]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - arch/x86/kernel/cpu/intel.c
Merge remote-tracking branch 'asoc/fix/sunxi' into asoc-linus
[mirror_ubuntu-focal-kernel.git] / arch / x86 / kernel / cpu / intel.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/kernel.h>
3
4 #include <linux/string.h>
5 #include <linux/bitops.h>
6 #include <linux/smp.h>
7 #include <linux/sched.h>
8 #include <linux/sched/clock.h>
9 #include <linux/thread_info.h>
10 #include <linux/init.h>
11 #include <linux/uaccess.h>
12
13 #include <asm/cpufeature.h>
14 #include <asm/pgtable.h>
15 #include <asm/msr.h>
16 #include <asm/bugs.h>
17 #include <asm/cpu.h>
18 #include <asm/intel-family.h>
19 #include <asm/microcode_intel.h>
20 #include <asm/hwcap2.h>
21 #include <asm/elf.h>
22
23 #ifdef CONFIG_X86_64
24 #include <linux/topology.h>
25 #endif
26
27 #include "cpu.h"
28
29 #ifdef CONFIG_X86_LOCAL_APIC
30 #include <asm/mpspec.h>
31 #include <asm/apic.h>
32 #endif
33
34 /*
35 * Just in case our CPU detection goes bad, or you have a weird system,
36 * allow a way to override the automatic disabling of MPX.
37 */
38 static int forcempx;
39
40 static int __init forcempx_setup(char *__unused)
41 {
42 forcempx = 1;
43
44 return 1;
45 }
46 __setup("intel-skd-046-workaround=disable", forcempx_setup);
47
48 void check_mpx_erratum(struct cpuinfo_x86 *c)
49 {
50 if (forcempx)
51 return;
52 /*
53 * Turn off the MPX feature on CPUs where SMEP is not
54 * available or disabled.
55 *
56 * Works around Intel Erratum SKD046: "Branch Instructions
57 * May Initialize MPX Bound Registers Incorrectly".
58 *
59 * This might falsely disable MPX on systems without
60 * SMEP, like Atom processors without SMEP. But there
61 * is no such hardware known at the moment.
62 */
63 if (cpu_has(c, X86_FEATURE_MPX) && !cpu_has(c, X86_FEATURE_SMEP)) {
64 setup_clear_cpu_cap(X86_FEATURE_MPX);
65 pr_warn("x86/mpx: Disabling MPX since SMEP not present\n");
66 }
67 }
68
69 static bool ring3mwait_disabled __read_mostly;
70
71 static int __init ring3mwait_disable(char *__unused)
72 {
73 ring3mwait_disabled = true;
74 return 0;
75 }
76 __setup("ring3mwait=disable", ring3mwait_disable);
77
78 static void probe_xeon_phi_r3mwait(struct cpuinfo_x86 *c)
79 {
80 /*
81 * Ring 3 MONITOR/MWAIT feature cannot be detected without
82 * cpu model and family comparison.
83 */
84 if (c->x86 != 6)
85 return;
86 switch (c->x86_model) {
87 case INTEL_FAM6_XEON_PHI_KNL:
88 case INTEL_FAM6_XEON_PHI_KNM:
89 break;
90 default:
91 return;
92 }
93
94 if (ring3mwait_disabled)
95 return;
96
97 set_cpu_cap(c, X86_FEATURE_RING3MWAIT);
98 this_cpu_or(msr_misc_features_shadow,
99 1UL << MSR_MISC_FEATURES_ENABLES_RING3MWAIT_BIT);
100
101 if (c == &boot_cpu_data)
102 ELF_HWCAP2 |= HWCAP2_RING3MWAIT;
103 }
104
105 static void early_init_intel(struct cpuinfo_x86 *c)
106 {
107 u64 misc_enable;
108
109 /* Unmask CPUID levels if masked: */
110 if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
111 if (msr_clear_bit(MSR_IA32_MISC_ENABLE,
112 MSR_IA32_MISC_ENABLE_LIMIT_CPUID_BIT) > 0) {
113 c->cpuid_level = cpuid_eax(0);
114 get_cpu_cap(c);
115 }
116 }
117
118 if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
119 (c->x86 == 0x6 && c->x86_model >= 0x0e))
120 set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
121
122 if (c->x86 >= 6 && !cpu_has(c, X86_FEATURE_IA64))
123 c->microcode = intel_get_microcode_revision();
124
125 /*
126 * Atom erratum AAE44/AAF40/AAG38/AAH41:
127 *
128 * A race condition between speculative fetches and invalidating
129 * a large page. This is worked around in microcode, but we
130 * need the microcode to have already been loaded... so if it is
131 * not, recommend a BIOS update and disable large pages.
