]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/kernel/cpu/mce/core.c
c3498732ba287682f6b1cbabee7ae900fc658426
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kernel / cpu / mce / core.c
1 /*
2 * Machine check handler.
3 *
4 * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
5 * Rest from unknown author(s).
6 * 2004 Andi Kleen. Rewrote most of it.
7 * Copyright 2008 Intel Corporation
8 * Author: Andi Kleen
9 */
10
11 #include <linux/thread_info.h>
12 #include <linux/capability.h>
13 #include <linux/miscdevice.h>
14 #include <linux/ratelimit.h>
15 #include <linux/rcupdate.h>
16 #include <linux/kobject.h>
17 #include <linux/uaccess.h>
18 #include <linux/kdebug.h>
19 #include <linux/kernel.h>
20 #include <linux/percpu.h>
21 #include <linux/string.h>
22 #include <linux/device.h>
23 #include <linux/syscore_ops.h>
24 #include <linux/delay.h>
25 #include <linux/ctype.h>
26 #include <linux/sched.h>
27 #include <linux/sysfs.h>
28 #include <linux/types.h>
29 #include <linux/slab.h>
30 #include <linux/init.h>
31 #include <linux/kmod.h>
32 #include <linux/poll.h>
33 #include <linux/nmi.h>
34 #include <linux/cpu.h>
35 #include <linux/ras.h>
36 #include <linux/smp.h>
37 #include <linux/fs.h>
38 #include <linux/mm.h>
39 #include <linux/debugfs.h>
40 #include <linux/irq_work.h>
41 #include <linux/export.h>
42 #include <linux/jump_label.h>
43 #include <linux/set_memory.h>
44
45 #include <asm/intel-family.h>
46 #include <asm/processor.h>
47 #include <asm/traps.h>
48 #include <asm/tlbflush.h>
49 #include <asm/mce.h>
50 #include <asm/msr.h>
51 #include <asm/reboot.h>
52
53 #include "internal.h"
54
55 static DEFINE_MUTEX(mce_log_mutex);
56
57 /* sysfs synchronization */
58 static DEFINE_MUTEX(mce_sysfs_mutex);
59
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/mce.h>
62
63 #define SPINUNIT 100 /* 100ns */
64
65 DEFINE_PER_CPU(unsigned, mce_exception_count);
66
67 struct mce_bank *mce_banks __read_mostly;
68 struct mce_vendor_flags mce_flags __read_mostly;
69
70 struct mca_config mca_cfg __read_mostly = {
71 .bootlog = -1,
72 /*
73 * Tolerant levels:
74 * 0: always panic on uncorrected errors, log corrected errors
75 * 1: panic or SIGBUS on uncorrected errors, log corrected errors
76 * 2: SIGBUS or log uncorrected errors (if possible), log corr. errors
77 * 3: never panic or SIGBUS, log all errors (for testing only)
78 */
79 .tolerant = 1,
80 .monarch_timeout = -1
81 };
82
83 static DEFINE_PER_CPU(struct mce, mces_seen);
84 static unsigned long mce_need_notify;
85 static int cpu_missing;
86
87 /*
88 * MCA banks polled by the period polling timer for corrected events.
89 * With Intel CMCI, this only has MCA banks which do not support CMCI (if any).
90 */
91 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
92 [0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
93 };
94
95 /*
96 * MCA banks controlled through firmware first for corrected errors.
97 * This is a global list of banks for which we won't enable CMCI and we
98 * won't poll. Firmware controls these banks and is responsible for
99 * reporting corrected errors through GHES. Uncorrected/recoverable
100 * errors are still notified through a machine check.
101 */
102 mce_banks_t mce_banks_ce_disabled;
103
104 static struct work_struct mce_work;
105 static struct irq_work mce_irq_work;
106
107 static void (*quirk_no_way_out)(int bank, struct mce *m, struct pt_regs *regs);
108
109 /*
110 * CPU/chipset specific EDAC code can register a notifier call here to print
111 * MCE errors in a human-readable form.
112 */
113 BLOCKING_NOTIFIER_HEAD(x86_mce_decoder_chain);
114
115 /* Do initial initialization of a struct mce */
116 void mce_setup(struct mce *m)
117 {
118 memset(m, 0, sizeof(struct mce));
119 m->cpu = m->extcpu = smp_processor_id();
120 /* need the internal __ version to avoid deadlocks */
121 m->time = __ktime_get_real_seconds();
122 m->cpuvendor = boot_cpu_data.x86_vendor;
123 m->cpuid = cpuid_eax(1);
124 m->socketid = cpu_data(m->extcpu).phys_proc_id;
125 m->apicid = cpu_data(m->extcpu).initial_apicid;
126 rdmsrl(MSR_IA32_MCG_CAP, m->mcgcap);
127
128 if (this_cpu_has(X86_FEATURE_INTEL_PPIN))
129 rdmsrl(MSR_PPIN, m->ppin);
130
131 m->microcode = boot_cpu_data.microcode;
132 }
133
134 DEFINE_PER_CPU(struct mce, injectm);
135 EXPORT_PER_CPU_SYMBOL_GPL(injectm);
136
137 void mce_log(struct mce *m)
138 {
139 if (!mce_gen_pool_add(m))
140 irq_work_queue(&mce_irq_work);
141 }
142
143 void mce_inject_log(struct mce *m)
144 {
145 mutex_lock(&mce_log_mutex);
146 mce_log(m);
147 mutex_unlock(&mce_log_mutex);
148 }
149 EXPORT_SYMBOL_GPL(mce_inject_log);
150
151 static struct notifier_block mce_srao_nb;
152
153 /*
154 * We run the default notifier if we have only the SRAO, the first and the
155 * default notifier registered. I.e., the mandatory NUM_DEFAULT_NOTIFIERS
156 * notifiers registered on the chain.
157 */
158 #define NUM_DEFAULT_NOTIFIERS 3
159 static atomic_t num_notifiers;
160
161 void mce_register_decode_chain(struct notifier_block *nb)
162 {
163 if (WARN_ON(nb->priority > MCE_PRIO_MCELOG && nb->priority < MCE_PRIO_EDAC))
164 return;
165
166 atomic_inc(&num_notifiers);
167
168 blocking_notifier_chain_register(&x86_mce_decoder_chain, nb);
169 }
170 EXPORT_SYMBOL_GPL(mce_register_decode_chain);
171
172 void mce_unregister_decode_chain(struct notifier_block *nb)
173 {
174 atomic_dec(&num_notifiers);
175
176 blocking_notifier_chain_unregister(&x86_mce_decoder_chain, nb);
177 }
178 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain);
179
180 static inline u32 ctl_reg(int bank)
181 {
182 return MSR_IA32_MCx_CTL(bank);
183 }
184
185 static inline u32 status_reg(int bank)
186 {
187 return MSR_IA32_MCx_STATUS(bank);
188 }
189
190 static inline u32 addr_reg(int bank)
191 {
192 return MSR_IA32_MCx_ADDR(bank);
193 }
194
195 static inline u32 misc_reg(int bank)
196 {
197 return MSR_IA32_MCx_MISC(bank);
198 }
199
200 static inline u32 smca_ctl_reg(int bank)
201 {
202 return MSR_AMD64_SMCA_MCx_CTL(bank);
203 }
204
205 static inline u32 smca_status_reg(int bank)
206 {
207 return MSR_AMD64_SMCA_MCx_STATUS(bank);
208 }
209
210 static inline u32 smca_addr_reg(int bank)
211 {
212 return MSR_AMD64_SMCA_MCx_ADDR(bank);
213 }
214
215 static inline u32 smca_misc_reg(int bank)
216 {
217 return MSR_AMD64_SMCA_MCx_MISC(bank);
218 }
219
220 struct mca_msr_regs msr_ops = {
221 .ctl = ctl_reg,
222 .status = status_reg,
223 .addr = addr_reg,
224 .misc = misc_reg
225 };
226
227 static void __print_mce(struct mce *m)
228 {
229 pr_emerg(HW_ERR "CPU %d: Machine Check%s: %Lx Bank %d: %016Lx\n",
230 m->extcpu,
231 (m->mcgstatus & MCG_STATUS_MCIP ? " Exception" : ""),
232 m->mcgstatus, m->bank, m->status);
233
234 if (m->ip) {
235 pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
236 !(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
237 m->cs, m->ip);
238
239 if (m->cs == __KERNEL_CS)
240 pr_cont("{%pS}", (void *)(unsigned long)m->ip);
241 pr_cont("\n");
242 }
243
244 pr_emerg(HW_ERR "TSC %llx ", m->tsc);
245 if (m->addr)
246 pr_cont("ADDR %llx ", m->addr);
247 if (m->misc)
248 pr_cont("MISC %llx ", m->misc);
249
250 if (mce_flags.smca) {
251 if (m->synd)
252 pr_cont("SYND %llx ", m->synd);
253 if (m->ipid)
254 pr_cont("IPID %llx ", m->ipid);
255 }
256
257 pr_cont("\n");
258 /*
259 * Note this output is parsed by external tools and old fields
260 * should not be changed.
