid);
1184
1185 if ((checkvid != data->currvid) ||
1186 (checkfid != data->currfid)) {
1187 printk(KERN_INFO PFX
1188 "error - out of sync, fix 0x%x 0x%x, "
1189 "vid 0x%x 0x%x\n",
1190 checkfid, data->currfid,
1191 checkvid, data->currvid);
1192 }
1193 }
1194
1195 if (cpufreq_frequency_table_target(pol, data->powernow_table,
1196 targfreq, relation, &newstate))
1197 goto err_out;
1198
1199 mutex_lock(&fidvid_mutex);
1200
1201 powernow_k8_acpi_pst_values(data, newstate);
1202
1203 if (cpu_family == CPU_HW_PSTATE)
1204 ret = transition_frequency_pstate(data, newstate);
1205 else
1206 ret = transition_frequency_fidvid(data, newstate);
1207 if (ret) {
1208 printk(KERN_ERR PFX "transition frequency failed\n");
1209 ret = 1;
1210 mutex_unlock(&fidvid_mutex);
1211 goto err_out;
1212 }
1213 mutex_unlock(&fidvid_mutex);
1214
1215 if (cpu_family == CPU_HW_PSTATE)
1216 pol->cur = find_khz_freq_from_pstate(data->powernow_table,
1217 newstate);
1218 else
1219 pol->cur = find_khz_freq_from_fid(data->currfid);
1220 ret = 0;
1221
1222 err_out:
1223 set_cpus_allowed_ptr(current, &oldmask);
1224 return ret;
1225 }
1226
1227 /* Driver entry point to verify the policy and range of frequencies */
1228 static int powernowk8_verify(struct cpufreq_policy *pol)
1229 {
1230 struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1231
1232 if (!data)
1233 return -EINVAL;
1234
1235 return cpufreq_frequency_table_verify(pol, data->powernow_table);
1236 }
1237
1238 static const char ACPI_PSS_BIOS_BUG_MSG[] =
1239 KERN_ERR FW_BUG PFX "No compatible ACPI _PSS objects found.\n"
1240 KERN_ERR FW_BUG PFX "Try again with latest BIOS.\n";
1241
1242 /* per CPU init entry point to the driver */
1243 static int __cpuinit powernowk8_cpu_init(struct cpufreq_policy *pol)
1244 {
1245 struct powernow_k8_data *data;
1246 cpumask_t oldmask;
1247 int rc;
1248
1249 if (!cpu_online(pol->cpu))
1250 return -ENODEV;
1251
1252 if (!check_supported_cpu(pol->cpu))
1253 return -ENODEV;
1254
1255 data = kzalloc(sizeof(struct powernow_k8_data), GFP_KERNEL);
1256 if (!data) {
1257 printk(KERN_ERR PFX "unable to alloc powernow_k8_data");
1258 return -ENOMEM;
1259 }
1260
1261 data->cpu = pol->cpu;
1262 data->currpstate = HW_PSTATE_INVALID;
1263
1264 if (powernow_k8_cpu_init_acpi(data)) {
1265 /*
1266 * Use the PSB BIOS structure. This is only availabe on
1267 * an UP version, and is deprecated by AMD.
1268 */
1269 if (num_online_cpus() != 1) {
1270 printk_once(ACPI_PSS_BIOS_BUG_MSG);
1271 goto err_out;
1272 }
1273 if (pol->cpu != 0) {
1274 printk(KERN_ERR FW_BUG PFX "No ACPI _PSS objects for "
1275 "CPU other than CPU0. Complain to your BIOS "
1276 "vendor.\n");
1277 goto err_out;
1278 }
1279 rc = find_psb_table(data);
1280 if (rc)
1281 goto err_out;
1282
1283 /* Take a crude guess here.