132 */
133 if (c->x86 == 6 && c->x86_model == 0x1c && c->x86_mask <= 2 &&
134 c->microcode < 0x20e) {
135 pr_warn("Atom PSE erratum detected, BIOS microcode update recommended\n");
136 clear_cpu_cap(c, X86_FEATURE_PSE);
137 }
138
139 #ifdef CONFIG_X86_64
140 set_cpu_cap(c, X86_FEATURE_SYSENTER32);
141 #else
142 /* Netburst reports 64 bytes clflush size, but does IO in 128 bytes */
143 if (c->x86 == 15 && c->x86_cache_alignment == 64)
144 c->x86_cache_alignment = 128;
145 #endif
146
147 /* CPUID workaround for 0F33/0F34 CPU */
148 if (c->x86 == 0xF && c->x86_model == 0x3
149 && (c->x86_mask == 0x3 || c->x86_mask == 0x4))
150 c->x86_phys_bits = 36;
151
152 /*
153 * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate
154 * with P/T states and does not stop in deep C-states.
155 *
156 * It is also reliable across cores and sockets. (but not across
157 * cabinets - we turn it off in that case explicitly.)
158 */
159 if (c->x86_power & (1 << 8)) {
160 set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
161 set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
162 }
163
164 /* Penwell and Cloverview have the TSC which doesn't sleep on S3 */
165 if (c->x86 == 6) {
166 switch (c->x86_model) {
167 case 0x27: /* Penwell */
168 case 0x35: /* Cloverview */
169 case 0x4a: /* Merrifield */
170 set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC_S3);
171 break;
172 default:
173 break;
174 }
175 }
176
177 /*
178 * There is a known erratum on Pentium III and Core Solo
179 * and Core Duo CPUs.
180 * " Page with PAT set to WC while associated MTRR is UC
181 * may consolidate to UC "
182 * Because of this erratum, it is better to stick with
183 * setting WC in MTRR rather than using PAT on these CPUs.
184 *
185 * Enable PAT WC only on P4, Core 2 or later CPUs.
186 */
187 if (c->x86 == 6 && c->x86_model < 15)
188 clear_cpu_cap(c, X86_FEATURE_PAT);
189
190 #ifdef CONFIG_KMEMCHECK
191 /*
192 * P4s have a "fast strings" feature which causes single-
193 * stepping REP instructions to only generate a #DB on
194 * cache-line boundaries.
195 *
196 * Ingo Molnar reported a Pentium D (model 6) and a Xeon
197 * (model 2) with the same problem.
198 */
199 if (c->x86 == 15)
200 if (msr_clear_bit(MSR_IA32_MISC_ENABLE,
201 MSR_IA32_MISC_ENABLE_FAST_STRING_BIT) > 0)
202 pr_info("kmemcheck: Disabling fast string operations\n");
203 #endif
204
205 /*
206 * If fast string is not enabled in IA32_MISC_ENABLE for any reason,
207 * clear the fast string and enhanced fast string CPU capabilities.
208 */
209 if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
210 rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
211 if (!(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING)) {
212 pr_info("Disabled fast string operations\n");
213 setup_clear_cpu_cap(X86_FEATURE_REP_GOOD);
214 setup_clear_cpu_cap(X86_FEATURE_ERMS);
215 }
216 }
217
218 /*
219 * Intel Quark Core DevMan_001.pdf section 6.4.11
220 * "The operating system also is required to invalidate (i.e., flush)
221 * the TLB when any changes are made to any of the page table entries.
222 * The operating system must reload CR3 to cause the TLB to be flushed"
223 *
224 * As a result, boot_cpu_has(X86_FEATURE_PGE) in arch/x86/include/asm/tlbflush.h
225 * should be false so that __flush_tlb_all() causes CR3 insted of CR4.PGE
226 * to be modified.