261 */
262 pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
263 m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
264 m->microcode);
265 }
266
267 static void print_mce(struct mce *m)
268 {
269 __print_mce(m);
270
271 if (m->cpuvendor != X86_VENDOR_AMD && m->cpuvendor != X86_VENDOR_HYGON)
272 pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
273 }
274
275 #define PANIC_TIMEOUT 5 /* 5 seconds */
276
277 static atomic_t mce_panicked;
278
279 static int fake_panic;
280 static atomic_t mce_fake_panicked;
281
282 /* Panic in progress. Enable interrupts and wait for final IPI */
283 static void wait_for_panic(void)
284 {
285 long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
286
287 preempt_disable();
288 local_irq_enable();
289 while (timeout-- > 0)
290 udelay(1);
291 if (panic_timeout == 0)
292 panic_timeout = mca_cfg.panic_timeout;
293 panic("Panicing machine check CPU died");
294 }
295
296 static void mce_panic(const char *msg, struct mce *final, char *exp)
297 {
298 int apei_err = 0;
299 struct llist_node *pending;
300 struct mce_evt_llist *l;
301
302 if (!fake_panic) {
303 /*
304 * Make sure only one CPU runs in machine check panic
305 */
306 if (atomic_inc_return(&mce_panicked) > 1)
307 wait_for_panic();
308 barrier();
309
310 bust_spinlocks(1);
311 console_verbose();
312 } else {
313 /* Don't log too much for fake panic */
314 if (atomic_inc_return(&mce_fake_panicked) > 1)
315 return;
316 }
317 pending = mce_gen_pool_prepare_records();
318 /* First print corrected ones that are still unlogged */
319 llist_for_each_entry(l, pending, llnode) {
320 struct mce *m = &l->mce;
321 if (!(m->status & MCI_STATUS_UC)) {
322 print_mce(m);
323 if (!apei_err)
324 apei_err = apei_write_mce(m);
325 }
326 }
327 /* Now print uncorrected but with the final one last */
328 llist_for_each_entry(l, pending, llnode) {
329 struct mce *m = &l->mce;
330 if (!(m->status & MCI_STATUS_UC))
331 continue;
332 if (!final || mce_cmp(m, final)) {
333 print_mce(m);
334 if (!apei_err)
335 apei_err = apei_write_mce(m);
336 }
337 }
338 if (final) {
339 print_mce(final);
340 if (!apei_err)
341 apei_err = apei_write_mce(final);
342 }
343 if (cpu_missing)
344 pr_emerg(HW_ERR "Some CPUs didn't answer in synchronization\n");
345 if (exp)
346 pr_emerg(HW_ERR "Machine check: %s\n", exp);
347 if (!fake_panic) {
348 if (panic_timeout == 0)
349 panic_timeout = mca_cfg.panic_timeout;
350 panic(msg);
351 } else
352 pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
353 }
354
355 /* Support code for software error injection */
356
357 static int msr_to_offset(u32 msr)
358 {
359 unsigned bank = __this_cpu_read(injectm.bank);
360
361 if (msr == mca_cfg.rip_msr)
362 return offsetof(struct mce, ip);
363 if (msr == msr_ops.status(bank))
364 return offsetof(struct mce, status);
365 if (msr == msr_ops.addr(bank))
366 return offsetof(struct mce, addr);
367 if (msr == msr_ops.misc(bank))
368 return offsetof(struct mce, misc);
369 if (msr == MSR_IA32_MCG_STATUS)
370 return offsetof(struct mce, mcgstatus);
371 return -1;
372 }
373
374 /* MSR access wrappers used for error injection */
375 static u64 mce_rdmsrl(u32 msr)
376 {
377 u64 v;
378
379 if (__this_cpu_read(injectm.finished)) {
380 int offset = msr_to_offset(msr);
381
382 if (offset < 0)
383 return 0;
384 return *(u64 *)((char *)this_cpu_ptr(&injectm) + offset);
385 }
386
387 if (rdmsrl_safe(msr, &v)) {
388 WARN_ONCE(1, "mce: Unable to read MSR 0x%x!\n", msr);
389 /*
390 * Return zero in case the access faulted. This should
391 * not happen normally but can happen if the CPU does
392 * something weird, or if the code is buggy.
393 */
394 v = 0;
395 }
396
397 return v;
398 }
399
400 static void mce_wrmsrl(u32 msr, u64 v)
401 {
402 if (__this_cpu_read(injectm.finished)) {
403 int offset = msr_to_offset(msr);
404
405 if (offset >= 0)
406 *(u64 *)((char *)this_cpu_ptr(&injectm) + offset) = v;
407 return;
408 }
409 wrmsrl(msr, v);
410 }
411
412 /*
413 * Collect all global (w.r.t. this processor) status about this machine
414 * check into our "mce" struct so that we can use it later to assess
415 * the severity of the problem as we read per-bank specific details.
416 */
417 static inline void mce_gather_info(struct mce *m, struct pt_regs *regs)
418 {
419 mce_setup(m);
420
421 m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
422 if (regs) {
423 /*
424 * Get the address of the instruction at the time of
425 * the machine check error.
426 */
427 if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
428 m->ip = regs->ip;
429 m->cs = regs->cs;
430
431 /*
432 * When in VM86 mode make the cs look like ring 3
433 * always. This is a lie, but it's better than passing
434 * the additional vm86 bit around everywhere.
435 */
436 if (v8086_mode(regs))
437 m->cs |= 3;
438 }
439 /* Use accurate RIP reporting if available. */
440 if (mca_cfg.rip_msr)
441 m->ip = mce_rdmsrl(mca_cfg.rip_msr);
442 }
443 }
444
445 int mce_available(struct cpuinfo_x86 *c)
446 {
447 if (mca_cfg.disabled)
448 return 0;
449 return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
450 }
451
452 static void mce_schedule_work(void)
453 {
454 if (!mce_gen_pool_empty())
455 schedule_work(&mce_work);
456 }
457
458 static void mce_irq_work_cb(struct irq_work *entry)
459 {
460 mce_schedule_work();
461 }
462
463 static void mce_report_event(struct pt_regs *regs)
464 {
465 if (regs->flags & (X86_VM_MASK|X86_EFLAGS_IF)) {
466 mce_notify_irq();
467 /*
468 * Triggering the work queue here is just an insurance
469 * policy in case the syscall exit notify handler
470 * doesn't run soon enough or ends up running on the
471 * wrong CPU (can happen when audit sleeps)
472 */
473 mce_schedule_work();
474 return;
475 }
476
477 irq_work_queue(&mce_irq_work);
478 }
479
480 /*
481 * Check if the address reported by the CPU is in a format we can parse.
482 * It would be possible to add code for most other cases, but all would
483 * be somewhat complicated (e.g. segment offset would require an instruction
484 * parser). So only support physical addresses up to page granuality for now.
485 */
486 int mce_usable_address(struct mce *m)
487 {
488 if (!(m->status & MCI_STATUS_ADDRV))
489 return 0;
490
491 /* Checks after this one are Intel-specific: */
492 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
493 return 1;
494
495 if (!(m->status & MCI_STATUS_MISCV))
496 return 0;
497
498 if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT)
499 return 0;
500
501 if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS)
502 return 0;
503
504 return 1;
505 }
506 EXPORT_SYMBOL_GPL(mce_usable_address);
507
508 bool mce_is_memory_error(struct mce *m)
509 {
510 if (m->cpuvendor == X86_VENDOR_AMD ||
511 m->cpuvendor == X86_VENDOR_HYGON) {
512 return amd_mce_is_memory_error(m);
513 } else if (m->cpuvendor == X86_VENDOR_INTEL) {
514 /*
515 * Intel SDM Volume 3B - 15.9.2 Compound Error Codes
516 *
517 * Bit 7 of the MCACOD field of IA32_MCi_STATUS is used for
518 * indicating a memory error. Bit 8 is used for indicating a
519 * cache hierarchy error. The combination of bit 2 and bit 3
520 * is used for indicating a `generic' cache hierarchy error
521 * But we can't just blindly check the above bits, because if
522 * bit 11 is set, then it is a bus/interconnect error - and
523 * either way the above bits just gives more detail on what
524 * bus/interconnect error happened. Note that bit 12 can be
525 * ignored, as it's the "filter" bit.
526 */
527 return (m->status & 0xef80) == BIT(7) ||
528 (m->status & 0xef00) == BIT(8) ||
529 (m->status & 0xeffc) == 0xc;
530 }
531
532 return false;
533 }
534 EXPORT_SYMBOL_GPL(mce_is_memory_error);
535
536 bool mce_is_correctable(struct mce *m)
537 {
538 if (m->cpuvendor == X86_VENDOR_AMD && m->status & MCI_STATUS_DEFERRED)
539 return false;
540
541 if (m->cpuvendor == X86_VENDOR_HYGON && m->status & MCI_STATUS_DEFERRED)
542 return false;
543
544 if (m->status & MCI_STATUS_UC)
545 return false;
546
547 return true;
548 }
549 EXPORT_SYMBOL_GPL(mce_is_correctable);
550
551 static bool cec_add_mce(struct mce *m)
552 {
553 if (!m)
554 return false;
555
556 /* We eat only correctable DRAM errors with usable addresses. */
557 if (mce_is_memory_error(m) &&
558 mce_is_correctable(m) &&
559 mce_usable_address(m))
560 if (!cec_add_elem(m->addr >> PAGE_SHIFT))
561 return true;
562
563 return false;
564 }
565
566 static int mce_first_notifier(struct notifier_block *nb, unsigned long val,
567 void *data)
568 {
569 struct mce *m = (struct mce *)data;
570
571 if (!m)
572 return NOTIFY_DONE;
573
574 if (cec_add_mce(m))
575 return NOTIFY_STOP;
576
577 /* Emit the trace record: */
578 trace_mce_record(m);
579
580 set_bit(0, &mce_need_notify);
581
582 mce_notify_irq();
583
584 return NOTIFY_DONE;
585 }
586
587 static struct notifier_block first_nb = {
588 .notifier_call = mce_first_notifier,
589 .priority = MCE_PRIO_FIRST,
590 };
591
592 static int srao_decode_notifier(struct notifier_block *nb, unsigned long val,
593 void *data)
594 {
595 struct mce *mce = (struct mce *)data;
596 unsigned long pfn;
597
598 if (!mce)
599 return NOTIFY_DONE;
600
601 if (mce_usable_address(mce) && (mce->severity == MCE_AO_SEVERITY)) {
602 pfn = mce->addr >> PAGE_SHIFT;
603 if (!memory_failure(pfn, 0))
604 set_mce_nospec(pfn);
605 }
606
607 return NOTIFY_OK;
608 }
609 static struct notifier_block mce_srao_nb = {
610 .notifier_call = srao_decode_notifier,
611 .priority = MCE_PRIO_SRAO,
612 };
613
614 static int mce_default_notifier(struct notifier_block *nb, unsigned long val,
615 void *data)
616 {
617 struct mce *m = (struct mce *)data;
618
619 if (!m)
620 return NOTIFY_DONE;
621
622 if (atomic_read(&num_notifiers) > NUM_DEFAULT_NOTIFIERS)
623 return NOTIFY_DONE;
624
625 __print_mce(m);
626
627 return NOTIFY_DONE;
628 }
629
630 static struct notifier_block mce_default_nb = {
631 .notifier_call = mce_default_notifier,
632 /* lowest prio, we want it to run last. */
633 .priority = MCE_PRIO_LOWEST,
634 };
635
636 /*
637 * Read ADDR and MISC registers.