1284 * That guess was in microseconds, so multiply with 1000 */
1285 pol->cpuinfo.transition_latency = (
1286 ((data->rvo + 8) * data->vstable * VST_UNITS_20US) +
1287 ((1 << data->irt) * 30)) * 1000;
1288 } else /* ACPI _PSS objects available */
1289 pol->cpuinfo.transition_latency = get_transition_latency(data);
1290
1291 /* only run on specific CPU from here on */
1292 oldmask = current->cpus_allowed;
1293 set_cpus_allowed_ptr(current, &cpumask_of_cpu(pol->cpu));
1294
1295 if (smp_processor_id() != pol->cpu) {
1296 printk(KERN_ERR PFX "limiting to cpu %u failed\n", pol->cpu);
1297 goto err_out_unmask;
1298 }
1299
1300 if (pending_bit_stuck()) {
1301 printk(KERN_ERR PFX "failing init, change pending bit set\n");
1302 goto err_out_unmask;
1303 }
1304
1305 if (query_current_values_with_pending_wait(data))
1306 goto err_out_unmask;
1307
1308 if (cpu_family == CPU_OPTERON)
1309 fidvid_msr_init();
1310
1311 /* run on any CPU again */
1312 set_cpus_allowed_ptr(current, &oldmask);
1313
1314 if (cpu_family == CPU_HW_PSTATE)
1315 cpumask_copy(pol->cpus, cpumask_of(pol->cpu));
1316 else
1317 cpumask_copy(pol->cpus, cpu_core_mask(pol->cpu));
1318 data->available_cores = pol->cpus;
1319
1320 if (cpu_family == CPU_HW_PSTATE)
1321 pol->cur = find_khz_freq_from_pstate(data->powernow_table,
1322 data->currpstate);
1323 else
1324 pol->cur = find_khz_freq_from_fid(data->currfid);
1325 dprintk("policy current frequency %d kHz\n", pol->cur);
1326
1327 /* min/max the cpu is capable of */
1328 if (cpufreq_frequency_table_cpuinfo(pol, data->powernow_table)) {
1329 printk(KERN_ERR FW_BUG PFX "invalid powernow_table\n");
1330 powernow_k8_cpu_exit_acpi(data);
1331 kfree(data->powernow_table);
1332 kfree(data);
1333 return -EINVAL;
1334 }
1335
1336 cpufreq_frequency_table_get_attr(data->powernow_table, pol->cpu);
1337
1338 if (cpu_family == CPU_HW_PSTATE)
1339 dprintk("cpu_init done, current pstate 0x%x\n",
1340 data->currpstate);
1341 else
1342 dprintk("cpu_init done, current fid 0x%x, vid 0x%x\n",
1343 data->currfid, data->currvid);
1344
1345 per_cpu(powernow_data, pol->cpu) = data;
1346
1347 return 0;
1348
1349 err_out_unmask:
1350 set_cpus_allowed_ptr(current, &oldmask);
1351 powernow_k8_cpu_exit_acpi(data);
1352
1353 err_out:
1354 kfree(data);
1355 return -ENODEV;
1356 }
1357
1358 static int __devexit powernowk8_cpu_exit(struct cpufreq_policy *pol)
1359 {
1360 struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1361
1362 if (!data)
1363 return -EINVAL;
1364
1365 powernow_k8_cpu_exit_acpi(data);
1366
1367 cpufreq_frequency_table_put_attr(pol->cpu);
1368
1369 kfree(data->powernow_table);
1370 kfree(data);
1371
1372 return 0;
1373 }
1374
1375 static unsigned int powernowk8_get(unsigned int cpu)
1376 {
1377 struct powernow_k8_data *data;
1378 cpumask_t oldmask = current->cpus_allowed;
1379 unsigned int khz = 0;
1380 unsigned int first;
1381
1382 first = cpumask_first(cpu_core_mask(cpu));
1383 data = per_cpu(powernow_data, first);
1384
1385 if (!data)
1386 return -EINVAL;
1387
1388 set_cpus_allowed_ptr(current, &cpumask_of_cpu(cpu));
1389 if (smp_processor_id() != cpu) {
1390 printk(KERN_ERR PFX
1391 "limiting to CPU %d failed in powernowk8_get\n", cpu);
1392 set_cpus_allowed_ptr(current, &oldmask);
1393 return 0;
1394 }
1395
1396 if (query_current_values_with_pending_wait(data))
1397 goto out;
1398
1399 if (cpu_family == CPU_HW_PSTATE)
1400 khz = find_khz_freq_from_pstate(data->powernow_table,
1401 data->currpstate);
1402 else
1403 khz = find_khz_freq_from_fid(data->currfid);
1404
1405
1406 out:
1407 set_cpus_allowed_ptr(current, &oldmask);
1408 return khz;
1409 }
1410
1411 static struct freq_attr *powernow_k8_attr[] = {
1412 &cpufreq_freq_attr_scaling_available_freqs,
1413 NULL,
1414 };
1415
1416 static struct cpufreq_driver cpufreq_amd64_driver = {
1417 .verify = powernowk8_verify,
1418 .target = powernowk8_target,
1419 .init = powernowk8_cpu_init,
1420 .exit = __devexit_p(powernowk8_cpu_exit),
1421 .get = powernowk8_get,
1422 .name = "powernow-k8",
1423 .owner = THIS_MODULE,
1424 .attr = powernow_k8_attr,
1425 };
1426
1427 /* driver entry point for init */
1428 static int __cpuinit powernowk8_init(void)
1429 {
1430 unsigned int i, supported_cpus = 0;
1431
1432 for_each_online_cpu(i) {
1433 if (check_supported_cpu(i))
1434 supported_cpus++;
1435 }
1436
1437 if (supported_cpus == num_online_cpus()) {
1438 printk(KERN_INFO PFX "Found %d %s "
1439 "processors (%d cpu cores) (" VERSION ")\n",
1440 num_online_nodes(),
1441 boot_cpu_data.x86_model_id, supported_cpus);
1442 return cpufreq_register_driver(&cpufreq_amd64_driver);
1443 }
1444
1445 return -ENODEV;
1446 }
1447
1448 /* driver entry point for term */
1449 static void __exit powernowk8_exit(void)
1450 {
1451 dprintk("exit\n");
1452
1453 cpufreq_unregister_driver(&cpufreq_amd64_driver);
1454 }
1455
1456 MODULE_AUTHOR("Paul Devriendt <paul.devriendt@amd.com> and "
1457 "Mark Langsdorf <mark.langsdorf@amd.com>");
1458 MODULE_DESCRIPTION("AMD Athlon 64 and Opteron processor frequency driver.");
1459 MODULE_LICENSE("GPL");
1460
1461 late_initcall(powernowk8_init);
1462 module_exit(powernowk8_exit);