227 */
228 if (c->x86 == 5 && c->x86_model == 9) {
229 pr_info("Disabling PGE capability bit\n");
230 setup_clear_cpu_cap(X86_FEATURE_PGE);
231 }
232
233 if (c->cpuid_level >= 0x00000001) {
234 u32 eax, ebx, ecx, edx;
235
236 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
237 /*
238 * If HTT (EDX[28]) is set EBX[16:23] contain the number of
239 * apicids which are reserved per package. Store the resulting
240 * shift value for the package management code.
241 */
242 if (edx & (1U << 28))
243 c->x86_coreid_bits = get_count_order((ebx >> 16) & 0xff);
244 }
245
246 check_mpx_erratum(c);
247 }
248
249 #ifdef CONFIG_X86_32
250 /*
251 * Early probe support logic for ppro memory erratum #50
252 *
253 * This is called before we do cpu ident work
254 */
255
256 int ppro_with_ram_bug(void)
257 {
258 /* Uses data from early_cpu_detect now */
259 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
260 boot_cpu_data.x86 == 6 &&
261 boot_cpu_data.x86_model == 1 &&
262 boot_cpu_data.x86_mask < 8) {
263 pr_info("Pentium Pro with Errata#50 detected. Taking evasive action.\n");
264 return 1;
265 }
266 return 0;
267 }
268
269 static void intel_smp_check(struct cpuinfo_x86 *c)
270 {
271 /* calling is from identify_secondary_cpu() ? */
272 if (!c->cpu_index)
273 return;
274
275 /*
276 * Mask B, Pentium, but not Pentium MMX
277 */
278 if (c->x86 == 5 &&
279 c->x86_mask >= 1 && c->x86_mask <= 4 &&
280 c->x86_model <= 3) {
281 /*
282 * Remember we have B step Pentia with bugs
283 */
284 WARN_ONCE(1, "WARNING: SMP operation may be unreliable"
285 "with B stepping processors.\n");
286 }
287 }
288
289 static int forcepae;
290 static int __init forcepae_setup(char *__unused)
291 {
292 forcepae = 1;
293 return 1;
294 }
295 __setup("forcepae", forcepae_setup);
296
297 static void intel_workarounds(struct cpuinfo_x86 *c)
298 {
299 #ifdef CONFIG_X86_F00F_BUG
300 /*
301 * All models of Pentium and Pentium with MMX technology CPUs
302 * have the F0 0F bug, which lets nonprivileged users lock up the
303 * system. Announce that the fault handler will be checking for it.
304 * The Quark is also family 5, but does not have the same bug.
305 */
306 clear_cpu_bug(c, X86_BUG_F00F);
307 if (c->x86 == 5 && c->x86_model < 9) {
308 static int f00f_workaround_enabled;
309
310 set_cpu_bug(c, X86_BUG_F00F);
311 if (!f00f_workaround_enabled) {
312 pr_notice("Intel Pentium with F0 0F bug - workaround enabled.\n");
313 f00f_workaround_enabled = 1;
314 }
315 }
316 #endif
317
318 /*
319 * SEP CPUID bug: Pentium Pro reports SEP but doesn't have it until
320 * model 3 mask 3
321 */
322 if ((c->x86<<8 | c->x86_model<<4 | c->x86_mask) < 0x633)
323 clear_cpu_cap(c, X86_FEATURE_SEP);
324
325 /*
326 * PAE CPUID issue: many Pentium M report no PAE but may have a
327 * functionally usable PAE implementation.
328 * Forcefully enable PAE if kernel parameter "forcepae" is present.
329 */
330 if (forcepae) {
331 pr_warn("PAE forced!\n");
332 set_cpu_cap(c, X86_FEATURE_PAE);
333 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE);
334 }
335
336 /*
337 * P4 Xeon erratum 037 workaround.
338 * Hardware prefetcher may cause stale data to be loaded into the cache.
339 */
340 if ((c->x86 == 15) && (c->x86_model == 1) && (c->x86_mask == 1)) {
341 if (msr_set_bit(MSR_IA32_MISC_ENABLE,
342 MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE_BIT) > 0) {
343 pr_info("CPU: C0 stepping P4 Xeon detected.\n");
344 pr_info("CPU: Disabling hardware prefetching (Erratum 037)\n");
345 }
346 }
347
348 /*
349 * See if we have a good local APIC by checking for buggy Pentia,
350 * i.e. all B steppings and the C2 stepping of P54C when using their
351 * integrated APIC (see 11AP erratum in "Pentium Processor
352 * Specification Update").