638 */
639 static void mce_read_aux(struct mce *m, int i)
640 {
641 if (m->status & MCI_STATUS_MISCV)
642 m->misc = mce_rdmsrl(msr_ops.misc(i));
643
644 if (m->status & MCI_STATUS_ADDRV) {
645 m->addr = mce_rdmsrl(msr_ops.addr(i));
646
647 /*
648 * Mask the reported address by the reported granularity.
649 */
650 if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) {
651 u8 shift = MCI_MISC_ADDR_LSB(m->misc);
652 m->addr >>= shift;
653 m->addr <<= shift;
654 }
655
656 /*
657 * Extract [55:<lsb>] where lsb is the least significant
658 * *valid* bit of the address bits.
659 */
660 if (mce_flags.smca) {
661 u8 lsb = (m->addr >> 56) & 0x3f;
662
663 m->addr &= GENMASK_ULL(55, lsb);
664 }
665 }
666
667 if (mce_flags.smca) {
668 m->ipid = mce_rdmsrl(MSR_AMD64_SMCA_MCx_IPID(i));
669
670 if (m->status & MCI_STATUS_SYNDV)
671 m->synd = mce_rdmsrl(MSR_AMD64_SMCA_MCx_SYND(i));
672 }
673 }
674
675 DEFINE_PER_CPU(unsigned, mce_poll_count);
676
677 /*
678 * Poll for corrected events or events that happened before reset.
679 * Those are just logged through /dev/mcelog.
680 *
681 * This is executed in standard interrupt context.
682 *
683 * Note: spec recommends to panic for fatal unsignalled
684 * errors here. However this would be quite problematic --
685 * we would need to reimplement the Monarch handling and
686 * it would mess up the exclusion between exception handler
687 * and poll handler -- * so we skip this for now.
688 * These cases should not happen anyways, or only when the CPU
689 * is already totally * confused. In this case it's likely it will
690 * not fully execute the machine check handler either.
691 */
692 bool machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
693 {
694 bool error_seen = false;
695 struct mce m;
696 int i;
697
698 this_cpu_inc(mce_poll_count);
699
700 mce_gather_info(&m, NULL);
701
702 if (flags & MCP_TIMESTAMP)
703 m.tsc = rdtsc();
704
705 for (i = 0; i < mca_cfg.banks; i++) {
706 if (!mce_banks[i].ctl || !test_bit(i, *b))
707 continue;
708
709 m.misc = 0;
710 m.addr = 0;
711 m.bank = i;
712
713 barrier();
714 m.status = mce_rdmsrl(msr_ops.status(i));
715
716 /* If this entry is not valid, ignore it */
717 if (!(m.status & MCI_STATUS_VAL))
718 continue;
719
720 /*
721 * If we are logging everything (at CPU online) or this
722 * is a corrected error, then we must log it.
723 */
724 if ((flags & MCP_UC) || !(m.status & MCI_STATUS_UC))
725 goto log_it;
726
727 /*
728 * Newer Intel systems that support software error
729 * recovery need to make additional checks. Other
730 * CPUs should skip over uncorrected errors, but log
731 * everything else.
732 */
733 if (!mca_cfg.ser) {
734 if (m.status & MCI_STATUS_UC)
735 continue;
736 goto log_it;
737 }
738
739 /* Log "not enabled" (speculative) errors */
740 if (!(m.status & MCI_STATUS_EN))
741 goto log_it;
742
743 /*
744 * Log UCNA (SDM: 15.6.3 "UCR Error Classification")
745 * UC == 1 && PCC == 0 && S == 0
746 */
747 if (!(m.status & MCI_STATUS_PCC) && !(m.status & MCI_STATUS_S))
748 goto log_it;
749
750 /*
751 * Skip anything else. Presumption is that our read of this
752 * bank is racing with a machine check. Leave the log alone
753 * for do_machine_check() to deal with it.
754 */
755 continue;
756
757 log_it:
758 error_seen = true;
759
760 mce_read_aux(&m, i);
761
762 m.severity = mce_severity(&m, mca_cfg.tolerant, NULL, false);
763
764 /*
765 * Don't get the IP here because it's unlikely to
766 * have anything to do with the actual error location.
767 */
768 if (!(flags & MCP_DONTLOG) && !mca_cfg.dont_log_ce)
769 mce_log(&m);
770 else if (mce_usable_address(&m)) {
771 /*
772 * Although we skipped logging this, we still want
773 * to take action. Add to the pool so the registered
774 * notifiers will see it.
775 */
776 if (!mce_gen_pool_add(&m))
777 mce_schedule_work();
778 }
779
780 /*
781 * Clear state for this bank.
782 */
783 mce_wrmsrl(msr_ops.status(i), 0);
784 }
785
786 /*
787 * Don't clear MCG_STATUS here because it's only defined for
788 * exceptions.
789 */
790
791 sync_core();
792
793 return error_seen;
794 }
795 EXPORT_SYMBOL_GPL(machine_check_poll);
796
797 /*
798 * Do a quick check if any of the events requires a panic.
799 * This decides if we keep the events around or clear them.
800 */
801 static int mce_no_way_out(struct mce *m, char **msg, unsigned long *validp,
802 struct pt_regs *regs)
803 {
804 char *tmp;
805 int i;
806
807 for (i = 0; i < mca_cfg.banks; i++) {
808 m->status = mce_rdmsrl(msr_ops.status(i));
809 if (!(m->status & MCI_STATUS_VAL))
810 continue;
811
812 __set_bit(i, validp);
813 if (quirk_no_way_out)
814 quirk_no_way_out(i, m, regs);
815
816 if (mce_severity(m, mca_cfg.tolerant, &tmp, true) >= MCE_PANIC_SEVERITY) {
817 m->bank = i;
818 mce_read_aux(m, i);
819 *msg = tmp;
820 return 1;
821 }
822 }
823 return 0;
824 }
825
826 /*
827 * Variable to establish order between CPUs while scanning.
828 * Each CPU spins initially until executing is equal its number.
829 */
830 static atomic_t mce_executing;
831
832 /*
833 * Defines order of CPUs on entry. First CPU becomes Monarch.
834 */
835 static atomic_t mce_callin;
836
837 /*
838 * Check if a timeout waiting for other CPUs happened.
839 */
840 static int mce_timed_out(u64 *t, const char *msg)
841 {
842 /*
843 * The others already did panic for some reason.
844 * Bail out like in a timeout.
845 * rmb() to tell the compiler that system_state
846 * might have been modified by someone else.
847 */
848 rmb();
849 if (atomic_read(&mce_panicked))
850 wait_for_panic();
851 if (!mca_cfg.monarch_timeout)
852 goto out;
853 if ((s64)*t < SPINUNIT) {
854 if (mca_cfg.tolerant <= 1)
855 mce_panic(msg, NULL, NULL);
856 cpu_missing = 1;
857 return 1;
858 }
859 *t -= SPINUNIT;
860 out:
861 touch_nmi_watchdog();
862 return 0;
863 }
864
865 /*
866 * The Monarch's reign. The Monarch is the CPU who entered
867 * the machine check handler first. It waits for the others to
868 * raise the exception too and then grades them. When any
869 * error is fatal panic. Only then let the others continue.
870 *
871 * The other CPUs entering the MCE handler will be controlled by the
872 * Monarch. They are called Subjects.
873 *
874 * This way we prevent any potential data corruption in a unrecoverable case
875 * and also makes sure always all CPU's errors are examined.
876 *
877 * Also this detects the case of a machine check event coming from outer
878 * space (not detected by any CPUs) In this case some external agent wants
879 * us to shut down, so panic too.
880 *
881 * The other CPUs might still decide to panic if the handler happens
882 * in a unrecoverable place, but in this case the system is in a semi-stable
883 * state and won't corrupt anything by itself. It's ok to let the others
884 * continue for a bit first.
885 *
886 * All the spin loops have timeouts; when a timeout happens a CPU
887 * typically elects itself to be Monarch.
888 */
889 static void mce_reign(void)
890 {
891 int cpu;
892 struct mce *m = NULL;
893 int global_worst = 0;
894 char *msg = NULL;
895 char *nmsg = NULL;
896
897 /*
898 * This CPU is the Monarch and the other CPUs have run
899 * through their handlers.
900 * Grade the severity of the errors of all the CPUs.
901 */
902 for_each_possible_cpu(cpu) {
903 int severity = mce_severity(&per_cpu(mces_seen, cpu),
904 mca_cfg.tolerant,
905 &nmsg, true);
906 if (severity > global_worst) {
907 msg = nmsg;
908 global_worst = severity;
909 m = &per_cpu(mces_seen, cpu);
910 }
911 }
912
913 /*
914 * Cannot recover? Panic here then.
915 * This dumps all the mces in the log buffer and stops the
916 * other CPUs.
917 */
918 if (m && global_worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3)
919 mce_panic("Fatal machine check", m, msg);
920
921 /*
922 * For UC somewhere we let the CPU who detects it handle it.
923 * Also must let continue the others, otherwise the handling
924 * CPU could deadlock on a lock.
925 */
926
927 /*
928 * No machine check event found. Must be some external
929 * source or one CPU is hung. Panic.
930 */
931 if (global_worst <= MCE_KEEP_SEVERITY && mca_cfg.tolerant < 3)
932 mce_panic("Fatal machine check from unknown source", NULL, NULL);
933
934 /*
935 * Now clear all the mces_seen so that they don't reappear on
936 * the next mce.