353 */
354 if (boot_cpu_has(X86_FEATURE_APIC) && (c->x86<<8 | c->x86_model<<4) == 0x520 &&
355 (c->x86_mask < 0x6 || c->x86_mask == 0xb))
356 set_cpu_bug(c, X86_BUG_11AP);
357
358
359 #ifdef CONFIG_X86_INTEL_USERCOPY
360 /*
361 * Set up the preferred alignment for movsl bulk memory moves
362 */
363 switch (c->x86) {
364 case 4: /* 486: untested */
365 break;
366 case 5: /* Old Pentia: untested */
367 break;
368 case 6: /* PII/PIII only like movsl with 8-byte alignment */
369 movsl_mask.mask = 7;
370 break;
371 case 15: /* P4 is OK down to 8-byte alignment */
372 movsl_mask.mask = 7;
373 break;
374 }
375 #endif
376
377 intel_smp_check(c);
378 }
379 #else
380 static void intel_workarounds(struct cpuinfo_x86 *c)
381 {
382 }
383 #endif
384
385 static void srat_detect_node(struct cpuinfo_x86 *c)
386 {
387 #ifdef CONFIG_NUMA
388 unsigned node;
389 int cpu = smp_processor_id();
390
391 /* Don't do the funky fallback heuristics the AMD version employs
392 for now. */
393 node = numa_cpu_node(cpu);
394 if (node == NUMA_NO_NODE || !node_online(node)) {
395 /* reuse the value from init_cpu_to_node() */
396 node = cpu_to_node(cpu);
397 }
398 numa_set_node(cpu, node);
399 #endif
400 }
401
402 /*
403 * find out the number of processor cores on the die
404 */
405 static int intel_num_cpu_cores(struct cpuinfo_x86 *c)
406 {
407 unsigned int eax, ebx, ecx, edx;
408
409 if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
410 return 1;
411
412 /* Intel has a non-standard dependency on %ecx for this CPUID level. */
413 cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
414 if (eax & 0x1f)
415 return (eax >> 26) + 1;
416 else
417 return 1;
418 }
419
420 static void detect_vmx_virtcap(struct cpuinfo_x86 *c)
421 {
422 /* Intel VMX MSR indicated features */
423 #define X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW 0x00200000
424 #define X86_VMX_FEATURE_PROC_CTLS_VNMI 0x00400000
425 #define X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS 0x80000000
426 #define X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC 0x00000001
427 #define X86_VMX_FEATURE_PROC_CTLS2_EPT 0x00000002
428 #define X86_VMX_FEATURE_PROC_CTLS2_VPID 0x00000020
429
430 u32 vmx_msr_low, vmx_msr_high, msr_ctl, msr_ctl2;
431
432 clear_cpu_cap(c, X86_FEATURE_TPR_SHADOW);
433 clear_cpu_cap(c, X86_FEATURE_VNMI);
434 clear_cpu_cap(c, X86_FEATURE_FLEXPRIORITY);
435 clear_cpu_cap(c, X86_FEATURE_EPT);
436 clear_cpu_cap(c, X86_FEATURE_VPID);
437
438 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS, vmx_msr_low, vmx_msr_high);
439 msr_ctl = vmx_msr_high | vmx_msr_low;
440 if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW)
441 set_cpu_cap(c, X86_FEATURE_TPR_SHADOW);
442 if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_VNMI)
443 set_cpu_cap(c, X86_FEATURE_VNMI);
444 if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS) {
445 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
446 vmx_msr_low, vmx_msr_high);
447 msr_ctl2 = vmx_msr_high | vmx_msr_low;
448 if ((msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC) &&
449 (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW))
450 set_cpu_cap(c, X86_FEATURE_FLEXPRIORITY);
451 if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_EPT)
452 set_cpu_cap(c, X86_FEATURE_EPT);
453 if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VPID)
454 set_cpu_cap(c, X86_FEATURE_VPID);
455 }
456 }
457
458 static void init_intel_energy_perf(struct cpuinfo_x86 *c)
459 {
460 u64 epb;
461
462 /*
463 * Initialize MSR_IA32_ENERGY_PERF_BIAS if not already initialized.