937 */
938 for_each_possible_cpu(cpu)
939 memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
940 }
941
942 static atomic_t global_nwo;
943
944 /*
945 * Start of Monarch synchronization. This waits until all CPUs have
946 * entered the exception handler and then determines if any of them
947 * saw a fatal event that requires panic. Then it executes them
948 * in the entry order.
949 * TBD double check parallel CPU hotunplug
950 */
951 static int mce_start(int *no_way_out)
952 {
953 int order;
954 int cpus = num_online_cpus();
955 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
956
957 if (!timeout)
958 return -1;
959
960 atomic_add(*no_way_out, &global_nwo);
961 /*
962 * Rely on the implied barrier below, such that global_nwo
963 * is updated before mce_callin.
964 */
965 order = atomic_inc_return(&mce_callin);
966
967 /*
968 * Wait for everyone.
969 */
970 while (atomic_read(&mce_callin) != cpus) {
971 if (mce_timed_out(&timeout,
972 "Timeout: Not all CPUs entered broadcast exception handler")) {
973 atomic_set(&global_nwo, 0);
974 return -1;
975 }
976 ndelay(SPINUNIT);
977 }
978
979 /*
980 * mce_callin should be read before global_nwo
981 */
982 smp_rmb();
983
984 if (order == 1) {
985 /*
986 * Monarch: Starts executing now, the others wait.
987 */
988 atomic_set(&mce_executing, 1);
989 } else {
990 /*
991 * Subject: Now start the scanning loop one by one in
992 * the original callin order.
993 * This way when there are any shared banks it will be
994 * only seen by one CPU before cleared, avoiding duplicates.
995 */
996 while (atomic_read(&mce_executing) < order) {
997 if (mce_timed_out(&timeout,
998 "Timeout: Subject CPUs unable to finish machine check processing")) {
999 atomic_set(&global_nwo, 0);
1000 return -1;
1001 }
1002 ndelay(SPINUNIT);
1003 }
1004 }
1005
1006 /*
1007 * Cache the global no_way_out state.
1008 */
1009 *no_way_out = atomic_read(&global_nwo);
1010
1011 return order;
1012 }
1013
1014 /*
1015 * Synchronize between CPUs after main scanning loop.
1016 * This invokes the bulk of the Monarch processing.
1017 */
1018 static int mce_end(int order)
1019 {
1020 int ret = -1;
1021 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
1022
1023 if (!timeout)
1024 goto reset;
1025 if (order < 0)
1026 goto reset;
1027
1028 /*
1029 * Allow others to run.
1030 */
1031 atomic_inc(&mce_executing);
1032
1033 if (order == 1) {
1034 /* CHECKME: Can this race with a parallel hotplug? */
1035 int cpus = num_online_cpus();
1036
1037 /*
1038 * Monarch: Wait for everyone to go through their scanning
1039 * loops.
1040 */
1041 while (atomic_read(&mce_executing) <= cpus) {
1042 if (mce_timed_out(&timeout,
1043 "Timeout: Monarch CPU unable to finish machine check processing"))
1044 goto reset;
1045 ndelay(SPINUNIT);
1046 }
1047
1048 mce_reign();
1049 barrier();
1050 ret = 0;
1051 } else {
1052 /*
1053 * Subject: Wait for Monarch to finish.
1054 */
1055 while (atomic_read(&mce_executing) != 0) {
1056 if (mce_timed_out(&timeout,
1057 "Timeout: Monarch CPU did not finish machine check processing"))
1058 goto reset;
1059 ndelay(SPINUNIT);
1060 }
1061
1062 /*
1063 * Don't reset anything. That's done by the Monarch.
1064 */
1065 return 0;
1066 }
1067
1068 /*
1069 * Reset all global state.
1070 */
1071 reset:
1072 atomic_set(&global_nwo, 0);
1073 atomic_set(&mce_callin, 0);
1074 barrier();
1075
1076 /*
1077 * Let others run again.
1078 */
1079 atomic_set(&mce_executing, 0);
1080 return ret;
1081 }
1082
1083 static void mce_clear_state(unsigned long *toclear)
1084 {
1085 int i;
1086
1087 for (i = 0; i < mca_cfg.banks; i++) {
1088 if (test_bit(i, toclear))
1089 mce_wrmsrl(msr_ops.status(i), 0);
1090 }
1091 }
1092
1093 static int do_memory_failure(struct mce *m)
1094 {
1095 int flags = MF_ACTION_REQUIRED;
1096 int ret;
1097
1098 pr_err("Uncorrected hardware memory error in user-access at %llx", m->addr);
1099 if (!(m->mcgstatus & MCG_STATUS_RIPV))
1100 flags |= MF_MUST_KILL;
1101 ret = memory_failure(m->addr >> PAGE_SHIFT, flags);
1102 if (ret)
1103 pr_err("Memory error not recovered");
1104 else
1105 set_mce_nospec(m->addr >> PAGE_SHIFT);
1106 return ret;
1107 }
1108
1109
1110 /*
1111 * Cases where we avoid rendezvous handler timeout:
1112 * 1) If this CPU is offline.
1113 *
1114 * 2) If crashing_cpu was set, e.g. we're entering kdump and we need to
1115 * skip those CPUs which remain looping in the 1st kernel - see
1116 * crash_nmi_callback().
1117 *
1118 * Note: there still is a small window between kexec-ing and the new,
1119 * kdump kernel establishing a new #MC handler where a broadcasted MCE
1120 * might not get handled properly.
1121 */
1122 static bool __mc_check_crashing_cpu(int cpu)
1123 {
1124 if (cpu_is_offline(cpu) ||
1125 (crashing_cpu != -1 && crashing_cpu != cpu)) {
1126 u64 mcgstatus;
1127
1128 mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
1129 if (mcgstatus & MCG_STATUS_RIPV) {
1130 mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1131 return true;
1132 }
1133 }
1134 return false;
1135 }
1136
1137 static void __mc_scan_banks(struct mce *m, struct mce *final,
1138 unsigned long *toclear, unsigned long *valid_banks,
1139 int no_way_out, int *worst)
1140 {
1141 struct mca_config *cfg = &mca_cfg;
1142 int severity, i;
1143
1144 for (i = 0; i < cfg->banks; i++) {
1145 __clear_bit(i, toclear);
1146 if (!test_bit(i, valid_banks))
1147 continue;
1148
1149 if (!mce_banks[i].ctl)
1150 continue;
1151
1152 m->misc = 0;
1153 m->addr = 0;
1154 m->bank = i;
1155
1156 m->status = mce_rdmsrl(msr_ops.status(i));
1157 if (!(m->status & MCI_STATUS_VAL))
1158 continue;
1159
1160 /*
1161 * Corrected or non-signaled errors are handled by
1162 * machine_check_poll(). Leave them alone, unless this panics.
1163 */
1164 if (!(m->status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
1165 !no_way_out)
1166 continue;
1167
1168 /* Set taint even when machine check was not enabled. */
1169 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
1170
1171 severity = mce_severity(m, cfg->tolerant, NULL, true);
1172
1173 /*
1174 * When machine check was for corrected/deferred handler don't
1175 * touch, unless we're panicking.
1176 */
1177 if ((severity == MCE_KEEP_SEVERITY ||
1178 severity == MCE_UCNA_SEVERITY) && !no_way_out)
1179 continue;
1180
1181 __set_bit(i, toclear);
1182
1183 /* Machine check event was not enabled. Clear, but ignore. */
1184 if (severity == MCE_NO_SEVERITY)
1185 continue;
1186
1187 mce_read_aux(m, i);
1188
1189 /* assuming valid severity level != 0 */
1190 m->severity = severity;
1191
1192 mce_log(m);
1193
1194 if (severity > *worst) {
1195 *final = *m;
1196 *worst = severity;
1197 }
1198 }
1199
1200 /* mce_clear_state will clear *final, save locally for use later */
1201 *m = *final;
1202 }
1203
1204 /*
1205 * The actual machine check handler. This only handles real
1206 * exceptions when something got corrupted coming in through int 18.
1207 *
1208 * This is executed in NMI context not subject to normal locking rules. This
1209 * implies that most kernel services cannot be safely used. Don't even
1210 * think about putting a printk in there!
1211 *
1212 * On Intel systems this is entered on all CPUs in parallel through
1213 * MCE broadcast. However some CPUs might be broken beyond repair,
1214 * so be always careful when synchronizing with others.
1215 */
1216 void do_machine_check(struct pt_regs *regs, long error_code)
1217 {
1218 DECLARE_BITMAP(valid_banks, MAX_NR_BANKS);
1219 DECLARE_BITMAP(toclear, MAX_NR_BANKS);
1220 struct mca_config *cfg = &mca_cfg;
1221 int cpu = smp_processor_id();
1222 char *msg = "Unknown";
1223 struct mce m, *final;
1224 int worst = 0;
1225
1226 /*
1227 * Establish sequential order between the CPUs entering the machine
1228 * check handler.
1229 */
1230 int order = -1;
1231
1232 /*
1233 * If no_way_out gets set, there is no safe way to recover from this
1234 * MCE. If mca_cfg.tolerant is cranked up, we'll try anyway.
1235 */
1236 int no_way_out = 0;
1237
1238 /*
1239 * If kill_it gets set, there might be a way to recover from this
1240 * error.
1241 */
1242 int kill_it = 0;
1243
1244 /*
1245 * MCEs are always local on AMD. Same is determined by MCG_STATUS_LMCES
1246 * on Intel.
1247 */
1248 int lmce = 1;
1249
1250 if (__mc_check_crashing_cpu(cpu))
1251 return;
1252
1253 ist_enter(regs);
1254
1255 this_cpu_inc(mce_exception_count);
1256
1257 mce_gather_info(&m, regs);
1258 m.tsc = rdtsc();
1259
1260 final = this_cpu_ptr(&mces_seen);
1261 *final = m;
1262
1263 memset(valid_banks, 0, sizeof(valid_banks));
1264 no_way_out = mce_no_way_out(&m, &msg, valid_banks, regs);
1265
1266 barrier();
1267
1268 /*
1269 * When no restart IP might need to kill or panic.