464 * (x86_energy_perf_policy(8) is available to change it at run-time.)
465 */
466 if (!cpu_has(c, X86_FEATURE_EPB))
467 return;
468
469 rdmsrl(MSR_IA32_ENERGY_PERF_BIAS, epb);
470 if ((epb & 0xF) != ENERGY_PERF_BIAS_PERFORMANCE)
471 return;
472
473 pr_warn_once("ENERGY_PERF_BIAS: Set to 'normal', was 'performance'\n");
474 pr_warn_once("ENERGY_PERF_BIAS: View and update with x86_energy_perf_policy(8)\n");
475 epb = (epb & ~0xF) | ENERGY_PERF_BIAS_NORMAL;
476 wrmsrl(MSR_IA32_ENERGY_PERF_BIAS, epb);
477 }
478
479 static void intel_bsp_resume(struct cpuinfo_x86 *c)
480 {
481 /*
482 * MSR_IA32_ENERGY_PERF_BIAS is lost across suspend/resume,
483 * so reinitialize it properly like during bootup:
484 */
485 init_intel_energy_perf(c);
486 }
487
488 static void init_cpuid_fault(struct cpuinfo_x86 *c)
489 {
490 u64 msr;
491
492 if (!rdmsrl_safe(MSR_PLATFORM_INFO, &msr)) {
493 if (msr & MSR_PLATFORM_INFO_CPUID_FAULT)
494 set_cpu_cap(c, X86_FEATURE_CPUID_FAULT);
495 }
496 }
497
498 static void init_intel_misc_features(struct cpuinfo_x86 *c)
499 {
500 u64 msr;
501
502 if (rdmsrl_safe(MSR_MISC_FEATURES_ENABLES, &msr))
503 return;
504
505 /* Clear all MISC features */
506 this_cpu_write(msr_misc_features_shadow, 0);
507
508 /* Check features and update capabilities and shadow control bits */
509 init_cpuid_fault(c);
510 probe_xeon_phi_r3mwait(c);
511
512 msr = this_cpu_read(msr_misc_features_shadow);
513 wrmsrl(MSR_MISC_FEATURES_ENABLES, msr);
514 }
515
516 static void init_intel(struct cpuinfo_x86 *c)
517 {
518 unsigned int l2 = 0;
519
520 early_init_intel(c);
521
522 intel_workarounds(c);
523
524 /*
525 * Detect the extended topology information if available. This
526 * will reinitialise the initial_apicid which will be used
527 * in init_intel_cacheinfo()
528 */
529 detect_extended_topology(c);
530
531 if (!cpu_has(c, X86_FEATURE_XTOPOLOGY)) {
532 /*
533 * let's use the legacy cpuid vector 0x1 and 0x4 for topology
534 * detection.
535 */
536 c->x86_max_cores = intel_num_cpu_cores(c);
537 #ifdef CONFIG_X86_32
538 detect_ht(c);
539 #endif
540 }
541
542 l2 = init_intel_cacheinfo(c);
543
544 /* Detect legacy cache sizes if init_intel_cacheinfo did not */
545 if (l2 == 0) {
546 cpu_detect_cache_sizes(c);
547 l2 = c->x86_cache_size;
548 }
549
550 if (c->cpuid_level > 9) {
551 unsigned eax = cpuid_eax(10);
552 /* Check for version and the number of counters */
553 if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
554 set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
555 }
556
557 if (cpu_has(c, X86_FEATURE_XMM2))
558 set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
559
560 if (boot_cpu_has(X86_FEATURE_DS)) {
561 unsigned int l1;
562 rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
563 if (!(l1 & (1<<11)))
564 set_cpu_cap(c, X86_FEATURE_BTS);
565 if (!(l1 & (1<<12)))
566 set_cpu_cap(c, X86_FEATURE_PEBS);
567 }
568
569 if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_CLFLUSH) &&
570 (c->x86_model == 29 || c->x86_model == 46 || c->x86_model == 47))
571 set_cpu_bug(c, X86_BUG_CLFLUSH_MONITOR);
572
573 if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_MWAIT) &&
574 ((c->x86_model == INTEL_FAM6_ATOM_GOLDMONT)))
575 set_cpu_bug(c, X86_BUG_MONITOR);
576
577 #ifdef CONFIG_X86_64
578 if (c->x86 == 15)
579 c->x86_cache_alignment = c->x86_clflush_size * 2;
580 if (c->x86 == 6)
581 set_cpu_cap(c, X86_FEATURE_REP_GOOD);
582 #else
583 /*
584 * Names for the Pentium II/Celeron processors
585 * detectable only by also checking the cache size.
586 * Dixon is NOT a Celeron.
587 */
588 if (c->x86 == 6) {
589 char *p = NULL;
590
591 switch (c->x86_model) {
592 case 5:
593 if (l2 == 0)
594 p = "Celeron (Covington)";
595 else if (l2 == 256)
596 p = "Mobile Pentium II (Dixon)";
597 break;
598
599 case 6:
600 if (l2 == 128)
601 p = "Celeron (Mendocino)";
602 else if (c->x86_mask == 0 || c->x86_mask == 5)
603 p = "Celeron-A";
604 break;
605
606 case 8:
607 if (l2 == 128)
608 p = "Celeron (Coppermine)";
609 break;
610 }
611
612 if (p)
613 strcpy(c->x86_model_id, p);
614 }
615
616 if (c->x86 == 15)
617 set_cpu_cap(c, X86_FEATURE_P4);
618 if (c->x86 == 6)
619 set_cpu_cap(c, X86_FEATURE_P3);
620 #endif
621
622 /* Work around errata */
623 srat_detect_node(c);
624
625 if (cpu_has(c, X86_FEATURE_VMX))
626 detect_vmx_virtcap(c);
627
628 init_intel_energy_perf(c);
629
630 init_intel_misc_features(c);
631 }
632
633 #ifdef CONFIG_X86_32
634 static unsigned int intel_size_cache(struct cpuinfo_x86 *c, unsigned int size)
635 {
636 /*
637 * Intel PIII Tualatin. This comes in two flavours.
638 * One has 256kb of cache, the other 512. We have no way
639 * to determine which, so we use a boottime override
640 * for the 512kb model, and assume 256 otherwise.
641 */
642 if ((c->x86 == 6) && (c->x86_model == 11) && (size == 0))
643 size = 256;
644
645 /*
646 * Intel Quark SoC X1000 contains a 4-way set associative
647 * 16K cache with a 16 byte cache line and 256 lines per tag
648 */
649 if ((c->x86 == 5) && (c->x86_model == 9))
650 size = 16;
651 return size;
652 }
653 #endif
654
655 #define TLB_INST_4K 0x01
656 #define TLB_INST_4M 0x02
657 #define TLB_INST_2M_4M 0x03
658
659 #define TLB_INST_ALL 0x05
660 #define TLB_INST_1G 0x06
661
662 #define TLB_DATA_4K 0x11
663 #define TLB_DATA_4M 0x12
664 #define TLB_DATA_2M_4M 0x13
665 #define TLB_DATA_4K_4M 0x14
666
667 #define TLB_DATA_1G 0x16
668
669 #define TLB_DATA0_4K 0x21
670 #define TLB_DATA0_4M 0x22
671 #define TLB_DATA0_2M_4M 0x23
672
673 #define STLB_4K 0x41
674 #define STLB_4K_2M 0x42
675
676 static const struct _tlb_table intel_tlb_table[] = {
677 { 0x01, TLB_INST_4K, 32, " TLB_INST 4 KByte pages, 4-way set associative" },
678 { 0x02, TLB_INST_4M, 2, " TLB_INST 4 MByte pages, full associative" },
679 { 0x03, TLB_DATA_4K, 64, " TLB_DATA 4 KByte pages, 4-way set associative" },
680 { 0x04, TLB_DATA_4M, 8, " TLB_DATA 4 MByte pages, 4-way set associative" },
681 { 0x05, TLB_DATA_4M, 32, " TLB_DATA 4 MByte pages, 4-way set associative" },
682 { 0x0b, TLB_INST_4M, 4, " TLB_INST 4 MByte pages, 4-way set associative" },
683 { 0x4f, TLB_INST_4K, 32, " TLB_INST 4 KByte pages */" },
684 { 0x50, TLB_INST_ALL, 64, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
685 { 0x51, TLB_INST_ALL, 128, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
686 { 0x52, TLB_INST_ALL, 256, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
687 { 0x55, TLB_INST_2M_4M, 7, " TLB_INST 2-MByte or 4-MByte pages, fully associative" },
688 { 0x56, TLB_DATA0_4M, 16, " TLB_DATA0 4 MByte pages, 4-way set associative" },
689 { 0x57, TLB_DATA0_4K, 16, " TLB_DATA0 4 KByte pages, 4-way associative" },
690 { 0x59, TLB_DATA0_4K, 16, " TLB_DATA0 4 KByte pages, fully associative" },
691 { 0x5a, TLB_DATA0_2M_4M, 32, " TLB_DATA0 2-MByte or 4 MByte pages, 4-way set associative" },
692 { 0x5b, TLB_DATA_4K_4M, 64, " TLB_DATA 4 KByte and 4 MByte pages" },
693 { 0x5c, TLB_DATA_4K_4M, 128, " TLB_DATA 4 KByte and 4 MByte pages" },
694 { 0x5d, TLB_DATA_4K_4M, 256, " TLB_DATA 4 KByte and 4 MByte pages" },