1270 * Assume the worst for now, but if we find the
1271 * severity is MCE_AR_SEVERITY we have other options.
1272 */
1273 if (!(m.mcgstatus & MCG_STATUS_RIPV))
1274 kill_it = 1;
1275
1276 /*
1277 * Check if this MCE is signaled to only this logical processor,
1278 * on Intel only.
1279 */
1280 if (m.cpuvendor == X86_VENDOR_INTEL)
1281 lmce = m.mcgstatus & MCG_STATUS_LMCES;
1282
1283 /*
1284 * Local machine check may already know that we have to panic.
1285 * Broadcast machine check begins rendezvous in mce_start()
1286 * Go through all banks in exclusion of the other CPUs. This way we
1287 * don't report duplicated events on shared banks because the first one
1288 * to see it will clear it.
1289 */
1290 if (lmce) {
1291 if (no_way_out)
1292 mce_panic("Fatal local machine check", &m, msg);
1293 } else {
1294 order = mce_start(&no_way_out);
1295 }
1296
1297 __mc_scan_banks(&m, final, toclear, valid_banks, no_way_out, &worst);
1298
1299 if (!no_way_out)
1300 mce_clear_state(toclear);
1301
1302 /*
1303 * Do most of the synchronization with other CPUs.
1304 * When there's any problem use only local no_way_out state.
1305 */
1306 if (!lmce) {
1307 if (mce_end(order) < 0)
1308 no_way_out = worst >= MCE_PANIC_SEVERITY;
1309 } else {
1310 /*
1311 * If there was a fatal machine check we should have
1312 * already called mce_panic earlier in this function.
1313 * Since we re-read the banks, we might have found
1314 * something new. Check again to see if we found a
1315 * fatal error. We call "mce_severity()" again to
1316 * make sure we have the right "msg".
1317 */
1318 if (worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3) {
1319 mce_severity(&m, cfg->tolerant, &msg, true);
1320 mce_panic("Local fatal machine check!", &m, msg);
1321 }
1322 }
1323
1324 /*
1325 * If tolerant is at an insane level we drop requests to kill
1326 * processes and continue even when there is no way out.
1327 */
1328 if (cfg->tolerant == 3)
1329 kill_it = 0;
1330 else if (no_way_out)
1331 mce_panic("Fatal machine check on current CPU", &m, msg);
1332
1333 if (worst > 0)
1334 mce_report_event(regs);
1335 mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1336
1337 sync_core();
1338
1339 if (worst != MCE_AR_SEVERITY && !kill_it)
1340 goto out_ist;
1341
1342 /* Fault was in user mode and we need to take some action */
1343 if ((m.cs & 3) == 3) {
1344 ist_begin_non_atomic(regs);
1345 local_irq_enable();
1346
1347 if (kill_it || do_memory_failure(&m))
1348 force_sig(SIGBUS, current);
1349 local_irq_disable();
1350 ist_end_non_atomic();
1351 } else {
1352 if (!fixup_exception(regs, X86_TRAP_MC, error_code, 0))
1353 mce_panic("Failed kernel mode recovery", &m, NULL);
1354 }
1355
1356 out_ist:
1357 ist_exit(regs);
1358 }
1359 EXPORT_SYMBOL_GPL(do_machine_check);
1360
1361 #ifndef CONFIG_MEMORY_FAILURE
1362 int memory_failure(unsigned long pfn, int flags)
1363 {
1364 /* mce_severity() should not hand us an ACTION_REQUIRED error */
1365 BUG_ON(flags & MF_ACTION_REQUIRED);
1366 pr_err("Uncorrected memory error in page 0x%lx ignored\n"
1367 "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n",
1368 pfn);
1369
1370 return 0;
1371 }
1372 #endif
1373
1374 /*
1375 * Periodic polling timer for "silent" machine check errors. If the
1376 * poller finds an MCE, poll 2x faster. When the poller finds no more
1377 * errors, poll 2x slower (up to check_interval seconds).
1378 */
1379 static unsigned long check_interval = INITIAL_CHECK_INTERVAL;
1380
1381 static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */
1382 static DEFINE_PER_CPU(struct timer_list, mce_timer);
1383
1384 static unsigned long mce_adjust_timer_default(unsigned long interval)
1385 {
1386 return interval;
1387 }
1388
1389 static unsigned long (*mce_adjust_timer)(unsigned long interval) = mce_adjust_timer_default;
1390
1391 static void __start_timer(struct timer_list *t, unsigned long interval)
1392 {
1393 unsigned long when = jiffies + interval;
1394 unsigned long flags;
1395
1396 local_irq_save(flags);
1397
1398 if (!timer_pending(t) || time_before(when, t->expires))
1399 mod_timer(t, round_jiffies(when));
1400
1401 local_irq_restore(flags);
1402 }
1403
1404 static void mce_timer_fn(struct timer_list *t)
1405 {
1406 struct timer_list *cpu_t = this_cpu_ptr(&mce_timer);
1407 unsigned long iv;
1408
1409 WARN_ON(cpu_t != t);
1410
1411 iv = __this_cpu_read(mce_next_interval);
1412
1413 if (mce_available(this_cpu_ptr(&cpu_info))) {
1414 machine_check_poll(0, this_cpu_ptr(&mce_poll_banks));
1415
1416 if (mce_intel_cmci_poll()) {
1417 iv = mce_adjust_timer(iv);
1418 goto done;
1419 }
1420 }
1421
1422 /*
1423 * Alert userspace if needed. If we logged an MCE, reduce the polling
1424 * interval, otherwise increase the polling interval.
1425 */
1426 if (mce_notify_irq())
1427 iv = max(iv / 2, (unsigned long) HZ/100);
1428 else
1429 iv = min(iv * 2, round_jiffies_relative(check_interval * HZ));
1430
1431 done:
1432 __this_cpu_write(mce_next_interval, iv);
1433 __start_timer(t, iv);
1434 }
1435
1436 /*
1437 * Ensure that the timer is firing in @interval from now.
1438 */
1439 void mce_timer_kick(unsigned long interval)
1440 {
1441 struct timer_list *t = this_cpu_ptr(&mce_timer);
1442 unsigned long iv = __this_cpu_read(mce_next_interval);
1443
1444 __start_timer(t, interval);
1445
1446 if (interval < iv)
1447 __this_cpu_write(mce_next_interval, interval);
1448 }
1449
1450 /* Must not be called in IRQ context where del_timer_sync() can deadlock */
1451 static void mce_timer_delete_all(void)
1452 {
1453 int cpu;
1454
1455 for_each_online_cpu(cpu)
1456 del_timer_sync(&per_cpu(mce_timer, cpu));
1457 }
1458
1459 /*
1460 * Notify the user(s) about new machine check events.
1461 * Can be called from interrupt context, but not from machine check/NMI
1462 * context.
1463 */
1464 int mce_notify_irq(void)
1465 {
1466 /* Not more than two messages every minute */
1467 static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1468
1469 if (test_and_clear_bit(0, &mce_need_notify)) {
1470 mce_work_trigger();
1471
1472 if (__ratelimit(&ratelimit))
1473 pr_info(HW_ERR "Machine check events logged\n");
1474
1475 return 1;
1476 }
1477 return 0;
1478 }
1479 EXPORT_SYMBOL_GPL(mce_notify_irq);
1480
1481 static int __mcheck_cpu_mce_banks_init(void)
1482 {
1483 int i;
1484
1485 mce_banks = kcalloc(MAX_NR_BANKS, sizeof(struct mce_bank), GFP_KERNEL);
1486 if (!mce_banks)
1487 return -ENOMEM;
1488
1489 for (i = 0; i < MAX_NR_BANKS; i++) {
1490 struct mce_bank *b = &mce_banks[i];
1491
1492 b->ctl = -1ULL;
1493 b->init = 1;
1494 }
1495 return 0;
1496 }
1497
1498 /*
1499 * Initialize Machine Checks for a CPU.
1500 */
1501 static int __mcheck_cpu_cap_init(void)
1502 {
1503 u64 cap;
1504 u8 b;
1505
1506 rdmsrl(MSR_IA32_MCG_CAP, cap);
1507
1508 b = cap & MCG_BANKCNT_MASK;
1509 if (WARN_ON_ONCE(b > MAX_NR_BANKS))
1510 b = MAX_NR_BANKS;
1511
1512 mca_cfg.banks = max(mca_cfg.banks, b);
1513
1514 if (!mce_banks) {
1515 int err = __mcheck_cpu_mce_banks_init();
1516 if (err)
1517 return err;
1518 }
1519
1520 /* Use accurate RIP reporting if available. */
1521 if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1522 mca_cfg.rip_msr = MSR_IA32_MCG_EIP;
1523
1524 if (cap & MCG_SER_P)
1525 mca_cfg.ser = 1;
1526
1527 return 0;
1528 }
1529
1530 static void __mcheck_cpu_init_generic(void)
1531 {
1532 enum mcp_flags m_fl = 0;
1533 mce_banks_t all_banks;
1534 u64 cap;
1535
1536 if (!mca_cfg.bootlog)
1537 m_fl = MCP_DONTLOG;
1538
1539 /*
1540 * Log the machine checks left over from the previous reset.
1541 */
1542 bitmap_fill(all_banks, MAX_NR_BANKS);
1543 machine_check_poll(MCP_UC | m_fl, &all_banks);
1544
1545 cr4_set_bits(X86_CR4_MCE);
1546
1547 rdmsrl(MSR_IA32_MCG_CAP, cap);
1548 if (cap & MCG_CTL_P)
1549 wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1550 }
1551
1552 static void __mcheck_cpu_init_clear_banks(void)
1553 {
1554 int i;
1555
1556 for (i = 0; i < mca_cfg.banks; i++) {
1557 struct mce_bank *b = &mce_banks[i];
1558
1559 if (!b->init)
1560 continue;
1561 wrmsrl(msr_ops.ctl(i), b->ctl);
1562 wrmsrl(msr_ops.status(i), 0);
1563 }
1564 }
1565
1566 /*
1567 * During IFU recovery Sandy Bridge -EP4S processors set the RIPV and
1568 * EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM
1569 * Vol 3B Table 15-20). But this confuses both the code that determines
1570 * whether the machine check occurred in kernel or user mode, and also
1571 * the severity assessment code. Pretend that EIPV was set, and take the
1572 * ip/cs values from the pt_regs that mce_gather_info() ignored earlier.
1573 */
1574 static void quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs)
1575 {
1576 if (bank != 0)
1577 return;
1578 if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0)
1579 return;
1580 if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC|
1581 MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV|
1582 MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR|
1583 MCACOD)) !=
1584 (MCI_STATUS_UC|MCI_STATUS_EN|
1585 MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S|
1586 MCI_STATUS_AR|MCACOD_INSTR))
1587 return;
1588
1589 m->mcgstatus |= MCG_STATUS_EIPV;
1590 m->ip = regs->ip;
1591 m->cs = regs->cs;
1592 }
1593
1594 /* Add per CPU specific workarounds here */
1595 static int __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1596 {
1597 struct mca_config *cfg = &mca_cfg;
1598
1599 if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1600 pr_info("unknown CPU type - not enabling MCE support\n");
1601 return -EOPNOTSUPP;
1602 }
1603
1604 /* This should be disabled by the BIOS, but isn't always */
1605 if (c->x86_vendor == X86_VENDOR_AMD) {
1606 if (c->x86 == 15 && cfg->banks > 4) {
1607 /*
1608 * disable GART TBL walk error reporting, which
1609 * trips off incorrectly with the IOMMU & 3ware
1610 * & Cerberus:
1611 */
1612 clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1613 }
1614 if (c->x86 < 0x11 && cfg->bootlog < 0) {
1615 /*
1616 * Lots of broken BIOS around that don't clear them
1617 * by default and leave crap in there. Don't log:
1618 */
1619 cfg->bootlog = 0;
1620 }
1621 /*
1622 * Various K7s with broken bank 0 around. Always disable
1623 * by default.
1624 */
1625 if (c->x86 == 6 && cfg->banks > 0)
1626 mce_banks[0].ctl = 0;
1627
1628 /*
1629 * overflow_recov is supported for F15h Models 00h-0fh
1630 * even though we don't have a CPUID bit for it.
1631 */
1632 if (c->x86 == 0x15 && c->x86_model <= 0xf)
1633 mce_flags.overflow_recov = 1;
1634
1635 }
1636
1637 if (c->x86_vendor == X86_VENDOR_INTEL) {
1638 /*
1639 * SDM documents that on family 6 bank 0 should not be written
1640 * because it aliases to another special BIOS controlled
1641 * register.
1642 * But it's not aliased anymore on model 0x1a+
1643 * Don't ignore bank 0 completely because there could be a
1644 * valid event later, merely don't write CTL0.
1645 */
1646
1647 if (c->x86 == 6 && c->x86_model < 0x1A && cfg->banks > 0)
1648 mce_banks[0].init = 0;
1649
1650 /*
1651 * All newer Intel systems support MCE broadcasting. Enable
1652 * synchronization with a one second timeout.
1653 */
1654 if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1655 cfg->monarch_timeout < 0)
1656 cfg->monarch_timeout = USEC_PER_SEC;
1657
1658 /*
1659 * There are also broken BIOSes on some Pentium M and
1660 * earlier systems:
1661 */
1662 if (c->x86 == 6 && c->x86_model <= 13 && cfg->bootlog < 0)
1663 cfg->bootlog = 0;
1664
1665 if (c->x86 == 6 && c->x86_model == 45)
1666 quirk_no_way_out = quirk_sandybridge_ifu;
1667 }
1668 if (cfg->monarch_timeout < 0)
1669 cfg->monarch_timeout = 0;
1670 if (cfg->bootlog != 0)
1671 cfg->panic_timeout = 30;
1672
1673 return 0;
1674 }
1675
1676 static int __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1677 {
1678 if (c->x86 != 5)
1679 return 0;
1680
1681 switch (c->x86_vendor) {
1682 case X86_VENDOR_INTEL:
1683 intel_p5_mcheck_init(c);
1684 return 1;
1685 break;
1686 case X86_VENDOR_CENTAUR:
1687 winchip_mcheck_init(c);
1688 return 1;
1689 break;
1690 default:
1691 return 0;
1692 }
1693
1694 return 0;
1695 }
1696
1697 /*
1698 * Init basic CPU features needed for early decoding of MCEs.
1699 */
1700 static void __mcheck_cpu_init_early(struct cpuinfo_x86 *c)
1701 {
1702 if (c->x86_vendor == X86_VENDOR_AMD || c->x86_vendor == X86_VENDOR_HYGON) {
1703 mce_flags.overflow_recov = !!cpu_has(c, X86_FEATURE_OVERFLOW_RECOV);
1704 mce_flags.succor = !!cpu_has(c, X86_FEATURE_SUCCOR);
1705 mce_flags.smca = !!cpu_has(c, X86_FEATURE_SMCA);
1706
1707 if (mce_flags.smca) {
1708 msr_ops.ctl = smca_ctl_reg;
1709 msr_ops.status = smca_status_reg;
1710 msr_ops.addr = smca_addr_reg;
1711 msr_ops.misc = smca_misc_reg;
1712 }
1713 }
1714 }
1715
1716 static void mce_centaur_feature_init(struct cpuinfo_x86 *c)
1717 {
1718 struct mca_config *cfg = &mca_cfg;
1719
1720 /*
1721 * All newer Centaur CPUs support MCE broadcasting. Enable
1722 * synchronization with a one second timeout.
1723 */
1724 if ((c->x86 == 6 && c->x86_model == 0xf && c->x86_stepping >= 0xe) ||
1725 c->x86 > 6) {
1726 if (cfg->monarch_timeout < 0)
1727 cfg->monarch_timeout = USEC_PER_SEC;
1728 }
1729 }
1730
1731 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
1732 {
1733 switch (c->x86_vendor) {
1734 case X86_VENDOR_INTEL:
1735 mce_intel_feature_init(c);
1736 mce_adjust_timer = cmci_intel_adjust_timer;
1737 break;
1738
1739 case X86_VENDOR_AMD: {
1740 mce_amd_feature_init(c);
1741 break;
1742 }
1743
1744 case X86_VENDOR_HYGON:
1745 mce_hygon_feature_init(c);
1746 break;
1747
1748 case X86_VENDOR_CENTAUR:
1749 mce_centaur_feature_init(c);
1750 break;
1751
1752 default:
1753 break;
1754 }
1755 }
1756
1757 static void __mcheck_cpu_clear_vendor(struct cpuinfo_x86 *c)
1758 {
1759 switch (c->x86_vendor) {
1760 case X86_VENDOR_INTEL:
1761 mce_intel_feature_clear(c);
1762 break;
1763 default:
1764 break;
1765 }
1766 }
1767
1768 static void mce_start_timer(struct timer_list *t)
1769 {
1770 unsigned long iv = check_interval * HZ;
1771
1772 if (mca_cfg.ignore_ce || !iv)
1773 return;
1774
1775 this_cpu_write(mce_next_interval, iv);
1776 __start_timer(t, iv);
1777 }
1778
1779 static void __mcheck_cpu_setup_timer(void)
1780 {
1781 struct timer_list *t = this_cpu_ptr(&mce_timer);
1782
1783 timer_setup(t, mce_timer_fn, TIMER_PINNED);
1784 }
1785
1786 static void __mcheck_cpu_init_timer(void)
1787 {
1788 struct timer_list *t = this_cpu_ptr(&mce_timer);
1789
1790 timer_setup(t, mce_timer_fn, TIMER_PINNED);
1791 mce_start_timer(t);
1792 }
1793
1794 /* Handle unconfigured int18 (should never happen) */
1795 static void unexpected_machine_check(struct pt_regs *regs, long error_code)
1796 {
1797 pr_err("CPU#%d: Unexpected int18 (Machine Check)\n",
1798 smp_processor_id());
1799 }
1800
1801 /* Call the installed machine check handler for this CPU setup. */
1802 void (*machine_check_vector)(struct pt_regs *, long error_code) =
1803 unexpected_machine_check;
1804
1805 dotraplinkage void do_mce(struct pt_regs *regs, long error_code)
1806 {
1807 machine_check_vector(regs, error_code);
1808 }
1809
1810 /*
1811 * Called for each booted CPU to set up machine checks.
1812 * Must be called with preempt off:
1813 */
1814 void mcheck_cpu_init(struct cpuinfo_x86 *c)
1815 {
1816 if (mca_cfg.disabled)
1817 return;
1818
1819 if (__mcheck_cpu_ancient_init(c))
1820 return;
1821
1822 if (!mce_available(c))
1823 return;
1824
1825 if (__mcheck_cpu_cap_init() < 0 || __mcheck_cpu_apply_quirks(c) < 0) {
1826 mca_cfg.disabled = 1;
1827 return;
1828 }
1829
1830 if (mce_gen_pool_init()) {
1831 mca_cfg.disabled = 1;
1832 pr_emerg("Couldn't allocate MCE records pool!\n");
1833 return;
1834 }
1835
1836 machine_check_vector = do_machine_check;
1837
1838 __mcheck_cpu_init_early(c);
1839 __mcheck_cpu_init_generic();
1840 __mcheck_cpu_init_vendor(c);
1841 __mcheck_cpu_init_clear_banks();
1842 __mcheck_cpu_setup_timer();
1843 }
1844
1845 /*
1846 * Called for each booted CPU to clear some machine checks opt-ins
1847 */
1848 void mcheck_cpu_clear(struct cpuinfo_x86 *c)
1849 {
1850 if (mca_cfg.disabled)
1851 return;
1852
1853 if (!mce_available(c))
1854 return;
1855
1856 /*
1857 * Possibly to clear general settings generic to x86
1858 * __mcheck_cpu_clear_generic(c);
1859 */
1860 __mcheck_cpu_clear_vendor(c);
1861
1862 }
1863
1864 static void __mce_disable_bank(void *arg)
1865 {
1866 int bank = *((int *)arg);
1867 __clear_bit(bank, this_cpu_ptr(mce_poll_banks));
1868 cmci_disable_bank(bank);
1869 }
1870
1871 void mce_disable_bank(int bank)
1872 {
1873 if (bank >= mca_cfg.banks) {
1874 pr_warn(FW_BUG
1875 "Ignoring request to disable invalid MCA bank %d.\n",
1876 bank);
1877 return;
1878 }
1879 set_bit(bank, mce_banks_ce_disabled);
1880 on_each_cpu(__mce_disable_bank, &bank, 1);
1881 }
1882
1883 /*
1884 * mce=off Disables machine check
1885 * mce=no_cmci Disables CMCI
1886 * mce=no_lmce Disables LMCE
1887 * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
1888 * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
1889 * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
1890 * monarchtimeout is how long to wait for other CPUs on machine
1891 * check, or 0 to not wait
1892 * mce=bootlog Log MCEs from before booting. Disabled by default on AMD Fam10h
1893 and older.