695 { 0x61, TLB_INST_4K, 48, " TLB_INST 4 KByte pages, full associative" },
696 { 0x63, TLB_DATA_1G, 4, " TLB_DATA 1 GByte pages, 4-way set associative" },
697 { 0x76, TLB_INST_2M_4M, 8, " TLB_INST 2-MByte or 4-MByte pages, fully associative" },
698 { 0xb0, TLB_INST_4K, 128, " TLB_INST 4 KByte pages, 4-way set associative" },
699 { 0xb1, TLB_INST_2M_4M, 4, " TLB_INST 2M pages, 4-way, 8 entries or 4M pages, 4-way entries" },
700 { 0xb2, TLB_INST_4K, 64, " TLB_INST 4KByte pages, 4-way set associative" },
701 { 0xb3, TLB_DATA_4K, 128, " TLB_DATA 4 KByte pages, 4-way set associative" },
702 { 0xb4, TLB_DATA_4K, 256, " TLB_DATA 4 KByte pages, 4-way associative" },
703 { 0xb5, TLB_INST_4K, 64, " TLB_INST 4 KByte pages, 8-way set associative" },
704 { 0xb6, TLB_INST_4K, 128, " TLB_INST 4 KByte pages, 8-way set associative" },
705 { 0xba, TLB_DATA_4K, 64, " TLB_DATA 4 KByte pages, 4-way associative" },
706 { 0xc0, TLB_DATA_4K_4M, 8, " TLB_DATA 4 KByte and 4 MByte pages, 4-way associative" },
707 { 0xc1, STLB_4K_2M, 1024, " STLB 4 KByte and 2 MByte pages, 8-way associative" },
708 { 0xc2, TLB_DATA_2M_4M, 16, " DTLB 2 MByte/4MByte pages, 4-way associative" },
709 { 0xca, STLB_4K, 512, " STLB 4 KByte pages, 4-way associative" },
710 { 0x00, 0, 0 }
711 };
712
713 static void intel_tlb_lookup(const unsigned char desc)
714 {
715 unsigned char k;
716 if (desc == 0)
717 return;
718
719 /* look up this descriptor in the table */
720 for (k = 0; intel_tlb_table[k].descriptor != desc && \
721 intel_tlb_table[k].descriptor != 0; k++)
722 ;
723
724 if (intel_tlb_table[k].tlb_type == 0)
725 return;
726
727 switch (intel_tlb_table[k].tlb_type) {
728 case STLB_4K:
729 if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
730 tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
731 if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
732 tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
733 break;
734 case STLB_4K_2M:
735 if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
736 tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
737 if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
738 tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
739 if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
740 tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
741 if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
742 tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
743 if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
744 tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
745 if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
746 tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
747 break;
748 case TLB_INST_ALL:
749 if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
750 tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
751 if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
752 tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
753 if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
754 tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
755 break;
756 case TLB_INST_4K:
757 if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
758 tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
759 break;
760 case TLB_INST_4M:
761 if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
762 tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
763 break;
764 case TLB_INST_2M_4M:
765 if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
766 tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
767 if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
768 tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
769 break;
770 case TLB_DATA_4K:
771 case TLB_DATA0_4K:
772 if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
773 tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
774 break;
775 case TLB_DATA_4M:
776 case TLB_DATA0_4M:
777 if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
778 tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
779 break;
780 case TLB_DATA_2M_4M:
781 case TLB_DATA0_2M_4M:
782 if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
783 tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
784 if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
785 tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
786 break;
787 case TLB_DATA_4K_4M:
788 if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
789 tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
790 if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
791 tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
792 break;
793 case TLB_DATA_1G:
794 if (tlb_lld_1g[ENTRIES] < intel_tlb_table[k].entries)
795 tlb_lld_1g[ENTRIES] = intel_tlb_table[k].entries;
796 break;
797 }
798 }
799
800 static void intel_detect_tlb(struct cpuinfo_x86 *c)
801 {
802 int i, j, n;
803 unsigned int regs[4];
804 unsigned char *desc = (unsigned char *)regs;
805
806 if (c->cpuid_level < 2)
807 return;
808
809 /* Number of times to iterate */
810 n = cpuid_eax(2) & 0xFF;
811
812 for (i = 0 ; i < n ; i++) {
813 cpuid(2, &regs[0], &regs[1], &regs[2], &regs[3]);
814
815 /* If bit 31 is set, this is an unknown format */
816 for (j = 0 ; j < 3 ; j++)
817 if (regs[j] & (1 << 31))
818 regs[j] = 0;
819
820 /* Byte 0 is level count, not a descriptor */
821 for (j = 1 ; j < 16 ; j++)
822 intel_tlb_lookup(desc[j]);
823 }
824 }
825
826 static const struct cpu_dev intel_cpu_dev = {
827 .c_vendor = "Intel",
828 .c_ident = { "GenuineIntel" },
829 #ifdef CONFIG_X86_32
830 .legacy_models = {
831 { .family = 4, .model_names =
832 {
833 [0] = "486 DX-25/33",
834 [1] = "486 DX-50",
835 [2] = "486 SX",
836 [3] = "486 DX/2",
837 [4] = "486 SL",
838 [5] = "486 SX/2",
839 [7] = "486 DX/2-WB",
840 [8] = "486 DX/4",
841 [9] = "486 DX/4-WB"
842 }
843 },
844 { .family = 5, .model_names =
845 {
846 [0] = "Pentium 60/66 A-step",
847 [1] = "Pentium 60/66",
848 [2] = "Pentium 75 - 200",
849 [3] = "OverDrive PODP5V83",
850 [4] = "Pentium MMX",
851 [7] = "Mobile Pentium 75 - 200",
852 [8] = "Mobile Pentium MMX",
853 [9] = "Quark SoC X1000",
854 }
855 },
856 { .family = 6, .model_names =
857 {
858 [0] = "Pentium Pro A-step",
859 [1] = "Pentium Pro",
860 [3] = "Pentium II (Klamath)",
861 [4] = "Pentium II (Deschutes)",
862 [5] = "Pentium II (Deschutes)",
863 [6] = "Mobile Pentium II",
864 [7] = "Pentium III (Katmai)",
865 [8] = "Pentium III (Coppermine)",
866 [10] = "Pentium III (Cascades)",
867 [11] = "Pentium III (Tualatin)",
868 }
869 },
870 { .family = 15, .model_names =
871 {
872 [0] = "Pentium 4 (Unknown)",
873 [1] = "Pentium 4 (Willamette)",
874 [2] = "Pentium 4 (Northwood)",
875 [4] = "Pentium 4 (Foster)",
876 [5] = "Pentium 4 (Foster)",
877 }
878 },
879 },
880 .legacy_cache_size = intel_size_cache,
881 #endif
882 .c_detect_tlb = intel_detect_tlb,
883 .c_early_init = early_init_intel,
884 .c_init = init_intel,
885 .c_bsp_resume = intel_bsp_resume,
886 .c_x86_vendor = X86_VENDOR_INTEL,
887 };
888
889 cpu_dev_register(intel_cpu_dev);
890