1894 * mce=nobootlog Don't log MCEs from before booting.
1895 * mce=bios_cmci_threshold Don't program the CMCI threshold
1896 * mce=recovery force enable memcpy_mcsafe()
1897 */
1898 static int __init mcheck_enable(char *str)
1899 {
1900 struct mca_config *cfg = &mca_cfg;
1901
1902 if (*str == 0) {
1903 enable_p5_mce();
1904 return 1;
1905 }
1906 if (*str == '=')
1907 str++;
1908 if (!strcmp(str, "off"))
1909 cfg->disabled = 1;
1910 else if (!strcmp(str, "no_cmci"))
1911 cfg->cmci_disabled = true;
1912 else if (!strcmp(str, "no_lmce"))
1913 cfg->lmce_disabled = 1;
1914 else if (!strcmp(str, "dont_log_ce"))
1915 cfg->dont_log_ce = true;
1916 else if (!strcmp(str, "ignore_ce"))
1917 cfg->ignore_ce = true;
1918 else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
1919 cfg->bootlog = (str[0] == 'b');
1920 else if (!strcmp(str, "bios_cmci_threshold"))
1921 cfg->bios_cmci_threshold = 1;
1922 else if (!strcmp(str, "recovery"))
1923 cfg->recovery = 1;
1924 else if (isdigit(str[0])) {
1925 if (get_option(&str, &cfg->tolerant) == 2)
1926 get_option(&str, &(cfg->monarch_timeout));
1927 } else {
1928 pr_info("mce argument %s ignored. Please use /sys\n", str);
1929 return 0;
1930 }
1931 return 1;
1932 }
1933 __setup("mce", mcheck_enable);
1934
1935 int __init mcheck_init(void)
1936 {
1937 mcheck_intel_therm_init();
1938 mce_register_decode_chain(&first_nb);
1939 mce_register_decode_chain(&mce_srao_nb);
1940 mce_register_decode_chain(&mce_default_nb);
1941 mcheck_vendor_init_severity();
1942
1943 INIT_WORK(&mce_work, mce_gen_pool_process);
1944 init_irq_work(&mce_irq_work, mce_irq_work_cb);
1945
1946 return 0;
1947 }
1948
1949 /*
1950 * mce_syscore: PM support
1951 */
1952
1953 /*
1954 * Disable machine checks on suspend and shutdown. We can't really handle
1955 * them later.
1956 */
1957 static void mce_disable_error_reporting(void)
1958 {
1959 int i;
1960
1961 for (i = 0; i < mca_cfg.banks; i++) {
1962 struct mce_bank *b = &mce_banks[i];
1963
1964 if (b->init)
1965 wrmsrl(msr_ops.ctl(i), 0);
1966 }
1967 return;
1968 }
1969
1970 static void vendor_disable_error_reporting(void)
1971 {
1972 /*
1973 * Don't clear on Intel or AMD or Hygon CPUs. Some of these MSRs
1974 * are socket-wide.
1975 * Disabling them for just a single offlined CPU is bad, since it will
1976 * inhibit reporting for all shared resources on the socket like the
1977 * last level cache (LLC), the integrated memory controller (iMC), etc.
1978 */
1979 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL ||
1980 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON ||
1981 boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
1982 return;
1983
1984 mce_disable_error_reporting();
1985 }
1986
1987 static int mce_syscore_suspend(void)
1988 {
1989 vendor_disable_error_reporting();
1990 return 0;
1991 }
1992
1993 static void mce_syscore_shutdown(void)
1994 {
1995 vendor_disable_error_reporting();
1996 }
1997
1998 /*
1999 * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
2000 * Only one CPU is active at this time, the others get re-added later using
2001 * CPU hotplug:
2002 */
2003 static void mce_syscore_resume(void)
2004 {
2005 __mcheck_cpu_init_generic();
2006 __mcheck_cpu_init_vendor(raw_cpu_ptr(&cpu_info));
2007 __mcheck_cpu_init_clear_banks();
2008 }
2009
2010 static struct syscore_ops mce_syscore_ops = {
2011 .suspend = mce_syscore_suspend,
2012 .shutdown = mce_syscore_shutdown,
2013 .resume = mce_syscore_resume,
2014 };
2015
2016 /*
2017 * mce_device: Sysfs support
2018 */
2019
2020 static void mce_cpu_restart(void *data)
2021 {
2022 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2023 return;
2024 __mcheck_cpu_init_generic();
2025 __mcheck_cpu_init_clear_banks();
2026 __mcheck_cpu_init_timer();
2027 }
2028
2029 /* Reinit MCEs after user configuration changes */
2030 static void mce_restart(void)
2031 {
2032 mce_timer_delete_all();
2033 on_each_cpu(mce_cpu_restart, NULL, 1);
2034 }
2035
2036 /* Toggle features for corrected errors */
2037 static void mce_disable_cmci(void *data)
2038 {
2039 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2040 return;
2041 cmci_clear();
2042 }
2043
2044 static void mce_enable_ce(void *all)
2045 {
2046 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2047 return;
2048 cmci_reenable();
2049 cmci_recheck();
2050 if (all)
2051 __mcheck_cpu_init_timer();
2052 }
2053
2054 static struct bus_type mce_subsys = {
2055 .name = "machinecheck",
2056 .dev_name = "machinecheck",
2057 };
2058
2059 DEFINE_PER_CPU(struct device *, mce_device);
2060
2061 static inline struct mce_bank *attr_to_bank(struct device_attribute *attr)
2062 {
2063 return container_of(attr, struct mce_bank, attr);
2064 }
2065
2066 static ssize_t show_bank(struct device *s, struct device_attribute *attr,
2067 char *buf)
2068 {
2069 return sprintf(buf, "%llx\n", attr_to_bank(attr)->ctl);
2070 }
2071
2072 static ssize_t set_bank(struct device *s, struct device_attribute *attr,
2073 const char *buf, size_t size)
2074 {
2075 u64 new;
2076
2077 if (kstrtou64(buf, 0, &new) < 0)
2078 return -EINVAL;
2079
2080 attr_to_bank(attr)->ctl = new;
2081 mce_restart();
2082
2083 return size;
2084 }
2085
2086 static ssize_t set_ignore_ce(struct device *s,
2087 struct device_attribute *attr,
2088 const char *buf, size_t size)
2089 {
2090 u64 new;
2091
2092 if (kstrtou64(buf, 0, &new) < 0)
2093 return -EINVAL;
2094
2095 mutex_lock(&mce_sysfs_mutex);
2096 if (mca_cfg.ignore_ce ^ !!new) {
2097 if (new) {
2098 /* disable ce features */
2099 mce_timer_delete_all();
2100 on_each_cpu(mce_disable_cmci, NULL, 1);
2101 mca_cfg.ignore_ce = true;
2102 } else {
2103 /* enable ce features */
2104 mca_cfg.ignore_ce = false;
2105 on_each_cpu(mce_enable_ce, (void *)1, 1);
2106 }
2107 }
2108 mutex_unlock(&mce_sysfs_mutex);
2109
2110 return size;
2111 }
2112
2113 static ssize_t set_cmci_disabled(struct device *s,
2114 struct device_attribute *attr,
2115 const char *buf, size_t size)
2116 {
2117 u64 new;
2118
2119 if (kstrtou64(buf, 0, &new) < 0)
2120 return -EINVAL;
2121
2122 mutex_lock(&mce_sysfs_mutex);
2123 if (mca_cfg.cmci_disabled ^ !!new) {
2124 if (new) {
2125 /* disable cmci */
2126 on_each_cpu(mce_disable_cmci, NULL, 1);
2127 mca_cfg.cmci_disabled = true;
2128 } else {
2129 /* enable cmci */
2130 mca_cfg.cmci_disabled = false;
2131 on_each_cpu(mce_enable_ce, NULL, 1);
2132 }
2133 }
2134 mutex_unlock(&mce_sysfs_mutex);
2135
2136 return size;
2137 }
2138
2139 static ssize_t store_int_with_restart(struct device *s,
2140 struct device_attribute *attr,
2141 const char *buf, size_t size)
2142 {
2143 unsigned long old_check_interval = check_interval;
2144 ssize_t ret = device_store_ulong(s, attr, buf, size);
2145
2146 if (check_interval == old_check_interval)
2147 return ret;
2148
2149 mutex_lock(&mce_sysfs_mutex);
2150 mce_restart();
2151 mutex_unlock(&mce_sysfs_mutex);
2152
2153 return ret;
2154 }
2155
2156 static DEVICE_INT_ATTR(tolerant, 0644, mca_cfg.tolerant);
2157 static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout);
2158 static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce);
2159
2160 static struct dev_ext_attribute dev_attr_check_interval = {
2161 __ATTR(check_interval, 0644, device_show_int, store_int_with_restart),
2162 &check_interval
2163 };
2164
2165 static struct dev_ext_attribute dev_attr_ignore_ce = {
2166 __ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce),
2167 &mca_cfg.ignore_ce
2168 };
2169
2170 static struct dev_ext_attribute dev_attr_cmci_disabled = {
2171 __ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled),
2172 &mca_cfg.cmci_disabled
2173 };
2174
2175 static struct device_attribute *mce_device_attrs[] = {
2176 &dev_attr_tolerant.attr,
2177 &dev_attr_check_interval.attr,
2178 #ifdef CONFIG_X86_MCELOG_LEGACY
2179 &dev_attr_trigger,
2180 #endif
2181 &dev_attr_monarch_timeout.attr,
2182 &dev_attr_dont_log_ce.attr,
2183 &dev_attr_ignore_ce.attr,
2184 &dev_attr_cmci_disabled.attr,
2185 NULL
2186 };
2187
2188 static cpumask_var_t mce_device_initialized;
2189
2190 static void mce_device_release(struct device *dev)
2191 {
2192 kfree(dev);
2193 }
2194
2195 /* Per cpu device init. All of the cpus still share the same ctrl bank: */
2196 static int mce_device_create(unsigned int cpu)
2197 {
2198 struct device *dev;
2199 int err;
2200 int i, j;
2201
2202 if (!mce_available(&boot_cpu_data))
2203 return -EIO;
2204
2205 dev = per_cpu(mce_device, cpu);
2206 if (dev)
2207 return 0;
2208
2209 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2210 if (!dev)
2211 return -ENOMEM;
2212 dev->id = cpu;
2213 dev->bus = &mce_subsys;
2214 dev->release = &mce_device_release;
2215
2216 err = device_register(dev);
2217 if (err) {
2218 put_device(dev);
2219 return err;
2220 }
2221
2222 for (i = 0; mce_device_attrs[i]; i++) {
2223 err = device_create_file(dev, mce_device_attrs[i]);
2224 if (err)
2225 goto error;
2226 }
2227 for (j = 0; j < mca_cfg.banks; j++) {
2228 err = device_create_file(dev, &mce_banks[j].attr);
2229 if (err)
2230 goto error2;
2231 }
2232 cpumask_set_cpu(cpu, mce_device_initialized);
2233 per_cpu(mce_device, cpu) = dev;
2234
2235 return 0;
2236 error2:
2237 while (--j >= 0)
2238 device_remove_file(dev, &mce_banks[j].attr);
2239 error:
2240 while (--i >= 0)
2241 device_remove_file(dev, mce_device_attrs[i]);
2242
2243 device_unregister(dev);
2244
2245 return err;
2246 }
2247
2248 static void mce_device_remove(unsigned int cpu)
2249 {
2250 struct device *dev = per_cpu(mce_device, cpu);
2251 int i;
2252
2253 if (!cpumask_test_cpu(cpu, mce_device_initialized))
2254 return;
2255
2256 for (i = 0; mce_device_attrs[i]; i++)
2257 device_remove_file(dev, mce_device_attrs[i]);
2258
2259 for (i = 0; i < mca_cfg.banks; i++)
2260 device_remove_file(dev, &mce_banks[i].attr);
2261
2262 device_unregister(dev);
2263 cpumask_clear_cpu(cpu, mce_device_initialized);
2264 per_cpu(mce_device, cpu) = NULL;
2265 }
2266
2267 /* Make sure there are no machine checks on offlined CPUs. */
2268 static void mce_disable_cpu(void)
2269 {
2270 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2271 return;
2272
2273 if (!cpuhp_tasks_frozen)
2274 cmci_clear();
2275
2276 vendor_disable_error_reporting();
2277 }
2278
2279 static void mce_reenable_cpu(void)
2280 {
2281 int i;
2282
2283 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2284 return;
2285
2286 if (!cpuhp_tasks_frozen)
2287 cmci_reenable();
2288 for (i = 0; i < mca_cfg.banks; i++) {
2289 struct mce_bank *b = &mce_banks[i];
2290
2291 if (b->init)
2292 wrmsrl(msr_ops.ctl(i), b->ctl);
2293 }
2294 }
2295
2296 static int mce_cpu_dead(unsigned int cpu)
2297 {
2298 mce_intel_hcpu_update(cpu);
2299
2300 /* intentionally ignoring frozen here */
2301 if (!cpuhp_tasks_frozen)
2302 cmci_rediscover();
2303 return 0;
2304 }
2305
2306 static int mce_cpu_online(unsigned int cpu)
2307 {
2308 struct timer_list *t = this_cpu_ptr(&mce_timer);
2309 int ret;
2310
2311 mce_device_create(cpu);
2312
2313 ret = mce_threshold_create_device(cpu);
2314 if (ret) {
2315 mce_device_remove(cpu);
2316 return ret;
2317 }
2318 mce_reenable_cpu();
2319 mce_start_timer(t);
2320 return 0;
2321 }
2322
2323 static int mce_cpu_pre_down(unsigned int cpu)
2324 {
2325 struct timer_list *t = this_cpu_ptr(&mce_timer);
2326
2327 mce_disable_cpu();
2328 del_timer_sync(t);
2329 mce_threshold_remove_device(cpu);
2330 mce_device_remove(cpu);
2331 return 0;
2332 }
2333
2334 static __init void mce_init_banks(void)
2335 {
2336 int i;
2337
2338 for (i = 0; i < mca_cfg.banks; i++) {
2339 struct mce_bank *b = &mce_banks[i];
2340 struct device_attribute *a = &b->attr;
2341
2342 sysfs_attr_init(&a->attr);
2343 a->attr.name = b->attrname;
2344 snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2345
2346 a->attr.mode = 0644;
2347 a->show = show_bank;
2348 a->store = set_bank;
2349 }
2350 }
2351
2352 static __init int mcheck_init_device(void)
2353 {
2354 int err;
2355
2356 /*
2357 * Check if we have a spare virtual bit. This will only become
2358 * a problem if/when we move beyond 5-level page tables.
2359 */
2360 MAYBE_BUILD_BUG_ON(__VIRTUAL_MASK_SHIFT >= 63);
2361
2362 if (!mce_available(&boot_cpu_data)) {
2363 err = -EIO;
2364 goto err_out;
2365 }
2366
2367 if (!zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL)) {
2368 err = -ENOMEM;
2369 goto err_out;
2370 }
2371
2372 mce_init_banks();
2373
2374 err = subsys_system_register(&mce_subsys, NULL);
2375 if (err)
2376 goto err_out_mem;
2377
2378 err = cpuhp_setup_state(CPUHP_X86_MCE_DEAD, "x86/mce:dead", NULL,
2379 mce_cpu_dead);
2380 if (err)
2381 goto err_out_mem;
2382
2383 err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/mce:online",
2384 mce_cpu_online, mce_cpu_pre_down);
2385 if (err < 0)
2386 goto err_out_online;
2387
2388 register_syscore_ops(&mce_syscore_ops);
2389
2390 return 0;
2391
2392 err_out_online:
2393 cpuhp_remove_state(CPUHP_X86_MCE_DEAD);
2394
2395 err_out_mem:
2396 free_cpumask_var(mce_device_initialized);
2397
2398 err_out:
2399 pr_err("Unable to init MCE device (rc: %d)\n", err);
2400
2401 return err;
2402 }
2403 device_initcall_sync(mcheck_init_device);
2404
2405 /*
2406 * Old style boot options parsing. Only for compatibility.
2407 */
2408 static int __init mcheck_disable(char *str)
2409 {
2410 mca_cfg.disabled = 1;
2411 return 1;
2412 }
2413 __setup("nomce", mcheck_disable);
2414
2415 #ifdef CONFIG_DEBUG_FS
2416 struct dentry *mce_get_debugfs_dir(void)
2417 {
2418 static struct dentry *dmce;
2419
2420 if (!dmce)
2421 dmce = debugfs_create_dir("mce", NULL);
2422
2423 return dmce;
2424 }
2425
2426 static void mce_reset(void)
2427 {
2428 cpu_missing = 0;
2429 atomic_set(&mce_fake_panicked, 0);
2430 atomic_set(&mce_executing, 0);
2431 atomic_set(&mce_callin, 0);
2432 atomic_set(&global_nwo, 0);
2433 }
2434
2435 static int fake_panic_get(void *data, u64 *val)
2436 {
2437 *val = fake_panic;
2438 return 0;
2439 }
2440
2441 static int fake_panic_set(void *data, u64 val)
2442 {
2443 mce_reset();
2444 fake_panic = val;
2445 return 0;
2446 }
2447
2448 DEFINE_SIMPLE_ATTRIBUTE(fake_panic_fops, fake_panic_get,
2449 fake_panic_set, "%llu\n");
2450
2451 static int __init mcheck_debugfs_init(void)
2452 {
2453 struct dentry *dmce, *ffake_panic;
2454
2455 dmce = mce_get_debugfs_dir();
2456 if (!dmce)
2457 return -ENOMEM;
2458 ffake_panic = debugfs_create_file("fake_panic", 0444, dmce, NULL,
2459 &fake_panic_fops);
2460 if (!ffake_panic)
2461 return -ENOMEM;
2462
2463 return 0;
2464 }
2465 #else
2466 static int __init mcheck_debugfs_init(void) { return -EINVAL; }
2467 #endif
2468
2469 DEFINE_STATIC_KEY_FALSE(mcsafe_key);
2470 EXPORT_SYMBOL_GPL(mcsafe_key);
2471
2472 static int __init mcheck_late_init(void)
2473 {
2474 pr_info("Using %d MCE banks\n", mca_cfg.banks);
2475
2476 if (mca_cfg.recovery)
2477 static_branch_inc(&mcsafe_key);
2478
2479 mcheck_debugfs_init();
2480 cec_init();
2481
2482 /*
2483 * Flush out everything that has been logged during early boot, now that
2484 * everything has been initialized (workqueues, decoders, ...).
2485 */
2486 mce_schedule_work();
2487
2488 return 0;
2489 }
2490 late_initcall(mcheck_late_init);